

Department of Computer Science

CS-RR-14-02

Department of Computer Science, University of Oxford

Wolfson Building, Parks Road, Oxford, OX1 3QD

ONTOLOGY-BASED QUERY ANSWERING WITH

GROUP PREFERENCES

Thomas Lukasiewicz

Maria Vanina Martinez

Gerardo I. Simari

Oana Tifrea-Marciuska

DEPARTMENT OF COMPUTER SCIENCE RESEARCH REPORT

DEPARTMENT OF COMPUTER SCIENCE RESEARCH REPORT 14-02, MAY 2014

ONTOLOGY-BASED QUERY ANSWERING WITH GROUP

PREFERENCES

(PRELIMINARY VERSION, 9 MAY 2014)

Thomas Lukasiewicz Maria Vanina Martinez

Gerardo I. Simari Oana Tifrea-Marciuska 1

Abstract. The Web has recently been evolving into a system that is in many ways centered on

social interactions and is now more and more becoming what is called the Social Semantic Web.

One of the many implications of such an evolution is that the ranking of search results no longer

depends solely on the structure of the interconnections among Web pages — instead, the social

components must also come into play. In this paper, we argue that such rankings can be based

on ontological background knowledge and on user preferences. Another aspect that has become

increasingly important in recent times is that of uncertainty management, since uncertainty can arise

due to many uncontrollable factors. To combine these two aspects, we propose extensions of the

Datalog+/– family of ontology languages that both allow for the management of partially ordered

preferences of groups of users as well as uncertainty, which is represented via a probabilistic model.

We focus on answering k-rank queries in this context, presenting different strategies to compute

group preferences as an aggregation of the preferences of a collection of single users. We also study

merging operators that are useful for combining the preferences of the users with those induced

by the values obtained from the probabilistic model. We then provide algorithms to answer k-rank

queries for DAQs (disjunctions of atomic queries) under these group preferences and uncertainty that

generalizes top-k queries based on the iterative computation of classical skyline answers. We show

that such DAQ answering in Datalog+/– can be done in polynomial time in the data complexity,

under certain reasonable conditions, as long as query answering can also be done in polynomial

time (in the data complexity) in the underlying classical ontology. Finally, we present a prototype

implementation of the query answering system, as well as experimental results (on the running time

of our algorithms and the quality of their results) obtained from real-world ontological data and

preference models, derived from information gathered from real users, showing in particular that

our approach is feasible in practice.

1Department of Computer Science, University of Oxford, UK; e-mail: {thomas.lukasiewicz, vanina.martinez,

gerardo.simari, oana.tifrea}@cs.ox.ac.uk.

Acknowledgements: This work was supported by the EPSRC grant EP/J008346/1 “PrOQAW: Probabilistic

Ontological Query Answering on the Web”, by the European Research Council (FP7/2007–2013/ERC) grant

246858 (“DIADEM”), by a Google European Doctoral Fellowship, and by a Yahoo! Research Fellowship.

We are grateful to the reviewers of this article’s preliminary abstract at WI 2013 [24] for their extensive

comments, which have helped to improve this work. Finally, we wish to thank Giorgio Orsi for his help with

the Datalog+/– query answering engine, and all the participants who volunteered to take part in our empirical

evaluation.

Copyright c� 2014 by the authors

RR-14-02 I

Contents

1 Introduction 1

1.1 Related Work . 1

1.2 Outline of this Work . 2

2 Preliminaries 3

2.1 Datalog+/– . 3

2.2 Preference Datalog+/– . 5

3 GPP-Datalog+/– 5

4 Query Answering in GPP-Datalog+/– 7

4.1 Preference Merging and Aggregation . 7

4.1.1 Collapse to Single User . 9

4.1.2 Voting-Based Preference Aggregation . 11

4.2 Answering k-Rank Queries to GPP-Datalog+/– Ontologies 11

5 Semantic Properties of k-Ranking over Group Preferences 13

5.1 Semantic Properties of Voting-Based Strategies . 14

5.2 Semantic Properties of the CSU Strategy . 15

6 Implementation and Experimental Evaluation 15

6.1 Implementation and Hardware . 16

6.2 Experimental Setup . 16

6.3 Performance Evaluation . 17

6.4 Quality Evaluation . 18

6.4.1 Evaluation Metrics . 18

6.4.2 Results . 19

7 Discussion 21

A The Chase 25

B Proofs 25

C Further Details for the Experimental Evaluation 31

RR-14-02 1

1 Introduction

In the recent years, several important changes have been taking place on the classical Web. First, the so-

called Web of Data is increasingly being realized as a special case of the Semantic Web. Second, as a part of

the Social Web, users are acting more and more as first-class citizens in the creation and delivery of contents

on the Web. The combination of these two technological waves is called the Social Semantic Web (or also

Web 3.0), where the classical Web of interlinked documents is more and more turning into (i) semantic

data and tags constrained by ontologies, and (ii) social data, such as connections, interactions, reviews,

and tags. The Web is thus shifting away from data on linked Web pages towards fewer such interlinked

data in social networks on the Web relative to underlying ontologies. This requires new technologies for

search and query answering, where the ranking of search results is not solely based on the link structure

between Web pages anymore, but on the information available in the Social Semantic Web — in particular,

the underlying ontological knowledge present in user-created content, as well as the user’s preferences

implicitly or explicitly present in such content.

Modeling the preferences of a group of users is also an important research topic in its own right. With

the growth of social media, people post their preferences and expect to get personalized information. More-

over, people use social networks as a tool to organize events, where it is required to combine the individual

preferences and suggest items obtained from aggregated user preferences. For example, if there is a movie

night of friends, family trip, or dinner with working colleagues, one has to decide which is the ideal movie

or location for the group, given the preferences of each member. To address this problem, individual user

preferences can be adopted and then aggregated to group preferences. However, this comes along with two

additional challenges. The first challenge is to define a group preference semantics that solves the possible

disagreement among users (a system should return results in such a way that each individual benefits from

the result). For example, people (even friends) often have different tastes in restaurants. The second chal-

lenge is to allow for efficient algorithms, e.g., to compute efficiently the answers to queries under aggregated

group preferences [2].

Example 1 To illustrate this, consider a situation in which three friends Alberto, Bruno, and Charles must

decide where to go for dinner among three possible restaurants: r1, r2, and r3. Alberto’s preferences are

hr1, {r2, r3}i (meaning that he prefers r1 and then he does not have a preference between r2 and r3), Bruno’s

are hr2, {r1, r3}i, and Charles’s are hr1, r2, r3i. Finally, the three friends have consulted a review site that

gives a score to each restaurant stating how likely it is that it will have seating available tonight; these

probabilities are 0.2 for r1, 0.9 for r2, and 0.6 for r3.

Taking a simple voting approach where the majority decides would lead the friends to choose r1, since

it is the first choice of two of them; however, it is also the least likely to have seating available — r2, on the

other hand, seems to be a better choice, since it is well-ranked by both Bruno and Charles, and has a high

probability as well.

1.1 Related Work

Many studies address the area of group modeling. Indirectly, it is related to the area of social choice (group

decision making, i.e., aiming at the decision that is best for a user given the opinion of individuals), which

was studied in mathematics, economics, politics, and sociology [30, 34]. Other areas related to social choice

are meta-search [25], collaborative filtering [19], and multi-agent systems [35]. Current approaches that

deal with group preferences have also been studied in the area of recommender systems [2, 13, 29], which

focus on quantitative preferences. However, in many real-world scenarios, the ordering of preferences is

2 RR-14-02

incomplete — cf. Example 1, where Alberto and Bruno both only declared a favorite restaurant and failed

to fully order the rest. This appears due to privacy issues or an incomplete elicitation process (for instance,

users may not want to be asked too many questions). Furthermore, it is often difficult to determine the

appropriate numerical preferences and weights that maximize the utility of a decision [5]. For example, it is

difficult for a user to determine a numerical value (i.e., 0.7 or 0.9) to rate a restaurant. These arguments thus

support the use of qualitative over quantitative formalisms for representing and reasoning with incomplete

preferences [31, 18, 1, 21].

In [21], we have introduced an extension of the Datalog+/– family of ontology languages with pref-

erences for a single user; i.e., the addition of groups is novel in this line of research. Datalog+/– enables

a modular rule-based style of knowledge representation — it has been studied in depth in the context of

lightweight ontology languages, and has been shown to embed the entire DL-Lite family, the EL description

logic, as well as F-Logic Lite [7]. We now focus on extending Datalog+/– with preferences of a group of

users that comes with the two additional aforementioned challenges. This paper solves them by providing

aggregated answers for DAQs (disjunctions of atomic queries) in polynomial time.

The presence of uncertainty in the Web in general is undeniable [17, 20, 28, 11]. Different sources of

uncertainty that must be dealt with in answering queries in the Social Semantic Web are, e.g., information

integration (as in travel sites that query multiple sources to find interesting tours), automatic processing of

Web data (analyzing an HTML document often involves uncertainty), as well as inherently uncertain data

such as the probability of a restaurant being crowded as discussed in Example 1.

1.2 Outline of this Work

The current challenge for Web search is therefore inherently linked to: (1) leveraging the social components

of Web content towards the development of some form of semantic search and query answering on the Web

as a whole, and (2) dealing with the presence of uncertainty in a principled way throughout the process.

In this paper, we develop a novel integration of ontology languages with both preferences of groups of

users and uncertainty management mechanisms. We do this by developing an extension of the Datalog+/–

family of ontology languages [7] with a preference model over the consequences of the ontology, as well

as a probabilistic model that assigns probabilities to them. The preference and the probabilistic model are

assumed to model the preferences of a group of users and the uncertainty in the domain, respectively.

The main contributions of this paper can be summarized as follows.

• We introduce GPP-Datalog+/–, a language that combines the Datalog+/– [7] ontology language with

group preferences (a generalization of preference handling in relational databases) and probabilis-

tic uncertainty. To our knowledge, this is the first combination of ontology languages with group

preferences (with and without probabilistic uncertainty). The preference and the probabilistic mod-

els are assumed to represent the preferences of a group of users and the uncertainty in the domain,

respectively.

• We formalize the notion of k-rank query answering based on operators for merging single-user and

probability-based preferences (in the form of a strict partial and a weak order, respectively), and

aggregating multiple single-user preference relations. We analyze two approaches to computing an

answer to a k-rank query that are suitable for partially ordered sets of preferences: collapse to single

user (CSU), which constructs a single virtual user that aggregates the preferences of all the individuals

from the group and the k-rank answers are computed over this new preference relation; and voting-

based aggregation, where k-rankings are computed first for each individual user and then aggregation

RR-14-02 3

techniques based on voting strategies are used to aggregate the answers and obtain a single k-ranking.

• Based on an algorithm for the above preference merging and aggregation, we give algorithms for

answering k-rank queries for DAQs (disjunctions of atomic queries), which generalize top-k queries

based on the iterative computation of classical skyline answers. We show that answering DAQs in

GPP-Datalog+/– is possible in polynomial time in the data complexity modulo the cost of computing

probabilities.

• Finally, we developed a prototype implementation of a group preference-based query answering sys-

tem, and conducted a series of experiments based on real-world ontological data and preference mod-

els derived from information gathered from real users. The results (on the running time of our algo-

rithms and the quality of their results) show in particular that the strategies proposed and developed

in this work are feasible in practice.

