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1 Abstract

This chapter describes a principled approach to meta-learning that has three
distinctive features. First, whereas most previous work on meta-learning focused
exclusively on the learning task, our approach applies meta-learning to the full
knowledge discovery process and is thus more aptly referred to as meta-mining.
Second, traditional meta-learning regards learning algorithms as black boxes
and essentially correlates properties of their input (data) with the performance
of their output (learned model). We propose to tear open the black box and anal-
yse algorithms in terms of their core components, their underlying assumptions,
the cost functions and optimization strategies they use, and the models and de-
cision boundaries they generate. Third, to ground meta-mining on a declarative
representation of the data mining (dm) process and its components, we built a
DM ontology and knowledge base using the Web Ontology Language (owl).

The Data Mining Optimization Ontology (dmop, pronounced dee-mope)) pro-
vides a unified conceptual framework for analysing dm tasks, algorithms, models,
datasets, workflows and performance metrics, as well as their relationships. The
dm knowledge base uses concepts from dmop to describe existing data mining
algorithms and their implementations in major dm software packages. Meta-
data collected from data mining experiments are also described in terms of con-
cepts from the ontology and linked to algorithm and operator descriptions in the
knowledge base; they are then stored in data mining experiment data bases to
serve as training and evaluation data for the meta-miner.

These three features together lay the groundwork for what we call deep or se-
mantic meta-mining, i.e., dm process or workflow mining that is driven simulta-
neously by meta-data and by the collective expertise of data miners embodied in
the data mining ontology and knowledge base. In Section 2, we review the state
of the art in the fields of meta-learning and data mining ontologies; at the same
time, we motivate the need for ontology-based meta-mining and distinguish our
approach from related work in these two areas. Section 3 gives a detailed de-
scription of dmop, while Section 4 introduces a novel method for ontology-based
discovery of generalized patterns from data mining workflows. Section 5 reports
on proof-of-concept experiments conducted to gauge the efficacy of dmop-based
workflow mining, and Section 6 concludes.



2 State of the art and motivation

The work described in this chapter draws together two research streams that have
remained independent so far—meta-learning and data mining ontology construc-
tion. This section reviews the state of the art in both areas and points out the
novelty of our approach with respect to each.

2.1 From meta-learning to meta-mining

Meta-learning is learning to learn: in computer science, it is the application of
machine learning techniques to meta-data describing past learning experience
in order to modify some aspect of the learning process and improve the per-
formance of the resulting model [29,3,13,78]. Meta-learning thus defined applies
specifically to learning, which is only one—albeit the central—step in the data
mining (or knowledge discovery) process1. The quality of mined knowledge de-
pends as much on other steps such as data cleaning, data selection, feature
extraction and selection, model pruning, and model aggregation. We still lack
an understanding of how the different components of the data mining process
interact; there are no clear guidelines except for high-level process models such
as crisp-dm [18]. Process-related issues, such as the composition of data mining
operations and the need for a methodology of data mining, are among the ten
data mining challenges discussed in [80].

In response to this challenge, a number of systems have been designed to provide
user support throughout the different phases of the kd process (Serban et al.,
2010). Most of them rely on a planning approach and produce workflows that
are valid but not necessarily optimal with respect to a given cost function such
as predictive accuracy. This is the case of the planner-based intelligent discov-
ery assistant (ida) implemented in the e-lico project2. To allow the planner to
select the most promising workflows from an often huge set of candidates, an
ontology-based meta-learner mines records of past data mining experiments to
extract models and patterns that will suggest which dm algorithms should be
used together in order to achieve the best results for a given problem, data set and
cost function. The e-lico ida therefore self-improves as a result of meta-mining,
loosely defined as kd process-oriented meta-learning. Meta-mining extends the
meta-learning approach to the full knowledge discovery process: in the same way
that meta-learning is aimed at optimizing the results of learning, meta-mining
optimizes the results of data mining by taking into account the interdependen-
cies and interactions between the different process operations, and in particular

1 We follow current usage in treating data mining and knowledge discovery as syn-
onyms, using the terms learning or modelling to refer to what Fayyad et al. [25]
called the data mining phase of the knowledge discovery process.

2 http://www.e-lico.org
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between learning and the different pre/post-processing steps. In this sense, meta-
mining subsumes meta-learning and must address all the open issues regarding
meta-learning.

Since it emerged as a distinct research area in machine learning, meta-learning
has been cast as the problem of dynamically selecting or adjusting inductive
bias [61,74,75,30,77]. There is a consensus that with no restrictions on the space
of hypotheses to be explored by the learning algorithm and no preference cri-
terion for comparing candidate hypotheses, then no inductive method can do
better on average than random guessing. In short, without bias no learning is
possible [51]; the so-called no-free-lunch theorem on supervised learning [79]
and the conservation law for generalization performance [63] express basically
the same idea. There are two types of bias: representational bias restricts the
hypothesis space whereas procedural—aka search or preference—bias gives pri-
ority to certain hypotheses over others in this space. The most widely addressed
meta-learning tasks—algorithm selection and model selection3—can be viewed
as ways of selecting or adjusting these two types of bias. Algorithm selection
is the choice of the appropriate algorithm for a given task, while model selec-
tion is the choice of the specific parameter settings that will produce relatively
good performance for a given algorithm on a given task. Algorithm—or model
class—selection amounts to adjusting representational bias and model selection
to adjusting preference bias. Though there have been a number of studies on
model selection [22,23,68,2], meta-learning research has focused predominantly
on algorithm selection [73,67,41,43,47,69].

The algorithm selection problem has its origins outside machine learning [66]. In
1976 a seminal paper by John Rice [62] proposed a formal model comprising four
components: a problem space X or collection of problem instances describable
in terms of features defined in feature space F , an algorithm space A or set
of algorithms considered to address problems in X , and a performance space
P representing metrics of algorithm efficacy in solving a problem. Algorithm
selection can then be formulated as follows: Given a problem x ∈ X characterized
by f(x) ∈ F , find an algorithm α ∈ A via the selection mapping S(f(x)) such
that the performance mapping p(α(x)) ∈ P is maximized. A schematic diagram
of the abstract model is given in Fig. 1.

In Rice’s model, selection mapping from problem space X onto algorithm space
A is based solely on features f ∈ F over the problem instances. In machine learn-
ing terms, the choice of the appropriate induction algorithm is conditioned solely
on the characteristics of the learning problem and data. Strangely, meta-learning
research has independently abided by the same restriction from its inception to
the present. From early meta-learning attempts [61,12] to more recent inves-
tigations, the dominant trend relies almost exclusively on meta-data describ-
ing the characteristics of base-level data sets used in learning, and the goal of
meta-learning has even been defined restrictively as learning a mapping from
3 We take algorithm/model selection to include task variants and extensions such as
algorithm/model ranking and algorithm/model combination.
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Fig. 1. Rice’s model of the algorithm selection problem. Adapted from [62,66]

dataset characteristics to algorithm performance [3]. Researchers have come up
with an abundant harvest of such characteristics, in particular statistical and
information-theoretic properties of training data [46,36,42,72,16]. A more recent
research avenue, dubbed landmarking, characterizes data sets in terms of the
predictive performance attained by simple learning algorithms when applied to
them [57,8,27,48]; yet another approach describes data sets based on features of
the models that were learned from them [8,55]. In all cases, however, the goal is
to discover mappings from data set characteristics to learning algorithms viewed
essentially as black boxes.

Thus far there has been no attempt to correlate dataset and algorithm char-
acteristics, in other words to understand which aspects of a given algorithm
explain its expected performance given the features of the data to be modelled.
As a consequence, current meta-learners cannot generalize over algorithms as
they do over data sets. To illustrate this problem, suppose that three algorithms
are observed to achieve equivalent performance on a collection of datasets rep-
resenting a task family. Meta-learning would yield three disjunctive rules with
identical conditions and distinct recommendations. There would be no way of
characterizing in more abstract terms the class of algorithms that would per-
form well on the given task domain. In short, no amount of meta-learning would
reap fresh insights into the commonalities underlying the disconcerting variety
of algorithms.

To overcome this difficulty, we propose to extend the Rice framework and pry
open the black box of algorithms [37]. To be able to differentiate similar al-
gorithms as well as detect deeper commonalities among apparently unrelated
ones, we propose to characterize them in terms of components such as the model
structure built, the objective functions and search strategies used, or the type
of data partitions produced. This compositional approach is expected to have
two far-reaching consequences. Through a systematic analysis of all the ingredi-
ents that constitute an algorithm’s inductive bias, meta-learning systems (and
data miners in the first instance) will be able to infer not only which algorithms
work for specific data/task classes but—more importantly—why. In the long
term, they should be able to operationalize the insights thus gained in order to
combine algorithms purposefully and perhaps design new algorithms. This novel
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approach to algorithm selection is not limited to the induction phase; it should
be applicable to other data and model processing tasks that require search in
the space of candidate algorithms. The proposed approach will also be adapted
to model selection, i.e., finding the specific parameter setting that will allow a
given algorithm to achieve acceptable performance on a given task. This will
require an extensive study of the parameters involved in a given class of algo-
rithms, their role in the learning process or their impact on the expected results
(e.g., on the complexity of the learned model for induction algorithms), and their
formalization in the data mining ontology.

