
Ontology-based models in pervasive
computing systems

J UAN YE , LORCAN COYLE , S IMON DOB SON and
PADDY N IXON

Systems Research Group, School of Computer Science and Informatics, UCD Dublin, Ireland;

e-mail: juan.ye@ucd.ie, lorcan.coyle@ucd.ie, simon.dobson@ucd.ie, paddy.nixon@ucd.ie

Abstract

Pervasive computing is by its nature open and extensible, and must integrate the information from

a diverse range of sources. This leads to a problem of information exchange, so sub-systems must

agree on shared representations. Ontologies potentially provide a well-founded mechanism for the

representation and exchange of such structured information. A number of ontologies have been

developed specifically for use in pervasive computing, none of which appears to cover adequately

the space of concerns applicable to application designers. We compare and contrast the most

popular ontologies, evaluating them against the system challenges generally recognized within the

pervasive computing community. We identify a number of deficiencies that must be addressed in

order to apply the ontological techniques successfully to next-generation pervasive systems.

1 Introduction

In 1991, Mark Weiser claimed that ‘the most profound technologies are those that disappear.

They weave themselves into the fabric of everyday life until they are indistinguishable from it’

(Weiser, 1991). His work pioneered the field of ubiquitous or pervasive computing; pervasive com-

puting systems are interactive systems that involve multiple devices, services, and software agents.

They provide appropriate behaviours adapting to the user’s changing tasks and environments

through different interface modalities and devices (Dobson & Nixon, 2004). Context informs

this process by providing a structured, unified view of the world in which the system operates

(Coutaz et al., 2005). The best and most adaptive pervasive computing applications are those

that are most context-aware.

In April 2004, the European Commission’s IST Future and Emerging Technologies group and

the US National Science Foundation jointly supported the Disappearing Computer Strategic

Research Workshop (Skordas et al., 2004). The objectives of this workshop were to consolidate

the research experiences in the domain of pervasive computing and to map out the core and fun-

damental challenges for the next stage of research in the field. The discussions at this workshop

came under many areas, including discovering the fundamental primitives of pervasive computing,

understanding their semantics, and developing corresponding implementations. In the area of

information retrieval and management, they included developing semi-automatic approaches

that allow users, devices, and applications to extract from their environment the necessary infor-

mation to operate. In the area of security, they covered security, privacy, and trust infrastructures

that aimed to maximize user confidence in pervasive computing systems. In the area of human–

computer interaction, the discussions covered the development of hardware infrastructure for

input and output interaction, of software infrastructure for manipulating and controlling inter-

action devices, and of core enabling middleware services. The workshop also covered a discussion

The Knowledge Engineering Review, Vol. 22:4, 315–347. � 2007, Cambridge University Press
doi:10.1017/S0269888907001208 Printed in the United Kingdom



on the potential impact of influential, new, and developing technologies on the field. These discus-

sions led to a special issue on ‘The Disappearing Computer’ in the Communications of the ACM

(Streitz & Nixon, 2005), which refined these initial areas into five guiding themes:

Sensing and context In order to develop reactive pervasive computing systems it will be necessary to

capture, process, and exploit the contextual parameters that inform and guide human behaviour.

Privacy, trust, and security Privacy encompasses reasoning about trust and risk involved in the inter-

actions between users and services. Trust controls the amount of information that can be revealed in

an interaction. Risk analysis allows us to evaluate the expected benefit that would motivate users to par-

ticipate in these interactions. Security describes the cryptographic techniques used to secure the commun-

ication channels and required data.

Discovery One of the key requirements for pervasive computing systems is an approach or service cap-

able of assimilating and filtering information from its various inputs (such as sensors, services, applica-

tions, and users). Given some infrastructure to communicate this information, an approach to

matching will be needed, which correlates relevant input events and facts to a particular contextual ser-

vice. This is essential to allow the user and the application to discover the necessary information from

the environment to achieve a defined goal or complete an activity.

Interaction design As computers disappear from pervasive computing environments, novel human–

computer interactions will need to be investigated to deal with the peculiarities of their environments,

including invisible devices, implicit interaction, and real, virtual, and hybrid interactions.

Essential infrastructure It will be necessary to develop tools to maintain and upgrade infrastructure over

its entire life cycle, as well as to allow the infrastructure to communicate failures effectively to its users.

Besides the challenges in the above five themes, we add an additional challenge for pervasive

computing, that of modelling and handling uncertainty. Many data in a pervasive system are

inherently uncertain, since they come directly from real-world sources, which often provide data

that are incorrect, imprecise, conflicting, or incomplete. For this reason, pervasive computing

systems should integrate uncertainty into every decision they make.

Ontologies, as a promising means for knowledge sharing and reuse, have gained recognition in

other fields of computer science, including e-commerce (Obrst et al., 2001; Eckstein et al., 2004),

information integration (Guidetti, 2002; Varzi & Vieu, 2004; López de Vergara et al., 2003), and

the semantic Web (Gil et al., 2005; Sure & Domingue, 2006). Ontologies provide standard and

formal semantics, whose strength in conceptualization is exerted by their normalization and form-

alization. The normalization is reflected in a semantic agreement for the meaning of terms. The

formalization is reflected in formal ontology languages that are used to encode ontologies

(Bachimont et al., 2002). This survey analyzes the existing use of ontologies in pervasive computing

and proposes directions for future work, along the lines of the strategic themes outlined earlier.

The remainder of the paper is arranged as follows. Section 2 introduces the prominent def-

initions of ontologies with emphasis on the nature of ontologies, and describes the standard lan-

guages that are used to build ontologies. It summarizes the advantages of ontologies for computer

science applications, and describes the issues relative to formal ontology development. It also out-

lines a number of criteria under which existing ontologies should be evaluated.

Section 3 introduces several prominent pervasive computing systems that use ontological mod-

elling. We focus our analysis on CoBrA, developed in the University of Maryland (Chen et al.,

2004b), which uses a pervasive ontology called SOUPA to characterize the key concepts of

pervasive computing; Gaia, developed in the University of Illinois at Urbana-Champaign, which

uses ontologies to deal with context awareness, service discovery and matchmaking, and inter-

operation between entities in a pervasive computing environment (Ranganathan et al., 2004b);

GLOSS, developed by four European universities, which employs ontologies for the precise under-

standing of various contexts and services in the smart space (Coutaz et al., 2003); ASC, developed

in the German Aerospace Center, which uses CoOL (Context Ontology Language) to enable con-

text awareness and interoperability (Strang et al., 2003b); and CONON, developed at the National

University of Singapore, which constructs the upper ontologies for general concepts in a pervasive

j u a n y e E T A L .316



computing environment, and also keeps the domain-specific ontologies extensible (Gu et al., 2004).

In the end, we discuss a number of pervasive computing systems that use task-specific ontologies.

In Section 4, we analyze the pervasive systems ontologies introduced in Section 3. In Section 4.1,

we evaluate the approaches applied by these systems to ontology modelling, and assess the gener-

ated structures and conceptualizations. The following sections evaluate these deployments along

the strategic themes outlined by Skordas et al. (2004) and Streitz & Nixon (2005). Many of these

themes have provided natural playgrounds for ontology engineers. Section 4.2 analyzes work in

the use of ontologies in representing context data and reasoning about them. Section 4.3 ana-

lyzes the work done in the areas of privacy and trust management. Section 4.4 analyzes the work

in the area of discovery, which is used to match producers and consumers of contextual informa-

tion in pervasive environments. Section 4.5 analyzes the use of ontological modelling in improving

interaction design. The theme of essential infrastructure is concerned with the development of

infrastructures, and as such it is not an appropriate match for the deployment of ontology engin-

eering techniques. Section 4.6 analyzes the work done in representing uncertain data for pervasive

computing. Section 4.7 summarizes our findings.

Finally, Section 5 concludes the survey and generalizes the results of our evaluations. It pro-

poses the suggestions for improving the development of ontologies with respect to the key themes

of research identified here.

2 Background on ontologies

Before analyzing the existing applications of ontology-based models in pervasive computing sys-

tems, we introduce some background on ontologies. We chronicle the historical definitions of

the term ontology and expound on the value of ontology use. Later, we introduce the development

of ontological technologies, especially the standard ontology languages. Finally, we distill the

guidelines for developing ontologies from the ontology engineering community into a set of best

practices, and compile a list of design principles for evaluating existing ontologies. In Section 4,

we will apply these criteria to evaluate the quality of the most prominent ontologies in use in

the field of pervasive computing.

2.1 Ontology definitions

In the Merriam-Webster dictionary, an ontology is defined as: ‘a branch of metaphysics concerned

with the nature and relations of being; or a particular theory about the nature of being or the

kinds of existences’. This philosophical definition reflects the essence of ontology: capturing the

natural features of realities and relations between realities. The term was borrowed from philo-

sophy and introduced into the knowledge engineering field as a means of abstracting and repres-

enting knowledge. Ontologies are used to build consensual terminologies for the domain

knowledge in a formal way so that they can be more easily shared and reused.

More recently, ontologies have been applied in many fields of computer science, such as the

semantic Web, e-commerce, and information systems. Accordingly, the definitions of ontologies

have evolved with different and complementary points of view. Some of these definitions stress the

general and intrinsic properties of ontologies, while others are influenced by the mechanical means

of developing ontologies. We will illustrate several typical definitions in both of the perspectives.

Gruber (1993) and Borst (1997) introduced a precise definition: ‘An ontology is a formal

explicit specification of a shared conceptualization’. Fensel (2001) elaborated on this definition

by saying that conceptualization refers to an abstract model of some phenomenon in the world

by having identified the relevant concepts of that phenomenon. Explicit means that the type of

concepts used and the constraints on their use are explicitly defined. Formal refers to the fact

that the ontology describes what each concept is meant to denote, and specifies formal axioms

that constrain the interpretation and well-formed use of these concepts. Shared reflects the notion

that an ontology captures consensual knowledge; that is, it is not private of some individual, but

Ontology-based models in pervasive computing systems 317



accepted by a group. This definition describes how the philosophical nature of ontologies could be

incorporated into computer science.

Most of the subsequent definitions (such as Benjamins et al., 1998; de Vergara et al., 2002) are

similar to the above one per se, while Guarino (1998) refined Gruber’s definition by distinguishing

ontologies from conceptualizations formally and logically: ‘An ontology is a logical theory

accounting for the intended meaning of a formal vocabulary’. When this logical theory is used

to model a particular aspect of reality—an intended domain—an ontological commitment is speci-

fied to capture the very basic ontological assumptions (such as identities and internal structures)

about the intended domain. The ontological commitment gives explicit information about the

intended nature of the modelling primitives and their a priori relationships for this logical theory.

Thus, it constrains a subset of all the possible models of the logical theory by specifying the

intended meaning of its vocabulary. These models being constrained are called intended models,

which only describe those states of affairs that are compatible with the underlying ontological

commitment (Guarino et al., 1994). Furthermore, Guarino (1998) focused on the application

side to offer a systematic account of the central role that ontologies played in information sys-

tems, leading to the ontology-driven information systems; that is, ontologies ‘drive’ all aspects

and all components of an information system.

Another typical style of ontology definition was introduced by Uschold & Jasper (1999): ‘An

ontology may take a variety of forms, but it will necessarily include a vocabulary of terms and

some specification of their meaning. This includes definitions and an indication of how concepts

are interrelated which collectively impose a structure on the domain and constrain the possible

interpretations of terms’. This definition specified the functions of ontologies and the technical

approach for building ontologies.

Gruber and Borst’s definition reflect the philosophical foundations of ontologies. Guarino

advanced the definition with a logical theory, and demonstrated that ontologies could advant-

ageously drive information systems. The definitions not only help researchers to comprehend

the ontology’s essence but also work as a mechanical guide for ontology development. Further,

Uschold introduced into the definition the semantics and the technical approach for building

ontologies. The above historical definitions record how the term ontology is more and more con-

crete and applicable in computer science.

Different types of ontologies are built for different types of applications, and they have varying

levels of details. Ontologies are classified in terms of the level of generality (de Bruijn, 2003):

* generic ontologies, which describe general concepts, independent of any particular domains;
* domain ontologies, which describe concepts for a particular domain (such as, biology or physics);
* application ontologies, which describe the concepts necessary for specific applications. The

application ontologies might build on generic and domain ontologies (Chandrasekaran et al.,

1999);

and in terms of the level of expressiveness:

* lightweight ontologies, which aim for a consensual conceptualization, including concepts, taxo-

nomies, and relationships between concepts and their properties (Corcho et al., 2003);
* heavyweight ontologies, which apply axioms and constraints to lightweight ontologies. The

axioms and constraints are the main building blocks for making the semantic interpretation

for the concepts and relationships of the ontologies (Gruber, 1995).

In a general, formal, and explicit way, ontologies capture and specify the domain knowledge

with its intrinsic semantics through consensual terminologies and formal axioms and constraints.

Technically, ontologies should involve a well-formed vocabulary with clearly defined relations

between different terms. There exist different types of ontologies. According to the generality,

they can be classified into generic, domain, and application ontologies; according to the expressiv-

ity, they can be classified into light- and heavyweight ontologies.

j u a n y e E T A L .318



2.2 The applications of ontologies

Ontologies have come into widespread use in many fields, including knowledge representation and

integration, information retrieval and extraction, and conceptual model design. They can provide

standard terminologies and rich semantics to facilitate knowledge sharing and reuse. Rich seman-

tics requires the ability to understand not only the information but also the environment and reas-

oning surrounding the use of the information (Bebee et al., 2003). In ontologies, the semantics are

embodied by a set of terms, relations between terms, and inference rules for a topic (Gruber,

1993), which are the kernel of ontologies. Terms constitute a controlled vocabulary with explicit

definitions. Relations between terms include those between instances, between classes and their

instances, and between classes. Inference rules make it possible to define knowledge about a sys-

tem, which might otherwise be hidden or implicit, and make it possible to derive new knowledge

from existing facts.

It can be difficult for a community to agree to a shared conceptualization of a domain. How-

ever, it may be realistic to assume that if such generic ontologies gain a wide consensus, they

should be shared. Domain and application ontologies may differ to deal with the individual needs

of the systems that use them. For example, in a pervasive system, the modelling of location data

may be customized to the capabilities of the sensor equipment. Such a location ontology should be

generic enough to be independent of the needs of individual sensors and applications, that is, the

modelling of location data should be done by the domain ontology. However, application ontol-

ogies that use these data are task-dependent, which can be more specific and might not be shar-

able by other application or specific ontologies.