The rest of this paper is organized as follows. In Section 2, we recall some basics on Datalog+/– and

PrefDatalog+/–. Section 3 introduces the syntax and the semantics of GPP-Datalog+/–, in particular, the

general group preference model and the probabilistic model, along with preference merging and aggregation

operations. In Section 4, we present algorithms for k-rank query answering, along with correctness and data

tractability results. Section 5 studies a set of properties that can be considered desirable for the aggregation

of group preferences. The experimental setup and results are presented in Section 6. Finally, Section 7

summarizes the main results of this paper and gives an outlook on future research. Detailed proofs of all

results in this paper are given in the appendix.

2 Preliminaries

In this section, we briefly recall some necessary background concepts on Datalog+/– and its generalization

by preferences.

2.1 Datalog+/–

We first recall some basics on Datalog+/– [7], namely, on relational databases, (Boolean) conjunctive

queries ((B)CQs), tuple- and equality-generating dependencies (TGDs and EGDs, respectively), negative

constraints, the chase, and ontologies in Datalog+/–.

Databases and Queries We assume (i) an infinite universe of (data) constants ∆ (which constitute the

“normal” domain of a database), (ii) an infinite set of (labeled) nulls ∆N (used as “fresh” Skolem terms,

which are placeholders for unknown values, and can thus be seen as variables), and (iii) an infinite set of

variables V (used in queries, dependencies, and constraints). Different constants represent different values

(unique name assumption), while different nulls may represent the same value. We denote by X sequences

of variables X1, . . . , Xk with k> 0. We assume a relational schema R, which is a finite set of predicate

symbols (or simply predicates). A term t is a constant, null, or variable. An atomic formula (or atom) A

has the form p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn are terms. It is ground iff every ti
belongs to ∆.

A database (instance) D for a relational schema R is a (possibly infinite) set of atoms with predicates

from R and arguments from ∆∪∆N . A conjunctive query (CQ) over R has the form Q(X) = ∃YΦ(X,Y),
where Φ(X,Y) is a conjunction of atoms (possibly equalities, but not inequalities) with the variables X

4 RR-14-02

and Y, and possibly constants, but without nulls. A Boolean CQ (BCQ) over R is a CQ of the form Q(),
often written as the set of all its atoms, without quantifiers. Answers to CQs and BCQs are defined via

homomorphisms, which are mappings µ : ∆[∆N [V ! ∆[∆N [V such that (i) c 2 ∆ implies µ(c) = c,

(ii) c 2 ∆N implies µ(c) 2 ∆ [∆N , and (iii) µ is naturally extended to atoms, sets of atoms, and conjunc-

tions of atoms. The set of all answers to a CQ Q(X)= 9YΦ(X,Y) over a database D, denoted Q(D),
is the set of all tuples t over ∆ for which there exists a homomorphism µ : X[Y!∆ [∆N such that

µ(Φ(X,Y))✓D and µ(X)= t. The answer to a BCQ Q() over a database D is Yes, denoted D |=Q, iff

Q(D) 6= ;.

Given a relational schema R, a tuple-generating dependency (TGD) σ is a first-order formula of the form

8X8YΦ(X,Y)!9ZΨ(X,Z), where Φ(X,Y) and Ψ(X, Z) are conjunctions of atoms over R (without

nulls), called the body and the head of σ, denoted body(σ) and head(σ), respectively. Such σ is satisfied in

a database D for R iff, whenever there exists a homomorphism h that maps the atoms of Φ(X,Y) to atoms

of D, there exists an extension h0 of h that maps the atoms of Ψ(X,Z) to atoms of D. Since TGDs can be

reduced to TGDs with only single atoms in their heads, in the sequel, every TGD has w.l.o.g. a single atom

in its head.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases under a set of TGDs

is defined as follows. For a database D for R, and a set of TGDs Σ on R, the set of models of D and Σ,

denoted mods(D,Σ), is the set of all (possibly infinite) databases B such that (i) D✓B and (ii) every σ 2Σ

is satisfied in B. The set of answers for a CQ Q to D and Σ, denoted ans(Q,D,Σ), is the set of all tuples

a such that a 2 Q(B) for all B 2mods(D,Σ). The answer for a BCQ Q to D and Σ is Yes, denoted D [

Σ |=Q, iff ans(Q,D,Σ) 6= ;. Note that query answering under general TGDs is undecidable [3], even when

the schema and TGDs are fixed [6]. There are sets of TGDs for which answering BCQs is decidable and can

even be done in polynomial time in the data complexity, for example, sets of linear, multi-linear, guarded,

sticky, or sticky-join TGDs [7, 8].

Negative constraints (or simply constraints) γ are first-order formulas of the form 8XΦ(X)!?, where

Φ(X) (called the body of γ) is a conjunction of atoms (without nulls). Under the standard semantics of query

answering of BCQs in Datalog+/– with TGDs, adding negative constraints is computationally easy, as for

each constraint 8XΦ(X)!?, we only have to check that the BCQ Φ(X) evaluates to false in D under Σ;

if one of these checks fails, then the answer to the original BCQ Q is true, otherwise the constraints can

simply be ignored when answering the BCQ Q. As another component, the Datalog+/– language allows

for special types of equality-generating dependencies (EGDs). Since they can also be modeled via negative

constraints, we omit them here, and we refer to [7] for their details.

The chase algorithm for a database D and a set of TGDs Σ consists of an exhaustive application of the

TGDs (cf. Appendix A). The (possibly infinite) chase relative to TGDs is a universal model, i.e., there exists

a homomorphism from chase(D,Σ) onto every B 2mods(D,Σ) [7]. This implies that BCQs Q over D

and Σ can be evaluated on the chase for D and Σ, i.e., D[Σ |= Q is equivalent to chase(D,Σ) |= Q. For

tractable fragments, such BCQs Q can be evaluated in polynomial time in the data complexity.

Datalog+/– Ontologies A Datalog+/– ontology O=(D,Σ), where Σ=ΣT [ΣE [ΣNC, consists of a

finite database D over ∆, a finite set of TGDs ΣT , a finite set of non-conflicting EGDs ΣE , and a finite set

of negative constraints ΣNC. In the rest of this paper, we assume that all ontologies belong to one of the

data-tractable fragments of Datalog+/–.

Example 2 A simple Datalog+/– ontology O=(D,Σ) for food is given below. Intuitively, the database D

encodes that (i) sushi, pizza, pasta, salad, and fish are types of food, (ii) p1 and p2 are places, where p1 is a

RR-14-02 5

pizzeria, serving Italian cuisine, while p2 is a sushi bar, serving Japanese cuisine, and located in the city c1,

and (iii) Italian cuisine includes pizza and pasta, Japanese cuisine includes sushi and fish, and vegetarian

cuisine includes pizza and salad. The set of constraints Σ encodes that every place is located in a city, and

that every place that serves a type of food of a particular cuisine also serves that cuisine.

D = { food(sushi), food(pizza), food(pasta), food(salad), food(fish), place(p1), place(p2),

type(p1, pizzeria), serves(p1, Italian), type(p2, sushi bar), serves(p2, Japanese),

in city(p2, c1), cuisine(Italian, pizza), cuisine(Italian, pasta), cuisine(Japanese, sushi),

cuisine(Japanese, fish), cuisine(vegetarian, pizza), cuisine(vegetarian, salad)} ,

Σ = { place(T)!9C in city(T,C), serves(P, F) ^ food(F) ^ cuisine(C,F)! serves(P,C)} .

2.2 Preference Datalog+/–

We now recall the PrefDatalog+/– language introduced in [21], which is a generalization of Datalog+/– with

preferences. For a more general survey of preferences in the context of databases, we refer the reader to

[33]. The approach to define preferences logically was pursued in [9].

In the following, we denote by ∆Ont, VOnt, and ROnt the infinite set of constants, the infinite set of

variables, and the finite set of predicates, respectively, of standard Datalog+/– ontologies, as described in the

previous section. For the preference extension, we assume a finite set of constants ∆Pref ✓∆Ont, an infinite

set of variables VPref ✓VOnt, and a finite set of predicates RPref ✓ROnt. These sets give rise to corresponding

Herbrand bases HOnt and HPref, as well as Herbrand universes UOnt and UPref, respectively, consisting of all

constructible ground atoms and ground terms, respectively, where HPref ✓HOnt and UPref ✓UOnt.

A preference relation is any binary relation �✓HPref ⇥HPref. In this work, we are interested in strict

partial orders (SPOs), which are irreflexive and transitive relations — we consider these to be the minimal

requirements for a preference relation to be useful in the applications that we envision. In the following,

we consider two kinds of preference models that induce preference relations. The first, which follows the

qualitative approach to specifying preferences, consists of a set of preference formulas (here, we consider a

slight generalization of the proposal by [9]); these are first-order expressions of the form pf : C(a, b) defining

a preference relation �pf on HPref as follows: a�pf b if C(a, b). We call C(a, b) the condition of pf, denoted

cond(pf). The preference relation defined via a set of preference formulas P is denoted by �P .

Example 3 Consider again the ontology O=(D,Σ) from Example 2. The food preferences of a user may

be represented by the preference formulas in U1 below, which encode that food that belongs to the Italian

cuisine is preferred by the user over food that belongs to the Japanese cuisine, that pizzerias are preferred

over sushi bars, and that places that serve pasta are preferred over those that serve salad. Figure 1, top left,

shows the SPO induced by these preference formulas.

U1 :

C1 : food(X) � food(Y) if cuisine(Italian, X) ^ cuisine(Japanese, Y) ^X 6= Y

C2 : place(X) � place(Y) if type(X, pizzeria) ^ type(Y, sushi bar) ^X 6= Y

C3 : place(X) � place(Y) if serves(X, pasta) ^ serves(Y, salad) ^X 6= Y .

3 GPP-Datalog+/–

In this section, we introduce the GPP-Datalog+/– language, an extension of Datalog+/– with both a group

preference model and a probabilistic model; it is based on several previously proposed formalisms: the

6 RR-14-02

Figure 1: Group preferences and probability-based preference relation for Example 2.

PrefDatalog+/– language described above [21] (this language does not contemplate probabilities nor groups),

PP-Datalog+/– [22] (which includes probabilities, but not groups), and G-PrefDatalog+/ [23] (including

groups, but not probabilities). As we discuss in this paper, the combination of all three characteristics yields

challenges not present in these previous proposals.

Group Preference Model We start by generalizing the preference models presented in Section 2.2 to

represent preferences about groups of individuals. Specifically, a group preference model U =(U1, . . . , Un)
for n> 1 users is a collection of n user preference models.

Example 4 Consider again the Datalog+/– ontology O = (D,Σ) from Example 2. Suppose that we have

the following group preference model for three users U =(U1, U2, U3):

U1 :

8

>

<

>

:

C1,1 : food(X) � food(Y) if cuisine(Italian, X) ^ cuisine(Japanese, Y) ^X 6= Y,

C1,2 : place(X) � place(Y) if type(X, pizzeria) ^ type(Y, sushi bar) ^X 6= Y,

C1,3 : place(X) � place(Y) if serves(X, pasta) ^ serves(Y, salad) ^X 6= Y,

U2 :

(

C2,1 : food(X) � food(pasta) if cuisine(Japanese, X),

C2,2 : place(X) � place(Y) if type(X, sushi bar) ^ in city(X, c1) ^X 6= Y,

U3 :

(

C3,1 : food(X) � food(Y) if cuisine(vegetarian, X) ^ cuisine(Italian, Y) ^X 6= Y,

C3,2 : place(X) � place(Y) if type(Y, sushi bar) ^X 6= Y.

Figure 1 (where we assume the transitive closure of the graphs) shows the SPOs induced by the preference

models U1, U2, and U3.