Fig. 2. Proposed model for algorithm selection

The proposed revision of Rice’s model for algorithm selection is visualized in
Fig. 2. It includes an additional feature space G representing the space of features
extracted to characterize algorithms; selection mapping is now a function of both
problem and algorithm features. The revised problem formulation now is: Given
a problem x ∈ X characterized by f(x) ∈ F and algorithms a ∈ A characterized
by g(a) ∈ G, find an algorithm α ∈ A via the selection mapping S(f(x), g(a))
such that the performance mapping p(a(x)) ∈ P is maximized.

2.2 Data Mining Ontologies

An ontology is a structure O := (C,≤C ,R, σ,≤R, IR) consisting of a set of con-
cepts C and a set of relationsR, a partial order ≤C on C, called concept hierarchy
or taxonomy, a function σ : R → C × C called signature, a partial order ≤R
on R called relation hierarchy, and a set IR of inference rules expressed in a
logical language L [39]. Before the coming of age of ontological engineering as a
distinct research area, there had been early attempts at a systematic description
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of machine learning and data mining processes. camlet [71] used a rudimentary
ontology of learning tasks and algorithms to support the automatic composition
and revision of inductive processes. While camlet focused on model building,
the MiningMart project [52] shifted the focus to the preprocessing phase. The
metadata used in MiningMart was condensed into a small ontology whose pri-
mary purpose was to allow for the reuse of stored data mining cases. Opera-
tor chains, mainly for preprocessing, were described at both the abstract and
executable levels to facilitate maintenance of the case base and adaptation of
retrieved cases. The taxonomy of data mining operators underlying the IDEA

system [9] had a broader scope in the sense that it covered that preprocessing,
induction and postprocessing phase of the knowledge discovery process. It had
an explicit representation of operator preconditions and effects and was used
by an AI-style planner to generate all valid workflows for a given application
task. However, unlike camlet and MiningMart, where the assembled operator
sequences were executed and later revised and reused, idea did not go beyond
the simple enumeration of valid dm process plans.

The advent of ontology languages and tools for the Semantic Web gave rise to
a new generation of data mining ontologies, the majority of which are aimed at
the construction of workflows for knowledge discovery. Among these, damon [17]
and GridMiner Assistant (gma) [14] focus more specifically on the development
of distributed kdd applications on the Grid. damon describes available data
mining software, their underlying methods and associated constraints in order
to enable semantic search for appropriate DM resources and tools. gma’s data
mining ontology, written in owl, is based on industry standards like the crisp-
dm process model [18] and the Predictive Model Markup Language [32]. The
ontology is used to support interactive workflow design: gma first backward-
chains from the initial goal/task to compose an abstract task sequence, eliciting
user preferences as needed (e.g., to select the preferred type of model). In the
second phase, it forward-chains along this sequence to fill in task parameters,
either by reasoning from preconditions and effects given in the ontology or by
getting user input.

Other ontologies for dm workflow construction are kddonto [20], kd ontology
[82] and dmwf [44]. kddonto provides knowledge of data mining algorithms
required by kddcomposer to build valid dm workflows. Given an algorithm B,
the goal is to find the set of algorithms Ai whose outputs can be used as inputs to
B. This is done by estimating the degree of match between the expected output
of each algorithm Ai and the required input B. Semantic similarity is computed
based on the length of the ontological paths between two concepts along the isA
and partOf relations. However (dis)similarity is only one component of a score or
cost function that takes account of other factors such as estimated performance
or the relaxation of constraints on the input of B. This score induces a finer
ranking on the candidate workflows and allows for the early disposal of those
whose cost exceeds a given threshold.
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kd ontology [82] and a planner are tightly integrated in an automated workflow
composition system that has been developed in conformance with proven stan-
dards from the semantic web, namely the Web Ontology Language for ontology
modelling and the Planning Domain Definition Language (pddl) for planning.
It has a blend of interesting features not found in other related work. Contrary
to idea and gma which generate workflows in the form of linear sequences, it
creates workflows as directed acyclic graphs whose nodes represent implemented
algorithms; however, these are abstract workflows in the sense that the algorithm
parameters need to be instantiated in order to produce executable workflows.
In addition, kd ontology incorporates knowledge about a broad range of data
mining algorithms, from standard propositional learners to more advanced algo-
rithms that can handle structured and relational data, thus expanding the power
and diversity of workflows that the planner is able to generate. kd ontology has
been tested on two use cases, one in genomics and the other in product engi-
neering.

dmwf and its associated planning environment (eProPlan) [44] have been de-
veloped to provide user support in the e-lico virtual data mining laboratory.
A hierarchical task network (htn) based planner performs a series of task de-
compositions starting from the initial user task, and generates alternative plans
when several methods are available for a given (sub)task. Given the number of
operators available to the planner (more than 600 from RapidMiner and Weka
alone), the potentially infinite number of valid workflows precludes the approach
of enumerating them all and leaving the final choice to the user. Hence the choice
of cooperative-interactive workflow planning, in which the planner incrementally
expands the current plan and periodically proposes a small number of intermedi-
ate extensions or refinements from which the user can choose. The ontology pro-
vides the basis for cooperative-interactive workflow planning through the concept
of workflow templates, i.e. abstract workflows that can mix executable operators
and tasks to be refined later into sub-workflows. These templates serve as the
common workspace where user and system can cooperatively design workflows.
Automated experimentation can help make intermediate decisions, though this is
a viable alternative only when time and computational resources are abundant.

Like the other workflow building systems described above, eProPlan generates
a set of correct workflows but has no way of selecting that which is most likely
to produce the best results. dmwf models operator preconditions and effects
but has no knowledge of the algorithms they implement or the models they
are capable of generating. The solution adopted in the e-lico virtual dm lab is
to couple the workflow generator with a meta-miner whose role is to rank the
workflows or select the most promising ones based on lessons learned from past
data mining experience. The meta-miner relies extensively on deep knowledge of
data mining algorithms’ biases and capabilities modelled in dmop (Section 3).

As mentioned above, the vast majority of existing dm ontologies are aimed at
supporting workflow construction. One exception is ontodm [53], whose declared
goal is to provide a unified framework for data mining [24]. It contains defini-
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tions of the basic concepts used in data mining (e.g., dm task, algorithm, dataset,
datatype), which can be combined to define more complex entities such as con-
straints or data mining experiments. The distinguishing feature of ontodm is
its compliance with ontological best practices defined mainly in the field of bi-
ological investigations. It uses a number of upper level ontologies such as Basic
Formal Ontology (bfo), the obo Relation Ontology (ro), and the Informa-
tion Artefact Ontology (iao). Its structure has been aligned with the Ontology
of Biological Investigations (obi), and its development follows strict rules like
avoiding multiple inheritance and limiting the number of relations. ontodm is
called a general-purpose ontology by its authors and remains to be applied to a
concrete data mining use case. More recently, a similar ontology called Exposé
[76] has been developed to provide the conceptual basis for a database of data
mining experiments [11]. Exposé borrows ontodm’s upper level structure and
dmop’s conceptualization of data mining algorithms, and completes these with
a description of experiments that serves as the basis of an Experiment Markup
Language. ontodm’s and Exposé’s alignment with upper ontologies suggests that
their primary use is to provide a controlled vocabulary for DM investigations.
Among the dm ontologies that do not focus on workflow construction, dmop is
unique in its focus on the problem of optimizing the knowledge discovery pro-
cess through an in-depth characterization of data and especially of dm algorithm
biases and internal mechanisms.

3 An Ontology for Data Mining Optimization

3.1 Objectives and overview

The overall goal of dmop is to provide support for all decision-making steps that
have an impact on the outcome of the knowledge discovery process. It focuses
specifically on dm tasks (e.g., learning, feature extraction) whose accomplish-
ment requires non-trivial search in the space of alternative methods. For each
such task, the decision process involves two steps that can be guided by prior
knowledge from the ontology: algorithm selection and model selection. While
data mining practitioners can profitably consult dmop to perform "manual" al-
gorithm and model selection, the ontology has been designed to automate these
two operations. Thus a third use of dmop is meta-learning, i.e., the analysis of
meta-data describing learning episodes in view of extracting patterns and rules
to improve algorithm and model selection. Finally, generalizing meta-learning to
the complete dm process, dmop’s most innovative objective is to support meta-
mining or the meta-analysis of complete data mining experiments in order to
extract workflow patterns that are predictive of good or bad performance. In
short, dmop charts the higher-order feature space in which meta-learning and
meta-mining can take place.

The dmop ontology’s overall structure and foundational role in meta-mining are
illustrated in Figure 3. dmop provides a conceptual framework that defines the
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of Data Mining Domain

Formal Conceptual Framework

Specific DM Applications

Workflows, Results

Tasks, Algorithms, Operators

Accepted Knowledge of DM

Ontology

DMOP

Sources of meta−miner’s training data

TBox

ABox
Knowledge Base

DMKB

DMEX−DBs

Experiment Databases

Fig. 3. The DMOP architecture

relationships among the core dm entities such as tasks, algorithms, models, work-
flows, experiments (Section 3.2). The hierarchy of concepts (classes), together
with axioms expressing their properties, relations and restrictions, constitute the
terminological box (tbox), or what we can call the ontology proper. Based on
this conceptual groundwork, individuals are created as instances of one or sev-
eral concepts from the tbox; these individuals, and all statements concerning
their properties or their relations with other individuals, form the assertional
box (abox), also called the knowledge base.