There exists an assumption that a system may contain multiple non-shared ontologies. For

example, Chandrasekaran et al. (1999) proposed a practical statement: ‘An ontology is unlikely

to cover all possible potential uses. In that sense, both an ontology for a domain and a knowledge

base written using that ontology are likely to be more appropriate for certain uses than others and

unlikely to be sharable across widely divergent tasks’. If systems using different ontologies need to

communicate, the relevant concepts from each system’s ontology will have to be mapped to each

other. Ontology mapping allows semantics to cross the boundaries between systems with hetero-

geneous ontologies (see Kalfoglou & Schorlemmer, 2003 for a comprehensive review). If two sys-

tems use or customize the same generic or domain ontologies, the semantic interoperability is

greatly facilitated: they share the same terminologies, the understanding of what classes, proper-

ties, and individuals are, and how they relate to each other (Noy, 2005).

In the following, we will classify ontological applications with respect to two perspectives: the

scale and the functions.

From an upper-level view (i.e. between systems), general sets of libraries of ontologies are

abstracted from different systems that describe common situations. The ontologies at the upper level

are generic or domain ontologies. Through a standard specification, these ontologies can be shared,

reused, and adapted to other systems; they are customized to represent terms in different forms for

different users. They should be extensible to allow for the incorporation of new classes and the

specialization of concepts and constraints for a particular problem (Uschold & Grüninger, 1996).

From a lower-level view (i.e. within a system), ontologies work as a specification of what the

system is designed for. The ontologies at the lower level are application (task-dependent) onto-

logies. They can facilitate the process of identifying the requirements and understanding the

relationships among the components of a system. Ontologies can identify the logical connections

between elements across the components. Thus, they enable the use of (semi-)automation in

checking system consistency and integrity with the specification. In addition, formal ontologies

can clarify the assumptions made by different components of the software system, which helps

to integrate these components (Uschold & Grüninger, 1996).

In a system, it is often necessary to provide a mechanism to search for a particular piece of

information (such as a service or context). Ontologies enhance the searching mechanisms, which

may refer to a precise concept rather than a plain definite keyword. Traditional information

Ontology-based models in pervasive computing systems 319



retrieval technology is based on keyword processing. The same keywords can have different

meanings in different situations, while sometimes different keywords can have similar meanings

(Zhang & Li, 2005). This difficulty in grasping semantic meaning from keywords may result in

poor performance. A high precision of keywords will tend to result in poor recall—that is, fewer,

but more relevant answers will be retrieved. As precision is decreased, more, less relevant docu-

ments will tend to be retrieved, resulting in higher recall. The introduction of semantics through

ontologies will lead to a new generation of services based on content rather than only on syntax.

Thus, searching will be based on topics, and resources will be retrieved related to the semantics of

a user’s request (Bonino et al., 2004).

2.3 Technologies for developing ontologies

Now we describe the ontology technologies that the W3C recommends for encoding ontologies, as

these are widely used in the ontology engineering field and specifically in pervasive computing

applications.

The eXtensible Markup Language (XML) is a standard language for describing data in a

(semi-)structured manner. In XML, data are labelled (or tagged) with user-defined elements

that can contain further elements and data. Document Type Definition (DTD) and XML Schema

(XMLS) were introduced to constrain the syntactic structures of XML documents.

The Resource Description Framework (RDF) is an application of XML that imposes needed

structural constraints to provide unambiguous methods of expressing semantics. The structural

constraints are used to support the consistent encoding and exchange of standardized metadata.

They make it possible to interchange the separate packages of metadata defined by different

resource communities (Miller, 1998). RDF provides an unambiguous and extensible way to express

simple statements in the form h subject, predicate, object i, where a subject denotes a resource

represented as Uniform Resource Identifiers (URI) that can be identified uniquely and globally,

an object can be either a literal (such as a string or number) or a URI reference to another

resource, and a predicate is a relationship between a subject and an object. RDF Schema

(RDFS) provides the facilities to describe the application-specific classes and properties, and to

indicate which classes and properties are expected to be used together. In other words, RDFS pro-

vides a type system for RDF; it extends RDF with primitive concepts like classes, properties, and

instance, and primitive relationships like instance-of and subclass-of.

To support formal semantics and efficient reasoning, the Ontology Interchange Language (OIL)

and the DARPA Agent Markup Language (DAML) were designed. These were layered on top

of XML(S) and RDF(S). By combining DAML and OIL, DAMLþOIL was formed, and was

proposed as a W3C standard for ontological and metadata representation (Bechhofer et al.,

2001b). DAMLþOIL supports primitive and more complex data structures, well-structured seman-

tics, and inference procedures based on description logic.

Based on DAMLþOIL, the Web Ontology Language (OWL) was created. OWL facilitates

greater interpretability of data by providing additional vocabularies with formal semantics

(McGuinness & van Harmelen, 2004). The OWL language provides three increasingly expressive

sub-languages designed for use by specific communities of implementers and users. It consists of

OWL Lite, OWL DL, and OWL Full in a layered approach; that is, OWL Lite � OWL DL �
OWL Full. OWL Lite supports classification hierarchies and simple constraints; OWL DL supports

maximum expressiveness while retaining computational completeness and decidability; OWL Full

allows for maximum expressiveness and the syntactic freedom of RDF without computational

guarantees. To date, OWL DL has been the most practical choice for most ontological applica-

tions (de Bruijn, 2003). OWL Lite uses only some of the OWL language’s features, and has

more limitations on the use of the features compared with OWL DL or OWL Full. For example,

one of the restrictions on OWL Lite is that it only uses named classes. OWL Full combines the

expressivity of OWL with the flexibility and meta-modelling features of RDF; however, use of

the OWL Full features means that developers will lose some guarantees that OWL DL and

j u a n y e E T A L .320



OWL Lite can provide for reasoning systems. Choosing which sub-language of OWL to use

depends on the expressiveness requirement and complexity of the target ontologies.

These formally specified ontology languages make semantics explicit and unambiguous so

that ontologies are more amenable to automatic processing and integration (Noy, 2005). Besides

ontology languages, ontology technologies include inference engines, annotation tools, ontology-

based crawlers, and mining tools (Sure et al., 2004). Inference engines (such as Decker et al., 1999;

Haarslev & Moeller, 2003; Ha et al., 2005) are used to check the consistency and integrity of onto-

logies and deduce new knowledge based on the rules or relationships of the concepts specified

by ontologies. Ontology-based annotation tools (such as Vargas-Vera et al., 2001; Mostowfi et al.,

2005) use pre-defined concepts in ontologies to mark up a document. These concepts are a set of

instances of classes and relations based on the domain ontology. Ontology-based crawlers (such as

Ganesh et al., 2004; Erdmann et al., 2001) can retrieve most relevant Web pages or Web caches

for users by applying the domain-dependent ontology to prioritize an URL queue. Ontology mining

tools (such as Pandey & Mishra, 2005; Bernstein et al., 2005) employ relevance functions to the

ontologies to unravel the relationships between facts and the existing classes. Additionally, diverse

ontology editors have been developed, including Protégé (Noy et al., 2000) and OilEd (Bechhofer

et al., 2001a). A detailed analysis of these editors can be found in Denny (2002). The wealth of

mature ontology technologies available today is a further incentive for other developers to apply

ontologies to problems in other fields, including the pervasive computing domain.

2.4 Ontology engineering

We have shown how ontologies can be applied and which technologies can be used. Now we

will detail a few development engineering issues that should be addressed when designing

ontologies for a domain: determining the resources, scope, and purpose of required ontologies;

capturing the appropriate terms; encoding the ontologies with formal languages; iteratively

evaluating the building process and the ontologies in terms of clarity, coherence, ontological com-

mitment, orthogonality, encoding bias, and extensibility; and annotating ontologies with formal

documentations.

2.4.1 Ontology development methodologies

de Bruijn (2003) says that, besides complexity in the nature of the domain that ontologies apply

to, there exist other complicated issues in both the requirements of ontologies and complexity

in ontology languages. Therefore, formal methodologies to guide the development of ontologies

are needed just as software engineering needs formal techniques to guide the process of developing

software. Currently, a series of formal approaches have been developed in ontology engineering,

such as Grüninger & Fox (1995), Uschold & Grüninger (1996), METHONTOLOGY (Fernandez

et al., 1997), and the On-To-Knowledge methodology (Staab et al., 2001; Sure et al., 2002). Jones

et al. (1998) survey some of these approaches. These methodologies are similar to each other and

provide a number of guidelines that should be followed during the ontology engineering process:

Requirement analysis As with software engineering, the most important thing when designing ontolo-

gies is to specify the purpose of the ontologies and their necessity. The developers must decide on the

kinds of applications that these ontologies will be employed in. They need to determine the scope of

the ontologies: whether they are general, domain, or application ontologies. They also need to confirm

what resources will be applied in the target system so that they can decide what concepts should be

covered in the ontologies.

Building ontologies When building ontologies, the developers should arrange the concepts and terms

that need to be captured by these ontologies. There are two traditional approaches to capture and

organize terms: bottom-up and top-down. The bottom-up approach starts from the finest-grained

terms and generalizes them into different levels of details step by step. This approach leads to a very

high level of detail; it is also difficult to spot commonality between related concepts, and increases

the risk of inconsistencies. The top-down approach starts from the most coarse-grained terms and

Ontology-based models in pervasive computing systems 321



divides up the terms into finer-grained terms. This approach can control the level of detail better; how-

ever, it has a risk of less stability. The trade-off solution between the above two is the middle-out

approach proposed by Uschold & Grüninger (1996): starting with the most important concepts, and

then defining higher-level concepts in terms of these. Thus, the higher-level categories will naturally

arise. Furthermore, the most important concepts can be extended by defining the lower-level concepts

with finer granularity. This approach relieves the problems existing in a bottom-up approach and those

in a top-down approach. After deciding the required concepts, the developers should choose the most

appropriate meanings for terms. They should attempt to reuse the most integral and precise definitions

for these terms from existing mature ontological definitions. Standard ontology languages should be

used to implement ontologies so as to ensure that the conceptualization is formally and explicitly

encoded.

Evaluation Developers should perform evaluations of the ontology throughout the whole life cycle of

ontology development. It is important to validate whether the ontologies model the system that they are

intended to represent. The evaluating approaches include requirement analysis, and informal or formal

competency questions (Grüninger & Fox, 1995). The competency questions are defined as an entail-

ment or consistency problem with respect to axioms in ontologies, such as ‘given the set of axioms

and a set of instances of objects and relations, can we infer some first-order statement that uses only

predicates in the language of the given ontologies?’ (Uschold & Grüninger, 1996).

Documentation A formal documentation is needed to describe the completed ontologies. Inadequate

documentation of ontologies is one of the main barriers for ontology sharing. To address this problem,

Uschold & Grüninger (1996) suggested that all important assumptions should be documented, includ-

ing those about the main concepts defined and the primitives used to express the definitions.

Ontology engineering is more science than art. If ontologies are to realize their full potential,

developers should employ the appropriate development methodologies. So far, a number of tutor-

ials for ontology development have been proposed, which are generalized from the experiences of

building different types of ontologies. We introduce the above simplified guideline for construct-

ing ontologies, instead of suggesting any specific technique. Similarly, Jones et al. (1998) point out

that it is important to take into account the variety of experience that is available, rather than

basing the methodology too much on the experience of one or two projects.

2.4.2 Ontology design principles

As more and more ontologies have been built, ontology evaluation has become an important

issue that must be addressed. The ontology developer needs a way to evaluate the constructed

ontologies and possibly to guide the construction process and any refinement step (Brank et al.,

2005). A lot of research has been done in evaluating the quality of ontologies. Colomb (2002) pro-

poses three questions correspondingly from three linguistic dimensions: syntactic—whether the

model is syntactically correct; semantic—whether the model covers the domain of interest; and

pragmatic—whether the model is comprehensible to a user. Similarly, Burton-Jones et al. (2005)

apply semiotic theory to develop a suite of metrics used to assess ontologies in these linguistic

dimensions and in social aspects. Semiotic theory studies the properties of symbols, including

how meanings of symbols are constructed and understood. Burton-Jones et al. describe the

metrics’ theoretical basis and collects data to test their feasibility. These metrics try to help ontol-

ogy developers to capture a more comprehensive and consistent representation of the targeted

domain, to check ontologies’ syntax, to ensure that ontologies’ semantics are meaningful and pre-

cise, and to make ontologies relevant for many users/agents. Tartir et al. (2005) analyze ontology

schema and their populations, and describes them through a well-defined set of metrics. de Bruijn

(2003) introduces five design parameters that must be met when developing a good-quality ontol-

ogy. We combine the work in Uschold & Grüninger (1996), de Bruijn (2003), and Burton-Jones et

al. (2005), and propose the following coarse-grained criteria to assess ontologies:

Clarity Terms must be defined through necessary and sufficient conditions so that they can be iden-

tified unambiguously and communicated effectively. A concept can be called clear if it can be definitely

j u a n y e E T A L .322



recognized and distinguished from other concepts through its particular properties and constraints.

Developers should minimize the ambiguity, motivate the distinctions between concepts, and provide

examples for those concepts that lack necessary and sufficient conditions.

Coherence Definitions must be consistent. Local conflicts occur when the same term is used in two or

more ways within one ontology. Incongruity should be detected to avoid reaching incorrect inferences.

A general or domain ontology should satisfy both the local coherence requirement and the global

coherence requirement, that is, its term definitions must be consistent with those in the typical consen-

sual ontologies.

Ontological commitment Ontologies should make just enough claims about the domain so as to sup-

port the intended knowledge sharing and reuse. If too many claims are made on a domain, the exten-

sibility of ontologies is limited; however, if too few are made, the range of applications that can actually

use the ontology will be reduced. Developers should restrict themselves to making ontological commit-

ments with respect to the aspects intrinsic to the domain being modelled.

Encoding bias Ontologies should be specified at the knowledge level without depending on a particu-

lar symbol-level encoding (Uschold & Grüninger, 1996), for example, the format that dates can be

encoded should not be specified in a time ontology. They should be as independent as possible from

the applications that will use the ontology, making it easier to facilitate knowledge sharing. Developers

should take care not to make representation choices for the convenience of notation or implementation.

Extensibility Ontologies should offer a conceptual foundation for anticipated and potentially anti-

cipated tasks. It should be easy to add new terms to ontologies without affecting existing ones; that

is, new items will not cause modification, and will not produce confused or ambiguous meaning on

existing ones.

The above design principles are not comprehensive evaluation criteria, and we use them only

as a starting point for evaluating ontologies. A new criterion, orthogonality, is introduced, which

requires that general concepts should be defined as independent and loosely coupled atomic con-

cepts. Each aspect of the knowledge corresponds to an atomic concept, whose meaning is

mutually exclusive to others. These atomic concepts can be combined or specialized to suit par-

ticular applications or problems. Orthogonality helps to achieve a suitable ontological commit-

ment by ensuring that peripheral claims which are external to the concepts in a particular

domain are not made. In terms of particular problems or applications, developers are encouraged

to customize, combine, or extend these general concepts into more specific ones, which can make

more claims. Furthermore, orthogonality, suitable ontological commitment, and minimization of

encoding bias will help to achieve extensibility.

