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Abstract. In this contribution we present a realtime activity monitoring system, 

called SCENIOR (SCEne Interpretation with Ontology-based Rules) with sev-

eral innovative features. Activity concepts are defined in an ontology using 

OWL, extended by SWRL rules for the temporal structure, and are automatical-

ly transformed into a high-level scene interpretation system based on JESS 

rules. Interpretation goals are transformed into hierarchical hypotheses struc-

tures associated with constraints and embedded in a probabilistic scene model. 

The incremental interpretation process is organised as a Beam Search with mul-

tiple parallel interpretation threads. At each step, a context-dependent probabil-

istic rating is computed for each partial interpretation reflecting the probability 

of that interpretation to reach completion. Low-rated threads are discarded de-

pending on the beam width. Fully instantiated hypotheses may be used as input 

for higher-level hypotheses, thus realising a doubly hierarchical recognition 

process. Missing evidence may be "hallucinated" depending on the context. The 

system has been evaluated with real-life data of aircraft service activities. 

1   Introduction 

This paper is about realtime monitoring of object behaviour in aircraft servicing 

scenes, such as arrival preparation, unloading, tanking and others, based on video 

streams from several cameras1. The focus is on high-level interpretation of object 

tracks extracted from the video data. The term "high-level interpretation" denotes 

meaning assignment above the level of individually recognised objects, typically 

involving temporal and spatial relations between several objects and qualitative be-

haviour descriptions corresponding to concepts used by humans. For aircraft servic-

ing, interpretation has the goal to recognise the various servicing activities at the 

apron position of an aircraft, beginning with arrival preparation, passenger disembark-

ing via a passenger bridge, unloading and loading operations involving several kinds 

of vehicles, refuelling, catering and other activities. Our work can be seen as an alter-

native to an earlier approach reported in [1], which does not possess the innovative 

features reported here. 

It is well established that high-level vision is essentially an abductive task with in-

terpretations providing an "explanation" for evidence [2-4]. In general, there may be 
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several possible explanations even for perfect evidence, and still more if evidence is 

incomplete or uncertain. Hence any scene interpretation system must deal with multi-

ple solutions. One goal of this paper is to show how a probabilistic preference meas-

ure can be combined with an abductive framework to single out the most probable 

solution from a large set of logically possible alternatives. Different from Markov 

Logic Networks which have been recently proposed for scene interpretation [5] we 

combine our logical framework with Bayesian Compositional Hierarchies (BCHs) 

specifically developed for hierarchical scene models [6]. 

A second goal is to present an approach where a scene interpretation system is au-

tomatically generated from a conceptual knowledge base represented in the standard-

ised ontology language OWL-DL. This facilitates the interaction with reasoners (such 

as Pellet or RacerPro) and the integration with other knowledge bases. 

A third innovative contribution of this paper is a recognition strategy capable of 

handling highly contaminated evidence and in consequence a large number of alterna-

tive interpretations. This is mainly achieved by maintaining up to 100 alternative 

interpretation threads in a Beam Search [8]. Results show that a preference measure 

can be used effectively to prune the beam at intermediate stages and to select the best-

rating from several final interpretations. 

2   Behaviour Modelling 

In this section we describe the representation of activity models in a formal ontolo-

gy. Our main concern is the specification of aggregate models adequate for the activi-

ties of the aircraft servicing domain, but also to exemplify generic structures for other 

domains. 

In a nutshell, an aggregate is a conceptual structure consisting of  

 - a specification of aggregate properties, 

 - a specification of parts, and 

 - a specification of constraints between parts. 

To illustrate aggregate specifications, consider the aggregate Unloading-

Loading-AFT as an example. It consists of three partial activities as shown in Fig. 1, 

which must meet certain constraints to combine to an unloading or loading activity.  

 

 

 

 

 

Fig. 1. Part structure of the aggregate Unloading-Loading-AFT 

First, temporal constraints must be met: The loader must be placed at the aircraft 

before any transporter operations can take place, and must leave after completion of 

these operations. Similarly, spatial constraints must be met, in our domain realised by 

fixed zones defined for specific servicing activities (e.g. the AFT-Loading-Zone). 

Finally, the same physical object occurring in separate parts of an aggregate must be 

Transporter-Operation-AFT !

Loader-Leaves-AFT !

Unloading-Loading-AFT !

Loader-Positioning-AFT !



referred to by an identity constraint. Please note that the graphical order of aggregate 

parts shown in Figs. 1 and 2 does nor imply a temporal order.   

As mentioned in the introduction, we have chosen the web ontology language 

OWL-DL for defining aggregates and related concepts. OWL-DL is a standardised 

formalism with clear logical foundations and provides the chance for a smooth inte-

gration with large-scale knowledge representation and reasoning. Furthermore, the 

object-centered style of concept definitions in OWL and its support by mature editors 

such as Protégé2 promise transparency and scalability. Simple constraints can be rep-

resented with SWRL, the Semantic Web Rule Language, albeit not very elegantly. 