The dm knowledge base (DMKB) captures the dm community’s collective ex-
pertise; ideally, it would be a compendium of the state of the art in data mining.
dmkb builds on dmop’s taxonomy of major data mining tasks and paradigms
(broad algorithm families) to classify and characterize individual algorithms that
have been developed to date, together with their better known implementations.
For instance, dmkb contains formal descriptions of algorithms most often used
to solve classification tasks: generative approaches such as Naïve Bayes, dis-
criminative approaches such as Logistic Regression, and discriminant function
approaches such as svms. To distinguish individual variants of a given algorithm
family (e.g. NaiveBayesNormal, NaiveBayesKernel, NaiveBayesDiscretized, Multinomi-
alNaiveBayes, ComplementNaiveBayes), each is described giving specific values to
properties defined in the dm ontology. Similarly, operators from dm packages
are analysed to identify the algorithms they implement, so that all attempts to
explain an operator’s performance go beyond low-level programming considera-
tions to reason on the basis of algorithm assumptions and basic components.

DM Experiment data bases (DMEX-DBs) are built using concept and prop-
erty definitions from dmop as well as concrete algorithm and operator definitions
from dmkb. In contrast to dmkb, which is a compilation of commonly accepted
data mining knowledge, a dmex database is any collection of experimental data
concerning a given data mining application task. It is usually domain-specific
and contains ground facts about clearly defined use cases, their associated data
sets, actual data mining experiments conducted to build predictive or descriptive
models that address the task, and the estimated performance of these models.
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Thus any number of DM experimental data bases can be built with schemas
based on DMOP and DMKB.

3.2 The Core Concepts

To develop the dm concept hierarchy, we start with the two endpoints of the
dm process. At one end, the process receives input data relative to a given dis-
covery task; at the other, it outputs knowledge in the form of a descriptive
or predictive model, typically accompanied by some kind of report containing
the learned model’s estimated performance and other meta-data. These three
concepts—Data, DM-Model, DM-Report—play a central role in dmop and have
been grouped, for convenience, in a derived class called IO-Object. The major
concept hierarchies of the ontology—DM-Task, DM-Algorithm, DM-Operator and
DM-Workflow—are structured directly or indirectly by these three types of in-
put/output objects.

instantiated in DMEX−DB

instantiated in DMKB

DM−Operator

specifiesOutputType

specifiesInputType

DM−Report

hasInput

hasOutput

DM−Operation

hasStephasNode

achieves

realizes

executes
DM−AlgorithmDM−Task

executes

addresses implements

DM−Workflow

Data

DM−Model

DM−Experiment

Fig. 4. The core concepts of dmop

Tasks and algorithms as defined in dmop are not processes that directly manip-
ulate data or models, rather they are specifications of such processes. A DM-Task
is a specification of any piece of work that is part of the dm process, essen-
tially in terms of the input it requires and the output it is expected to produce.
A DM-Algorithm is the specification of a procedure that addresses a given Task,
while a DM-Operator is a program that implements a given DM-Algorithm (see
Figure 4). Instances of DM-Task and DM-Algorithm do no more than specify their
input/output types; only processes called DM-Operations have actual inputs and
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outputs. A process that executes a DM-Operator also realizes the DM-Algorithm
implemented by the operator and by the same token achieves the DM-Task ad-
dressed by the algorithm. Finally, just as a DM-Workflow is a complex structure
composed of dm operators, a DM-Experiment is a complex process composed of
operations (or operator executions). A workflow can be represented as a directed
acyclic graph in which nodes correspond to operators and edges to IO-Objects,
i.e. to the data, models and meta-level reports consumed and produced by dm
operations. An experiment is described by all the objects that participate in the
process: a workflow, data sets used and produced by the different data process-
ing phases, the resulting models and meta-data quantifying their performance.
Instances of DM-Algorithm and DM-Operator are described in the DMKB because
they represent consensus data mining knowledge, while instances of DM-Workflow
and DM-Experiment are stored in application-specific DM experiment data bases.

Data As the critical resource that feeds the knowledge discovery process, data
are a natural starting point for the development of a data mining ontology. Over
the past decades many researchers have actively investigated data characteristics
that might explain generalization success or failure. An initial set of such sta-
tistical and information-theoretic measures was gathered in the StatLog project
[50] and extended in the Metal project with other statistical [46], landmarking-
based [57,7]and model-based [55,56] characteristics. Data descriptors in dmop
are based on the Metal heritage, which we further extended with geometrical
measures of data complexity [6].
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AvgPairwiseMutalInformation
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MissingValues
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...
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Data

CategoricalFeature

LabelledDataSet

DataSet DataTablehasTable hasFeature hasFValue

Fig. 5. Data characteristics modelled in dmop
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Figure 5 shows the descriptors associated with the different Data subclasses.
Most of these are statistical measures, such as the number of instances or the
number of features of a data set, or the absolute or relative frequency of a
categorical feature value. Others are information-theoretic measures (italicized
in the figure) ; examples are the entropy of a categorical feature or the class
entropy of a labelled dataset. Characteristics in bold font, like the max Fisher’s
discriminant ratio, which measures the highest discriminatory power of any single
feature in the data set, or the fraction of data points estimated to be on the class
boundary, are geometric indicators of data set complexity; detailed definitions
of these characteristics can be found in [38]. Finally, error rates such as those
of a linear or a 1-NN classifier (underlined) are data characteristics based on
landmarking, which was briefly described in Section 2.1.

DM Tasks As mentioned above, dmop places special emphasis on so-called
core dm tasks—search-intensive or optimization-dependent tasks such as feature
construction or learning, as opposed to utility tasks such as reading/writing a
data set or sorting a vector of scalars.

is−a

RegressionModellingTask

ClassificationModellingTask

StructureModellingTask

DescriptiveModellingTask

PatternDiscoveryTask

ModelPruningTask

PredictionTask

ModelEvaluationTask

...

FeatureDiscretizationT

FeatureExtractionTask

FeatureWeightingTask

PredictiveModellingTask

ModelAggregationTask

CoreDMTask

DataProcessingTask

ModellingTask

ModelProcessingTask

ModelApplicationTask

FeatureSelectionTask

StructuredPredictionTask

RegressionTask

ClassificationTask

Fig. 6. The CoreDMTask Hierarchy
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The CoreDMTask hierarchy (Fig. 6) comprises four major task classes defined
by their inputs and outputs: data processing, modelling, model processing, and
model application:

DataProcessingTaskv ∀specifiesInputType.Datau∀specifiesOutputType.Data

ModellingTaskv ∀specifiesInputType.Datau∀specifiesOutputType.Model

ModelProcessingTaskv ∀specifiesInputType.Modelu∀specifiesOutputType.Model

ModelApplicationTaskv ∀specifiesInputType.Modelu∀specifiesOutputType.Report

Specializations of each task are defined by specializing its input and output types.
As we move down the tree in Figure 6, the descendant classes of ModellingTask
specify input and output types that are successively more specific subclasses of
Data and Model respectively:

PredictiveModellingTaskv ∀specifiesInputType.LabelledDataSet

u∀specifiesOutputType.PredictiveModel

ClassificationModellingTaskv ∀specifiesInputType.CategoricalLabelledDataSet

u∀specifiesOutputType.ClassificationModel

Note the distinction between PredictiveModellingTask — the construction of a pre-
dictive model — and PredictionTask, which is the simple application of the model
built through predictive modelling. The same distinction holds between their
respective subclasses, e.g. classification is the application of a classifier built
through classification modelling, and similarly for regression and structured pre-
diction. This is in contrast to current usage in the literature, where the term
classification, for instance, designates ambiguously the process of building or
applying a classifier.

DM Algorithms The top levels of the Algorithm hierarchy reflect those of the
Task hierarchy, since each algorithm class is defined by the task it addresses, e.g.
DataProcessingAlgorithm≡ Algorithmu∃ addresses.DataProcessingTask. However, the
Algorithm hierarchy plunges more deeply than the Task hierarchy: for each leaf
class of the task hierarchy, there is an often dense subhierarchy of algorithms
that specify diverse ways of addressing each task. For instance, the leaf concept
ClassificationModellingTask in Figure 6 is mapped directly onto the hierarchy rooted
in the concept of ClassificationModellingAlgorithm in Figure 7.

As shown in the figure, classification modelling algorithms are divided into three
broad categories [10]. Generative methods compute the class-conditional densi-
ties p(x|Ck) and the priors p(Ck) for each class Ck, then use Bayes’ theorem to
find posterior class probabilities p(Ck|x). They can also model the joint distribu-
tion p(x, Ck) directly and then normalize to obtain the posteriors. In both cases,
they use statistical decision theory to determine the class for each new input.
Examples of generative methods are normal (linear or quadratic) discriminant
analysis and Naive Bayes. Discriminative methods such as logistic regression
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Fig. 7. The ClassificationModellingAlgorithm hierarchy. Only the primitive class hi-
erarchy is shown.

compute posteriors p(Ck|x) directly to determine class membership. Discrim-
inant functions build a direct mapping f(x) from input x onto a class label;
neural networks and support vector classifiers (SVCs) are examples of discrim-
inant function methods. These three Algorithm families spawn multiple levels of
descendant classes that are distinguished by the type and structure of the models
they generate; model structures will be discussed in Section 3.3.