2.5 Summary

In this section we illustrated the chronological definitions of ontologies, and concluded with an

operational definition: ontologies are used to capture and specify the domain knowledge, whose

semantics are expressed through consensual terminologies and formal axioms and constraints.

From this definition, we summarized the general applications of ontologies for communication

between components or modules within a system, and for the interaction between systems. We

then introduced the standard ontology languages that are used to help software agents to process

ontologies easily.

The underlying goal of ontology development is to create artefacts that different systems or

applications can share and use to interact with one another (Noy, 2005). It is necessary to develop

general formal ontologies that can be shared among different pervasive computing systems.

We followed with a description of the most developed ontology methodologies in a discussion

of ontology engineering. We described the best practices for developing ontologies and a number

of design principles to gauge the value of an ontology implementation. The above development

techniques were introduced as a starting point for developers. By following these approaches

for developing and evaluating ontologies, developers will be able to create ontologies that better

facilitate sharing and reusing knowledge.

Ontology-based models in pervasive computing systems 323



3 Ontologies in pervasive computing

In this section, we review a number of the most recent pervasive computing systems that use ontol-

ogy models, including CoBrA (Chen et al., 2004b), Gaia (Ranganathan et al., 2004b), GLOSS

(Coutaz et al., 2003), ASC (Strang et al., 2003b), and SOCAM (Gu et al., 2004). All of them try

to build heavyweight domain ontologies for pervasive computing. We introduce these systems

focusing on a number of perspectives: the infrastructure and its characteristics, the use of ontologies

and ontology-related components, and the scenarios that demonstrate their ontology-modelling

approaches. These systems and their ontologies will be analyzed and evaluated in Section 4.

In Section 3.6, we list some application ontologies in use in the areas of trust, policy manage-

ment, and location. We also introduce some recent pervasive computing applications that apply

ontologies.

3.1 CoBrA

The Context Broker Architecture (CoBrA) is a broker-centric, agent-based architecture for sup-

porting context-aware computing in intelligent spaces (Kagal et al., 2001). CoBrA provides a

means of acquiring, maintaining, and reasoning about context; sharing knowledge; detecting

and resolving inconsistent knowledge; and protecting user privacy (Chen et al., 2005). All of the

above capabilities are provided by the context broker, an intelligent agent that is the central com-

ponent in CoBrA. Inside the context broker, the Context Acquisition Module offers a library of

procedures that form a middleware abstraction for context acquisition; the Context Knowledge

Base maintains a shared model of context on behalf of a community of agents and devices in

the smart space; the Context Reasoning Engine reasons over the context so as to detect and resolve

the inconsistent knowledge; and the Policy Management Module provides a set of user-defined

inference rules that deduce instructions for deciding the right permissions for different computing

entities to share a particular piece of contextual information, and for selecting the recipients to

receive notifications of context changes.

Contextual information in CoBrA is represented by a set of ontologies called COBRA-ONT

that is implemented in OWL. CoBrA-ONT is the key requirement for modelling context in the

smart meeting application (Chen et al., 2004b). It defines typical concepts and relations for

describing physical locations, time, people, software agents, mobile devices, and meeting events.

A set of more general ontologies, named SOUPA (Standard Ontology for Ubiquitous and Perva-

sive Applications), has been proposed for supporting pervasive computing applications. SOUPA

(Chen et al., 2004e) borrows terms from other standard domain ontologies such as FOAF (Friend

Of A Friend) (Dumbill, 2002), DAML-Time (Hobbs & Pans, 2004), OpenCyc (Lenat & Guha,

1989), RCC (Region Connection Calculus) (Borgo et al., 1996), and the Rei Policy Ontology

(Kagal et al., 2003). These ontologies have gained consensus within their respective communities.

Additionally, SOUPA references specific pervasive computing ontologies like CoBrA-ONT and

the MoGATU BDI (Belief, Desire, and Intentions) Ontology (Perich et al., 2004).

SOUPA offers a formal and well-structured way to model context, and thus provides rich

semantics for programming. It also allows policies to be defined to support trust and privacy.

This is demonstrated in CoBrA’s EasyMeeting application (Chen et al., 2004a), in which the

ontologies facilitate knowledge sharing and work with logic inference rules to reason about the

context. SOUPA also applies the BDI ontology to express the beliefs, preferences, intentions,

and desires of an agent or a user, which makes it possible to rank the priorities of plans and

goals.

3.2 Gaia

Gaia is an infrastructure for smart spaces, which are pervasive computing environments that

encompass physical spaces (Roman et al., 2002). The main characteristic of Gaia is that it brings

the functionality of an operating system to physical spaces. It employs common operation system

j u a n y e E T A L .324



functions (including events, signals, file systems, security, and processes), and extends them with

context, location awareness, mobile computing devices, and actuators. Using this functionality,

Gaia integrates devices and physical spaces, and allows the physical and virtual entities to seam-

lessly interact.

Ontologies are introduced in Gaia as an efficient way to manage the diversity and complexity

of describing resources (e.g. devices and services). First of all, they work as a system specifica-

tion for configuration management by providing a standard taxonomy of the different kinds of

entities (including applications, services, devices, users, and data sources). Therefore, these onto-

logies are beneficial for semantic discovery (McGrath, 2000), matchmaking (Trastour et al., 2001),

interoperability between entities (McGrath et al., 2003b), and interaction between human users

and computers (Ranganathan et al., 2004b). Additionally, the Gaia ontologies are used to make

Gaia systems context-aware (Ranganathan & Campbell, 2003). They model contextual infor-

mation including physical, environmental, personal, social, application, and system contexts.

They describe the relations between different entities and establish axioms and constraints on

the properties of the entities that must be satisfied. Gaia represents context in a predicate form,

for example, Location (chris, entering, room 3231), where a subject belongs to the set of persons

or things (e.g. ‘chris’), the location predicate is a verb or preposition (like ‘entering’), and a loca-

tion, which may be a room or a building (e.g. ‘room 3231’).

In Gaia, the Ontology Server is responsible for loading and validating ontologies from

DAMLþOIL documents, and composing ontologies into a combined ontology for the entire

system. It is also capable of serving logical queries to the Knowledge Base that represents the

dynamically integrated ontology base. The Ontology Explorer is a graphical user interface

(GUI) that allows users to browse and search ontologies, and to interact with other entities in

the space (McGrath et al., 2003a). The ontology explorer offers a clearer understanding of the

semantics of a system. This makes it easier to write rules that determine context-sensitive beha-

viour. The explorer also helps human users to interact directly with the constituent parts of a per-

vasive computing environment.

3.3 GLOSS

A GLObal Smart Space (GLOSS) is a software infrastructure to support the interactions between

people, artefacts, and places, while taking account of both context and movement on a global

scale (Dearle et al., 2003b). By exploiting the features of physical spaces, GLOSS uses people’s

location and movement as a source of task-level context and as a guide to provide appropriate

information or services. Therefore, GLOSS facilitates the low-level interactions (such as tracking

a user’s location) that are driven by high-level contexts (such as a user’s task).

GLOSS provides a large and diverse range of services that are deployed at geographically

appropriate locations (Dearle et al., 2003a). Those location-aware services demonstrate how to

detect, convey, store, and exploit location information based on the GLOSS ontologies.

GLOSS accommodates both service heterogeneity and evolution. The GLOSS ontologies

describe a small set of concepts for a universe of discourse. These concepts provide the precise

understanding of how services (physical and informational) are used and how users interleave var-

ious contexts at run time. This allows different services to be implemented without the duplication

of basic mechanisms, and abstracts over specific details of technologies. In terms of software

evolution mechanisms, GLOSS permits the dynamic rearrangement of low-level interconnection

topologies and the components that they connect (Dearle et al., 2003b). Service evolution is driven

by the GLOSS ontologies, which include explicit and implicit descriptions of high-level contexts

(physical and computational).

The GLOSS ontologies are designed using a top-down approach, starting with the universal

object that represents any entity in the system. This general object is sub-classed into all of the

actors and artefacts that are significant in the GLOSS environment, including a person’s profile,

location, a mode of transport, time, and an activity (Coutaz et al., 2003). GLOSS provides

Ontology-based models in pervasive computing systems 325



comprehensive and well-formed ontologies; its When and Where ontologies are built in an

orthogonal structure that can be extended easily.

3.4 ASC

Aspect-Scale-Context (ASC) is a model for describing contexts and their relationships using

ontologies as fundamental (Strang et al., 2003b). A context is a set of contextual information

characterizing entities (like a person, place, or a general object) relevant for a specific task in their

relevant aspects. An aspect is a classification, symbol- or value-range, whose subsets are a super-

set of all reachable states, grouped in one or more related dimensions called scales (Strang et al.,

2003a). A scale specifies fine-grained representation formats for an aspect, for example, a distance

aspect has multiple scales such as meter, kilometers, and nautical mile. The ASC model shows

how contextual information may be used to characterize a state of an entity under a specific

aspect.

Ontologies implemented in ASC facilitate service discovery and service interoperability on the

context level. CoOL, the Context Ontology Language (Strang et al., 2003a), is derived from ASC

to facilitate ontology-based contextual interoperability. CoOL is divided into two subsets: the

CoOL Core, which projects ASC model into various common ontology languages such as OWL

and DAMLþOIL, and F-Logic (Kifer et al., 1995); and CoOL Integration, which is a collection

of schema and protocol extensions as well as common sub-concepts of ASC. CoOL is used to

enable context interoperability and context-awareness during service discovery and execution.

Strang et al. (2003a) describe an overall architecture of the ASC-based system that focuses on

their context provider domain, which includes CoOL-based knowledge (i.e. facts and ontologies),

rules, and an inference engine OntoBroker (Decker et al., 1999). The inference engine uses rules

to derive new knowledge from existing ontologies and facts, to validate consistency within one

ontology, and to assert inter-ontology relationships.

3.5 SOCAM

The Service-Oriented Context-Aware Middleware (SOCAM) is an architecture that enables the

building and rapid prototyping of context-aware services in pervasive computing environments

(Gu et al., 2004). The middleware abstracts various physical spaces from which contexts are

acquired into a semantic space where contexts can be easily shared and accessed by context-aware

services.

The CONtext ONtology (CONON) is an ontology-based context model, in which a hierar-

chical approach is adopted for designing context ontologies (Gu et al., 2004). The ontologies

include a common upper ontology for the general concepts in pervasive computing (such as per-

son, location, computing entity, and activity) and domain-specific ontologies that apply to differ-

ent sub-domains (like smart homes). The context model supports multiple semantic contextual

representations like classification, dependency, and quality of context. Using CONON, two types

of contextual reasoning tasks are supported: ontology reasoning with description logic, and user-

defined reasoning by defining specific rules in first-order logic.

The CONON ontologies help to share a common understanding of the structure of contextual

information from users, devices, and services so as to support semantic interoperability and reuse

of domain knowledge. They also support efficient reasoning mechanisms so as to check the

consistency of context and deduce higher-level, implicit context from raw context. A context-

aware home scenario is implemented in the prototype system to demonstrate the use of CONON

(Gu et al., 2004).

3.6 Miscellaneous ontologies

Besides the above ontology-based systems, there are other systems that build application ontol-

ogies for the description of contextual information. The GAS (Gadgetware Architectural Style)

j u a n y e E T A L .326



ontology aims to provide a common language for communication and collaboration among the

heterogeneous devices that constitute a ubiquitous computing environment (Christopoulou &

Kameas, 2005). The GAS ontologies, implemented in DAMLþOIL, contain semantic descrip-

tions and interrelations between basic components (eGadgets) of ubiquitous computing applica-

tions (which they call eGadgetWorlds). The capabilities of eGadgets are made visible through

plugs and connected together by synapses. GAS supports the building of eGadgetWorlds by pro-

viding specific rules for plugs compatibility and eGadgets replacement feasibility. Such ontologies

help to discover potentially available services when a component where the current service is

located breaks down.

The CoDAMoS Project (Preuveneers et al., 2004) builds an adaptable and extensible ontology

for creating context-aware computing infrastructures, ranging from small embedded devices to

high-end service platforms. This ontology is classified into four basic concepts: User, Environment,

Platform, and Service (Preuveneers et al., 2006). It works at both the lower level for context

modelling and the upper level for the whole system specification. It is used for application adap-

tation, automatic code generation and code mobility, and generation of devices and specific user

interfaces.

Some pervasive computing systems develop task-specific ontologies for particular topics. Three

of the most popular topics are trust (such as Toivonen & Denker, 2004; Mcnamara et al., 2006),

policy management (such as Kagal et al., 2003, 2006; Weeds et al., 2004; Sriharee et al., 2004), and

location (such as Millard et al., 2004; Flury et al., 2004; Sashima et al., 2004; Tafat et al., 2004).

Toivonen and Denker define ontologies to capture context-sensitive messaging that includes mes-

sage sender, receiver, and mediating network. They focus on a messaging trust problem, that is, to

determine the degree of trust the receiver of a message should assign to a message. McNamara

et al. employ ontologies to describe the services based on quality of service and mobility. This

will help the requester of a service or a resource to decide which provider to rely on, depending

on their trustworthiness and mobility patterns. Kagal et al. define the Rein ontology that is a

Web-based policy management framework. The Rein ontology has a relatively small base and

includes a few powerful terms that define the access control domain, and allows policies and

policy languages to be reused and extended. Among the location ontologies, Millard et al.

(2004) model Where and What a user is doing at any given time. Flury et al. (2004) define the

semantic basis of location information for device-based services in pervasive computing environ-

ments. Besides the above typical popular concepts, ontologies are more and more applied to

express user preferences in order to provide more suitable and customized services (such as

Held et al., 2002; Mylonas et al., 2006).

Several novel ontology-based applications in pervasive computing have also been developed,

including context-driven service adaptation and mobility (Preuveneers et al., 2006), service com-

position (Robinson et al., 2004; Ni & Slomon, 2005), and health care (Fook et al., 2006).

3.7 Summary

The five surveyed pervasive computing systems above (CoBrA, Gaia, GLOSS, ASC, and

SOCAM) define domain ontologies to represent the primitives of pervasive computing. These

ontologies are used to represent, manipulate, program, and reason with context data. Other

application- and task-specific ontologies were introduced, which aim to solve particular pervasive

computing problems. In the next section, we will analyze the domain ontologies more carefully

with respect to ontology-modelling best practices, and their contributions to the research themes

outlined in Section 1.