RR-14-02 7

Probabilistic Model To incorporate the probabilistic model, in addition to what was stated in Section 2.2,

we also assume the existence of a finite set of constants ∆M, a finite set of predicates RM such that RM \

ROnt = ;, and an infinite set of variables VM. We denote the corresponding Herbrand base (the sets of all

possible ground atoms) with HM. We assume the existence of a probabilistic model M that represents a

probability distribution PrM over some set X = {X1, . . . , Xn} of Boolean variables such that there is a 1-

to-1 mapping from X to the set of all ground atoms over RM and ∆M. Examples of the type of probabilistic

models that we assume in this work are Markov logic and Bayesian networks. The probabilistic extension

adopted here was first introduced in [15, 14].

In the rest of this paper, we assume the existence of a preference relation �M , defined as a �M b iff

PrM (a) > PrM (b) — we refer to �M as the probability-based (preference) relation.

Example 5 Continuing with the running example, suppose that we have access to an online probabilistic

model that assigns probabilities specifying how likely it is that certain events happen. This uncertainty could

arise, for instance, from the fact that the system is aggregating information from multiple sources, which

may contain conflicting information, as well as uncertainty due to other factors. Such a system could inform

the user of the probability of a place, specific food or cuisine, of being available and recommendable at

the time of the query by taking into account reviews, crowds, season, etc. For instance, we can query the

probability of a particular place, or type of place, of being open with availability of space, or the probability

of finding in the area at a certain time a specific kind of food or cuisine.

Figure 1 gives an example of such a probability assignment, along with the preference relation as a

graph that is induced by these values, assuming that higher probabilities are more preferable. The model M

assigns to place(p1) the highest probability, while it assigns to place(p2) the lowest. ⌅

We are now ready to define GPP-Datalog+/– ontologies.

Definition 1 A GPP-Datalog+/– ontology has the form KB =(O,U ,M), where O is a Datalog+/– on-

tology, U =(U1, . . . , Un) is a group preference model with n> 1, and M is a probabilistic model (with

Herbrand bases HOnt, HPref, and HM, respectively, such that HPref ✓ HOnt).

4 Query Answering in GPP-Datalog+/–

In this section, we concentrate on skyline queries [4], a well-known class of queries that can be issued over

preference-based formalisms — intuitively, answers to skyline queries consist of those elements that are not

dominated by any other according to the input preferences. We also focus on the iterated computation of

skyline answers [9] that allows us to assign a rank to each answer by iterating the following procedure: (1)

initialize ` to 0; (2) assign the rank ` to the skyline answers; and (3) remove from consideration all answers

of rank `, increment ` by one, and go back to (2). As a generalization of classical top-k queries, we adopt

here k-rank queries; answers to them are k-tuples of answers sorted by rank.

4.1 Preference Merging and Aggregation

As seen in Figure 1, there are two challenges encountered in query answering with GPP-Datalog+/– ontolo-

gies. The first challenge is that each user preference model yields a certain precedence relation that might

be in disagreement with the one induced by the probabilistic model. The second challenge is that the user

preference models may be in disagreement with each other.

8 RR-14-02

Preference Merging. To address the first challenge, we introduce the notion of preference merging oper-

ators, which are functions that take two preference relations and produce a third one satisfying two basic

properties as stated below.

Definition 2 Let �U be an SPO and M be a probabilistic model. A preference merging operator ⌦(M,�U)
yields a relation �

⇤ such that (i) �⇤ is an SPO, and (ii) if a1 �U a2 and a1 �M a2, then a1 �
⇤ a2.

The two properties required by Definition 2 are the minimal required to produce a “reasonable” merging

of the two relations. A simple example of such an operator is to produce a new SPO that sorts elements

according to their rank in �U and uses �M to break ties.

In the sequel, we adopt the following family of preference merging operators to combine individual

preferences with those based on probabilities, defined by the following algorithm. Given a relation �U ,

probability-based relation �M , and value t2 [0, 1] (that allows the user to choose how much influence the

probabilistic model has on the output preference relation), the algorithm works by iterating through all pairs

(a, b) of elements in �U and, if (i) �M disagrees with �U , (ii) the difference in probability is greater than t,

and (iii) changing (a, b) to (b, a) does not introduce a cycle in the associated graph, then the pair is inserted

in reverse order into the output; otherwise, the output contains the same pair as �U . Finally, the algorithm

outputs the transitive closure of this relation. In the rest of this paper, we use the notation ⌦t to denote

the particular instance of this operator ⌦ given a specific value of t. The following result shows that ⌦t is

indeed a preference merging operator according to Definition 2.

Proposition 1 Let �U be an SPO, M be a probabilistic model, and t2 [0, 1]. Then, ⌦t as defined above is

a preference merging operator.

The following is an example of our merging operator.

Example 6 Consider again the running example. Figure 3 shows the result of the individual mergings of

the preference relation for each user with the probability-based relation using t=0 for u1, t=0.1 for u2,

and t=0.3 for u3. Observe that even though user u2 prefers place(p2) to place(p1), after merging with �M ,

this preference is reversed (Figure 3). ⌅

Finally, the next proposition states that for t = 0, the result depends on the ordering given by �M and

not the actual probabilities.

Proposition 2 Let �U be an SPO, M be a probabilistic model, and t2 [0, 1]. If M 0 is a probabilistic model

such that �M =�M 0 and t=0, then ⌦t(M,�U)= ⌦t (M
0,�U).

Preference Aggregation. To address the second challenge, we define preference aggregation operators,

which are functions that take a set of preference models and produce a new one.

Definition 3 Let U =(U1, . . . , Un) be a group preference model, where every Ui is an SPO. A preference

aggregation operator
U

on U yields an SPO �
⇤.

A simple example of an aggregation operator is to consider all pairs of elements and do a Pareto composi-

tion [9].

We now explore two different approaches to a preference aggregation operator
U

. In the first one, called

collapse to single user (CSU), we reduce the group modeling problem to a single-user problem by creating

RR-14-02 9

Algorithm 1: AggPrefsCSU(�U1
, . . . ,�Un

)
Input: SPOs (�U1

, . . . ,�Un
).

Output: Preference relation �∗✓ HOnt ⇥HOnt.

1. initialize G as an empty graph;

2. add as nodes in G all elements appearing in the preference relations �Ui
;

3. for every user i2 {1, . . . , n} do

4. initialize currUserG as the graph corresponding to �Ui
;

5. for every edge (u, v) in currUserG do

6. if there is no edge (u, v) in G then

7. add edge (u, v) to G and label it with 1;

8. if there is an edge (u, v) in G and it is labeled with n> 1 then

9. increase the label of edge (u, v) in G by 1;

10. if there is an edge (v, u) in G and it is labeled with 1 then

11. remove edge (u, v) from G;

12. if there is an edge (v, u) in G and it is labeled with n > 1 then

13. decrease the label of edge (v, u) in G by 1;

14. return inducedPreferenceRelation(removeCycles(transitiveClosure(G))).

Figure 2: An algorithm for combining the relations in a group preference model with a probabilistic prefer-

ence relation.

a single virtual user that is constructed by aggregating the preferences of the individuals from the group. In

the second approach, called voting-based aggregation, we first compute the k-rankings according to each

individual user and then apply aggregation techniques based on voting strategies (originally developed for

quantitative preferences [27]) to aggregate the relations induced by the rankings.

4.1.1 Collapse to Single User

Under the CSU strategy, the preference relation for all users, along with the probabilistic preference relation,

are taken into account in the generation of a new preference relation that encodes the dominant preferences.

This single-user preference relation is then used to compute the answers to queries. The following algo-

rithm computes this particular approach to defining a
U

operator; below, we provide an algorithm that uses

this operator for answering k-rank queries to GPP-Datalog+/– ontologies in polynomial time in the data

complexity (modulo the cost of computing probabilities with respect to the probabilistic model M).

Algorithm AggPrefsCSU. The algorithm in Figure 2 implements preference aggregation operator]CSU; the

output is a new preference relation consisting of the collapsed preferences of all relations. A graph is used

as an intermediate data structure representing the collapsed preferences; the nodes of this graph are all the

atoms that appear in the preference relations, while the edges are labeled with an integer representing the

number of relations that have this edge in their individual graph. The algorithm iterates through all the users

i, looks at all the edges in currUserG, and updates the general graph G by incrementing or decrementing

the edge labels and introducing or removing edges. After the final iteration of the for-loop in Line 3, the

edge labels of G correspond to the number of users that have that edge in their preference relation. The final

step of the algorithm computes the transitive closure of the graph and eliminates any cycles by applying the

procedure removeCycles (note that cycles can arise even though all individual relations are cycle-free). We

say that this subroutine does not unnecessarily remove edges if there does not exist an edge e in G such

that removeCycles(G) [{e} does not contain cycles. Since this subroutine is not explicitly given,]CSU is

10 RR-14-02

Figure 3: The merged preference relation obtained for each user. The three graphs show the merging of each

individual preference with the probabilistic preference.

Figure 4: Collapse to single user graph.

actually a family of operators.

Example 7 Continuing from Example 6, Figure 4 shows the final collapsed graph. Consider the atoms

place(p1) and place(p2) in this graph. We mentioned in Example 6 that the preference of user u2 was

reversed, because of the probabilities for those items; as a result, we have an unanimous preference of

place(p1) over place(p2) in the final graph. ⌅

The following theorem states that]CSU satisfies Definition 3.

Theorem 3 Let KB =(O,U ,M) be a GPP-Datalog+/– ontology, where U = (U1, . . . , Un). Let �∗=]CSU

(�U1
, . . . ,�Un

). Then, the following properties hold: (i) if removeCycles preserves transitivity, then �
∗ is a

preference aggregation operator; and (ii) if removeCycles only removes edges (v1, v2) whenever there does

not exist another edge in the cycle labeled with a lower number then, given a1, a2 2 HOnt such that for all

Ui 2U it holds that (a1, a2)2Ui, then we have that a1 �
∗ a2.

RR-14-02 11

4.1.2 Voting-Based Preference Aggregation

As an alternative to the approach described in the previous section, we now briefly discuss specific strategies

that can be used to combine the answers to k-rank queries computed individually for each user based on a

small set of well-known voting mechanisms from the social choice literature. Recall that this is essentially

different from the CSU approach above, where a single k-ranking is computed from a preference relation

distilled from all the users’ individual preferences. We consider the following voting mechanisms: plural-

ity voting, where each user votes for their top-preferred items, the items’ frequency for all the users are

summed up, and the items with highest number of votes win; the least misery strategy first removes from

consideration the elements that are the least preferred by each user, and then applies plurality voting — the

idea behind it is that a group is as happy as its least happy member; in the average without misery strategy,

the least misery approach is generalized by removing the t least liked elements for each member (instead of

just one); and the fairness strategy, which is often applied when people try to fairly divide a set of items —

one person chooses first, then another, until everyone has made one choice, and next, everybody chooses a

second item, often starting with the person who had to choose last in the previous round; an advantage of

this strategy is that the top items from all individuals are always selected.

In the following, we use]vote to denote the family of preference aggregation operators defined as: (i)

for each input SPO, compute a ranking (linear order); and (ii) apply a voting-based strategy over these linear

orders. For particular voting strategies, we use specific names such as]plu,]plu,fair,]plu,mis, and so on.

Therefore, we must adapt the voting strategies to work over linearly sorted lists of elements. Plurality voting

then works by assigning one vote to each element in the list. If a misery strategy is used, then each user’s

undesired elements are marked as unavailable before obtaining the individual rankings. Finally, if fairness

is used, we iterate through each user, who picks their highest-ranked elements in turn.