In addition to these primitive classes that form a strict hierarchy (as shown in
Figure 7), equivalent class definitions superpose a finer structure on the Algorithm
subclasses. For instance, we can distinguish between eager and lazy learners
based on whether they compress training data into ready-to-use models or simply
store the training data, postponing all processing until a request for prediction is
received [1]. Similarly, a classification algorithm can be classified as high-bias or
high-variance based on how it tends to control the bias-variance trade-off in its
learned models [28,21]. High-bias algorithms can only generate simple models
that lack the flexibility to adapt to complex data distributions but for that
reason remain stable across different training samples. High-variance algorithms
span a broader range of complexity; they can generate highly complex but often
unstable models: a slight change in the training sample can yield large changes in
the learned models and their predictive behavior. Many other equivalent classes
can be defined for modelling algorithms; as a result, algorithm instances can
have multiple inheritance links (not shown in the figure) that make this concept
hierarchy more of a directed acyclic graph than a simple tree structure.
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3.3 Inside the Black Box: A Compositional View of DM Algorithms

As explained in Section 2, a key objective of the proposed meta-mining approach
is to pry open the black box of DM algorithms in order to correlate observed
behavior of learned models with both algorithm and data characteristics. This is
a long-term, labor-intensive task that requires an in-depth analysis of the many
data mining algorithms available. In this section, we illustrate our approach on
two major data mining tasks, classification modelling and feature selection.

Classification Modelling Algorithms Opening the black box of a modelling
or learning algorithm is equivalent to explaining, or describing the sources of,
its inductive bias (Section 2.1). DMOP provides a unified framework for concep-
tualizing a learning algorithm’s inductive bias by explicitly representing: 1) its
underlying assumptions; 2) its hypothesis language or so-called representational
bias through a detailed conceptualization of the class of models it generates; and
3) its preference or search bias through a definition of its underlying optimization
problem and the optimization strategy adopted to solve it.

Representational bias and models As its name suggests, the keystone of a mod-
elling algorithm is the Model that it was designed to produce (ModellingAlgorithm
v ∃ specifiesOutput.Model). A detailed characterization of a modelling algorithm’s
target model is the closest one can get to an actionable statement of its repre-
sentational bias or hypothesis language. DMOP’s characterization of Classifica-
tionModel is summarized in Figure 8. To clarify how the model-related and other
relevant concepts are used in describing a classification algorithm, we will use the
linear soft-margin SVM classification modelling algorithm (henceforth LinSVC-A
for the algorithm and LinSVC-M for the generated model) represented in Figure
9 as our running example.

A model is defined by two essential components: a model structure and a set
of model parameters. The ModelStructure determines the three main classes of
classification models (and hence of classification modelling algorithms). From
the definitions given in Section 3.2, it follows that the model structure of a
GenerativeModel is a JointProbabilityDistribution, while that of a DiscriminativeModel
is a PosteriorProbabilityDistribution. By contrast, DiscriminantFunctionModels compute
direct mappings of their inputs to a class label by summarizing the training data
in a LogicalStructure (e.g., decision tree, rule set) or a MathematicalExpression (e.g.,
superposition of functions in neural networks, linear combination of kernels in
SVMs). In LinSVC-M, where the kernel itself is linear, the linear combination of
kernels is equivalent to a linear combination of features (Fig. 9).

The concept of ModelParameter is indissociable from that of ModelStructure.
Within each model family, more specific subclasses and individual models are
produced by instantiating the model structure with a set of parameters. Proba-
bilistic — generative and discriminative — model structures are unambiguously
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Fig. 8. dmop’s conceptualization of ClassificationModel
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specified by the probability distribution that generated the training data. Since
this distribution can never be identified with certainty from a finite random
sample, the task is often simplified by assuming a family of distributions (e.g.,
Gaussian in NaiveBayesNormal) or a specific functional form (e.g., the logistic
function in LogisticRegression); estimating the probability distribution is then re-
duced to estimating the values of the distribution parameters (e.g., mean and
variance of a Gaussian) or the function parameters (e.g., weights of the linear
combination in the logistic function’s exponent). In dmop, the concept of Prob-
abilisticModelStructure has a specific property, hasDensityEstimation, that identifies
the parametric or non-parametric density estimation method used to estimate
the model parameters. In non-probabilistic (discriminant function) models, the
nature of the model parameters varies based on the type of model structure.
In logical structures, which are more or less complex expressions based on the
values of individual features, the model parameters are thresholds on feature
values that partition the instance space into hyperrectangular decision regions.
The natural model parameters of mathematical model structures are the values
of the underlying function parameters, e.g. the weights of the hidden units in
a neural network or the kernel coefficients in SVMs. In LinSVC-M (Fig. 9), the
model parameters are the instance weights and the kernel weights which, as we
have seen above, are those of the feature themselves.

In all cases, the number of model parameters confers on the selected model struc-
ture the degrees of freedom required to capture the characteristics of the target
population. A model that has an inadequate set of parameters will underfit the
data and incur systematic errors due to bias; on the other hand, a model with
too many model parameters will adapt to chance variations in the sample, in
short will overfit the training data and perform poorly on new data due to high
variance. Selecting the right number of parameters is no other than selecting the
right bias-variance tradeoff or selecting the appropriate capacity or level of com-
plexity for a given model structure. The complexity of each learned model can
be quantified using the concept of ModelComplexityMeasure, the most important
subclass of which is ModelParameterCount. Its sibling, ModelParameterMagnitude,
takes into account the view that a model’s complexity is also determined by
the magnitude of model parameter values [19,5]. The two complexity measures
of LinSVC-M (Fig. 9) are NumberOfSupportVectors and SumOfSquaredWeights, sub-
classes of ModelParameterCount and ModelParameterMagnitude respectively. A final
model descriptor is the type of DecisionBoundary that is drawn by a given model
(family). DMOP’s formalization of this concept distinguishes between linear and
nonlinear decision boundaries, but more work is needed to develop a more elab-
orate geometry of decision regions.

Preference bias and optimization strategies Once a model structure and its set
of parameters have been selected, the learning process is nothing more or less
than the automated adjustment of these parameters to produce a fully specified,
operational model. This is the task of the learning algorithm. The goal is to
determine the set of parameter values that will maximize classification perfor-
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Fig. 9. Linear Soft Margin SVC Algorithm (referred to in the text as LinSVC-A) and
the model it specifies (LinSVC-M in the text).

mance as gauged by some criterion. The search for the right parameter setting
can be cast as an OptimizationProblem that consists in minimizing a cost (or ob-
jective) function, with or without a corresponding set of constraints. The cost
function quantifies how close the current parameter values are to the optimum.
Learning stops when the cost function is minimized. In its simplest version, the
cost function is no more than a measure of error or loss (e.g. misclassification
rate or sum of squared errors). However, minimizing training set error can lead
to overfitting and generalization failure. For this reason many algorithms use a
regularized cost function that trades off loss against model complexity. In dmop,
the generic form of the modelling CostFunction is F = ε+λc, where ε is a measure
of loss, c is a measure of model complexity, and λ is a regularization parame-
ter which controls the trade-off between loss and complexity. The optimization
problem addressed by the LinSVC-A consists in minimizing the regularized cost
function

min
ξ,w,b
〈w.w〉+ C

n∑
i=1

ξ2i
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subject to the soft margin constraint yi(〈w, Φ(xi)〉 + b) ≥ 1 − ξi, with ξi ≥ 0,
and i = 1, ..., n. The ontological representation of this optimization problem is
shown (labelled SoftMarginSVCOptimizationProblem) in Figure 9.

dmop incorporates a detailed hierarchy of strategies adapted to the optimiza-
tion problems encountered in modelling and in other dm tasks (Fig. 10). These
OptimizationStrategies fall into two broad categories—continuous and discrete—
depending on the type of variables that define the problem. In certain cases, opti-
mization is straightforward. This is the case of several generative algorithms like
normal linear/quadratic discriminant analysis and Naive Bayes-Normal, where
the cost function is the log likelihood, and the maximum likelihood estimates
of the model parameters have a closed form solution. Logistic regression, on the
other hand, estimates the maximum likelihood parameters using methods such
as Newton-Raphson. In the case of LinSVC-A, the variables involved in the op-
timization problem defined above call for a continuous optimization strategy.
LinSVC-A uses Sequential Minimal Optimization (smo), a quadratic program-
ming method rendered necessary by the quadratic complexity component of the
cost function (L2 norm of Weights in Fig. 9).
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Fig. 10. The OptimizationStrategy hierarchy

The optimization strategy hierarchy plays an important role in dmop because
many core dm tasks other than modelling also have underlying optimization
problems. In particular, discrete optimization strategies will come to the fore in
feature selection methods.
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Feature Selection Algorithms Feature selection is a particular case of di-
mensionality reduction, which can be defined as follows: given a set of n vectors
{x1,x2, . . . ,xn} ∈ Rp, find a set of lower-dimensional vectors {x1,x2, . . . ,xn} ∈
Rp′ , p′ < p, that maximally preserves the information in the data according
to some criterion. In a classification task, for instance, the criterion could be
some measure of how well the p or p′ features discriminate between the different
classes. Feature selection refers to the specific case where the p′ features are a
subset of the original p features; dimensionality is reduced by eliminating irrele-
vant or redundant features. Alternatively, new features can constructed from the
original ones via techniques like principal components analysis, and feature se-
lection applied to the set of derived features; this process—feature construction
followed by feature selection—is called feature extraction in [33] and in dmop.

In feature selection, every subset of the original p-dimensional feature vector is
represented by a vector σ ∈ {0, 1}p of indicator variables, where σi = 1 denotes
the presence and σi = 0 the absence of feature i. The task is to find a vector
σ∗ ∈ {0, 1}p|∀σ′, f(σ∗) ≤ f(σ′), where f is some measure of feature set quality.
A feature selection algorithm can be described by four properties: its mode of
interaction with the learning algorithm, an optimization strategy to guide search
in the space of feature subsets, a feature scoring or weighting mechanism to assess
the candidate subsets, and a decision strategy to make the final selection.