4 Analysis and evaluation of ontology-based models in pervasive computing

We now analyze the use of ontologies in the pervasive computing systems described in the

previous section from a number of perspectives. We start by comparing the ontologies from the

Ontology-based models in pervasive computing systems 327



perspective of ontology engineering, and evaluating them using the criteria introduced in Section

2.4. After the analysis, we also offer some suggestions on each criterion. Next, we assess the sys-

tems from the perspective of the strategic themes outlined by the Disappearing Computer initia-

tive: in the representation and manipulation of the fundamental contextual concepts in

pervasive computing (in Section 4.2); in privacy and trust management (in Section 4.3); in service

description, discovery, and matching (in Section 4.4); and in the themes of interaction design (in

Section 4.5). Finally, we outline an additional theme, that of modelling uncertainty in pervasive

computing (in Section 4.6), and summarize the analysis (in Section 4.7).

It should be noted that we do not perform an evaluation of the ‘essential infrastructure’

theme. This theme is related to the characteristics that a pervasive computing system should

exhibit, such as hardware infrastructure for input and output interaction, communication infra-

structure from the small to large scale, and core enabling middleware services (Skordas et al.,

2004; Streitz & Nixon, 2005). Since the development and deployment of ontologies and ontol-

ogical engineering techniques are unable to tackle this theme, it falls outside the remit of this

survey and is omitted.

4.1 Ontology modelling

Modelling the elements of a pervasive computing environment is the most visible part of apply-

ing ontologies in pervasive computing. Each of the surveyed systems makes significant contribu-

tions in modelling context. They each have various structures to organize contexts and have

various conceptualizations. The extensibility of their structures and the quality of their concept-

ualizations reflect the strength of ontologies employed in their context-modelling process. They

have encoded their ontologies using the standard ontology languages discussed in Section 2.3

(shown in Table 1). This section will illustrate their structures, and apply the ontological design

principles introduced in Section 2.4.2 to assess their conceptualizations.

4.1.1 Evaluation of structure

SOUPA (Chen et al., 2004e) organizes its ontologies in a radiating manner into SOUPA core and

extension. The SOUPA Core ontologies define generic vocabularies (including Person, Agent,

Event, Space, Time, Action, Policy, and BDI) that are universal for different pervasive computing

applications. By extending the core ontologies, the SOUPA Extension ontologies define task-

dependent vocabularies for supporting specific types of applications, and provide examples for

future ontology extensions.

The CONON ontologies organize their upper ontology and lower domain-specific ontologies

into a tree hierarchy. The upper ontology captures the general context knowledge contained in

pervasive computing (using CompEntity, Location, Person, and Activity). The lower ontologies

can extend the general concepts in the upper ontology, or define additional concepts to suit par-

ticular applications, such as home, office, and vehicle applications.

The ASC and GLOSS ontologies start building their ontologies with the basic aspects like

Time, Place, and Event. They employ the top-down approach to capturing concepts: starting

with the most general contexts first and then extending them into specific applications by sub-

classing. The context can also be customized by composition.

The Gaia ontologies classify context in parallel structures depending on its nature: physical,

environmental, informational, personal, social, application, and system contexts.

All the reviewed models do a good job in extensibility in that they provide abstract concepts in

the domain. Application-specific ontologies can be extended by sub-classing from domain onto-

logies. We conclude by posing some questions to help developers to achieve extensibility: which

structure is more suitable for extension, either extending from basic concepts or developing mani-

fold contexts in parallel; what kinds of general classes should be decided to be extracted from the

domain; how concepts are captured and described to make their meaning integral and distinct;

and so on.

j u a n y e E T A L .328



4.1.2 Evaluation of conceptualization

Clarity means that a term can be uniquely identified and distinguished from other terms through

necessary and sufficient conditions. All of the reviewed ontologies specify the restrictions for some

concepts. However, those restrictions are relatively simple, and the strength of ontologies in spe-

cifying rules has not been fully exerted. They concentrate on whether a term has a certain property

or whether a cardinality restriction has been exceeded for a certain property. Our survey has

shown that SOUPA is the best of the reviewed ontologies that define their terms explicitly. Other

ontologies (like Gaia, GLOSS, CONON, and ASC ontologies) do not specify as many constraints

or restrictions as the SOUPA ontologies. However, the CONON and ASC ontologies introduce

some semantics (like classification, dependency, and quality) that are more expressive in defining

certain terms (such as activity).

Coherence requires that a concept should be defined consistently. Each of the reviewed systems

defines its terms in self-consistent ontologies, but mismatches exist with the other reviewed sys-

tems ontologies. This limits the ability to share information and communication between them.

As suggested in Section 2.4, it is better to choose the most appropriate definitions for the terms

from existing mature ontologies. Among the surveyed ontologies, only SOUPA defines appro-

priate meanings for concepts from the consensual ontologies, including DAML-Time, OpenCyc,

and RCC.

Ontological commitment requires that an ontology should make just enough claims on a

domain so that it may be general enough to be usable in any application in that domain. It is

advantageous that classes, associated properties, and involved constraints should serve for all of

the general problems in the domain. GLOSS’s Where and When ontologies are general enough

to satisfy this criterion. The Where ontologies only capture the intrinsic aspects of location includ-

ing physical representation, geometric region, and symbolic representation, and their basic map-

ping relationships. Therefore, they are a good foundation for building application ontologies to

describe specific situations in the location-related domain. For example, if this location ontology

was applied to a particular application in an indoor environment, it could be customized by mak-

ing more specific claims on it (e.g. establishing relationships between rooms). On the other hand,

CONON’s location ontology includes many application-specific concepts (such as temperature

and lighting) in its location ontology, so its location ontology is not general enough to satisfy

the criterion.

Orthogonality requires that the defined concepts should be mutually exclusive from each other,

which makes it easier to share and reuse ontologies. SOUPA’s person ontology demonstrates

good orthogonality properties. A person can be described from different aspects such as their

contact information or social relationships. Each aspect corresponds to an independent ontology.

Encoding bias requires that the general ontologies should be independent of specific symbol-

level encoding. Among our reviewed systems’ ontologies, the ASC location ontologies support

only two coordinate reference systems [the World Geodetic System 1984 (WGS84) (NIMA,

2004) and the Gauss–Krueger coordinate system (DMA, 1989)].

Extensibility requires that ontologies should be extensible to allow them to be reused easily by

other applications in a specific domain. For an ontology to be extensible, new terms should be easily

Table 1. The ontology languages used in the surveyed systems

Ontology-based Models Ontology Languages
CoBrA (SOUPA) OWL
Gaia DAMLþOIL

GLOSS XML
ASC (CoOL) OWL, DAMLþOIL
SOCAM (CONON) OWL

GAS DAMLþOIL
CoDAMoS OWL

Ontology-based models in pervasive computing systems 329



integrated in the existing terminologies without much modification or confusion. Section 4.1.1

showed that all of the surveyed ontologies introduced here are extensible in their structures.

However, when discussing the finer-grained parameters of extensibility (such as at the term-, or

property-level), extensibility is mostly dependent on the satisfaction of the ontological commitment,

orthogonality, and encoding bias criteria.

Table 2 shows the results of our analyses of the ontologies using the evaluation criteria. We find

that they do not completely satisfy every requirement for a formal ontology. Our analysis shows

that formal development methodologies should be used when developing ontologies for pervasive

computing. They will help to abstract the concepts with orthogonal meaning, extract basic con-

cepts, and specify explicit and appropriate definitions. A more detailed analysis of the surveyed

systems’ adherence to these criteria is given throughout the next section.

4.2 Representing context for pervasive computing

There are two main applications of ontologies in pervasive computing: modelling context and

reasoning about it. Since context determines the behaviours in pervasive computing systems,

it is necessary to make it clear what context is and what features it has. The definitions around

context are evolving continuously. In Dey (2001), the definition of context puts emphasis on

relevancy: any entity (including person, location, and artefact) is contextual if it is relevant to

an interaction or application. Coutaz & Rey (2002) divides context into primary context that is

closely related to users, tasks, and a period of time; and peripheral context that is not central

to, but may have an impact on, the task. The peripheral context is classified into physical, social,

system, and user environment. Most subsequent definitions of context follow on from these.

The challenge of modelling context is how to capture, process, and exploit it to provide the cor-

rect behaviour in the correct form to the correct user at the correct time in the correct place

(Streitz & Nixon, 2005). To date, many contextual models have been published in the pervasive

computing field (such as Strang & Linnhoff-Popien, 2004; Chen & Kotz, 2000). The earliest model

introduced by Schilit et al. (1994) was the key-value model that borrowed the database mechanism

to put the value of contextual information as an environment variable (or key). Later, the tradi-

tional software engineering methodologies were applied to represent the context: the graphical

model (Henrichsen et al., 2002) like ORM (Object-Role modelling and UML) and the object-

oriented model (Schmidt et al., 1999). The graphical model provides a clear and intuitive view of

context by describing the facts and properties as nodes and the relationships between them as

edges. The object-oriented models make use of their own features of encapsulation and reusability

to introduce an efficient abstraction and classification mechanism for contextual modelling. Com-

pared with these contextual modelling approaches, the logic model (Ghidini & Giunchiglia, 2001)

does not concern itself about how the context is organized or represented. It provides a formal

and abstract context model about how to reason with part of the potentially available context

and how to solve the compatibility among different contexts. However, the ontological models

have the advantages of the object-oriented and logic-modelling approaches. They provide a for-

mal way to model context into well-structured terminologies, and also support formal reasoning

Table 2 Evaluation of the surveyed ontologies using ontology design principles

Ontology-based Models CoBrA (SOUPA) Gaia GLOSS ASC (CoOL) SOCAM (CONON)

Coherence H
Clarity H H H
Extensibility H H H H H
Ontological Commitment H H
Orthogonality H H
Encoding Bias H H H H

j u a n y e E T A L .330



mechanisms by defining the axioms and constraints. Strang & Linnhoff-Popien (2004) point out

that the ontological approach has been considered a most promising approach for modelling

contextual information.

4.2.1 Context characteristics

Henrichsen et al. (2002) summarized the characteristics of contextual information: it is dynamic;

it should be possible to represent it in different ways; it should take account of uncertainty; and

it should cater for the inherent interrelationships of different pieces of context. Pervasive comput-

ing systems are usually interested in both the past and future states of the context, as well as the

current state. Coutaz et al. (2005) point out that context is not simply a state but part of a process.

It is not sufficient for the system to behave correctly at a given instant; it must behave correctly

during the time in which users are involved in a process. Hence, the temporal characteristics

should be associated with context while modelling.

Pervasive computing applications absorb contextual information from a wide range of sources.

Contexts can be represented in different forms at different levels of abstraction. Then contexts can

be classified into static and dynamic types, and the latter can be further classified into profiled,

sensed, and derived types. Data in pervasive systems are characterized as having an inherent level

of uncertainty. Thus, different types of contexts should be associated with the levels of confidence

and reliability, which should lead to more accurate context reasoning. Section 4.6 describes this in

more detail.

Context data are often associated with pre-defined rules. These rules specify how a result is

derived by inferring from one or more other pieces of context information (Henrichsen et al.,

2002). According to this correlation, a change in one fact may lead to an automatic change in

another fact, which is called fact dependency. For example, if there was a dependency between a

person’s location and his/her activity, an activity could be inferred according to the person’s

current location and schedule. Not only may context dependency result in automatic adaption

but it also could be used to check the consistency and integrity of contextual information. This

may be achieved by integrating the existing information and the knowledge inferred from other

dependent information.

We suggest representing multiple context classification, quality, and dependency relations when

modelling context. Among all the reviewed ontologies, only the CONON and ASC ontologies

support these particular characteristics when modelling context. The CONON ontologies intro-

duce a new property element to capture the properties of context classification (e.g. ‘defined’ or

‘sensed’) that describes a facet of the provenance of the associated data and objects. They intro-

duce a dependency property element (‘dependsOn’) to capture the existence of a reliance relation-

ship between one entity to another. An extensible ontology for quality constraints is constructed

with a number of quality parameters such as accuracy, resolution, freshness, certainty, and proven-

ance. They capture the dimensions of quality relevant to the attributes of entities and interrelation-

ships between entities.

The ASC model expresses contextual classifications through a quality aspect that consists of

static, dynamic-profiled, dynamic-sensed, and dynamic-derived. Other basic quality aspects are

also introduced such as time-stamp or period. The dependence relation is expressed by the corre-

sponding intra/interoperations between the scales that a pair of context information is based on.

4.2.2 Analysis of key contexts

In this section, we evaluate the way that the most common elements of primary context in perva-

sive computing are represented. These are generally held to be location, agent or person, time, and

activity. These concepts permeate all of pervasive computing, while common peripheral or task-

specific contexts may be introduced for specific applications (such as music, weather, and settings

of the room).

Location: Location is the most important form of context in pervasive computing systems

today. It is also a surprisingly subtle concept: a person’s or device’s location may be specified in

Ontology-based models in pervasive computing systems 331



a number of complementary ways, each of which may be considered ‘optimal’ for some class of

applications (Dobson, 2005).

GLOSS’s location ontology (illustrated in Figure 1) classifies location into three types: physical

locations, spatial regions, and symbolic locations (Rey, 2005). The physical location corresponds

to coordinate the representations of location with different spatial representation systems. The

spatial region ontology is used to describe the geometric features (i.e. shapes) of a region. The

symbolic location is the logical name for the space. These representations are related to each

other: a symbolic location corresponds to one or more spatial regions; and a spatial region con-

sists of a set of physical locations (i.e. coordinates). This structure is very general and can be flex-

ibly extended to diverse representations of location. However, although GLOSS supports a rich

structure for defining spatial locations and regions, it does not exploit the spatial relationships

between defined locations.

SOUPA’s location ontology (illustrated in Figure 2) is an update of CoBrA-ONT’s location

ontologies. SOUPA designs location using a top-down approach, with a general concept for loca-

tion at the top. This general location object divides spatial information into geographical spaces

and symbolic spaces (such as geo-political entities). Geographical spaces can specify particular

policies to restrict the accessibility to the spaces. For instance, some places may be restricted

with gender accessibility (e.g. toilets). This satisfies the orthogonality principle very well. Geogra-

phical spaces are extended into geographical regions (land-, or water-based), spaces with fixed

structure, and spaces within the spaces with fixed structures. SOUPA can represent more spaces

and provide richer semantics than GLOSS. Additionally, SOUPA’s location ontology is based

on the OpenCyc spatial ontologies and RCC. The former defines the vocabularies for expressing

symbolic representation of space, and the latter for expressing spatial relations for qualitative

spatial reasoning.