Example 8 Consider the preference relations for users u1, u2, and u3 from Figure 6 from our running

example. The first step towards applying a voting-based aggregation technique is to compute a ranking for

each user from their corresponding SPOs. For k=4, the following are some possible k-rankings for these

users:

r1 = hplace(p1), food(pasta), food(pizza), food(salad)i,

r2 = hfood(pasta), food(pizza), place(p1), food(salad)i,

r3 = hfood(pizza), food(fish), food(sushi), place(p1)i.

If we apply the aggregation operator]plu, then we have 3 votes for place(p1), 3 votes for food(pizza), 2

votes for food(salad) and food(pasta), 1 vote for food(fish) and food(sushi), and 0 votes for place(p1). The

SPO output by]plu arises from this tally. ⌅

4.2 Answering k-Rank Queries to GPP-Datalog+/– Ontologies

In this section, we first consider disjunctive atomic queries (DAQs) and then briefly discuss the extension to

conjunctive queries (CQs). We show that the former can be answered in polynomial time, while answering

the latter turns out to be Σ
p

2
-complete.

We use the standard notions of substitutions and most general unifiers. More specifically, a substitution

is a mapping from variables to variables or constants. Two sets S and T unify via a substitution θ iff

θS = θT , where θA denotes the application of θ to all variables in all elements of A; here, θ is a unifier.

12 RR-14-02

Algorithm 2: k-Rank-GPP(KB , Q, k, t,⌦,])
Input: GPP-Datalog+/– ontology KB = (O,U ,M), where U = (U1, . . . , Un), DAQ Q(X),

k > 0, t = (t1, . . . , tn) 2 [0, 1]n, and operators ⌦ and].

Output: k-rank answer ha1, . . . , ak0i to Q, with k0 6 k.

1. for every user i 2 {1, . . . , n} do

2. �i := ⌦ti
(M,�Ui

);
3. return iteratedSkyline(KB , Q,](�1, . . . ,�n), k).

Figure 5: Algorithm for computing a k-rank answer to DAQ Q.

A most general unifier (mgu) is a unifier θ such that for all other unifiers ω, there is a substitution σ such

that ω = σ � θ.

We now formally define skyline and k-rank answers to DAQs in a GPP-Datalog+/– ontology.

Definition 4 Let KB =(O,U ,M) be a GPP-Datalog+/– ontology, where U = (U1, . . . , Un), ⌦ and
U

be

preference merging and combination operators, respectively, and let Q(X)= q1(X)_· · ·_qn(X) be a DAQ.

A skyline answer to Q(X) relative to �⇤=
U
(⌦(M,�U1

), . . . ,⌦(M, �Un
)) is any θqi entailed by O such

that no θ
0 exists with O |= θ

0qj and θ
0qj �⇤

θqi, where θ and θ
0 are ground substitutions for the variables

in Q(X). For transitive relations, a k-rank answer to Q(X), k> 0, is a sequence S= hθ1ql1 , . . . , θk0qlk0 i of

maximal length of ground instances θiqli of atoms qli in Q(X), built by subsequently appending the skyline

answers to Q(X), removing these atoms from consideration, and repeating the process until (a) either the

length of S is k, or (b) no more skyline answers to Q(X) remain.

In Definition 4, note that k-rank answers are only defined when the preference relation is transitive; this

kind of answer can be seen as a generalization of traditional top-k answers [33] that are still defined when

�⇤ is not a weak order, and their name arises from the concept of rank introduced in [9]. Conceivably, other

ways of sorting answers given an SPO are possible; here, we focus on iterated skylines, since it is the most

general approach.

Intuitively, for DAQs, both kinds of answers can be seen as atomic consequences of O that satisfy the

query: the skyline answers can be seen as sets of atoms that are not dominated by any other such atom,

while k-rank answers are k-tuples sorted according to the preference relation. We refer to these as answers

in atom form.

We now present a general algorithm for obtaining k-rank answers using the machinery developed up to

now. Figure 5 presents the pseudocode — essentially, the algorithm follows Definition 4 by first applying

the merging operator ⌦ to each user’s preference relation and then applying the aggregation operator].

Finally, the result is obtained by computing a k-rank over this aggregation.

Example 9 Consider the running example, with Q= food(X), For k=4 and t=(t1, t2, t3)= (0, 0.1, 0.3),
one possible k-rank answer to Q given by both k-Rank-GPP(KB , Q, k, t,⌦,]CSU) and k-Rank-GPP(KB ,

Q, k, t,⌦,]plu) is hfood(pizza), food(pasta), food(salad), food(sushi)i — clearly, if different rankings from

the ones computed in Example 8 are used, then the result with respect to]plu could be different from that

of]CSU. ⌅

The following theorem proves the correctness of the k-Rank-GPP algorithm, and it shows that it runs

in polynomial time under certain conditions.

RR-14-02 13

Theorem 4 Let KB = (O,U ,M) be a GPP-Datalog+/– ontology, ⌦ and] be merging and aggregation

operators, respectively, Q be a DAQ, and k > 0. Then, (i) Algorithm k-Rank-CSU correctly computes

k-rank answers to Q; (ii) if] =]CSU and the removeCycles subroutine does not unnecessarily remove

any edges, then k-Rank-CSU runs in O(poly(kDk) · S + C) time in the data complexity; and (iii) if

] =]vote, and] can be computed in polynomial time in the data complexity, then k-Rank-CSU runs in

O(poly(kDk)·S) time in the data complexity. Here, kDk denotes the size of D, poly(kDk) is a polynomial in

kDk, S is the cost of computing PrM (a) for any atom a such that O |= a, and C is the cost of removeCycles.

Note that the running time depends on the cost of the removeCycles subroutine. Though cycles can

be removed in polynomial time, depending on the properties that we wish the output of this subroutine to

satisfy, the actual cost may vary considerably — for instance, if we wish to remove the minimum number

of edges possible, this is already NP-complete. The computational cost also depends on the implementation

of the voting strategies, which can clearly be computed in polynomial time in the data complexity for the

strategies discussed above; since cycles can never arise, the C factor from part (ii) does not appear.

k-Ranking for Conjunctive Queries. For (non-atomic) conjunctive queries, the substitutions in answers

no longer yield single atoms but rather sets of atoms; thus, to answer such queries relative to a preference

relation, we must extend the preference specification framework to take into account sets of atoms instead

of individual ones. One such approach was proposed in [37], where a mechanism to define a preference

relation over tuple sets �PS: 2
HPref ⇥ 2HPref is introduced. In the following, we briefly treat their complexity

and discuss how methods from the relational databases can be applied to answer them. The following result

says that this change has a direct impact on the complexity of both skyline and k-rank query answering; its

proof is a straightforward generalization of the result presented in [21, Theorem 16].

Theorem 5 Let KB =(O,U ,M) be a GPP-Datalog+/– ontology, where O=(D,Σ) and U =(U1, . . . , Un).
Let each �Ui

describe a preference relation �PS: 2
HPref ⇥ 2HPref such that membership can be tested in poly-

nomial time. Let ⌦ and] be preference merging and aggregation operators, respectively, and let Q be a

CQ. If the relational schema and Σ are fixed, deciding whether the set of skyline answers or a k-rank answer

to Q are non-empty is Σ
p
2
-complete.

The heuristic algorithms presented in [37] for relational databases can be applied to GPP-Datalog+/– by

computing the chase relative to the query and thus materializing the necessary part of the ontology into a

database. The result in [21, Theorem 17] provides a way to leverage tools developed for relational databases

for first-order (FO) rewritable fragments; if the user preferences are given as sets of preference formulas [9],

this result can be easily extended for GPP-Datalog+/– ontologies.

5 Semantic Properties of k-Ranking over Group Preferences

We now study a set of properties that can be considered desirable for the results of the aggregation of group

preferences. These properties are based on the ones usually studied in social choice theory [12], but extended

for k-rank query answers. Since the two kinds of aggregation strategies being studied are different in nature,

we study a different set of properties for each; essentially, the ones for voting-based strategies focus on the

ordering of elements (by individual users, subgroups, and groups), while the properties for CSU focus on

the relationship between specific pairs of elements. Note that these properties are only with respect to the

aggregation strategies, and do not involve the merging operations used to combine SPOs with preferences

arising from probabilistic models.

14 RR-14-02

In the presentation of the properties, when we say that an element is added, we refer to the modification

of individual SPOs by adding a new element along with any preference edges between that element and

existing ones; we assume that the rest of the SPO is left unchanged, except for the addition of any necessary

edges to satisfy transitivity. Similarly, when we say that an element is removed, we refer to the operation

of removing the element from the SPO and any preference edges associated with it. In the sequel, let P =
(U1, . . . , Un), PA = (UA

1 , . . . , UA
n), and PB = (UB

1 , . . . , UB
n) be group preference models, and PA[B =

(UA
1 , . . . , UA

n , UB
1 , . . . , UB

m). Given a group preference model P , we refer to the SPO corresponding to the

aggregation of the preferences in P as �⇤

P
=] (�U1

, . . . ,�Un
).

5.1 Semantic Properties of Voting-Based Strategies

Unanimous Winner (UW): If an element a is in a k-rank answer to Q for each Ui 2 P , then there exists a

k-rank answer to Q for P that contains element a.

Unanimous Loser (UL): If element a is in none of the k-rank answers to Q for each Ui 2 P , then a does not

belong to any k-rank answer to Q for P .

In the following, let Padd be a group preference model obtained from P by adding a new element c to

choose from and Prem be a group preference model obtained from P by removing from consideration an

element c.

Weak Stability (WS): For each k-rank answer r = ha1, . . . , aki to Q for P , there exists a k-rank answer

r0 = hb1, . . . , bki to Q for Padd such that either r= r0 or {b1, . . . , bk}� {a1, . . . , ak} = {c}.

This property states that whenever a new element is added, the set of elements in the result either remains

unchanged or differs in the added element.

Stability 1 (S1): For each k-rank answer r = ha1, . . . , aki to Q for P , there exists a k-rank answer r0 =
hb1, . . . , bki to Q for Padd such that either r= r0 or (i) {b1, . . . , bk} � {a1, . . . , ak} = {c}, (ii) for some j,

1 6 j 6 k, bj = c, and (iii) for each bi, bj such that 1 6 i < j 6 k and bi = ai0 and bj = bj0 it holds that

i0 < j0.

As a stronger version of WS, this property requires the order to be the same among the elements in the

result.

Stability 2 (S2): For each k-rank answer r = ha1, . . . , aki to Q for P , if c 6= ai for 1 6 i 6 k, then every

k-rank answer r = hb1, . . . , bki to Q for Prem is such that bi = ai and bi 6= c, for 1 6 i 6 k.

If an element not in the k-rank is removed from consideration, the result must be the same.

Monotonicity 1 (M1): Let r = ha1, . . . , ai�1, c, ai+1, . . . , aki be a k-rank answer to Q for some Ui 2 P ,

and P 0 be equal to P except that one of the Ui’s is changed to U 0

i such that there exists a k-rank answer

r0 = ha01, . . . , a
0

j�1, c, a
0

j+1, . . . , a
0

ki to Q with j 6 i. Then, there exists a k-rank answer r00 = hb1, . . . , bki
to Q for P 0 such that bm = c, for some 1 6 m 6 k.

Intuitively, Monotonicity 1 states that if an element is in a k-rank, it is still in a k-rank if a profile changes

to rank it higher.

Monotonicity 2 (M2): Let c be an element such that for every k-rank answer r = ha1, . . . , aki to Q for P
we have c 6= ai for 1 6 i 6 k, and let P 0 be equal to P except that one of the Ui’s is changed to U 0

i such

that for every k-rank answer r0 = ha01, . . . , a
0

ki to Q for U 0

i we have that c 6= a0i for 1 6 i 6 k. Then, every

k-rank answer r = hb1, . . . , bki to Q for P 0 is such that c 6= bi for 1 6 i 6 k.