Interaction with the learner Feature selection methods are commonly classified
based on how they are coupled with the learning algorithm. Filter methods
perform feature selection as a preprocessing step, independently of the learning
method; they must then use learner-independent relevance criteria to evaluate
the candidate features, either individually or as subsets of the initial feature set.
Wrapper methods wrap feature selection around the learning process and use
the estimated performance of the learned model as the selection criterion; the
effectiveness of the selected features depends strongly on the specific learning
method used. In embedded methods, feature selection is encoded as an integral
part of the learning algorithm.

Optimization strategies Feature selection implies extensive search in the dis-
crete space of feature subsets; there are 2p ways of assigning values to the p-
dimensional vector σ, in other words 2p possible subsets of the initial feature
set. Feature selection methods can adopt one of two optimization strategies to
solve this kind of problem: SearchStrategy and RelaxationStrategy. Search strate-
gies are based on the combinatorial approach that is a more natural approach
to problems in discrete domains, while relaxation strategies relax, as it were, the
discreteness constraint and reformulate the problem in a continuous space. The
result is then reconverted via a decision rule into a final selection in discrete fea-
ture space. Figure 10 shows the two main types of DiscreteOptimizationStrategy.
Search strategies, in particular heuristic search strategies that trade off opti-
mality for efficiency or simple feasibility, are by far the most widely used. The
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subclasses of SearchStrategy are determined by the different properties of search
as shown in Figure 11) : its coverage (global or local), its search direction (e.g.,
forward, backward), its choice policy or what Pearl calls "recovery of pursuit"
[54] (irrevocable or tentative), the amount of state knowledge that guides search
(blind, informed), and its level of uncertainty (deterministic, stochastic). These
properties are For instance, Consistency-based feature selection [49] uses the
so-called Las Vegas strategy which is an instance of StochasticHillClimbing, which
combines local, greedy, stochastic search. Correlation-based feature selection [35]
adopts a forward-selection variant of (non-greedy) BestFirstSearch. Representing
the irrevocable choice policy of GreedySearch, C4.5’s embedded feature selection
algorithm and SVM-RFE [34] use GreedyForwardSelection and GreedyBackwardElim-
ination respectively. The concept RelaxationStrategy has no descendants in the
graph because after transposing the discrete problem into a continuous space,
on can use any instance of ContinuousOptimizationStrategy. However, most of the
feature selection algorithms that use relaxation further simplify the problem by
assuming feature independence, reducing the combinatorial problem to that of
weighting the p individual features and (implicitly) selecting a subset composed
of the top p′ features. This is the case of all so-called univariate methods, such
as InfoGain, χ2 and SymmetricalUncertainty (see Figure 12), as well as a few
multivariate methods like ReliefF [45,64] and SVMOne. ReliefF solves the contin-
uous problem similarly to univariate methods because it also weights individual
features, though in a multivariate context. On the contrary, SVMOne and SVM-
RFE use the continuous optimization strategy of the learner in which they are
embedded — SMO, which, as we saw above is an instance of QuadraticProgram-
ming. Finally, note the special case of SVM-RFE which actually combines the two
discrete optimization strategies: it generates candidate subsets through greedy
backward elimination in discrete space, then uses the SVM learner to weight the
individual features in continuous space, and finally returns to discrete space by
generating a new subset purged of the n features with the lowest weights. This
cycle continues until there are no more features to eliminate.

Feature/subset weighting schemes Another characteristic of a feature selection
algorithm is its feature weighting scheme. Feature weighting algorithms are di-
vided into two groups based on what is being weighted (hasEvaluationTarget
property in Fig. 11): individual features or feature subsets. Single-feature weight-
ing algorithms themselves can be classified as univariate or multivariate depend-
ing on the feature context that is brought to bear in weighting the individual fea-
ture: univariate algorithms (e.g., those that use information gain or χ2) weight
individual features in isolation from the others, while multivariate algorithms
weight individual features in the context of all the others. For instance, ReliefF
and SVMOne yield individual feature weights that are determined by taking all
the other features into account — when computing nearest neighbors in the case
of ReliefF, and in building the linear combination of features or kernels in the
case of SVMOne. Finally, feature weighting algorithms are completely specified
by adding the evaluation function they use – either individual feature or feature
subset weighting algorithms.
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Fig. 11. Algorithms and strategies for feature selection. The upper part of the figure
shows the links between the major entities involved: an optimization strategy, a feature
weighting algorithm and a decision strategy. The lower part illustrates the use of these
concepts in describing Correlation-based Feature Selection.
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Decision strategy Once the candidate features or feature subsets have been gen-
erated and scored, a feature selection algorithm uses a decision strategy to select
the fnal feature subset. This can be a statistical test that uses the resulting p-
value as a basis for selection, or any kind of decision rule that sets a threshold
on any quantity that describes the evaluated entities, e.g., the weights of the
features or subsets, or their ranks.

Figure 12 situates a number of feature selection algorithms according to their
characteristics and those of their feature weighting components.
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Fig. 12. Synoptic view of feature selection methods based on their interaction with
the learning algorithm (learner-free=filter, learner-dependent=wrapper, embedded),
the optimization strategy used (search, relaxation), and their feature weighting com-
ponent’s evaluation target (single feature, feature subset) and evaluation context (uni-
variate, multivariate).

4 DMOP-based pattern discovery from DM workflows

Data mining workflows are replete with structures that are often reused. A sim-
ple example is the workflow segment where the operator Weight by Information Gain
is invariably followed by Select by Weights to perform feature selection. This regu-
larity involves individual operators, but it would be even more useful if we could
detect the same basic structure had the first operator been replaced by any other
that does univariate feature weighting. Similarly, bagging subworkflows should
be recognizable despite the diversity of classification modelling operators used.
In order to detect patterns with strong support, a frequent pattern search proce-
dure should be capable of generalizing from specific operators to broad algorithm
classes. This is one of the roles of the dmop ontology, where we can follow the
executes link from grounded operations to operators, then the implements link
from operators to algorithms (Figure 4) in order to analyse the taxonomic (as
in Figure 7) and non-taxonomic commonalities between algorithms. In short,
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prior knowledge modelled in dmop will support the search for generalized work-
flow patterns, similar to the generalized sequence patterns extracted via frequent
sequence mining in [70].

4.1 Workflow representation for generalized pattern mining

Workflows as hierarchical graphs Data mining workflows are directed acyclic
graphs (dags), in which nodes correspond to operators and edges between nodes
to input/output (i/o) objects, much like the "schemes" described in [40,31].
More precisely, they are hierarchical dags, since nodes can represent composite
operators (e.g. cross-validation) that are themselves workflows. An example hi-
erarchical dag representing a RapidMiner workflow is given in Figure 13. The
workflow cross-validates feature selection followed by classification model build-
ing. X-Validation is a typical example of a composite operator which itself is a
workflow. It has two basic blocks, a training block which can be any arbitrary
workflow that receives as input a dataset and outputs a model, and a testing
block which receives as input a model and a dataset, and outputs a performance
measure. In this specific cv operator, the training block has three steps: compu-
tation of feature weights by the Weight by Information Gain operator, selection of
a subset of features by the Select by Weights operator, and final model building
by the Naive Bayes operator. The testing block consists simply of the Apply Model
operator followed by the Compute Performance computation.

Fig. 13. A dm workflow as a hierarchical dag
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We now give a more formal definition of the hierarchical dags that we will use
to describe data mining workflows. Let:
� O be the set of all available operators that can appear in a data mining
workflow, e.g. classification operators, such as C4.5, SVMs, model combination
operators, such as boosting, etc.

� E be the set of all available data types that can appear in a data mining
workflow, e.g. the data types of the various i/o objects of some DM workflow,
models, datasets, attributes, etc.

� an operator o ∈ O be defined by its name and the data types of its inputs
and outputs. 1

A hierarchical directed acyclic graph, G, that represents a data mining workflow
is an ordered pair (O′, E′) where:

� O′ ⊆ O is the set of vertices or nodes that correspond to the operators used
in the workflow

� E′ ⊆ E is the set of ordered pairs of nodes, (oi, oj), called directed edges,
that correspond to the data types of the i/o objects, that are passed from
operator oi to operator oj in the workflow.

E′ defines the data-flow of the workflow and O′ the control flow.

Workflows as parse trees A dag has one or more topological sorts. A
topological sort is a permutation p of the vertices of a dag such that an edge
(oi, oj) indicates that oi appears before oj in p [65]. Thus, it is a complete ordering
of the nodes of a dag. If a topological sort has the property that all pairs of
consecutive vertices in the sorted order are connected by an edge, then these
edges form a directed Hamiltonian path of the dag. In this case, the topological
order is unique. If not, then it is always possible to get the unique topological
order by adding a second order such as the lexicographic order of the vertex
labels. The topological sort of a dag can be represented by a parse tree, which
is a reduction of the original dag where the edges have been fully ordered.

The parse tree of Figure 14 gives the topological sort of the dm workflow rep-
resented as a hierarchical dag in Figure 13. As seen clearly, the parse tree is a
simplification of the original graph; it represents the order of execution of the
different operators and their hierarchical relation but the data-flow is lost (the
edges are not labelled).