CircularBounds

SpatialBoundsSpatialRepresentationSystem

LatLongCoordinate RectangleBounds

Coordinate

SymbolicLocationPhysicalLocation SpatialRegion

Where

Figure 1 Location ontologies in GLOSS

GeopoliticalEntity

-officialName
-definesPolicy

SpatialThing

Restrictions:
-hasCoordinate
-minCardinality

WaterBasedRegionLandBasedRegion

SpaceInAFixedStructureGeographicalRegionFixedStructure

RCCSpatialRegionGeographicalSpace

-name

Figure 2 Location ontologies in SOUPA

j u a n y e E T A L .332



Although location in SOUPA can be represented using coordinates, it ignores the possibility

that there might be multiple spatial coordinate reference systems. If there are two different repres-

entations of location using different coordinate systems [such as a global and absolute representa-

tion scheme like GPS and a local and absolute scheme as used by Crickets (Priyantha et al.,

2000)], it will be hard to reconcile them with this location ontology.

CONON’s location ontology (illustrated in Figure 3) is sub-classed to IndoorSpace and

OutdoorSpace (Wang et al., 2004). This has been done with particular applications in mind,

that is, their smart home and outdoor applications—and is not flexibly extensible beyond them.

Furthermore, location is described both by physical properties (such as longitude, latitude, alti-

tude) and other properties, such as temperature, noise level, and lighting. The latter properties

are environmental contexts and are only needed by particular situations. They should be defined

separately in lower ontologies, such as environment or weather ontologies to satisfy the onto-

logical commitment and orthogonality criteria.

ASC’s location ontologies describe Place (illustrated in Figure 4) using three aspects:

geographicPlaceAspect, symbolicPlaceAspect, and spatialDistanceAspect. The geographic aspect

covers the geographic position information that supports two coordinate reference systems:

WGS84 and Gauss-Krueger. Thus, a coordinate representation used in this location ontology is

limited to these two types, which breaks the encoding bias criterion. The symbolic aspect is the

string-based description for position information. However, it is hard to represent a physical

region (such as the regions defined in GLOSS and SOUPA) using both aspects; to express spa-

tial relationships; and to catch the mapping relation between geographical and symbolic spaces.

The spatial distance aspect supports multiple distance scales such as meter, kilometer, and nauti-

cal mile. ASC’s location ontology is the only one of the reviewed ontologies that introduce dis-

tance with different scales. However, the distance scales also break the encoding bias criterion,

because they restrict the length representations into a number of limited (albeit popular) scales.

Among these location ontologies, we conclude that SOUPA’s and GLOSS’s location ontologies

are better than CONON’s and ASC’s location ontologies. The former can support rich semantics

of expressing location and spatial relationships. To illustrate, let us assume that there are two

spaces, each of which can be described as a cube with a set of characteristic coordinates, and

Location

-latitude
-longitude
-altitude
-temperature
-noiseLevel

OutdoorSpace

-weatherCond

IndoorSpace

-lighting
-humidity

Figure 3 Location ontologies in CONON

SymbolicPlaceAspect

SpatialDistanceAspect

GaussKruegerScale

KilometerScale

MeterScale

NauticalMileScale

WGS84Scale

GeographicPlaceAspect

Figure 4 Location ontologies in ASC

Ontology-based models in pervasive computing systems 333



can be labelled with a symbol. CONON’s and ASC’s location ontologies can express the spaces

with coordinates and symbols only. However, the coordinates chosen to describe a space mostly

depend on the shape of the space. For instance, coordinates for a cube space are that of eight cor-

ner points of the space; coordinates for a sphere space are that of a centre point of the space.

Therefore, CONON’s and ASC’s location ontologies do not provide region locations, which

makes their coordinate representation intractable and hard to catch the geometric properties of

a space. SOUPA’s and GLOSS’s location ontologies can easily support the multiple location

representations. However, if an adjacency spatial relationship between the two spaces must be

expressed, SOUPA’s location ontologies are more suitable than those of GLOSS.

In conclusion, we suggest some characteristics that a general ontology for location should

support:

1. The ability to represent different types of locations including

* Coordinate locations: A location can be physically represented with a set of coordinates.

Currently, a number of location-sensing systems can provide coordinate representations

when tracking an object’s position (Hightower & Borriello, 2001). The coordinate values

offered by these location-sensing technologies may be absolute or relative, and they may

use different reference systems (such as WGS84). A general location model should be able

to consume diverse types of coordinates to support multiple reference systems without

restricting itself to any of them.
* Regions: A region can be represented geometrically in two- or three-dimensions. They can be

described with coordinates in different ways according to different shapes. SOUPA’s region

ontology is a good example of this.
* Symbolic locations: A symbolic location encompasses abstract ideas of where an object is,

for example, ‘in Computer lab 003’, ‘next to a mailbox’, or ‘on a train approaching Dublin’

(Hightower & Borriello, 2001). A general location ontology should support a logically spa-

tial entity that can offer human-friendly labels. Symbolic locations are useful when referring

to the locations from external contexts; SOUPA defines policies for locations referring to

their symbolic labels rather than their physical definitions.

2. The ability to map between physical and symbolic locations: There should be a mapping between

physical (both coordinates and regions) and symbolic locations. SOUPA’s and GLOSS’s loca-

tion ontologies both provide good examples of these types of mappings.

3. The ability to exploit rich spatial relationships: Diverse spatial relationships should be exploited

so that rich semantics about spaces can be expressed. In SOUPA’s location ontology, regions

support multiple spatial relationships using the RCC ontologies, which include the following

two types:

* Hierarchical spatial relationships, which define containment relationships, such as a space is

contained within its super-space.
* Adjacency spatial relationships, which define overlapping, adjacency, and disjointedness

relationships. These relationships will allow connectedness relationships to be determined

and help with path-finding algorithms. Additionally, the concept of distance could be intro-

duced to better quantify the level of connectedness between locations (ASC includes such a

distance metric).

Agent/Person: The agent/person ontology is used to describe actors in a system. Compared to the

contexts that have relatively fixed and well-understood properties (e.g. location or time, which

have their groundings in physics), an agent or a person context is more subjective. Systems that

concentrate on different scenarios specify different roles and characteristics for a person or agent.

This introduces subjectivity when choosing the properties to describe these ontologies, and each of

the reviewed systems uses different approaches based on their individual perspectives.

j u a n y e E T A L .334



SOUPA’s person ontology is the most comprehensive of the surveyed ontologies for describing

people. It provides an encompassing ontology to define an agent, which includes both human

and software agents (or computing entities). A computing entity is characterized by a set of men-

talistic notions such as knowledge, belief, intention, and obligation. The properties of a person

agent involve the basic profile information (including name, gender, age, and date of birth),

and the contact information (including email, mailing address, phone number, and homepage)

(Chen et al., 2005).

SOUPA references several classic domain ontologies in its agent and person ontologies, like the

FOAF and BDI ontologies. The FOAF ontology expresses and reasons about a person’s contact

profile and social connections with other people. It allows the creation of information systems

that support online communities for various people. The BDI ontology describes an abstract

semantic model for representing and computing over a user’s or an agent’s profile in terms of their

prioritized and temporarily ordered actions, beliefs, desires, intentions, and goals (Perich et al.,

2004). SOUPA uses this model to help independently developed agents to share a common under-

standing of their ‘mental’ states, so that they can cooperate and collaborate. The agents also help

to reason about the intentions, goals, and desires of the human users of a system.

CONON has two separate agent classes: one for a computing entity, and one for a person. The

computing entity ontology has properties reflecting the services, applications, devices, network

capabilities, and agents in a pervasive computing system. The person ontology models a human

being with the basic person profile (like name, situation, and age) and the contact information

(like home address). However, this person ontology is application-specific, and it is not flexibly

extensible. GLOSS defines an actor ontology to describe any entity that acts on behalf of a system

or a person. This ontology defines the sensors and actuators through which the actor interacts

with the system. CoOL does not have specific ontologies for agents or people.

In conclusion, the person ontology is relatively subjective and application-specific, and it is

hard to describe every aspect about a person in a general way. We believe the person ontologies

should be built with the orthogonality and ontological commitment criteria in mind. A set of lower

independent profile ontologies should be built, each of which would reflect the characteristics of

one aspect of a model of a person. These profile ontologies can then be customized and combined

to satisfy particular application requirements. SOUPA’s person ontology is a good example of

this, since it simply defines a person’s identity and contact profiles. Other profile ontologies could

be constructed to describe a person’s health status, working information (such as job title or

salary), social associations (by using the FOAF ontology), or preference information (by using

the BDI ontology). Since these profiles are application-specific, they should not be defined in a

general person ontology. Therefore, if a person ontology needs to encompass many possible pro-

files about people in general, it should define them orthogonally so that application developers

can extend and customize them as they wish.

Time: The temporal ontology is used to describe different temporal representations and temporal

sequence relationships. Time is an important concept, because it is closely related to most con-

texts, especially to activity ontologies (activity ontologies are discussed next). However, the tem-

poral ontology does not ordinarily get much attention, since it is universally recognized as a

relatively simple and fixed concept. Neither CONON nor ASC build a specific temporal ontology.

It would be beneficial to develop a formal temporal ontology to exploit the features and var-

ious relationships of time. Most current temporal ontologies only reflect the physical nature of

time, such as an instant of time in UTC format (Chen et al., 2004e), and segments of time between

instants. To satisfy the encoding bias criterion, it should be possible to represent physical time in

any format (i.e. not limiting the system strictly to UTC). SOUPA exploits diverse temporal

relationships such as startsSoonerThan, startsLaterThan, startsSameTimeAs, endsSoonerThan,

endsLaterThan, endsSameTimeAs, startsAfterEndOf, and endsBeforeStartOf. GLOSS’s temporal

ontologies introduce the concepts of symbolic time (such as morning, lunch time, and summer).

These are important concepts for reasoning in scheduled applications. For example, we can add

Ontology-based models in pervasive computing systems 335



an activity in such a description: ‘meeting with Erica at 4 o’clock tomorrow’. The system could

then recognize that tomorrow is one day after the current date, translate it into a physical time,

and then execute further actions.

A good ontology for time should consider the temporal relationships existing between physical

times, and support the mapping between the symbolic and physical time—GLOSS’s temporal

ontology has good examples of such mappings. Finally, it should reflect the assorted characteris-

tics of time and temporal semantics—SOUPA provides a good example of this, defining temporal

sequences.

Activity: An activity ontology should model any action that can be performed by an agent of a

system. Activity itself is a composite context, which can combine multiple orthogonal contexts

such as location, time, agent, and device. In SOUPA, the event ontology is a general concept

for the occurrences of activities, schedules, and sensing events (Chen et al., 2004). The fundamen-

tal contexts of SOUPA’s event ontology consist of a location and time. It is general and can

be flexibly extended in particular situations. One example of an extension of this is SOUPA’s

Meeting ontology.

CONON’s activity ontology is classified into deduced activities (including movie, dinner,

shower, and cooking), which are inferred from known contextual information, and scheduled

activities (such as party, meeting, or anniversary) that are explicitly profiled (Wang et al., 2004).

The activity ontology consists of the basic contexts: location; starting time and ending time; the

computing entities that are used; and the people that are engaged in the activity. ASC’s activity

ontology use these contexts and also make it possible to extend activity to include dependency

and activity type (i.e. static, dynamic-profiled, dynamic-sensed or dynamic-derived). GLOSS’s

activity ontology just models what a GLOSS-enabled person is doing at a particular time (Coutaz

et al., 2003).

Based on the above analysis, we outline some opinions about the activity ontology. The activity

ontology should be general and comprise only the most basic and necessary contextual informa-

tion (such as location and time). There exist various ways for classifying activities:

* The source of provided activity information: directly defined/sensed or indirectly by inferring

(as done in CONON’s activity ontology);
* The function of the activity, such as whether it is sensing, providing a service, or scheduling

(as done in SOUPA’s activity ontology);
* The duration of the activity: whether it occurs at an instant or over a time period;
* The location of the activity: whether it occurs in a static or moving location; whether it occurs

indoor or outdoor.

Usually, an activity falls into multiple classifications; that is, an activity possesses more than

one characteristic. For example, the activity ‘our monthly research meeting’ is provided by a

calendar; it schedules the future work for a group; it usually lasts for an hour; and it occurs in

the boardroom of our building. We suggest that a general activity ontology should support the

above four orthogonal types. Thus a particular activity can be defined from different task-specific

perspectives.

4.2.3 Reasoning about context

Typical pervasive computing environments are characterized as having large amounts of continu-

ously changing contextual information. Pervasive systems must be able to perform context reason-

ing to facilitate dynamic adaptation to the changing environment, that is, to be context-aware.

If context data are represented using ontologies, it would be possible to make context reasoning

more powerful and precise, by using ontology reasoning mechanisms in such a system

(Ranganathan & Campbell, 2003).

One of the key features of the CoBrA ontology is its ability to support ontology reason-

ing (Chen et al., 2004b). Properties about a particular person, place, and activity can be des-

cribed by distributed heterogeneous sources, and the contexts of these individual entities can be

j u a n y e E T A L .336



dynamically inferred through classifications. First-order logic is used to infer facts from the exist-

ing relations. For instance, if a person is in a room, and that room is in the university, then

CoBrA infers that the person is in the university. This is known as part-of reasoning, and has

been widely used in pervasive computing using OWL’s part-of relation, (Chen et al., 2003; Flury

et al., 2004; Christopoulou & Kameas, 2005). CoBrA’s Context Reasoning Engine uses these rela-

tionships to make inferences about the facts that are not explicitly stated in the knowledge base.

Gaia uses ontology models represented as context predicates to describe the individual compo-

nents of a pervasive computing system. It uses a reasoning engine based on descriptive logic to

make sure that these models are consistent when combined into a model of the system as a whole.

It also allows the ontology server to answer logic queries about its ontologies, such as satisfiabil-

ity, subsumption (e.g. whether a concept is subsumed by a given description), and equivalence

(e.g. whether one concept is equivalent to another). Gaia also allows developers to define rules

that determine context-sensitive behaviour using their ontologies.

CONON supports two aspects of context reasoning: checking the consistency of context, and

deducing high-level, implicit context from low-level, explicit context (Wang et al., 2004). Context

reasoning is performed using first-order predicates. The reasoning tasks are divided into two cate-

gories: with ontology reasoning using description logic (in a similar manner to that done by

CoBrA); and user-defined reasoning using first-order logic.

The ASC model provides an inference engine (the OntoBroker) to infer conclusions about the

context based on the ontologies built with CoOL. The reasoner can derive new knowledge about

entities, aspects, scales and contextual information.