RR-14-02 15

UW UL WS S1 S2 M1 M2 ND

P X X X X X X X X

F ⇥ X X X X X X ⇥ (k = 1) / X(k 6= 1)

PM X X X X X X X X

FM ⇥ X X X X X X X

Figure 6: Summary of properties satisfied by each voting-based strategy.

If an element is not in the k-rank, then it is not in the k-rank when some profile is changed to lower its

rank.

Non-dictatorship (ND): There is no Ui in P such that the k-rank answers to Q for P are determined by that

preference model alone.

Proposition 6 The following properties hold for the specific voting-based strategies:

• Plurality satisfies UW, UL, WS, S1, S2, M1, M2, and ND.

• Fairness satisfies UL, WS, S1, S2, M1, M2, and ND with k 6= 1.

• Plurality with misery satisfies UW, UL, WS, S1, S2, M1, M2, and ND.

• Fairness with misery satisfies UL, WS, S1, S2, M1, M2, and ND.

5.2 Semantic Properties of the CSU Strategy

Group Union Preservation First Position (GUPF): Let r = ha1, . . . , aki and r0 = hb1, . . . , bki be k-rank

answers to Q for PA and PB , respectively. If a = a1 = b1, then there exists a k-rank answer r00 =
ha, c1, . . . , ck�1i to Q for PA[B .

Intuitively, if element a appears in the first position of a k-rank answer to Q for both PA and PB , then a

appears in the first position of a k-rank answer to Q for the union of the group preference models.

UW First Position (UWF): If for every Ui in P , there exists a k-rank answer to Q for Ui of the form

ha, b1, . . . , bk�1i, then there exists a k-rank answer to Q for P of the form ha, c1, . . . , ck�1i.
Intuitively, if element a appears in the first position of a k-rank answer to Q for each Ui 2 P , then a

appears in the first position of a k-rank answer to Q for P .

Unanimity on preference relation (UP): If removeCycles only removes edges (v1, v2) whenever there does

not exist another edge in the cycle labeled with a lower number, then whenever t1 �Ui
t2 for each Ui in P ,

then t1 �
⇤

P
t2.

Proposition 7 The CSU strategy (as implemented in Algorithm AggPrefsCSU) satisfies GUPF, UWF, and

UP.

6 Implementation and Experimental Evaluation

In this section, we evaluate and analyze the running time of our algorithms and the quality of their results,

over experiments done with real-world data. Further details are included in Appendix C.

16 RR-14-02

City No. of Businesses Average No. of Nodes Average No. of Pref. Edges

Peoria 109 42.33 1,136.53

Gilbert 163 61.68 2,872.91

Glendale 242 91.93 7,171.96

Chandler 349 136.17 16,222.71

Tempe 465 180.97 27,835.80

Figure 7: Size information for the different subsets of the used dataset and corresponding average size of

the CSU-PrefChase built during the query answering process (using the CSU aggregation strategy).

6.1 Implementation and Hardware

We implemented G-PrefDatalog+/– by extending the Datalog+/– query answering engine in [16], which

supports FO-rewritable fragments of the Datalog+/– family of ontology languages. Essentially, the exten-

sion involved adding query answering based on group preferences, as well as handling of merging and

aggregation operators. As for the latter, we implemented collapse to single user (CSU), plurality vot-

ing, and plurality voting with misery. All graph operations were implemented using the JGraphT library

(http://jgrapht.org/), which provides efficient data structures for the representation of graph struc-

tures as well as efficient implementations of operations such as reachability and cycle detection. The entire

implementation was done in Java.

All runs were done on an Intel Core i7 processor at 2.2 GHz and 8GB of RAM, under the Mac

OS X 10.6.8 operating system and a Sun JVM Standard Edition with maximum heap size set at 512 MB of

RAM. To minimize experimental variation, all results are averages of three independent runs.

6.2 Experimental Setup

Inputs to our system consist of tuples of the form hQ,O,P, ki with O=(D,Σ), where Q is a query, D

is a database, Σ is a finite set of TGDs, P is a group preference model, and k is the number of query

results that we are interested in. The CSU-PrefChase consists of a graph that stores all user preferences after

constructing the chase. The preference graph is a labeled directed multigraph (N,E, `), where N is the

node set (the atoms), E is the edge set (the preference relation), and the labeling function ` stores for each

edge the identity of its user. That is, edges in E are pairs of nodes (u, v), which state that u is preferred to

v by the user specified in the label `(u, v). The CSU-PrefChase is adapted for obtaining the answer to all

queries, depending on the chosen strategy. A high-level overview of the architecture of our system can be

found in Appendix C.

Data. All runs were carried out using an ontology built on the basis of the data from the Yelp Dataset Chal-

lenge [36]; this dataset contains 11, 537 businesses in the Phoenix metropolitan area in the United States,

8, 282 check-in sets, 43, 873 users, and 229, 907 reviews — each business has one or more associated cat-

egories. The Datalog+/– ontology used for these experiments was constructed as follows. We manually

wrote TGDs using categories related to the dataset, yielding a set of 53 TGDs. For example, the “Asian” and

“Chinese” categories give rise to the TGD chinese(X) ! asian(X). The database instance was automati-

cally generated using the mapping between businesses and categories. To test our algorithms on instances of

different sizes, we considered five different subsets of the dataset corresponding to different cities in the state

of Arizona (cf. Figure 7). Finally, the database for this ontology was stored in a PostgreSQL 9.3 database.

See Appendix C for further details on the construction of the underlying ontology.

User preferences. We requested users to define preferences over places along two dimensions: meal (break-

RR-14-02 17

fast, lunch, and dinner) and details of the meal: cuisine (Italian, Asian, etc.), type of food (pizza, sandwich,

etc.), and type of place (bar, cafe, etc.) — each combination of these produced a set of nine so-called

choice scenarios, such as “cuisine for lunch” or “type of food for dinner”. Preferences were entered using a

graphical interface (illustrated in Figure 14 in Appendix C). A total of 49 people responded to our request,

yielding a total of 364 SPOs (not all users entered their preferences for all nine scenarios). These SPOs

were then processed using the set of businesses in the dataset in such a way that business X is preferred

over business Y iff the SPO establishes the preference over their corresponding categories (for instance, if

the users specified that they prefer bagels over sushi, then all bagel businesses are preferred over all sushi

businesses).

Group definition. The groups of users were created manually, such that all members know each other. From

the total of 49 users, we generated 19 different groups, ranging from 3 to 9 users. This produced a grand

total of 19 · 9 = 171 group choice scenarios; for each data point in the group size variation experiments

below, we randomly chose ten SPOs and reported the average.

Probabilistic model and choice of parameters. For each business, the Yelp dataset provides a numerical

rating ranging from 0 to 5. We used this information to create our probabilistic model by using the category

supplied in the dataset; the probability assigned to a business in a category is computed as (rating+0.5)/5.5
if the categories match, and zero otherwise. Though more complex models are of course possible, this is

outside the scope of our experiments. Finally, values for the parameter t were generated automatically as

uniformly distributed random values in the interval [m−σ,m+σ], where m is the mean value of the ratings,

and σ is the standard deviation.

Queries. We used the following three queries: Q1(X)= food(X), Q2(X)= cuisine(X), and Q3(X) =
place(X), representing the situations where groups wish to decide about where to go to eat, based on the

preferences over kinds of food, cuisine, and place, respectively. Unless stated otherwise, all experiments

were run with 5 6 k 6 20, in steps of 5.

6.3 Performance Evaluation

The main performance metric that we investigate in this study is the time that is required to carry out query

answering when certain parameters are varied. Figure 8, left side, shows scatterplots for the running time

when three different parameters are varied: aggregation strategy (one graph per strategy), group size (x
axis), and number of businesses in the database (different markers in each graph); as described above, the

numbers for the latter arise from the selection of five different cities that were chosen in order to evaluate

how running times vary when the number of businesses increases gradually. Note that groups of size 6 do

not have data points associated with them — this is due to the fact that our data did not contain enough

instances of combinations of groups of this size with choice scenarios. The dotted/dashed lines in these

graphs correspond to trend lines showing the increase in running time when the group size increases.

The graphs in Figure 8, right side, show how the running time increases as the number of businesses in

the database increases (each point is an average over the group sizes considered) — note that the y axis in

these figures is on a logarithmic scale. These results show that our prototype implementation yields a top-3

answer for a city with 465 businesses to choose from in about 27 seconds. The table in Figure 7 shows the

number of nodes in the preference chase for each city, as well as the number of edges for the collapsed graph

when the CSU strategy is used.

The results in Figure 8 show that the three different strategies have similar running times for these runs;

however, the way in which the running time is used by the two main approaches (CSU and plurality) is

different. To illustrate this difference, Figure 9 plots the partial times in pie charts; for instance, observe

18 RR-14-02

0

5

10

15

20

25

30

3 4 5 6 7 8 9

T
im

e
(s
e
co
n
d
s)

Group Size

Query Answering Running Time CSU Strategy, k = 3

465

349

242

163

109

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

0 100 200 300 400 500

T
im

e
(s
e
co
n
d
s)

Number of Businesses

Query Answering Running Time CSU Strategy, k = 3

0

5

10

15

20

25

30

3 4 5 6 7 8 9

T
im

e
(s
e
co
n
d
s)

Group Size

Query Answering Running Time Plurality Strategy, k = 3

465

349

242

163

109

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

0 100 200 300 400 500

T
im

e
(s
e
co
n
d
s)

Number of Businesses

Query Answering Running Time Plurality Strategy, k = 3

0

5

10

15

20

25

30

3 4 5 6 7 8 9

T
im

e
(s
e
co
n
d
s)

Group Size

Query Answering Running Time Plurality w/Misery Strategy, k = 3

465

349

242

163

109

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

0 100 200 300 400 500

T
im

e
(s
e
co
n
d
s)

Number of Businesses

Query Answering Running Time Plurality w/Misery Strategy, k = 3

Figure 8: Running times for top-3 query answering when varying the number of businesses in the database,

the group size, and the preference aggregation strategies.

that CSU takes more time computing the top-k, while plurality takes more time computing the result of the

merging operator.

6.4 Quality Evaluation

In this section, we discuss experiments carried out to evaluate the quality of the results produced by our

algorithms. We first discuss the metrics used, and then go on to discuss the results. The experimental setup

is identical to the one used in the previous experiments, except that we focused on a single city (Gilbert),

since the number of businesses is not varied.

6.4.1 Evaluation Metrics

Usually, methods based on precision and recall are used when comparing two lists of results — however,

since these methods rely on the availability of “ground truth” and there is no clear notion of what such a

RR-14-02 19

Chase

Construction

7.99%

Query Rewriting

14.08%

Preference

Construction

0.55%

Merging

Operator

68.46%

Top k

Computation

8.92%

Distribution of Running Time CSU Strategy

Chase

Construction

9.64%

Query Rewriting

12.26%

Preference

Construction

0.63%

Merging

Operator

77.48%

Top k

Computation

1.65%

Distribution of Running Time Plurality Strategy

Figure 9: Distribution of running times for the CSU and plurality strategies.

ground truth is for our setting, these methods are not applicable. Therefore, we use quality measurements

that are often applied in evaluating information retrieval and group recommender systems [10, 29]; the main

ones adopted are tuple agreement, Kendall tau distance, and Spearman’s footrule.