In OWL-DL, the aggregate Unloading-Loading-AFT is defined as follows: 

 Unloading-Loading-AFT ⊑ Composite-Event ⊓ 
 has-part1 exactly 1 Loader-Positioning-AFT ⊓ 
 has-part2 exactly 1 Transporter-Operation-AFT ⊓ 
 has-part3 exactly 1 Loader-Leaves-AFT 

The left-hand side implies the right-hand side, corresponding to an abductive rea-

soning framework. In our definition, the aggregate may name only a single taxonomi-

cal parent because of the intended mapping to single-inheritance Java templates. Fur-

thermore, the aggregate must have exactly one part for each hasPartRole. While the 

DL syntax would allow number restrictions for optional or multiple parts, we found it 

useful to have different aggregate names for different part configurations and a dis-

tinct hasPartRole for each part to simplify the definition of conceptual constraints. 

Our aircraft servicing domain is described by 41 aggregates forming a composi-

tional hierarchy. The leaves are primitive aggregates with no parts, such as  Loader-

Leaves-AFT. They are expected to be instantiated by evidence from low-level image 

analysis. In addition to the compositional hierarchy, all objects, including aggregates, 

are embedded in a taxonomical hierarchy which is automatically maintained by 

OWL-DL. Thus, all activities can be related to a general activity concept and inherit 

roles such as has-agent, has-start-time, and has-finish-time.  

Fig. 2 gives an overview of the main components of aircraft servicing activity con-

cepts. Besides the logical structure, we provide a hierarchical probabilistic model as a 

preference measure for rating alternative interpretations [6]. In our domain, the model 

is confined to the temporal properties of activities, i.e. durations and temporal rela-

tions between activities, which are represented as Gaussian distributions with the 

range -2σ .. 2σ corresponding to crisp temporal constraints. Using this model, the 

probabilities of partial interpretations can be determined and used to control the Beam 

Search. Unfortunately, OWL-DL and its approved extensions do not offer an efficient 

way for representing probabilities, so the probabilistic model is kept in a separate 

database.  

Our approach to activity representation can be summarised as follows: 

• The main conceptual units are aggregates specifying the decomposition of activities 

into subactivities and constraints between the components. 

• The representation language for the logical structure is the standardised language 

OWL-DL which offers integration with high-level knowledge bases and reasoning 

services, e.g. consistency checking. 
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• A hierarchical probabilistic model is provided as a preference measure for temporal 

aggregate properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2.  Activity concepts for aircraft servicing  

3   Initialising  the Scene Interpretation System from the Ontology 

In this section we describe the scene interpretation system SCENIOR, beginning 

with an overview. In Subsection 3.2 we describe the generation of rules for rule-based 

scene interpretation and the generation of hypotheses templates as interpretation 

goals. The interpretation process itself is described in Subsection 3.3. 

3.1 System Overview 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.. 3.  Main components of the scene interpretation system SCENIOR 
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Fig. 3 shows the architecture of the interpretation system SCENIOR. In the initiali-

sation phase of the system, the conceptual knowledge base, represented in OWL-DL 

and SWRL, is converted into a JESS conceptual knowledge base, with rules for both 

bottom-up and top-down processing. Furthermore, hypotheses graphs are created 

corresponding to submodels of the compositional hierarchy, providing intermediate 

goals for the interpretation process. The temporal constraints defined with SWRL 

rules are translated into temporal constraint nets (TCNs) which maintain constraint 

consistency as the scene evolves. The interpretation process is organised as a Beam 

Search to accommodate alternative interpretations. A probabilistic scene model, real-

ised as a Bayesian Compositional Hierarchy (BCH), provides a preference measure. 

For the sake of compactness, TCN and BCH are not described in detail in this paper, 

see [9] and [6]. 

3.2  Rule Generation from the Ontology 

As shown in [7], scene interpretation can be viewed as a search problem in the 

space of possible interpretations defined by taxonomical and compositional relations 

and controlled by constraints. Four kinds of interpretation steps are required to navi-

gate in interpretation space and construct interpretations: 

• Aggregate instantiation (moving up a compositional hierarchy) 

• Aggregate expansion (moving down a compositional hierarchy) 

• Instance specialisation (moving down a taxonomical hierarchy) 

• Instance merging (unifying instances obtained separately) 

In our framework we create rules for the first three steps, together with some sup-

porting rules. The step "instance merging" is dispensable with the use of hypotheses 

graphs and parallel search.  