We agree with the analysis of Ranganathan et al. (2004b) that DAML (and its underlying

description logic) is insufficient for reasoning about the context in pervasive computing. These

logics neither deal well with the quantitative concepts, such as order, quantity time, and rate,

nor with spatial models. In a sense, this is unsurprising: by using ontological models throughout

pervasive computing, we require the logics capable of dealing with a wide (and indeed extensible)

range of reasoning styles. OWL is derived from DAMLþOIL, which makes some substantive

changes such as the removal of qualified number restrictions, the ability to define symmetry

of properties, and the absence in abstract syntax of some abnormal DAMLþOIL constructs

(Patel-Schneider et al., 2002). However, these extensions do not overcome the insufficiencies

mentioned earlier.

4.3 Privacy and trust

The issues of privacy and trust are of paramount concern if pervasive computing applications

are to become popular outside the research laboratory. CoBrA adopts a policy-based approach

to protect user privacy. Policies are defined using SOUPA’s policy ontology (Chen et al.,

2004d). Using this ontology, users can define customized policy rules to permit or forbid different

computing entities to access their private information. The policy reasoning algorithm uses a

description logic inference engine and the description logical constructs of OWL to decide whether

an action for accessing some user private information is permitted. Since it is often infeasible to

define explicit policy rules for every individual action in a domain application, CoBrA uses

meta-policies that determine the behaviour when policy rules are not defined. These meta-policies

can be either conservative, in which case the system assumes all actions are forbidden; or liberal,

in which case it assumes all actions are permitted.

Chen et al. (2004c) implemented a CoBrA prototype that supports privacy protection in an

intelligent meeting room environment. They also demonstrated that SOUPA’s policy ontology

and its associated algorithms can be used to develop intelligent agents that can provide user

privacy protection in a pervasive context-aware environment.

Although Gaia does not currently support rich trust or privacy concerns in their system,

Ranganathan et al. (2004b) state that the topics of security, privacy, and access control must be

addressed in future research of the Gaia system.

Ontology-based models in pervasive computing systems 337



4.4 Discovery

One of the core problems in pervasive computing is the question of how to provide for new

devices that wish to enter the environment. Since these may not be aware of the configuration

of the environment or the services available, they must undergo a discovery or matchmaking

process to best integrate themselves.

Gaia uses DAMLþOIL to achieve semantic discovery, as it supports some of the operations

required for semantic discovery. It also allows the definition of relations between concepts. The

use of ontologies and semantic discovery replaced scripts and ad hoc configuration files that

were used in Gaia previously. Each entity is associated with a document that describes its proper-

ties. Gaia’s ontology server poses logical queries involving classification and subsumption of con-

cepts to find appropriate matches. Other entities in the environment may query the ontology

server to discover the classes of components that meet their requirements. Matchmaking uses

ontologies to determine a set of concepts that fulfil the intersection of the requirements of two

or more parties, such as a supplier and a consumer using the matching algorithms described by

Trastour et al. (2001). The evaluation of whether a concept C1 matches another concept C2 is

determined by an equivalence relation or a subsumption relation. C1 is considered to match C2,

when C1 is equal to or subsumed by C2; or when they share a common sub-concept; or when

they share a common super-concept without incompatibilities. The matched result is a set of

classes that are semantically compatible to the query class.

The DAML-based Web Service ontology (DAML-S) supplies Web service providers with a core

set of markup language constructs for describing the properties and capabilities of Web Services

(Burstein et al., 2001; Burnstein et al., 2002) CoOL extends DAML-S with the service context to

offer a more formal description of a service’s contextual interoperability. The service context in

CoOL consists of two parts: the context obligation, which specifies the obligations of a service in

terms of the context of its execution; and the context binding, which is used to establish a virtual

link from an atomic process of a service to a specific aspect of the context (Strang et al., 2003a).

This formal semantic service description offers a common understanding of the relations between

services and their associated contexts (Strang & Linnhoff-Popein, 2003). This facilitates context-

awareness and contextual interoperability during service discovery and execution.

Christopoulou et al. (2004) use their GAS ontology for discovery in the event of a component

failure. All components have ontologies describing their interfaces and available services. If a con-

nection (or synapse) between two or more components is broken, the ontology manager attempts

to find an alternative component that offers the same service (i.e. that has the same ontological

description) for the service to be resumed.

4.5 Interaction design

Pervasive computing environments are characterized as having many different interaction inter-

faces. The diversity of possible interfaces brings up two issues. One is the development of useful

human–computer interactions (HCI) for end-users, and another is the exposure of these interfaces

in a standard open way for developers of pervasive systems. A review of HCI for end-users is

beyond the scope of this survey, since it is more closely related to other disciplines. Instead, we

will focus on the interaction design between a pervasive computing system and its application

developers.

Gaia uses ontologies to provide additional user interfaces to allow human users to interact with

pervasive environments (Ranganathan et al., 2004b). Their Ontology Explorer allows users to

browse the ontologies that describe the environment. This is similar to a class browser, except

that it has information about all the entities of the system, not just the software classes. Further-

more, the Ontology Explorer allows the human user to interact with the environment by expos-

ing the queries and commands that can be made to its components (McGrath et al., 2003a)—if

a component is a database, queries may be sent and results returned; if the component exposes

a command, it may be acted on.

j u a n y e E T A L .338



By using ontologies to describe the different applications and the commands that can be sent to

them, Gaia’s Ontology Explorer simplifies the task of writing rules for context-sensitive beha-

viour. It allows developers to construct conditions out of the various types of contexts available

and allows them to choose the action to be performed on these contexts. These actions can be

chosen from the list of possible commands that can be sent to this application as described in

the ontology. Developers can thus incorporate context-sensitivity to applications very quickly

(McGrath et al., 2003a). It should also be noted that the Gaia ontologies have human-

understandable comments describing their function embedded in them, which are exposed to

the Ontology Explorer.

4.6 Modelling uncertainty

Pervasive computing offers different challenges for ontology developers than conventional com-

puter science applications. Data in pervasive computing environments may be generated by

untrustworthy or inaccurate sources, and so should be taken ‘with a grain of salt’. Because com-

ponents of a pervasive computing environment deal with the real world, they come with certain

caveats: sensors in the field are inherently inaccurate, since they could break down; or they could

report inaccurately because they come up against a phenomenon for which they have not been

designed. Wherever creating ontologies for real-world-sensed data (e.g. ontologies for the medical

diagnosis and engineering domains), the issue of modelling uncertainty should be dealt with.

Since uncertainty must be taken into account when dealing with pervasive systems, it should

be possible to describe the concepts of accuracy, confidence, uncertainty, and provenance with

respect to context data, and to represent them as part of their ontological description. With these

descriptions in place, particular reasoning mechanisms on ontologies need to be designed to sup-

port efficient and precise reasoning on the data.

In this survey, we found that only Gaia and CONON undertake this challenge. Gaia tries to

capture and make sense of the imprecise and conflicting data inherent in dealing with real-world

data (Ranganathan et al., 2004a). An uncertainty model is developed based on a predicate repres-

entation of contexts and associated confidence values. The predicates’ structure and semantics are

specified in ontologies that can be used to check the predicates’ validity, to simplify the definition

of context predicates in rules, to facilitate interoperating between different systems, and to further

reduce the possibility of uncertainty when interpreting context information. To reason about uncer-

tainty, Gaia employs various mechanisms such as probabilistic logic, fuzzy logic, and Bayesian

networks, each of which is advantageous under different circumstances. For instance, Gaia uses

Bayesian networks to identify causal dependencies between different events. The networks are

trained with real data so as to get more accurate probability distributions for their events.

CONON attempts to express the uncertainty of context by associating metadata that describes

the quality of each context datum. Gu et al. (2004) have defined four types of quality parameters:

accuracy, which reflects the estimated error of a measurement; resolution, which reflects the

smallest perceivable element; certainty, which reflects the probability of the reading being accu-

rate; and freshness, which reflects the time a measurement was generated and its expected lifetime.

CONON also introduces a dependency tag that can be associated with any measurement. This

allows relationships to be built between different contextual information, and makes it easier

for developers to set down user-defined reasoning rules.

4.7 Summary

This section provided an analysis of the pervasive systems described in Section 3 with respect to

their use of ontologies. We began in Section 4.1 with an analysis of how each of these systems’

ontologies are engineered with respect to the recognized best practices in ontology engineering.

Our conclusions (summarized in Table 2 in Section 4.1) were that all of the surveyed ontologies

satisfy the extensibility criterion and most satisfy the encoding bias criterion. SOUPA is the

Ontology-based models in pervasive computing systems 339



most consistent set of ontologies, since it imports many of its concepts from external, consensual

domain ontologies. The SOUPA, CONON, and GLOSS ontologies satisfy the clarity requirement

best, since they define the terms unambiguously with only the most necessary and sufficient con-

ditions. When it comes to ontological commitment, GLOSS performs best—the other ontologies

tend to mix higher- and lower-level concepts as well as concepts from different domains (which

also reduces orthogonality).

Next, we analyzed the ontologies from the perspective of the themes for future research and

development in pervasive computing. These are summarized below in Table 3.

Table 4 examines how each ontology tackles the theme of Context and Programming by

describing how they are used to model the concepts of location, time, person (or agent), and activ-

ity. Since these higher concepts are so fundamental, the approaches used to describe them will

have a significant impact on the modelling of lower-level ontologies. Each system has their parti-

cular advantages. Table 3 shows which key contexts are defined in each reference system. SOUPA

defines rich temporal relationships in their time ontologies, and uses the popular BDI and FOAF

ontologies to define the person concept. The GLOSS ontologies provide a formal structure for the

time and location concepts. CONON and CoOL provide an interesting classification for activity

ontologies, by distinguishing between deduced and scheduled activities. SOUPA, Gaia, CONON,

and CoOL use reasoning techniques to ensure both the consistency of the model describing a per-

vasive computing system and to derive new knowledge from existing knowledge.

CoBrA uses ontologies to tackle the problems of privacy and trust by allowing users to define

policies using ontologies to specify what data can be shared and with whom. When a user tries

to access data, CoBrA first reasons about the relevant trust and privacy policies to determine

whether access would be given. Both Gaia and CoOL use ontologies to manage service discovery

in their respective systems. Gaia uses semantic Web matchmaking tools to determine a set of

concepts that fulfil the intersection of the requirements of two or more parties (i.e. between users

and services). CoOL associates contextual information with a service, so as to enable contextual

interoperability during service discovery and execution. The interfaces of Gaia’s components are

modelled using ontologies, which are exposed to end-users. Gaia uses an ontology explorer to

allow users and developers to directly interact with the environment by browsing through its

ontological description. When it comes to managing the uncertainties inherent with pervasive

computing, only CONON and Gaia model uncertain data with ontologies. Both of them make it

Table 3 Evaluation of the surveyed ontologies with respect to pervasive computing themes

Ontology-based Models CoBrA (SOUPA) Gaia GLOSS ASC (CoOL) SOCAM (CONON)

Context and Programming H H H H H
Privacy and Trust H
Discovery H H
Interaction Design H
Modeling Uncertainty H H

Table 4 The themes that are targeted by the reference ontology-based models. (N.B. Gaia does not provide

details of these core ontologies in their publications, so we cannot evaluate their ontologies and so leave the
corresponding evaluation column blank.)

Ontology-based Models CoBrA (SOUPA) Gaia GLOSS ASC (CoOL) SOCAM (CONON)

Location H H H H
Person/Agent H H H
Time H H
Activity H H H H

j u a n y e E T A L .340



possible to attach metadata to a piece of context data, which describes the confidence that the

system has in its value. This allows these systems to interpret and manage the uncertain data

more accurately.

5 Conclusion

Ontologies are being increasingly applied in computer science to areas that require the exchange

of information with significant structure and diverse semantics. Pervasive computing provides a

particularly stark example of these characteristics, and in this paper we have reviewed a number

of attempts to deploy the ontological techniques within pervasive systems. We evaluated the

ontologies against the recognized criteria of both ontology engineering and pervasive systems

design. We conclude that, while each provided important contributions, no single ontology was

sufficiently rich to capture all the essential facets of pervasive systems.

Some of the deficiencies apply generally to many ontology applications. It is often hard to

know the boundaries of the domain being modelled. If we assume a known boundary (the ‘closed

world’ assumption), we may make stronger statements about the absence of particular informa-

tion, may identify the attributes and relationships of interest a priori, and may perform stronger

checks on completeness and consistency. Such bounding is often undesirable, however, and the

‘open world’ assumption makes it harder to reason about both the elements of interest and the

knowledge base itself.

A clearer distinction needs to be drawn between upper (information exchange) and lower

(information collection) ontologies. The former may subsume several of the latter, allowing diver-

sity while retaining the ability to perform flexible queries, albeit with possibly reduced accuracy. It

is reasonable to criticize several of the systems surveyed as attempting to provide a single system-

wide description rather than building complexity through composition, as is intended within the

Semantic Web.

Composition is clearly important within an open pervasive system. The need to describe priv-

acy, security, and trust perhaps illustrates this most clearly: these are the emerging issues that

affect all aspects of a system’s collection, representation, exchange and use of information. This

is clearly orthogonal to any particular context, and should therefore be specified separately; how-

ever, the need for trust may affect the design of other ontologies and the mechanisms used to

access information.

However, the clearest omission concerns the certainty of information. Pervasive computing is

typically highly sensor-driven, and both physical and virtual sensors (those dealing with online

information) provide only evidence of fact rather than facts themselves. A person’s location, for

example, is not captured by a location sensor: rather, their location must be inferred by fusing

the evidence available from a range of sources. The definition of various location ontologies

does not capture this distinction between evidence and consensus; nor does it allow confidence

measures to be assigned to information—both functions that are critical in real-world pervasive

systems.

Finally, even the best ontology can only capture the information used to drive a system: it can-

not capture the dynamic behaviour the system will exhibit as a result. Nevertheless, representing

the information uniformly using ontologies should simplify the creation, composition, and analy-

sis of pervasive computing systems. This allows us to gain greater confidence in the predictable

behaviour of systems as their complexity grows. A proper focus on ontology engineering will

help to facilitate this.

Acknowledgement

This work is partially supported by Science Foundation Ireland under grant numbers 05/RFP/

CMS0062 ‘Towards a semantics of pervasive computing’ and 04/RPI/1544 ‘Secure and predict-

able pervasive computing’.

Ontology-based models in pervasive computing systems 341



The authors would like to thank the anonymous Knowledge Engineering Review reviewers for

their constructive and detailed comments. Thanks also to Stephen Knox, Mikoláš Janota, Ross

Shannon, and Adrian K. Clear.

References

Bachimont, B., Isaac, A. and Troncy, R. 2002 Semantic commitment for designing ontologies: a proposal.
In Proceedings of the 13th International Conference on Knowledge Engineering and Knowledge Management
(EKAW’02). London, UK: Springer-Verlag, pp. 114–121, ISBN 3-540-44268-5.