Given two top-k lists, tuple agreement is defined as the number of tuples that appear in both lists (i.e.,

it does not consider the actual ordering of the tuples). To allow comparisons across different values of k,

we normalize the tuple agreement and call this value Agreement. Note that higher is better for Agreement,

a value of 1 indicating lists with the same elements (perhaps in different order). The second measure is

a variation of the Kendall tau distance for partial orders that computes the distance between two partial

rankings based on the number of pairwise disagreements between them [10] — a disagreement receives a

penalty of 1, while for agreement there is no penalty. In case the two top-k lists are permutations of each

other, this is the number of exchanges required to convert one into the other. However, if a pair (i, j) appears

in one list but not in the other, we do not know if the penalty should be 0 or 1; therefore, it takes a parameter

p indicating how pessimistic the metric should be (p=1 is most pessimistic). The measure is normalized

by the square of the length of the union of the two lists, and this value is called Kendallp. Note that lower

is better for Kendall, since it measures differences instead of agreement. Finally, the third measure is a

variation of the Spearman’s footrule metric for partial orders that computes the distance between two partial

rankings using the difference of positions of elements of one list in comparison with the other [10]. Where

Kendall just counts number of swaps, this metric counts how far each element must be moved to reach the

place occupied in the other list. This measure is normalized as before, and the result is called Spearman.

Note that, like Kendall, lower is better for Spearman.

6.4.2 Results

We now discuss two research questions: “Which aggregation method yields the best results?” and “How

different are the results produced by each aggregation method?”. We discuss each of these questions in turn.

Question 1: “Which aggregation method yields the best results?” To answer this question, for each

group, we computed a top-k query answer rg, as well as a top-k query answer ri for each user in the group.

We then computed the value of each measure over rg and ri, and finally report the mean of all such results.

We carried out three different comparisons: overall, varying group size, and varying the value of k — for

the first, we report five different measures, while for the other two, we focus on Agreement and Spearman

for reasons of space.

20 RR-14-02

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Agreement Spearman Kendall-0 Kendall-0.5 Kendall-1

M
e

a
s
u

r
e

Methods vs. User

CSU

Plurality

Misery

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Agreement Spearman Kendall0 Kendall05 Kendall1

M
e

a
su

re

Method Comparison

CSU vs Plurality

CSU vs Misery

Plurality vs Misery

Figure 10: Comparison of the approaches with user preferences (left) and pairwise comparison of ap-

proaches (right). Higher is better for Agreement, while lower is better for the rest.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

2 3 4 5 6 7

A
g

re
e

m
e

n
t

Group Size

Methods vs. User (Agreement Measure) – Varying Group Size

CSU

Plurality

Misery

0.20

0.30

0.40

0.50

0.60

0.70

0.80

2 3 4 5 6 7

S
p

e
a

rm
a

n

Group Size

Methods vs. User (Spearman Measure) – Varying Group Size

 CSU

Plurality

Misery

Figure 11: How Agreement (left, higher is better) and Spearman (right, lower is better) change depending

on group size.

0.20

0.30

0.40

0.50

0.60

0.70

0.80

5 10 15 20

A
g

re
e

m
e

n
t

k

Methods vs. User (Agreement Measure) – Varying k

CSU

Plurality

 Misery

0.20

0.30

0.40

0.50

0.60

0.70

0.80

5 10 15 20

S
p

e
a

rm
a

n

k

Methods vs. User (Spearman Measure) – Varying k

 CSU

Plurality

Misery

Figure 12: How Agreement (left, higher is better) and Spearman (right, lower is better) change depending

on the value of k.

Overall comparison. Figure 10 (left) shows an overall comparison between each aggregation method and

the users’ rankings. Here, we see that plurality voting performed best in our experiments both in terms of the

agreement between the desires of each individual user and what the aggregated result yields (Agreeement

measure), as well as in terms of the ordering of the results (the rest of the measures). Plurality with misery

RR-14-02 21

was the worst performer, both in terms of agreement and ordering of the top-k. This is likely due to the

fact that this method empowers users to veto options that could be ranked high by several others. Another

problem could arise due to cycles; for efficiency, our implementation of removeCycles iteratively chooses

a random edge from a cycle and removes it without taking into consideration the effect of this operation

on the opinions of the other members. Developing a better way to address cycles is an interesting topic of

future research.

Varying group size. Figure 11 shows the results of experiments varying the group size between 2 and 7

(Agreement measure on the left, Spearman on the right) — we eliminated group sizes for which we did not

have enough data. Results show that all aggregation methods tend to worsen with both measures as group

size increases — this is consistent with the fact that groups of larger size are more difficult to satisfy when

k is fixed since it is more likely that conflicting preferences exist.

Varying value of k. Figure 12 shows our results when varying k between 5 and 20 — as before, we have

results for the Agreement measure on the left and for Spearman on the right. Opposite to what was observed

when varying group size, we see that increasing the value of k affords an increase of performance for all

aggregation methods over both measures. One possible exception is misery with respect to the Agreement

measure, which seems to slightly worsen as k increases – this special behavior is likely a consequence of

the same issues discussed above. This overall tendency to perform better as k increases makes sense for a

group of fixed size, since more space becomes available in the result to accommodate potentially conflicting

user preferences.

Question 2: “How different are the results produced by each aggregation method?” Figure 10 (right)

shows an overall comparison between the results produced by each of our aggregation methods. Focusing on

plurality (the overall best performer in the experiments for Question 1), we now compare how similar CSU

and misery are to plurality. We can see that with respect to the Agreement measure, plurality and CSU are

the most similar for these runs; interestingly, for the rest of the measures, the most similar to plurality was

misery. Figures 17 and 18 in Appendix C complement these results — the former shows the same behavior

when varying k for Agreement, though for Spearman, CSU turns out to be a little better than misery. The

latter experiment, however, returns to the same pattern with respect to variations in group size, and CSU is

most similar to plurality relative to Agreement, while misery is most similar relative to Spearman (though

the differences are not large at the highest setting of the parameter).

These results suggest that CSU is good at getting the right elements in the result, but misery is good at

getting the order right (using the results obtained by plurality as a baseline).

7 Discussion

In this paper, we have proposed a two-fold extension of the Datalog+/– ontology language: allowing for

partially ordered preferences of groups of users, and the management of probabilistic uncertainty. To our

knowledge, this is the first combination of ontology languages with group preferences. We focused on an-

swering k-rank queries in this context, and studied different approaches to computing answers to queries

based on group preferences; the main challenge is to find a principled way in which to combine the pref-

erences of each individual in the group, while also taking into account the preferences induced by the

probabilities obtained from the uncertainty model. We then studied algorithms to answer k-rank queries for

disjunctions of atomic queries under these conditions, and showed that it can be done in polynomial time in

the data complexity, as long as query answering can also be done so in the underlying classical ontology.

22 RR-14-02

Finally, we presented a prototype implementation of our framework, including an empirical analysis using

real-world data and preference models obtained from real users, showing that our approach is feasible in

practice.

An interesting question that comes up when implementing these techniques in a real-world scenario is

how to decide which aggregation technique to use — this will indeed have an impact on how group decisions

are made, as seen in Section 6. Some guidelines regarding this question for the techniques studied here are

the following: (i) CSU is a fine-grained approach that, given its consideration of all pairs, allows for a better

leveraging of user preference information; (ii) on the other hand, the voting-based approach taken in this

paper computes k-rankings as a first step, which may end up containing arbitrary elements. For instance,

coming back to the friends in Example 1, consider the case in which k = 2 and Alberto’s preferences yields

ranking hr1, r3i, Bruno’s yields hr2, r3i, and Charles’s hr1, r2i — note that Charles is the only one who

actually cares about the position of the second element, while the answers of the other two were completed

arbitrarily after the first position. The misery and fairness techniques can help mitigate these issues, but in

general they can still arise. On the other hand, CSU has the weakness of only working on partial graphs

— in carrying out our experiments with real users, we found that people do not find partial orderings of

elements natural (most questions were variations of “Do I have to fill in all possible pairs?”). Thus, the

voting-based approaches have the advantage of simplicity, since it is possible to directly request a linear

ordering of elements from each user, since this is the first step in the aggregation anyway.

Regarding the limitations of our work, perhaps the most evident is the fact that the only information

being leveraged when computing answers to k-rank queries are the preferences of the users; this affords a

lightweight query answering framework that requires a relatively minimal amount of input from the user.

The weakness, however, is that cases may arise in which users pose completely opposite preferences leading

to a tie which cannot be broken without making an arbitrary choice. Some of the suggestions discussed

below on how to continue this research address this issue directly. Also, from our quality evaluation it

seems that plurality is the most similar to what individual users want; still, many times users are willing to

make compromises depending on other group members and our current approach does not contemplate this.

Topics for future work include further exploration of the similarity of preference aggregation and merg-

ing strategies to human judgment; this will shed light on how well-suited each of them is as a general

aggregation strategy for search and query answering in the Social Semantic Web. Related to this effort, and

to the limitations mentioned above, our experimental evaluation shows that new methods for measuring user

satisfaction within a group should be developed, perhaps based on the difference between least and most

satisfied users, and incorporated into our framework. Another interesting vein for future development is

deriving explanations along with the answers to queries — in social situations, it is likely that users’ sat-

isfaction with the answer is tied to how it was produced; for instance, if close friends heavily influenced

the result the user will probably respond better than if the result was influenced by strangers. Towards this

end, we propose to explore the use of provenance models [26] as well as approaches based on argumenta-

tion [32], among others, in our framework. Finally, another interesting social aspect to work on is that of

contemplating “past footprints” of group decisions as part of further information that can be leveraged when

answering queries over closely related groups — in this paper, we assumed a one-shot process where this

is not applicable, but this kind of information could be valuable, for instance, in enforcing another form of

fairness since individuals favored in the past can be guaranteed to have less weight in future decisions.

RR-14-02 23

References

[1] Michael Ackerman, Sul-Young Choi, Peter Coughlin, Eric Gottlieb, and Japheth Wood. Elections with

partially ordered preferences. Public Choice, 157(1/2):145–168, 2012.

[2] S. Amer-Yahia, S.B. Roy, A. Chawla, G. Das, and C. Yu. Group recommendation: Semantics and

efficiency. Proc. VLDB Endow., 2(1):754–765, 2009.

[3] C. Beeri and M. Y. Vardi. The implication problem for data dependencies. In Proc. ICALP, volume

115 of LNCS, pages 73–85. Springer, 1981.

[4] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In Proc. of ICDE, pages 421–430.

IEEE Computer Society, 2001.

[5] R.I. Brafman and C. Domshlak. Preference handling — An introductory tutorial. AI Mag., 30(1):58–

86, 2009.

[6] A. Calı̀, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under expressive

relational constraints. In Proc. KR, pages 70–80. AAAI Press, 2008.

[7] A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general Datalog-based framework for tractable query

answering over ontologies. J. Web Sem., 14:57–83, 2012.

[8] A. Calı̀, G. Gottlob, and A. Pieris. Query answering under non-guarded rules in Datalog+/–. In Proc.

of RR, volume 6333 of LNCS, pages 1–17. Springer, 2010.

[9] J. Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst., 28(4):427–466,

2003.

[10] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. SIAM J. Discrete Math., 17(1):134–160,

2003.

[11] M. Finger, R. Wassermann, and F.G. Cozman. Satisfiability in EL with sets of probabilistic ABoxes.

In Proc. of DL, 2011.

[12] W. Gaertner. A Primer in Social Choice Theory: Revised Edition. Oxford University Press, 2009.

[13] M. Gartrell, X. Xing, Q. Lv, A. Beach, R. Han, S. Mishra, and K. Seada. Enhancing group recom-

mendation by incorporating social relationship interactions. In Proc. of GROUP, pages 97–106. ACM

Press, 2010.