X-Validation

Weight by
Information Gain

Select by
Weights

Naive
Bayes

Apply
Model

Performance

End

Fig. 14. The parse tree (topological sort) of the DM-workflow given in Figure 13
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Augmenting the parse trees Given the parse tree representation of a work-
flow, the next step is to augment it in view of deriving frequent patterns over
generalizations of the workflow components. Generalizations will be based on
concepts, relations and subsumptions modelled in dmop. Starting from the Op-
erator level, an operator o ∈ O implements some algorithm a ∈ A (Figure 4). In
addition the dmop defines a refined algorithm taxonomy, an extract of which is
given in Figure 7. Note that contrary to the asserted taxonomy which is a pure
tree, the inferred taxonomy can be a dag (a concept can have multiple ances-
tors) [60]; consequently the subsumption order is not unique. For this reason we
define a distance measure between two concepts C and D, which is related to
the terminological axiom of inclusion, C v D, as the length of the shortest path
between the two concepts. This measure will be used to order the subsumptions.
For the sake of clarity, we will assume a single-inheritance hierarchy in the ex-
ample of the (RapidMiner) NaiveBayes operator. Given the taxonomic relations
NaiveBayesNormal v NaiveBayesAlgorithm v BayesianAlgorithm v GenerativeAlgorithm,
the reasoner infers that NaiveBayes implements someInstance of these superclasses,
ordered using the distance measure described. Based on these inferences, an
augmented parse tree is derived from an original parse tree T by inserting the
ordered concept subsumptions between each node v ∈ T and its parent node.
Figure 15 shows the augmented version of the parse tree in Figure 14.
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1

Fig. 15. An augmented parse tree. Thin edges depict task decomposition into
operators (italics); a thick single line indicates that an operator implements an
instance of its parent algorithm; double lines depict subsumption.
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4.2 Mining generalized workflow patterns

We are now ready to mine generalized patterns from DM workflows represented
as (augmented) parse trees, which we now define more formally. A parse tree
is a rooted k -tree [15]. A rooted k -tree is a set of k nodes O′ ⊆ O where each
o ∈ O′, except one called root, has a parent denoted by π(o) ∈ O′. The function
l(o) returns the label of a node, and the operator ≺ denotes the order from left
to right among the children of a node.

Induced subtrees We used Zaki et al.’s TreeMiner [81] to search for frequent
induced subtrees over the augmented tree representation of workflows. A tree
t´ = (Ot´, Et´) is called an induced subtree of t = (Ot, Et), noted t′ �i t,
if and only if Ot′ preserves the direct parent-child relation of Ot. Figure 16
shows a tree T1 and two of its potential induced subtrees, T2 and T3. In the
less constraining case where only an indirect ancestor-descendant relation is
preserved, the subtree t is called embedded. We had no need for embedded
trees: given the way augmented parse trees were built using the dmop algorithm
taxonomy, extending parent-child relationships to ancestor-descendants would
only result in semantically redundant patterns with no higher support.

(a) T1

A

B

A C B

C C

B A

(b) T2

A

B

A

C

(c) T3

A

C C

B

Fig. 16. A tree T1 and two of its induced subtrees ,T2 and T3

Given a database (forest) D of trees, the tree miner algorithm will produce a
set P of induced subtrees (patterns). For a given tree Ti ∈ D and a pattern
S ∈ P, if S �i Ti, we say that Ti contains S or S occurs in Ti. Now let δTi

(S)
denote the number of occurences of the subtree S ∈ P in a tree Ti ∈ D, and
let dTi be an indicator variable with dTi(S) = 1 if δTi(S) > 0 and dTi(S) = 0
if δTi

(S) = 0. The support of the subtree S in the database D is defined as
sup(S) = ΣTi∈DdTi

(S). We call the support set of S the set of trees Ti ∈ D with
dTi

(S) > 0.

An example We demonstrate frequent pattern extraction from the following
workflows that do cross-validated feature selection and classification:
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Fig. 17. Parse trees of feature selection/classification workflows
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a) feature selection based on Information Gain, classification with Naive Bayes
b) feature selection with Relief, classification with C4.5
c) feature selection with cfs, classification with C4.5
d) wrapper feature selection with Naive Bayes, classification with Naive Bayes.

Their parse trees are given in Figure 17. Workflow a) performs univariate fea-
ture selection based on a univariate weighting algorithm. The three remaining
workflows are all doing multivariate feature selection, where in b) this is done
using a multivariate feature weighting algorithm, and in c) and d) using heuristic
search, implemented by the OptimizeSelection operator, in the space of feature
sets where the cost function used to guide the search is cfs and the Naive Bayes
accuracy respectively.

We applied TreeMiner [81] to the augmented version of these parse trees, setting
the minimum support to 2 in order to extract frequent induced subtrees. Some
of the mined patterns and their support sets are shown in Figure 18.
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Fig. 18. Six patterns extracted from the 4 workflows of Figure 17
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Pattern (a) shows that in two of the four workflows, a) and b), a feature weighting
algorithm is followed by the Select by Weights operator, and that this pair forms
a feature selection algorithm followed by a classification modelling algorithm,
nested all together in a cross-validation operator. Pattern (b) captures the fact
that two workflows, b) and c), contain a multivariate feature selection followed
by a decision tree algorithm, again nested inside a cross-validation.

Pattern (c) corresponds to MultivariateFeatureSelection performed by OptimizeSe-
lection and followed by some classification algorithm. As mentioned above, Op-
timizeSelection represents a heuristic search over feature sets using some search
strategy and some cost function which are not specified for the moment.

Pattern (d) is a generalization of patterns (a), (b) and (c), and covers all four
workflows. It simply says that a feature selection algorithm is followed by a
classification modelling algorithm.

Finally, patterns (e) and (f) also cover all four workflows. Pattern (e) corresponds
to the validation step where a learned model is applied to a test set using cross-
validation, and some performance measure is produced. Pattern (f) is a super
pattern of pattern (e) and shows that a model should first be produced by a
classification modelling algorithm before it can be applied and evaluated.

5 Experiments in workflow meta-mining

This section describes workflow mining experiments in which the goal is to pre-
dict the relative performance of a new workflow, whether handcrafted by the
user or designed automatically, e.g. by eProPlan (page 7).

5.1 Experimental design

As discussed in Section 2.1, standard meta-learning has been dominated by the
Rice model which considers only data set characteristics to predict the perfor-
mance of algorithms or algorithm families. We proposed an alternative model
which takes into account both data and algorithm characteristics. In this section,
we apply the revised Rice model to workflow mining: in the meta-mining view
of workflows as compositions of (implemented) algorithms, workflow selection or
ranking is grounded on both data and workflow characteristics.

Gathering the meta-mining data To define meta-learning problems and
gather the necessary meta-data, we need to collect results from a sizeable num-
ber domain-level data mining experiments. We gathered 65 datasets concerning
microarray experiments on different types of cancer. Table 1 gives the name
(prefixed by the cancer type) and the number of examples, features, and classes
for each dataset. As is typical of gene profiling data, all are high-dimensional
small samples, i.e. the number of features is several orders of magnitude higher
than the number of examples.
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The choice of a clearly circumscribed application domain for our meta-learning
experiments has a clear rationale. Previous work on meta-learning typically relied
on base-level experiments using UCI datasets [26] from the most diverse domains.
As a result, the meta-learner groped for regularities in the intractable immen-
sity and sparsity of the space of all possible datasets—from classical toy prob-
lems (e.g. Lenses, Tic-tac-toe) to more recent biomedical datasets (e.g. Dorothea,
Arcene), where the number of dimensions is one or several orders of magnitude
greater than the number of instances. Initially motivated by user rather than

Dataset N D C Dataset N D C
adrenal_dahia 76 22283 2 leukemia_haslinger 100 12600 2
bladder_blaveri 40 5331 2 leukemia_wei 29 21481 2
bladder_dyrskjot 40 4409 3 leukemia_yagi 53 7241 2
bladder_sanchez-carbayo 157 22283 3 liver_chen 156 2621 2
breast_desmedt 198 22283 2 liver_iizuka 60 7129 2
breast_farmer 49 22215 3 liver_ye 87 8121 3
breast_gruvberger 58 3389 2 lung_barret 54 22283 2
breast_kreike 59 17291 2 lung_beer 86 7129 3
breast_ma_2 60 22575 2 lung_bhattacharjee_2 197 12600 4
breast_minn 68 22283 2 lung_bild 111 54675 2
breast_perou 65 7261 4 lung_wigle 39 1971 2
breast_sharma 60 1368 2 lymphoma_alizadeh 99 8580 2
breast_sotiriou 167 22283 3 lymphoma_booman 36 14362 2
breast_veer 97 24481 2 lymphoma_rosenwald 240 7388 3
breast_wang 286 22283 2 lymphoma_shipp 77 7129 2
breast_west 49 7129 2 medulloblastoma_macdonald 23 1098 2
cervical_wong 33 10692 2 melanoma_talantov 70 22283 3
cns_pomeroy_2 60 7129 2 mixed_chowdary 104 22281 2
colon_alon 62 2000 2 mixed_ramaswamy 76 15539 2
colon_laiho 37 22283 2 myeloma_tian 173 12625 2
colon_lin_1 55 16041 2 oral_odonnell 27 22283 2
colon_watanabe 84 54675 2 ovarian_gilks 23 36534 2
gastric_hippo 30 7127 2 ovarian_jazaeri_3 61 6445 2
glioma_freije 85 22645 2 ovarian_li_and_campbell 54 1536 2
glioma_nutt 50 12625 2 ovarian_schwartz 113 7069 5
glioma_phillips 100 22645 2 pancreas_ishikawa 49 22645 2
glioma_rickman 40 7069 2 prostate_singh 102 12600 2
head_neck_chung 47 9894 2 prostate_tomlins 83 10434 4
headneck_pyeon_2 42 54675 2 prostate_true_2 31 12783 2
leukemia_armstrong 72 12582 3 renal_williams 27 17776 2
leukemia_bullinger_2 116 7983 2 sarcoma_detwiller 54 22283 2
leukemia_golub 72 7129 2 srbct_khan 88 2308 4
leukemia_gutierrez 56 22283 4

Table 1. The 65 microarray datasets used in the meta-mining experiments. N:
number of examples, D: number of features, C: number of classes
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meta-learner considerations, so-called third-generation data mining systems [58]
promoted the idea of vertical systems which focus on a specific application do-
main and problem, thus ensuring a more dense and coherent search space as well
as the possibility of bringing domain-specific knowledge to bear in the knowl-
edge discovery process. In this spirit, we selected gene expression-based cancer
diagnosis as our problem domain, with the explicit proviso that all conclusions
drawn from these experiments will apply only to datasets that stem from the
same application area or at least share their essential characteristics.