Bebee, B., Mack, G., Fritzson, A. and Weishar, D. 2003 Towards rich semantics in a grid architecture for
information awareness. In Proceedings of IEEE Aerospace Conference, March 2003, vol. 6. pp. 2981–2990.

Bechhofer, S., Horrocks, I., Goble, C. and Stevens, R. 2001a OilEd: a reason-able ontology editor for the
semantic web. In Proceedings Joint German/Austrian Conference on Artificial Intelligence (KI2001),

2174 Lecture Notes in Computer Science. Vienna, Springer-Verlag, pp. 396–408.
Bechhofer, S. K., Goble, C. A. and Horrocks, I. 2001b DAMLþOIL is not enough. In Proceedings of the

Semantic Web Working Symposium. IEEE Computer Society Press, pp. 151–159.

Benjamins, V. R., Fensel, D. and Gómez-Pérez, A. 1998 Knowledge management through ontologies.
In Reimer, U. (ed.), Proceedings of the Second International Conference on Practical Aspects of Knowledge
Management (PAKM-98), Vol. 13, CEUR Workshop Proceedings. CEUR-WS.org, 1998.

Bernstein, A., Provost, F. and Hill, S. 2005 Toward intelligent assistance for a data mining process: an
ontology-based approach for cost-sensitive classification. IEEE Transactions on Knowledge and Data
Engineering 17, 503–518.

Bonino, D., Corno, F., Farinetti, L. and Bosca, A. 2004 Ontology driven semantic search. WSEAS Trans-
action on Information Science and Application 1, 1597–1605.

Borgo, S., Guarino, N. and Masolo, C. 1996 A pointless theory of space based on strong connection and
congruence. In Aiello, L. C., Doyle, J. and Shapiro, S. (eds.), Proceedings of Principles of Knowledge

Representation and Reasoning. San Francisco, CA: Morgan Kaufmann, pp. 220–229.
Borst, W. N. 1997 Construction of Engineering Ontologies. PhD thesis, Center for telematica and information

technlogy, University of Tweently, Enschede, NL.

Brank, J., Grobelnik, M. and Mladenic, D. 2005 A survey of ontology evaluation techniques. In Proceedings
of the Conference on Data Mining and Data Warehouses (SiKDD 2005), Ljubljana, Slovenia.

Burstein, M. Hobbs, J., Lassila, O., Martin, D., McIlraith, S., Narayanan, S., Paolucci, M., Payne, T.,

Sycara, K. and Zeng, H. 2001 DAML-S Draft Release (May 2001). http://www.daml.org/

services/daml-s/2001/05/.
Burstein, M. H., Hobbs, J. R., Lassila, O., Martin, D., McDermott, D. V., McIlraith, S. A., Narayanan, S.,

Paulucci, M., Payne, T. R., and Sycara, K. P. 2002 DAML-S: Web Service Description for the Semantic
Web. In Horrocks, I. and Hendler, J. A. (eds.), Proceedings of the First International Semantic Web Con-
ference. LNCS, Vol. 2342. London: Springer-Verlag, pp. 348–363.

Burton-Jones, A., Storey, V. C., Sugumaran, V. and Ahluwalia, P. 2005 A semiotic metrics suite for assessing

the quality of ontologies. Data Knowledge Engineering 55(1), 84–102.
Chandrasekaran, B. Josephson, J. R. and Benjamins, V. R. 1999 What are ontologies, and why do we need

them? IEEE Intelligent Systems 14(1), 20–26, ISSN 1541-1672.

Chen, G. and Kotz, D. 2000 A Survey of Context-Aware Mobile Computing Research. Technical Report
TR2000-381, Dept. of Computer Science, Dartmouth College.

Chen, H., Finin, T. and Joshi, A. 2003 Using OWL in a Pervasive Computing Broker. In Proceedings of the

Workshop on Ontologies in Agent Systems (OAS 2003), Melbourne, Australia.
Chen, H., Finin, T. and Joshi, A. 2004a Semantic web in the context broker architecture. In Proceedings of

the Second IEEE International Conference on Pervasive Computing and Communications (PERCOM’04).
Washington, DC: IEEE Computer Society, pp. 277–286, ISBN 0-7695-2090-1.

Chen, H., Finin, T. and Joshi, A. 2004b An Ontology for Context-Aware Pervasive Computing Environ-
ments. Special Issue on Ontologies for Distributed Systems, Knowledge Engineering Review 18(3), 197–207.

Chen, H., Finin, T. and Joshi, A. 2004c A Pervasive Computing Ontology for User Privacy Protection in the

Context Broker Architecture. Technical Report TR-CS-04-08, University of Maryland, Baltimore
County.

Chen, H., Finin, T. and Joshi, A. 2005 Ontologies for Agents: Theory and Experiences, chapter of The

SOUPA Ontology for Pervasive Computing. Whitestein Series in Software Agent Technologies. Springer.
Chen, H., Perich, F., Chakraborty, D. Finin, T. and Joshi, A. 2004d Intelligent agents meet semantic web in

a smart meeting room. In Proceedings of the Third International Joint Conference on Autonomous Agents &

Multi Agent Systems (AAMAS 2004), New York City, NY.

j u a n y e E T A L .342

http://www.daml.org/


Chen, H., Perich, F., Finin, T. and Joshi, A. 2004e SOUPA: Standard Ontology for Ubiquitous and Perva-
sive Applications. In Proceedings of the first International Conference on Mobile and Ubiquitous Systems:
Networking and Services, Boston, MA.

Christopoulou, E., Goumopoulos, C., Zaharakis, I. and Kameas, A. 2004 An ontologybased conceptual
model for composing context-aware applications. In Proceedings of the First International Workshop on
Advanced Context Modelling, Reasoning and Management.

Christopoulou, E. and Kameas, A. 2005 Gas ontology: an ontology for collaboration among ubiquitous
computing devices. International Journal of Human-Computer Studies 62(5), 664–685, ISSN 1071-5819.

Colomb, R. M. 2002 Quality of ontologies in interoperating information systems. Technical Report
ISIB-CNR-TR-18-02, Padova, Italy.

Corcho, O. Fernandez-Lopez, M. and Gomez-Perez, A. 2003 Methodologies, tools and languages for build-
ing ontologies: where is their meeting point? Data Knowledge Engineering 46(1), 41–64, ISSN 0169-023X.

Coutaz, J., Dearle, A., Dupuy-Chessa, S., Kirby, G. N. C., Lachenal, C., Morrison, R., Rey, G. and

Zirrintsis, E. 2003 Working document on gloss ontology. Technical Report D9.2, Global Smart Spaces
Project IST-2000-26070.

Coutaz, J., Crowley, J. L., Dobson, S. and Garlan, D. 2005 Context is key. Communications of the ACM

48(3), 49–53, ISSN 0001-0782.
Coutaz, J. and Rey, G. 2002 Foundations for a theory of contextors. In Proceedings of the Computer-Aided

Design of User Interface (CADUI 2002).

Dearle, A., Kirby, G. N. C., McCarthy, A. and Diaz y Carballo, J. C. 2003a An information flow architec-
ture for global smart spaces. Technical Report D15, Global Smart Spaces Project IST-2000-26070.

Dearle, A., Kirby, G. N. C., Morrison, R., McCarthy, A., Mullen, K., Yang, Y., Connor, R. C. H.,
Welen, P. and Wilson, A. 2003b Architectural support for global smart spaces. In Proceedings of the

4th International Conference on Mobile Data Management (MDM’03). London, UK: Springer-Verlag,
pp. 153–164, ISBN 3-540-00393-2.

de Bruijn, J. 2003 Using ontologies—enabling knowledge sharing and reuse on the semantic web. Technical

Report DERI-2003-10-29, DERI.
Decker, S., Erdmann, M., Fensel, D. and Studer, R. 1999 Ontobroker: ontology based access to distributed

and semi-structured information. In Meersman, R., Tari, Z. and Stevens, S. M. (eds.), IFIP Conference

Proceedings, DS-8, vol. 138. Kluwer, pp. 351–369. ISBN 0-7923-8405-9.
Denny, M. 2002 Ontology Building: A Survey of Editing Tools. http://www.xml.com/pub/a/2002/

11/06/ontologies.html.
de Vergara, J. E. L., Villagrá, V. A. and Berrocal, J. 2002 Semantic management: advantages of using

an ontology-based management information meta-model. In Proceedings of the 9th Workshop of the
HP OpenView University Association (HP-OVUA).

Dey, A. K. 2001 Understanding and using context. Personal and Ubiquitous Computing 5(1), 4–7,

ISSN 1617-4909.
DMA. 1989 The universal grids: niversal Transverse Mercator (UTM) and Universal Polar Stereographic

(UPS). Technical Report DMATM 8358.2, Defenses Mapping Agency.

Dobson, S. 2005 Leveraging the subtleties of location. In Bailly, G., Crowley, J. and Privat, G. (eds.), Pro-
ceedings of Smart Objects and Ambient Intelligence, pp. 175–179, New York, NY, USA 2005. ACM Press.
ISBN 1-59593-304-2.

Dobson, S. and Nixon, P. 2004 More principled design of pervasive computing systems. Humán computer
interaction and interactive systems, 3425 in Lecture Notes in Computer Science: 292–305.

Dumbill, E. 2002 Finding friends with XML and RDF: FOAF. http://www-106.ibm.com/

developerworks/xml/library/x-foaf.html.

Eckstein, R., Tolksdorf, R. and Bizer, C. (eds.) 2004 International Workshop on Semantic Web Technologies
in Electronic Business (SWEB 2004).

Erdmann, M., Maedche, A., Schnurr, H.-P. and Staab, S. 2001 From manual to semiautomatic semantic

annotation. In Linköping Electronic Articles in Computer and Information Science, vol. 6, (002), 2001.
ISSN 1401-9841.

Fensel, D. 2001 Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce, 1st edn.

Springer, ISBN 978-3540416029.
Fernandez, M., Gomez-Perez, A. and Juristo, N. 1997 METHONTOLOGY: from ontological art towards

ontological engineering. In Proceedings of the Spring Symposium Series on Ontological Engineering. Stan-
ford, USA, pp. 33–40.

Flury, T., Privat, G. and Ramparany, F. 2004 OWL-based location ontology for context-aware
services. In Proceedings of the Artificial Intelligence in Mobile Systems (AIMS 2004), pp. 52–57.
SFB 378-Ressourcenadaptive Kognitive Prozesse, September 2004.

Fook, V. F. S., Tay, S. C., Jayachandran, M., Biswas, J. and Zhang, D. 2006 An ontology-based context model
in monitoring and handling agitation behaviour for persons with dementia. In Proceedings of the Fourth

Ontology-based models in pervasive computing systems 343

http://www.xml.com/pub/a/2002/
http://www-106.ibm.com/


Annual IEEE International Conference on Pervasive Computing and Communications Workshops
(PERCOM’06), Washington, DC, USA:2006. IEEE Computer Society, pp. 560–564, ISBN 0-7695-2520-2.

Ganesh, S., Jayaraj, M., Kalyan, V., Murthy, S. and Aghila, G. 2004 Ontology-based web crawler. In Pro-

ceedings of the International Conference on Information Technology: Coding and Computing (ITCC’04)
vol. 2, Washington, DC: IEEE Computer Society, pp. 337–341, ISBN 0-7695-2108-8.

Ghidini, C. and Giunchiglia, F. 2001 Local models semantics, or contextual reasoning ¼ locality þ compat-

ibility. Artifical Intelligence 127(2), 221–259, ISSN 0004-3702.
Gil, Y., Motta, E., Benjamins, V. R. and Musen, M. A. (eds.) 2005 Proceedings of The SemanticWeb—the

4th International SemanticWeb Conference (ISWC’05), Galway, Ireland, November 6-10, vol. 3729 of
Lecture Notes in Computer Science, Springer. ISBN 3-540-29754-5.

Gruber, T. R. 1993 A translation approach to portable ontology specifications. Knowledge Acquisition 5(2),
199–220, ISSN 1042-8143.

Gruber, T. R. 1995 Toward principles for the design of ontologies used for knowledge sharing. International

Journal of Human-Computer Studies 43, 907–928.
Grüninger, M. and Fox, M. S. 1995 Methodology for the design and evaluation of ontologies. In Proceedings

of the Workshop on Basic Ontological Issues in Knowledge Sharing (IJCAI-95).

Gu, T., Wang, X. H., Pung, H. K. and Zhang, D. Q. 2004 An ontology-based context model in intelligent
environments. In Proceedings of the Communication Networks and Distributed Systems Modeling and
Simulation Conference (CNDS’04), Society for Computer Simulation. pp. 270–275.

Guarino, N. 1998 Formal ontology and information systems. In Proceedings of the 1st International Con-
ference on Formal Ontologies in Information Systems (FOIS’98), Trento, Italy, June 1998. IOS Press,
pp. 3–15.

Guarino, N., Carrara, M. and Giaretta, P. 1994 Formalizing ontological commitment. In Proceedings of

National Conference on Artificial Intelligence (AAAI’94), Seattle, WA, pp. 560–567.
Guidetti, V. 2002 Intelligent Information Integration Systems: Extending a Lexicon Ontology. Master’s

thesis, Computer Science, University of Modena and Reggio Emilia.

Ha, Y.-G., Sohn, J.-C. and Cho, Y.-J. 2005 Owler: a semantic web ontology inference engine. In Proceedings
of the 7th International Conference on Advanced Communication Technology (ICACT’05), February 2005,
vol. 2, IEEE Communications Society, pp. 1077–1080, ISBN 89-5519-123-5.

Haarslev, V. and Möller, R. 2003 Racer: A core inference engine for the semantic web. In Sure, Y., Corcho,
O. (eds.), Proceedings of the 2nd International Workshop on Evaluation of Ontology-based Tools (EON’03),
volume 87 of CEUR workshop proceedings, pp. 27–36. CEUR-WS.org 2003.

Held, A., Buchholz, S. and Schill, A. 2002 Modeling of context information for pervasive computing

applications. In Proceedings of the 6th World Multiconference on Systemics, Cybernetics and Informatics
(SCI 2002).

Henricksen, K., Indulska, J. and Rakotonirainy, A. 2002 Modeling context information in pervasive comput-

ing systems. In Proceedings of the First International Conference on Pervasive Computing (Pervasive ’02),
London, UK, 2002. Springer-Verlag, pp. 167–180, ISBN 3-540-44060-7.

Hightower, J. and Borriello, G. 2001 Location systems for ubiquitous computing. IEEE Computer 34(8),

57–66.
Hobbs, J. R. and Pan, F. 2004 An ontology of time for the semantic web. ACM Transactions on Asian

Language Information Processing (TALIP) 3(1), 66–85, ISSN 1530-0226.