[14] G. Gottlob, T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Query answering under probabilistic

uncertainty in Datalog+/– ontologies. Ann. Math. Artif. Intell., 69(1):37–72, 2013.

[15] G. Gottlob, T. Lukasiewicz, and G. I. Simari. Answering threshold queries in probabilistic Datalog+/–

ontologies. In Proceedings SUM, volume 6929 of LNCS, pages 401–414. Springer, 2011.

[16] G. Gottlob, G. Orsi, and A. Pieris. Ontological queries: Rewriting and optimization. In Proc. of ICDE,

pages 2–13. IEEE Computer Society, 2011.

24 RR-14-02

[17] J. C. Jung and C. Lutz. Ontology-based access to probabilistic data with OWL QL. In Proc. of ISWC,

volume 7649 of LNCS, pages 182–197. Springer, 2012.

[18] J. Lang, M. S. Pini, F. Rossi, D. Salvagnin, K. B. Venable, and T. Walsh. Winner determination

in voting trees with incomplete preferences and weighted votes. Auton. Agent. Multi-Agent Syst.,

25(1):130–157, 2012.

[19] G. Linden, B. Smith, and J. York. Industry report: Amazon.com recommendations: Item-to-item

collaborative filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[20] T. Lukasiewicz, M. V. Martinez, G. Orsi, and G. I. Simari. Heuristic ranking in tightly coupled proba-

bilistic description logics. In Proc. of UAI, pages 554–563. AUAI, 2012.

[21] T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Preference-based query answering in Datalog+/–

ontologies. In Proc. of IJCAI, pages 1017–1023. IJCAI/AAAI, 2013.

[22] T. Lukasiewicz, M. V. Martinez, and G. I. Simari. Preference-based query answering in probabilistic

Datalog+/– ontologies. In Proc. of ODBASE, volume 8185 of LNCS, pages 501–518. Springer, 2013.

[23] T. Lukasiewicz, M. V. Martinez, G. I. Simari, and O. Tifrea-Marciuska. Group preferences for query

answering in Datalog+/– ontologies. In Proc. of SUM, volume 8078 of LNCS, pages 360–373. Springer,

2013.

[24] T. Lukasiewicz, M. V. Martinez, G. I. Simari, and O. Tifrea-Marciuska. Query answering in probabilis-

tic Datalog+/– ontologies under group preferences. In Proc. of WI, pages 171–178. IEEE Computer

Society, 2013.

[25] M. Manoj and Elizabeth Jacob. Information retrieval on internet using meta-search engines: A review.

J. Sci. Ind. Res., 67(10):739–746, 2008.

[26] U. Marjit, K. Sharma, and U. Biswas. Provenance representation and storage techniques in linked data:

A state-of-the-art survey. Int. J. Comput. Appl., 38(9):23–28, 2012.

[27] J. Masthoff. Group modeling: Selecting a sequence of television items to suit a group of viewers. User

Model. User-Adapt. Interact., 14(1):37–85, 2004.

[28] J. Noessner and M. Niepert. ELOG: A probabilistic reasoner for OWL EL. In Proc. of RR, volume

6902 of LNCS, pages 281–286. Springer, 2011.

[29] E. Ntoutsi, K. Stefanidis, K. Nørvåg, and H.-P. Kriegel. Fast group recommendations by applying user

clustering. In Proc. of ER, volume 7532 of LNCS, pages 126–140. Springer, 2012.

[30] P. K. Pattanaik. Voting and Collective Choice: Some Aspects of the Theory of Group Decision-Making.

Cambridge University Press, 1971.

[31] M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Aggregating partially ordered preferences.

J. Log. Comput., 19(3):475–502, 2009.

[32] I. Rahwan and G. R. Simari. Argumentation in Artificial Intelligence. Springer, 1st edition, 2009.

RR-14-02 25

[33] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, composition and application of

preferences in database systems. ACM T. Database Syst., 36(3):19:1–19:45, 2011.

[34] A. D. Taylor. Social Choice and the Mathematics of Manipulation. Cambridge University Press, 2005.

[35] M. Wooldridge. An Introduction to Multiagent Systems. Wiley, 2009.

[36] Yelp. Yelp Dataset Challenge, 2012.

[37] X. Zhang and J. Chomicki. Preference queries over sets. In Proc. of ICDE, pages 1019–1030. IEEE

Computer Society, 2011.

A The Chase

The chase was first introduced to enable checking implication of dependencies, and later also for checking

query containment. By “chase”, we refer both to the chase procedure and to its output. The TGD chase

works on a database via so-called TGD chase rules (see [7] for an extended chase with also EGD chase

rules).

TGD Chase Rule. Let D be a database, and σ be a TGD of the form Φ(X,Y) ! 9ZΨ(X,Z). Then, σ is

applicable to D iff there exists a homomorphism h that maps the atoms of Φ(X,Y) to atoms of D. Let σ be

applicable to D, and h1 be a homomorphism that extends h as follows: for each Xi 2 X, h1(Xi) = h(Xi);
for each Zj 2 Z, h1(Zj) = zj , where zj is a “fresh” null, i.e., zj 2 ∆N , zj does not occur in D, and zj
lexicographically follows all other nulls already introduced. The application of σ on D adds to D the atom

h1(Ψ(X,Z)) if not already in D.

The chase algorithm for a database D and a set of TGDs Σ consists of an exhaustive application of

the TGD chase rule in a breadth-first (level-saturating) fashion, which outputs a (possibly infinite) chase

for D and Σ. Formally, the chase of level up to 0 of D relative to Σ, denoted chase0(D,Σ), is defined

as D, assigning to every atom in D the (derivation) level 0. For every k> 1, the chase of level up to k

of D relative to Σ, denoted chasek(D,Σ), is constructed as follows: let I1, . . . , In be all possible images

of bodies of TGDs in Σ relative to some homomorphism such that (i) I1, . . . , In✓ chasek�1(D,Σ) and

(ii) the highest level of an atom in every Ii is k � 1; then, perform every corresponding TGD application

on chasek�1(D,Σ), choosing the applied TGDs and homomorphisms in a (fixed) linear and lexicographic

order, respectively, and assigning to every new atom the (derivation) level k. The chase of D relative to Σ,

denoted chase(D,Σ), is defined as the limit of chasek(D,Σ) for k!1.

B Proofs

Proof of Proposition 1. Let �⇤= ⌦t(M,�U). We now prove that (i) �⇤ is an SPO, and (ii) if a1 �U a2
and a1 �M a2, then a1 �

⇤ a2.

(i) We must show that �⇤ is irreflexive and transitive. Let �0 be the intermediate result of the ⌦t operator

just before computing the transitive closure. By assumption, �U is irreflexive, and (as �0 cannot contain any

new self-edges) this property is preserved in �0. By construction, �⇤ is the transitive closure of �0. Since

this operation does not add cycles, �⇤ is also irreflexive, in addition to clearly being transitive. Overall, �⇤

is an SPO.

26 RR-14-02

(ii) A necessary condition for ⌦t to change the order of a pair in �U is that the pair in �M be reversed.

Since by hypothesis this is not the case, the statement follows. ⇤

Proof of Proposition 2. If t=0, then we check whether there are pairs (a, b) in �U with PrM (b) �
PrM (a) > t relative to �M . Since by assumption, �M =�M 0 , it must be the case that PrM (b)�PrM (a) >
t relative to �M iff this is the case relative to �M 0 , and thus the outputs in both cases must be identical. ⇤

Proof of Theorem 3. (i) By hypothesis, �∗ is transitive and cycle-free — the former is assumed by hypoth-

esis and the latter is ensured by removeCycles. Therefore, �∗ is irreflexive and antisymmetric, and thus an

SPO.

(ii) By Proposition 1, for 1 6 i 6 n, we know that ⌦ti
(M,�Ui

) are all SPOs and therefore cycle-free.

Towards a contradiction, suppose that a1 6�∗ a2; by the construction of the graph G in AggPrefsCSU and

the hypothesis that (a1, a2) 2 ⌦ti
(M,�Ui

) for all 1 6 i 6 n, this can only happen if (a1, a2) belongs to

a cycle, and the algorithm chose to remove this cycle by deleting this edge. Since the label of (a1, a2) is n

and, by the assumption of how removeCycles works, the entire cycle is composed of edges labeled with n;

but this contradicts ⌦ti
(M,�Ui

) being SPOs. ⇤

Proof of Theorem 4. First of all, we show that the computation of �∗ in Line 2 of k-Rank-CSU is such

that �∗=
U
(⌦t1(M,�U1

), . . . ,⌦tn(M,�Un
)). The AggPrefsCSU algorithm iterates through all the users

u and directly applies the definition of the ⌦ti
operator to produce the currUserG graph. Once this graph

is computed, the algorithm updates graph G and its labels accordingly — the edge labels after the final

iteration of the for-loop in Line 3 correspond to the number of users that have that edge in their preference

relation after combining it with the probabilistic one according to t (the last computation steps compute the

transitive closure and remove cycles).

Now, correctness is a consequence of the direct application of the definition of k-rank: the while-loop

in Line 5 iteratively computes the skyline answers to Q by means of a subroutine, adds these results to the

output in arbitrary order, and removes them from consideration. Line 10 ensures that at most k results are

returned.

Finally, we show that k-Rank-CSU runs in O(poly(kDk) · S + C) time in the data complexity. As O

is assumed to be tractable, the (necessary finite portion of the) chase of O relative to Q can be computed in

polynomial time in the data complexity [7]. The �∗ relation is computed in time O(k�Uk · S + C), where

k�Uk is a polynomial in kDk. Now, computeSkyline(KB , Q,�∗) can be computed in polynomial time by

a linear-time scan of the chase structure for Q (of polynomial size, by hypothesis), and the results can be

removed by another such scan. ⇤

Proof of Proposition 6. Results for Unanimous Winner (UW)

• Plurality satisfies UW.

Proof: If everyone in a group of n users has element a in a k-rank answer, then element a has n votes.

The only way that no ranking with element a exists is that there are k elements with at least n + 1
votes, which is impossible. ⇤

• Fairness does not satisfy UW.

Proof by counterexample: Suppose we have two group preference models P1 = hU1i and P2 = hU2i,
a query Q, and the following are k-rank answers to Q for each of them with k = 3:

RR-14-02 27

P1 :

Element

b

a

c

P2 :

Element

d

e

c

Element c belongs to a 3-rank answer to Q for P1 and P2; however, no matter which order we take

between U1 and U2, no 3-rank answer to Q for P1 [P2 contains element c.

• Plurality with misery satisfies UW.

Proof: Analogous to the proof for plurality; note that if the an element is a unanimous winner then it

cannot be a misery element. ⇤

• Fairness with misery does not satisfy UW.

Proof by counterexample: Consider the same counterexample for the proof that fairness does not

satisfy UW.

Results for Unanimous Loser (UL):

• Plurality satisfies UL.

Proof: If element a is in none of the individual k-rank answers, then it has zero votes in the final

k-rank answer. By hypothesis, there are at least k elements in the union of all the k-rank answers that

have non-zero votes, which means that they will beat element a in any final ranking. ⇤

• Fairness satisfies UL.

Proof: If the element does not appear in any k-rank answer, it is impossible for it to be chosen for the

final one. ⇤

• Plurality with misery satisfies UL.

Proof: Analogous to plurality — it does not matter if the element is a misery element or not. ⇤

• Fairness with misery satisfies UL.