We applied different data mining workflows to these datasets and estimated
their performance using ten fold cross-validation. All the workflows were combi-
nations of feature selection and classification algorithms. We used the following
feature selection algorithms: Information Gain (ig), Chi-square (chi), ReliefF
(rf), and recursive feature elimination with svm (svmrfe); we fixed the num-
ber of selected features to ten. For classification we used the following algorithms:
one-nearest-neighbor (1nn), decision tree algorithms J48 and cart, Naive Bayes
(nb), logistic regression algorithm (lr), and svms with linear (svm-l) and Gaus-
sian (svm-rbf) kernels. For J48 the C (pruning confidence) and M (minimum
number of instances per leaf) parameters were set to 0.25 and 2 respectively; for
cart the M and N (number of folds for the minimal cost-complexity pruning)
parameters were set to 2 and 5 respectively. The C parameter was set to 1 for
both svm-l and svm-r, and svm-r’s γ parameter was set to 0.1. We used the
implementations of these algorithms in the RapidMiner data mining suite. All
the possible combinations of the four feature selection algoriths with the seven
classication algorithms gave 28 different learning workflows, each applied to the
65 datasets, for a total of 1820 data mining experiments.

Predicting the performance of a candidate workflow was cast as a classification
problem: given a dataset dj , determine whether workflow wfi will be among
the top performing workflows (class best) or not (class rest). We assigned these
class labels as follows. For each dataset we did a pairwise comparison of the
estimated performance of the 28 workflows applied to it using a McNemar’s
test of statistical significance. For each workflow pair, a score of 1 was assigned
to the workflow—if any—which performed significantly better than the other,
which scored 0; otherwise both were assigned 0.5. The final performance rank of
a workflow for a given dataset was determined by the sum of points it scored on
these pairwise comparisons for that dataset. Clearly in the case of 28 workflows
the maximum possible score is 27 when a workflow is significantly better than all
the other workflows. If there are no significant differences then each workflow gets
a score of 13.5. The class label of a workflow for a given dataset was determined
based on its score; workflows whose scores were within 1.5 standard deviations
of the best performance measure for that dataset were labelled best and the
remaining workflows rest. Under this choice 45% of the experiments, i.e. (dj , wfi)
pairs, were assigned the label best and the remaining 55% the rest label.
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Representing the meta-data As explained earlier in this section, we used
a combination of dataset and workflow characteristics to describe the meta-
learning examples.

Data descriptors We took 6 dataset characteristics from the StatLog and
metal projects: class entropy, average feature entropy, average mutual informa-
tion, noise-signal ratio, outlier measure of continuous features, and proportion
of continuous features with outliers. Because our base-level datasets contained
only continuous predictive features, average feature entropy and average mutual
information were computed via a binary split on the range of continuous feature
values, as is done in C4.5 [59]. Detailed descriptions of these data characteristics
are given in [50,41].

In addition, we used 12 geometric data complexity measures from [38]. These
can be grouped into three categories: (1) measures of overlaps in feature values
from different classes (maximum Fisher’s discriminant ratio, volume of overlap
region, maximum feature efficiency); (2) measures of class separability (fraction
of instances on class boundary, ratio of average intra/inter-class distance, and
landmarker-type measures like error rates of 1-NN and a linear classifier on
the dataset; (3) measures of geometry, topology, and density of manifolds (non-
linearity of linear classifier, nonlinearity of 1NN classifier, fraction of points with
retained adherence subsets, and average number of points per dimension). The
definitions of these measures, their rationale and formulas, are given in [38].

Workflow descriptors Workflow descriptors were constructed in several steps
following the pattern discovery method described in Section 4:

1. We built parse trees (Section 4.1) from the 28 workflows and augmented them
using concept subsumptions from the dmop ontology (Section 4.1); we thus
obtained 456 augmented parse trees such as that shown in Figure 15.

2. We applied the TreeMiner algorithm with a minimum support of 3% to the
augmented parse trees, thereby extracting 3843 frequent patterns defined as
induced subtrees (Section 4.2).

3. We ordered the extracted patterns in order of decreasing generality, then
pruned this initial pattern set to retain only closed patterns, i.e. patterns
that are maximal with respect to the subsumption ordering of an equivalence
class of patterns having the same support set [4]. The final set contained
1051 closed workflow patterns similar to those in Figure 18. In a nutshell, a
workflow pattern is simply a fragment of an augmented (workflow) parse tree
that has a support above a predefined threshold.

4. Finally, we converted each workflow pattern into a binary feature whose value
equals 1 if the given workflow contains the pattern and 0 otherwise; it is these
boolean features that we call workflow descriptors. Thus each workflow was
represented as a vector of 1051 boolean workflow descriptors. Essentially, what
we did was propositionalize the graph structure of the DM workflows.
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5.2 Experimental results

We defined two meta-mining scenarios. Scenario A relies mainly on the dataset
characteristics to predict performance, while scenario B considers both dataset
and workflow characteristics.

Meta-mining scenario A In this scenario we create one meta-mining problem
per workflow, producing 28 different problems. We denote by WF this set of
meta-mining problems and by WFi the meta-mining problem associated with
workflow wfi. For each meta-mining problem WFi, the goal is to build a model
that will predict the performance of workflow wfi on some dataset. Under this
formulation each meta-mining problem consists of |D| = 65 learning instances,
one for each of the datasets in Table 1; the features of these instances are the
dataset descriptors. The class label for each dataset dj is either best or rest,
based on the score of workflow wfi on dataset dj as described on page 30.

An issue that arises is how to measure the error for a specific dataset, which is
associated with 28 different predictions. One option is to count an error whenever
the set of workflows that are predicted as best is not a subset of the truly best
workflow set. This error definition is more appropriate for the task at hand,
where the goal is to recommend workflows that are expected to perform best;
it is less important to miss some of them (false negatives) than to recommend
workflows that will actually underperform (false positives). Here we adopted the
simple approach of counting an error whenever the prediction does not match
the class label, regardless of the direction of the error. With this method the
overall error averaged over the 65 datasets is equal to the average error over the
28 different meta-mining problems WFi. We denote this error estimate by

Adalgo
=

1

|WF |

|WF |∑
i=1

(f(x) 6= y) =
1

|D|

|D|∑
i=1

(f(x) 6= y),

where f(x) denotes the predicted class, y the actual class, and algo the learning
algorithm that was used to construct the meta-mining models. We use McNe-
mar’s test to estimate the statistical difference between the error of the meta-
learner and that of the default rule, which simply predicts the majority class
for each meta-mining problem WFi. The average error of the default classifier
is denoted by

Addef =
1

|WF |

|WF |∑
i=1

(cmaj 6= y),

where cmaj is the majority class for problem WFi ∈ WF and y is the actual
class or class label.

To generate the meta-mining models we used J48 with the following parameter
settings: C=0.25 and M=2. Table 2 shows the error rates of the default rule
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(Addef ) and J48 (AdJ48
), averaged over the 28 different meta-mining problems,

which is equivalent to the error averaged over the different datasets. The aver-
age error rate of the meta-models using dataset characteristics was lower than
that of the default rule by around 5%, an improvement that was shown to be
statististically significant by McNemar’s test.

Addef AdJ48

45.38 40.44 (+)

Table 2. Average estimated errors for the 28 WFi meta-mining problems in
meta-mining scenario A. A + sign indicates that AdJ48

was significantly better
than Addef , an = that there was no significant difference and a - that it was
significantly worse.

Meta-mining scenario B The main limitation of meta-mining scenario A
is that it is not possible to generalize over the learning workflows. There is no
way we can predict the performance of a dm workflow wfi unless we have meta-
mined a model based on training meta-data gathered through systematic exper-
imentation with wfi itself. To address this limitation we introduce the second
meta-mining scenario which exploits both dataset and workflow descriptions, and
provides the means to generalize not only over datasets but also over workflows.

In scenario B, we have a single meta-mining problem in which each instance
corresponds to a base-level data mining experiment where some workflow wfi
is applied to a dataset dj ; the class label is either best or rest, determined with
the same rule as described above. We thus have 65 × 28 = 1820 meta-mining
instances. The description of an instance combines both dataset and workflow
meta-features. This representation makes it possible to predict the performance
of workflows which have not been encountered in previous dm experiments,
provided they are represented with the set of workflow descriptors used in the
predictive meta-model. The quality of performance predictions for such work-
flows clearly depends on how similar they are to the workflows based on which
the meta-model was trained.