Jones, D., Bench-Capon, T. and Visser, P. 1998 Methodologies for ontology development. In Proceedings of
the IT and KNOWS Conference, XV IFIP World Computer Congress, Budapest, August 1998.

Kagal, L. Korolev, V., Chen, H., Joshi, A. and Finin, T. 2001 Centaurus: a framework for intelligent services
in a mobile environment. In Proceedings of the 21st International Conference on Distributed Computing

Systems (ICDCSW’01), Washington, DC: IEEE Computer Society, pp. 195–201, ISBN 0-7695-1080-9.
Kagal, L. Finin, T. and Joshi, T. 2003 A policy based approach to security for the semantic web. In Proceed-

ings of the second International Semantic Web Conference (ISWC 2003), Sanibel Island, Florida, USA.

Kagal, L., Berners-Lee, T., Connolly, D. and Weitzner, D. J. 2006 Using semantic web technologies for
policy management on the web. In Proceedings of The Twenty-First National Conference on Artificial Intel-

ligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI’06).

Kalfoglou, Y. and Schorlemmer, M. 2003 Ontology mapping: the state of the art. Knowledge Engineering
Review 18(1), 1–31, ISSN 0269-8889.

Kifer, M., Lausen, G. and Wu, J. 1995 Logical foundations of object-oriented and frame-based languages.
Journal of ACM, 42(4), 741–843, ISSN 0004-5411.

Lenat, D. B. and Guha, R. V. 1989 Building Large Knowledge-Based Systems; Representation and Inference in
the Cyc Project. Boston, MA: Addison-Wesley Longman Publishing Co., Inc., ISBN 0201517523.

López de Vergara, J. E., Villagrá, V. A., Berrocal, J., Asensio, J. I. and Pignaton, R. Semantic management:

application of ontologies for the integration of management information models. In Proceedings of the
Integrated Network Management, 2003. IFIP/IEEE Eighth International Symposium on, pp. 131–134.

j u a n y e E T A L .344



McGrath, R. E. 2000 Discovery and its discontents: discovery protocols for ubiquitous computing. Technical
Report UIUCDCS-R-99-2132, Department of Computer Science University of Illinois Urbana-
Champaign, Urbana, March 2000.

McGrath, R. E., Ranganathan, A., Campbell, R. H. and Mickunas, M. D. 2003a Use of ontologies in a
pervasive computing environment. Technical Report UIUCDCS-R-2003-2332 UILU-ENG-2003-1719,
Department of Computer Science, University of Illinois, Urbana-Champaign, Urbana, Illinois.

McGrath, R. E., Ranganathan, A., Mickunas, M. D and Campbell, R. H. 2003b Investigations of semantic
interoperability in ubiquitous computing environments. In Proceedings of the 15th IASTED International
Conference on Parallel And Distributed Computing And Systems (PDCS’03), Marina del Rey, CA, USA.

McGuinness, D. L. and van Harmelen, F. 2004 OWL web ontology language overview. W3C Recommenda-

tion, World Wide Web Consortium.
McNamara, L., Mascolo, C. and Capra, L. 2006 Trust and mobility aware service provision for pervasive

computing. In Proceedings of Workshop on Requirements and Solutions for Pervasive Software Infrastruc-

tures (co-located with Pervasive 2006), Dublin, Ireland.
Millard, I. C., Roure, D. D. and Shadbolt, N. 2004 The use of ontologies in contextually aware environ-

ments. In Proceedings of the First International Workshop on Advanced Context Modelling, Reasoning

and Management, in association with Ubicomp2004, Nottingham, UK, pp. 42–47.
Miller, E. 1998 An introduction to the resource description framework. D-Lib Magazine, ISSN 1082-9873.
Mostowfi, F., Fotouhi, F. and Aristar, A. 2005 Ontogloss: an ontology-based annotation tool. In Proceed-

ings of E-MELD Workshop on Morphosyntactic Annotation and Terminology, July 2005.
Mylonas, P., Vallet, D., Fernández, M., Castells, P. and Avrithis, Y. 2006 Ontology-based personalization

for multimedia content. In Proceedings of the third European SemanticWeb Conference—Semantic Web
Personalization Workshop, Budva, Montenegro, June 2006.

Ni, Q. and Sloman, M. 2005 An ontology-enabled service oriented architecture for pervasive computing. In
Proceedings of the International Symposium on Information Technology: Coding and Computing
(ITCC’05), vol. 2. Las Vegas, NV: IEEE Computer Society, pp. 797–798.

NIMA. 2004 Department of defense world geodetic system 1984—its definition and relationships with
local geodetic systems. Technical Report TR8350.2, National Imagery and Mapping Agency,
Bethesda, USA.

Noy, N. F., Fergerson, R. W. and Musen, M. A. 2000 The knowledge model of protege-2000: Combining
interoperability and flexibility. In Proceedings of the 2nd International Conference on Knowledge Engineer-
ing and Knowledge Management (EKAW 2000), Juan-les-Pins, France, 2000.

Noy, N. 2005 Order from chaos. ACM Queue 3(8), 42–49, ISSN 1542-7730.

Obrst, L., Wray, R. E. and Liu, H. 2001 Ontological engineering for B2B E-commerce. In Proceedings of the
international conference on Formal Ontology in Information Systems (FOIS’01). New York, NY: ACM
Press, pp. 117–126, ISBN 1-58113-377-4.

Pandey, S. K. and Mishra, R. B. 2005 Knowledge discovery and ontology-based services on the grid (a sur-
vey report). In Proceedings of the Sixth International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT’05), December 2005, pp. 1033–1038.

Patel-Schneider, P. F., Hayes, P., Horrocks, I. and van Harmelen, F. 2002 Web ontology language
(OWL) abstract syntax and semantics. W3C Working Draft, World Wide Web Consortium, November
2002.

Perich, F., Joshi, A., Finin, T. and Yesha, Y. 2004 On data management in pervasive computing environ-
ments. IEEE Transactions on Knowledge and Data Engineering, 16(5): 621–634, ISSN 1041–4347.

Preuveneers, D. Van den Bergh, J., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., Berbers, Y.,
Coninx, K., Jonckers, V. and De Bosschere, K. 2004 Towards an extensible context ontology for ambient

intelligence. In Proceedings of the 2nd European Symposium on Ambient Intelligence (EUSAI 2004),
pp. 148–159.

Preuveneers, D., Vandewoude, Y., Rigole, P., Ayed, D. and Berbers, Y. 2006 Context-aware adaptation for

component-based pervasive computing systems. In Adjunct Proceedings of the 4th International Conference
on Pervasive Computing, Dublin, Ireland, 2006, pp. 125– 128.

Priyantha, N. B., Chakraborty, A. and Balakrishnan, H. 2000 The cricket location-support system. In

Proceedings of the 6th ACM MOBICOM, Boston, MA, August 2000.
Ranganathan, A. and Campbell, R. H. 2003 An infrastructure for context-awareness based on first order

logic. Personal and Ubiquitous Computing 7, 353–364.
Ranganathan, A., Al-Muhtadi, J. and Campbel, R. H. 2004a Reasoning about uncertain contexts in perva-

sive computing environments. IEEE Pervasive Computing 3(2), 62–70, ISSN 1536-1268.
Ranganathan, A., McGrath, R. E., Campbell, R. H. and Mickunas, M. D. 2004b Use of ontologies in a

pervasive computing environment. Knowledge Engineering Review 18(3), 209–220.

Rey, G. 2005 Contexte en Interaction Homme-Machine: le contexteur. PhD thesis, Université Joseph Fourier.

Ontology-based models in pervasive computing systems 345



Robinson, J., Wakeman, I. and Owen, T. 2004 Scooby: middleware for service composition in pervasive
computing. In Proceedings of the 2nd workshop on Middleware for pervasive and ad-hoc computing
(MPAC’04), New York: ACM Press, pp. 161–166, ISBN 1-58113-951-9.

Roman, M., Hess, C. K., Cerqueira, R., Ranganathan, A., Campbell, R. H. and Nahrstedt, K. 2002
Gaia: a middleware infrastructure to enable active spaces. IEEE Pervasive Computing, Oct–Dec 2002,
pp. 74–83.

Sashima, A., Izumi, N. and Kurumatani, K. 2004 Location-aware middle agents in pervasive computing.
In International Conference on Wireless Networks, pp. 820–828.

Schilit, B., Adams, N. and Want, R. 1994 Context-aware computing applications. In Proceedings of
the IEEE Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, December 1994,

pp. 85–90.
Schmidt, A., Beigl, M. and Gellersen, H.-W. 1999 There is more to context than location. Computers and

Graphics 23(6), 893–901.

Skordas, T., Tsarchopoulos, P., Ronchaud, R., Streitz, N., Nixon, P., Bannon, L., Coutaz, J., Gellersen, H.,
Kameas, A., Kyng, M. et al. 2004 EU-NSF joint advanced research workshop: The disappearing compu-
ter. Workshop Report and Recommendation., April 2004. www.smartlab.cis.strath.ac.uk/

EC-NSF/.
Sriharee, N., Senivongse, T., Verma, K. and Sheth, A. P. 2004 On using ws-policy, ontology, and rule reason-

ing to discover web services. In Aagesen, F. A., Anutariya, C. and Wuwongse, V. (eds.), Proceedings

of Intelligence in Communication Systems, IFIP International Conference (INTELLCOMM 2004),
vol. 3283 of Lecture Notes in Computer Science. Springer, pp. 246–255, ISBN 3-540-23893-X.

Staab, S., Studer, R., Schnurr, H.-P. and Sure, Y. 2001 Knowledge processes and ontologies. IEEE Intelli-
gent Systems 16(1), 26–34, ISSN 1541-1672.

Strang, T. and Linnhoff-Popien, C. 2003 Service interoperability on context level in ubiquitous computing
environments. In Proceedings of International Conference on Advances in Infrastructure for Electronic Busi-
ness, Education, Science, Medicine, and Mobile Technologies on the Internet, L’Aquila/Italy, January 2003.

Strang, T., Linnhoff-Popien, C. and Frank, K. 2003a CoOL: A Context Ontology Language to enable Con-
textual Interoperability. In Stefani, J.-B., Dameure, I. and Hagimont, D.(eds.), Proceedings of 4th IFIP
WG 6.1 International Conference on Distributed Applications and Interoperable Systems (DAIS2003),

LNCS 2893, Paris/France, November. Springer Verlag, pp. 236–247.
Strang, T., Linnhoff-Popien, C. and Frank, K. 2003b Applications of a context ontology language. In

Proceedings of the International Conference on Software, Telecommunications and Computer Networks
(SoftCom’03), Split/Croatia, Venice/Italy, Ancona/Italy, Dubrovnik/Croatia, pp. 14–18. ISBN 953-

6114-64-X.
Strang, T. and Linnhoff-Popien, C. 2004 A context modeling survey. In Proceedings of the Workshop on

Advanced Context Modelling, Reasoning and Management as part of UbiComp 2004, Nottingham/England,

September 2004.
Streitz, N. and Nixon, P. 2005 Introduction. Communication of the ACM 48(3), 32–35, ISSN 0001-0782.
Sure, Y. and Domingue, J. (eds.) 2006 The semantic web: research and applications. The 3rd European

Semantic Web Conference, ESWC 2006, Budva, Montenegro, June 11-14, 2006, Proceedings, vol. 4011 of
Lecture Notes in Computer Science. Springer, ISBN 3-540-34544-2.

Sure, Y. Staab, S. and Studer, R. 2002 Methodology for development and employment of ontology based

knowledge management applications. ACM SIGMOD Record 31(4), 18–23, ISSN 0163-5808.
Sure, Y., Gomez-,Perez, Daelemans, W., Reinberger, M.-L., Guarino, N. and Noy, N. F. 2004 Why evaluate

ontology technologies? because it works! IEEE Intelligent Systems 19(4), 74–81, ISSN 1541-1672.
Tafat, A., Courant, M. and Hirsbrunner, B. 2004 A generic coordination model for pervasive computing

based on semantic web languages. In Proceedings of the 9th International Conference on Applications of
Natural Languages to Information Systems, Natural Language Processing and Information Systems
(NLDB’04), Salford, UK, pp. 265–275.

Tartir, S., Arpinar, I. B., Moore, M., Sheth, A. P. and Aleman-Meza, B. 2005 OntoQA: Metric-based onto-
logy quality analysis. In Proceedings of the IEEE Workshop on Knowledge Acquisition from Distributed,
Autonomous, Semantically Heterogeneous Data and Knowledge Sources (ICDM’05), Boston, MA.

Toivonen, S. and Denker, G. 2004 The impact of context on the trustworthiness of communication: an onto-
logical approach. In Proceedings of the ISWC Workshop on Trust, Security, and Reputation on the Seman-
tic Web, Hiroshima, Japan.

Trastour, D., Bartolini, C. and Gonzalez-Castillo, J. 2001 A semantic web approach to service description for

matchmaking of services. Technical Report HPL-2001-183, HP Laboratories Bristol.
Uschold, M. and Gr uninger, M. 1996 Ontologies: principles, methods, and applications. Knowledge Engi-

neering Review 11(2), 93–155.

j u a n y e E T A L .346



Uschold, M. and Jasper, R. 1999 A framework for understanding and classifying ontology applications.
In Proceedings of the Workshop on Ontologies and Problem-Solving Methods (as a part of IJCAI’99),
Stockholm, Sweden.

Vargas-Vera, M., Domingue, J., Motta, E., Shum, S. B. and Lanzoni, M. 2001 Knowledge extraction
by using an ontology-based annotation tool. In Proceedings of the Workshop Knowledge Markup and
Semantic Annotation (K-CAP’01), Victoria Canada.

Varzi, A. and Vieu, L. 2004 Formal ontology in information systems. In Proceedings of the Third Inter-
national Conference (FOIS’04). Turin, Italy, IOS Press.

Wang, X. H., Gu, T., Zhang, D. Q. and Pung, H. K. 2004 Ontology based context modeling and reason-
ing using OWL. In Proceedings of the Workshop on Context Modeling and Reasoning (CoMoRea’04),

pp. 18–22.
Weeds, J., Keller, B., Weir, D., Owen, T. and Wakemna, I. 2004 Natural language expression of user policies

in pervasive computing environments. In Proceedings of the LREC Workshop on Ontologies and Lexical

Resources in Distributed Environments (OntoLex 2004), Lisbon, Portugal.
Weiser, M. 1991 The computer for the 21st century. Scientific American 265(3), 94–104.
Zhang, P. and Li, Z. 2005 Ontology assisted web services discovery. In Proceedings of the IEEE International

Workshop on Service-Oriented System Engineering (SOSE’05). Los Alamitos, CA: IEEE Computer
Society, pp. 45–50, ISBN 0-7695-2438-9.

Ontology-based models in pervasive computing systems 347