Proof: If the element does not appear in any k-rank answer, it is impossible for it to be chosen for the

final one; note that it does not matter if the element is a misery element or not. ⇤

Let rank(a,�, Q,KB) be defined as follows: rank(a,�, Q,KB) = 1 iff a is a skyline answer to Q for

�, and rank(a,�, Q,KB) = k + 1 iff a is a skyline answer to Q for � after removing from consideration

all elements b such that rank(b,�, Q,KB) = k.

Lemma 8 Let � be an SPO, KB =(O,U ,M,⌦,
U
) be a GPP-Datalog+/– ontology, and Q be a DAQ. If

�
−a is an SPO that results from removing element a from �, then for every element b in � we have that

either rank(b,�
−a, Q,KB) = rank(b,�, Q,KB) or rank(b,�

−a, Q,KB) = rank(b,�, Q,KB)� 1. Also,

If �+a is an SPO that results from adding an element a to �, then for every element b in � we have that

either rank(b,�+a, Q,KB) = rank(b,�, Q,KB) or rank(b,�+a, Q,KB) = rank(b,�, Q,KB) + 1.

28 RR-14-02

Proof: By direct consequence of the definition of rank (above), we have that an element’s rank is equal to

the length of the longest path from any element in the skyline to that element. Therefore, adding an element

can only increase such length by one. On the other hand, removing an element can only decrease the length

by one, given that the transitivity property holds. ⇤

Results for Weak Stability (WS):

• Plurality satisfies WS.

Proof sketch: By Lemma 8, adding an element a to choose from can at most have the effect that

each user now incorporates a into their k-rank answers, and so no longer vote their previously least

preferred of the k — this only benefits element a, and no other. Thus, at group level, this can only

make a be in a k-rank answer and shift the rest of the elements down one place, as WS requires. ⇤

• Fairness satisfies WS.

Proof: By Lemma 8 we have that the added element can appear in each individual k-rank answer,

but the rest of the elements maintain their original relative ordering. Therefore, if the added element

ranks high enough to be chosen, the end result will differ by that element only. Otherwise, the result

will be the same. ⇤

• Plurality with misery satisfies WS.

Proof: If the element added is a misery element, the result will be the same. Otherwise, the same

argument used for plurality applies. ⇤

• Fairness with misery satisfies WS.

Proof: If the element added is a misery element, the result will be the same. Otherwise, the same

argument used for fairness applies. ⇤

Results for Stability 1 (S1):

• Plurality satisfies S1.

Proof sketch: By the same argument made for plurality in WS, the new element a might get enough

votes to make it into position i of the final k-rank answer; these votes were previously held by other

elements. Since the votes lost by the rest of the elements only go to element a, a final k-rank answer

exists that maintains the relative order given by the original rank. ⇤

• Fairness satisfies S1.

Proof: Analogous to the argument for WS. ⇤

• Plurality with misery satisfies S1.

Proof: If the element is a misery element, the result will be the same. Otherwise, the proof is analogous

to that for plurality. ⇤

• Fairness with misery satisfies S1.

Proof: If the element is a misery element, the result will be the same. Otherwise, the proof is analogous

to that of WS for fairness. ⇤

RR-14-02 29

Stability 2 (S2):

• Plurality satisfies S2.

Proof: Using Lemma 8, we can ensure that there exists a k-rank answer that is the same as the original.

The removed element can never have enough votes to beat the last one in the original ranking, since

otherwise it would have beaten it in the first place. Therefore, whatever element (or elements) comes

in to replace it will be in the same conditions. ⇤

• Fairness satisfies S2.

Proof: By Lemma 8, we have that when removing an element not in the a k-rank answer, the ranks of

those in the final k-rank answer cannot improve nor decrease. Therefore, the result will be the same.

⇤

• Plurality with misery satisfies S2.

Proof: If the element is a misery element, the result will be the same. Otherwise, the proof is analogous

to that for plurality. ⇤

• Fairness with misery satisfies S2. ⇤

Proof: If the element is a misery element, the result will be the same. Otherwise, it is analogous to

fairness.

Results for Monotonicity 1 (M1):

• Plurality satisfies M1.

Proof: Trivial (the element can only gain votes). ⇤

• Fairness satisfies M1.

Proof: If the element was chosen, improving its position in some rankings can only help it to be

chosen earlier. ⇤

• Plurality with misery satisfies M1.

Proof: Analogous to the proof for plurality, since if the element is chosen, it cannot be a misery

element. ⇤

• Fairness with misery satisfies M1.

Proof: Same argument as for fairness; note that if the element is chosen, it cannot be a misery element.

⇤

Monotonicity 2 (M2):

• Plurality satisfies M2.

Proof: Trivial (the element can only lose votes). ⇤

30 RR-14-02

• Fairness satisfies M2.

Proof: If an element is not chosen, ranking it even lower cannot cause it to be chosen. ⇤

• Plurality with misery satisfies M2.

Proof: If the element is a misery element, the result will be the same. Otherwise, the proof is analogous

to that for plurality. ⇤

• Fairness with misery satisfies M2.

Proof: Same argument as for fairness; note that if the element is a misery element, the result will be

the same. ⇤

Non-dictatorship (ND):

• Plurality satisfies ND.

Proof: One user can only influence the choice by adding k votes (one to each element in their ranking).

Therefore, a single user cannot dictate the outcome of the result. ⇤

• Fairness satisfies ND for any k 6= 1.

Proof: If k = 1, the first user to choose is the dictator. Otherwise, the result is determined by at least

two users. ⇤

• Plurality with misery satisfies ND.

Proof: Same argument as that of plurality. ⇤

• Fairness with misery satisfies ND.

Proof: Though the scenario for k = 1 could cause the first user to choose to be a dictator, that user’s

choice might be in another user’s misery list. ⇤

Proof of Proposition 7.

• CSU satisfies GUPF.

Proof: If element a is in the first position of a k-rank answer to both PA and PB , then it belongs to

the skylines of both PA and PB , which implies that it also belongs to the skyline of PA∪B . Therefore,

there exists a k-rank answer to Q for P that contains a in the first position. ⇤

• CSU satisfies UWF.

Proof: It is a direct consequence of the fact that CSU satisfies GUPF. ⇤

• CSU satisfies UP if removeCycles only removes edges (v1, v2) whenever there does not exist another

edge in the cycle labeled with a lower number.

Proof: Follows directly from condition (ii) in Theorem 3. Note that if there is a cycle, there must

exist an edge in the cycle with a lower number of votes than the removed edge. ⇤

RR-14-02 31

C Further Details for the Experimental Evaluation

A high-level overview of the architecture of our system can be found in Figure 13. The input consists of

a tuple of the form hQ,O,P, ki with O=(D,Σ), where Q is a query, D is a database, Σ is a finite set of

TGDs, P is a group preference model, and k is the number of query results that we are interested in. The

set of TGDs Σ for the ontology in our experiments is given in Figure 15, while the structure of the database

for this ontology is shown in Figure 16. Note that this ontology is different from the one that we used in

the examples throughout the paper — we have based our examples on this domain, but have rewritten the

ontology for a greater readability.

The constraint and query managers and the rewriting engine are directly taken from the Datalog+/–

system of [16]: the constraint manager checks unions of conjunctive queries that are used to check if D

satisfies Σ; the query manager schedules queries for rewriting and execution; finally, the rewriting engine

converts the input query into a union of conjunctive queries after all the TGDs are applied. The list of

queries obtained after the rewriting step is the input for the CSU-PrefChase subsystem, which constructs the

preferences over the atoms that are answers to this query.

The CSU-PrefChase builds a graph that stores all the preferences of the users after the standard chase is

computed. The preference graph is a labeled directed graph (N,E, `), where N is the node set (the atoms),

E is the edge set (the preference relation), and the labeling function ` stores for each edge the identity of

its user. That is, edges in E are pairs of nodes (u, v), which state that u is preferred over v by the user

specified in the label `(u, v). Note that CSU-PrefChase is used not only for the CSU strategy, but also for

the plurality with misery and fairness with misery strategies — the latter strategies involve calling CSU-

PrefChase individually for each user to obtain the result of merging the users’ SPOs with the one derived

from the probabilistic model.

Additional Results. Figures 17 and 18 contain results that complement our analysis in Section 6.4 (Ques-

tion 2, Page 21).

32 RR-14-02

Figure 13: The architecture of our system.

Figure 14: Preferences of a user for dinner (e.g., prefers Mediterranean food over Mexican food)

RR-14-02 33

Σ = { barbecue(X) → food(X), local flavor(X) → food(X),
hot dogs(X) → food(X), vegetarian(X) → food(X),
seafood(X) → food(X), chicken wings(X) → food(X),
pizza(X) → food(X), dessert(X) → food(X),
sandwiches(X) → food(X), gluten free(X) → food(X),
burgers(X) → food(X), fast food(X) → food(X),
donuts(X) → dessert(X), bagels(X) → dessert(X),
ice cream(X) → dessert(X), dance clubs(X) → place(X),
juice bars and smoothies(X) → place(X), cafes(X) → place(X),
bakeries(X) → place(X), breweries(X) → place(X),
steakhouses(X) → place(X), lounges(X) → place(X),
buffets(X) → place(X), bars(X) → place(X),
dive bars(X) → bars(X), pubs(X) → bars(X),
sports bars(X) → bars(X), sushi bars(X) → bars(X),
wine bars(X) → bars(X), mexican(X) → cuisine(X),
american(X) → cuisine(X), local services(X) → cuisine(X),
asian(X) → cuisine(X), middle eastern(X) → cuisine(X),
mediterranean(X) → cuisine(X), chinese(X) → asian(X),
indian(X) → asian(X), thai(X) → asian(X),
korean(X) → asian(X), japanese(X) → asian(X),
vietnamese(X) → asian(X), greek(X) → mediterranean(X),
italian(X) → mediterranean(X), french(X) → mediterranean(X),
food(X) → ∃Y hasName(X,Y), food(X) → ∃Y inCity(X,Y),
food(X) → ∃Y inState(X,Y), cuisine(X) → ∃Y hasName(X,Y),
cuisine(X) → ∃Y inCity(X,Y), cuisine(X) → ∃Y inState(X,Y),
place(X) → ∃Y hasName(X,Y), place(X) → ∃Y inCity(X,Y),
place(X) → ∃Y inState(X,Y)}

Figure 15: Set of TGDs for the ontology used in the experimental evaluation.

Figure 16: The database structure of the Datalog+/– ontology.

34 RR-14-02

0.20

0.30

0.40

0.50

0.60

0.70

0.80

5 10 15 20

A
g

re
e

m
e

n
t

k

Method Comparison (Agreement Measure) – Varying k

 CSU vs Plurality

CSU vs Misery

Plurality vs Misery

0.20

0.30

0.40

0.50

0.60

0.70

0.80

5 10 15 20

S
p

e
a

rm
a

n

k

Method Comparison (Spearman Measure) – Varying k

CSU vs Plurality

CSU vs Misery

Plurality vs Misery

Figure 17: How Agreement (left, higher is better) and Spearman (right, lower is better) change depending

on the value of k.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2 3 4 5 6 7

A
g

re
e

m
e

n
t

Group Size

Method Comparison (Agreement Measure) – Varying Group Size

CSU vs. Plurality (Agreement)

CSU vs. Misery (Agreement)

Plurality vs. Misery (Agreement)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2 3 4 5 6 7

S
p

e
a

rm
a

n

Group Size

Method Comparison (Spearman Measure) – Varying Group Size

CSU vs. Plurality (Spearman)

CSU vs. Misery (Spearman)

Plurality vs. Misery (Spearman)

Figure 18: How Agreement (left, higher is better) and Spearman (right, lower is better) change depending

on group size.