The instances of this meta-mining dataset are not independent, since they over-
lap both with respect to the dataset descriptions and the workflow descriptions.
Despite this violation of the learning instance independence assumption, we also
applied standard classification algorithms as a first approach. However, we han-
dled performance evaluation with precaution. We first evaluated predictive per-
formance using leave-one-dataset-out, i.e., we removed all meta-instances associ-
ated with a given dataset di and placed them in the test set. We built a predictive
model from the remaining instances and applied it to the test instances. In this
way we avoided the risk of information leakage incurred in standard leave-out-
out or cross-validation, where both training and test sets are likely to contain
instances (experiments) concerning the same dataset. We will denote the pre-
dictive error estimated in this manner by Bdalgo

, where algo is the classification
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algorithm that was used to construct the meta-mining models. The total number
of models built was equal to the number of datasets. For each dataset dj , the
meta-level training set contained 64 × 28 = 1792 instances and the test set 28,
corresponding to the application of the 28 workflows to dj .

In addition, we investigated the possibility of predicting the performance of
workflows that have not been included in the training set of the meta-mining
model. The evaluation was done as follows: in addition to leave-one-dataset-out,
we also performed leave-one-workflow-out, removing from the training set all
instances of a given workflow. In other words, for each training-test set pair,
we removed all meta-mining instances associated with a specific dataset dj
as well as all instances associated with a specific workflow wfi. We thus did
65 × 28 = 1820 iterations of the train-test separation, where the training set
consisted of 64× 27 = 1728 instances and the test set of the single meta-mining
instance(di, wfj , label). We denote the error thus estimated by Bd,wfalgo

.

Addef BdJ48 Bd,wfJ48

45.38 38.24 (+) 42.25 (=)

Table 3. BdJ48 and Bd,wfJ48 estimated errors, meta-mining scenario B. A + sign
indicates that Bd|d,wfalgo

was significantly better than Addef , an = that there was no
significant difference and a - that it was significantly worse. Column 2 shows that the
meta-miner obtains significantly better results than the default by using both dataset
and workflow descriptors. Column 3 gives the results in a more stringent scenario
involving workflows never encountered in previous domain-level experiments.

Table 3 gives the estimated errors for meta-mining scenario B, in which the
meta-models were also built using J48 with the same parameters as in scenario
A, but this time using both dataset and workflow characteristics. McNemar’s test
was also used to compare their performance against the default rule. Column 2
shows the error rate using leave-one-dataset-out error estimation (BdJ48

), which
is significantly lower than that of the default rule, but more importantly, also
lower than Adj48 (Table 2), the error rate of the meta-model built using dataset
characteristics alone. This provides evidence of the discriminatory power of the
frequent patterns discovered in the dm workflows and used to build the meta-
models.

Column 3 shows the error rate of the meta-model built using the combined leave-
one-out-dataset/leave-one-workflow-out error estimation procedure (Bd,wfJ48

),
which was meant to test the ability of the meta-model to predict the performance
of completely new workflows. The estimated error rate is again lower than the
baseline error, though not significantly. However, it demonstrates the point that
for a new dataset, our approach can predict the performance of workflows never
yet encountered in previous data mining experiments. As a matter of fact, these
workflows can even contain operators that implement algorithms never seen in
previous experiments, provided these algorithms have been described in dmop.
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5.3 Discussion

To gain a bit of insight into the kind of meta-model built by J48 using dataset
and workflow meta-features, we reran mining scenario B on the full dataset to
derive the decision tree to be deployed on new (dataset, workflow) examples. The
result was a complex decision tree with 56 internal nodes (meta-feature tests),
but a close analysis of a few top levels proved instructive.

ds:intraInter

ds:intraInter REST

BEST

no

BEST

ds:adherence

BEST REST

<= 0.54

<= 0.99 > 0.99

> 0.54

yes

hiBias hiVariance

<= 0.26 > 0.26

<=0.0008 > 0.0008

wf:statBasedFWA

wf:bvarCMA

BEST

. . .

ds:ptsPerDim

Fig. 19. Top 6 levels of the meta-mined J48 workflow performance predictor
based on dataset and workflow characteristics

The top two nodes test the dataset characteristic intraInter, or intra-interclass
nearest neighbor (NN) distance [38]. This is a measure of class separability,
computed as the ratio of intra (average distance between each data point and its
nearest-hit, i.e. its NN from the same class) to inter (average distance between
each data point and its nearest-miss, i.e. its NN from a different class):

intraInter =

(
1

N

N∑
i=1

d(xi, nearestHit(xi)

)
/

(
1

N

N∑
i=1

d(xi, nearestMiss(xi)

)
.

As shown in Fig. 19, the first two tests actually split the intraInter range of values
into 3 intervals. At one extreme, intraInter > 0.99 indicates a difficult problem
where data points from different classes are almost as close as points from the
same class; in this case, the meta-model predicts the class REST. At the other ex-
treme, the distance of a data point to members of a different class is almost twice
its distance to members of its class (intraInter ≤ 0.54,); in such cases where
classes are neatly separated, the prediction is BEST. Between these two extremes,
other tests are needed; the next meta-feature tested is ptsPerDim = N/D,
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where N is the number of data points andD the dimensionality or number of fea-
tures. The threshold of 0.0008 discriminates between extremely high-dimensional
datasets which contain less than 0.0008 instances per feature, or equivalently,
more than 1300 features for 1 instance (right branch) and datasets with lower
D:N ratio (left branch). We omit the right branch, which grows to a depth of more
than 20 levels; in the left branch, by contrast, tests on 2 workflow descriptors
and 1 dataset descriptor suffice to classify the remaining instances. The workflow
descriptor statBasedFeatureWeightingAlgorithm designates a class of feature weight-
ing algorithms that weight individual features by computing statistics such as
χ2, F-Ratio, or Pearson’s correlation coefficient. Workflows that do not use such
weighting algorithms (e.g., multivariate algorithms, or univariate methods that
use entropy-based weights) are classified as BEST. Among workflows that rely on
such statistics to weight features, only those that also use high-bias classification
modelling algorithms (e.g. linear discriminants, Naive Bayes) will be predicted
to have BEST performance. High-variance algorithms will be classified as BEST
only if they are applied to datasets with adherence < 0.26. This feature denotes
the fraction of data points with maximal adherence subset retained [38]. Intu-
itively, an adherence subset can be imagined as a ball that is fit around each
data point and allowed to grow, covering other data points and merging with
other balls, until it hits a data point from a different class. With complex bound-
aries or highly interleaved classes, the fraction of points with retained (i.e. not
merged) adherence subsets will be large. In the learned meta-decision tree, ad-
herence should not be greater than 0.26 for high-variance classification learners
to perform BEST.

To summarize, the meta-decision tree described above naturally blends data
and workflow characteristics to predict the performance of a candidate work-
flow on a given dataset. In the vicinity of the root, J48’s built-in feature selec-
tion mechanism picked up 3 descriptors of data complexity (class separability,
dimensionality, and boundary complexity) and 2 workflow descriptors (use of
univariate statistics-based feature scores, bias-variance profile of learning algo-
rithm/operator used). Although data descriptors outnumber workflow descrip-
tors in the subtree illustrated in Figure 19, the distribution is remarkably bal-
anced over the whole tree, where 28 of the 56 internal nodes test workflow fea-
tures. However, most of the workflow features used correspond to simple patterns
that express a constraint on a single data mining operator. Only two nodes test
a sequence comprising a feature weighting/selection operator and a classification
operator. We expect more complex patterns to appear when we feed the meta-
learner with workflows from data mining experiments with multi-step data pro-
cessing. Finally, as mentioned above, the right subtree below ptsPerDim (replaced
by ". . ." in the figure), which corresponds to datasets with more than 1300 fea-
tures per data point, is considerably more complex; worth noting, however, is the
recurrence of the workflow pattern that contains "high-dimensionality tolerant
classification modelling algorithm" in branches that lead to a BEST leaf.
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6 Conclusion

In this chapter, we proposed a semantic meta-mining approach that contrasts
with standard meta-learning in several respects. First, the traditional meta-
learning focus on a single task or operator has been replaced by a broader per-
spective on the full knowledge discovery process. Next, we introduced a revised
Rice model that grounds algorithm selection on both data and algorithm charac-
teristics. We operationalized this revised model while mining workflows viewed
as compositions of (implemented) algorithms, and performed workflow perfor-
mance prediction based on both dataset and workflow characteristics. In two
distinct meta-mining scenarios, models built using data and workflow character-
istics outperformed those based on data characteristics alone, and meta-mined
workflow patterns proved discriminatory even for algorithms and workflows not
encountered in previous experiments. These experimental results show that the
data mining semantics and expertise derived from the dmop ontology imparts
new generalization power to workflow meta-mining.

Though promising, these results can definitely be improved. Performance pre-
diction for DM workflows is still in its infancy, and we have done no more than
provide a proof of concept. We certainly need more base-level experiments and
more workflows in order to improve the accuracy of learned meta-models. We
also need to investigate more thoroughly the different dataset characteristics that
have been used in previous meta-learning efforts. Above all, we need more refined
strategies for exploring the the joint space of dataset characteristics and work-
flow characteristics. A simple approach could be to build a model in two stages:
first zoom in on the datasets and explore clusters or neighborhoods of datasets
with similar characteristics; then within each neighborhood, identify the work-
flow characteristics that entail good predictive performance. Essentially, what
we are trying to solve is a matching problem: the goal is to find the appropri-
ate association of workflow and dataset characteristics, where appropriateness
is defined in terms of predictive performance. One way to address this problem
is to use collaborative filtering approaches that are also able to account for the
properties of the matched objects.
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