Submodels and Hypotheses Graphs. Usually, many models have to be consid-

ered in a scene interpretation task. To cope with model variants and to avoid redun-

dancies, we define submodels which may be part of several alternative models and are 

treated as interpretation subgoals (e.g. Refuelling). After instantiation, they can be 

used as “higher-level evidence” for other aggregates (e.g. various kinds of services). 

Submodels (marked as context-free in the conceptual knowledge base) give rise 

to hypotheses graphs. Formally, they represent the partonomical structure of a sub-

model and the equality constraints described with SWRL rules. Their main function is 

to provide coherent expectations about possible activities. During interpretation hy-

potheses graphs can be used to "hallucinate" missing evidence and thus continue a 

promising interpretation thread. 

Rules. During the initialisation process, the following interpretation rules are cre-

ated fully automatically from the ontology:  

• Evidence-assignment rules assign evidence provided by lower-level processing to a 

leaf of a hypotheses graph. The premise of the rule addresses a template created for 

each aggregate (referred to as template-x below). 



• Aggregate-instantiation rules instantiate a hypothesised aggregate (status hypothe-

sised) if all its parts are instantiated or hallucinated. This is a bottom-up step in the 

compositional hierarchy and the backbone for the scene interpretation process. 

• Specialisation rules refine an instance to a more specialised instance. This can hap-

pen if more information becomes available as the scene evolves (for example, Vehi-

cle-Inside-Zone may be specialised to Tanker-Inside-Zone). 

• Aggregate-expansion rules instantiate part of an aggregate if the aggregate itself is 

instantiated or hallucinated. A separate rule is created for every part of the aggre-

gate. This is a top-down step in the compositional hierarchy. The rule will be in-

voked if a fact has not been asserted bottom-up but by other means, e.g. by com-

mon-sense reasoning (so far this is only rudimentary realised by the hallucination 

mechanism). 

A simplified generic patterns for the evidence-assignement rule is given below, the 

other rules are defined in a similar way.  

 (defrule aggregate-x-ea-rule 
  ?e-id <- (template-x (name ?e)(status evidence)) 
  ?h-id <- (template-x (name ?h)(status ?status_1)) 
                 (test (or (eq ?status_1 hypothesised) 
                           (eq ?status_1 hallucinated)))  
  ;;check temporal constraints  
 => 
  (modify ?e-id (status assigned)) 
  (modify ?h-id (status instantiated)) 
  ;;update temporal constraint net) 

3.3  Interpretation Process 

In the initialisation phase of the system, a separate thread is created for each sub-

model. Each thread has its own independent JESS engine, initialised with all rules and 

the hypotheses graph corresponding to this submodel. 

Now the system is ready to start the interpretation process. It receives primitive 

events as input and feeds these as working memory elements to every alive rule en-

gine (in the beginning, these are the initialised interpretation threads). Then the rules 

are applied, eventually leading to instantiated aggregates. These may in turn provide 

input for higher-level aggregates. If there is more than one activation for an evidence-

assignment rule within one thread (i.e. if multiple evidence assignments are possible), 

this thread is cloned into several threads, one for each possible assignment. A newly 

created thread is an exact copy of the original thread. This way, a search tree is estab-

lished which examines all interpretation possibilities in parallel. 

So far, we have not yet discussed how to deal with noise, which can either occur in 

terms of activities not modelled in the ontology, or due to errors of low-level pro-

cessing. Various kinds of vehicles not taking part in a service or performing some 

unknown task enter and leave the servicing area throughout a turnaround. Also, low-

level processing in our application is difficult and not at all perfect, hence strange 

events not corresponding to any real-world activities are delivered as input to 

SCENIOR. Since there is no way to distinguish correct evidence from noise, as long 



as both satisfy the constraints, SCENIOR follows both interpretations in parallel, 

expanding the search tree at each step. 

SCENIOR can process in real-time up to ca. 100 threads in parallel on an ordinary 

PC. Our experiments with airport activities showed that this maximal number of in-

terpretation threads is normally reached while recognising a complete turnaround (see 

Section 4). At this point, the rating provided by the BCH comes into play and all 

lowest-rated threads in excess of the maximal beam width are discarded. 

Finally, upon termination of the input data stream, all complete turnaround inter-

pretations are ranked using the BCH, and the highest-ranking interpretation is deliv-

ered as the result. 

4 Experimental Results and Evaluation 

In this section we show results of SCENIOR obtained for concrete turnaround 

scenes at Blagnac Airport in Toulouse. We first illustrate the effects of context-

dependent ratings. We then provide a performance evaluation of SCENIOR for 20 

turnarounds. The results are explained by the noise statistics of the data which show 

that the correct interpretation will not always receive the highest rating.   

4.1  Illustration of probabilistic rating 

We now describe the initial phase of a concrete scene interpretation task to demon-

strate the effect of the ranking provided by the BCH in a Beam Search. The input data 

have been obtained from one of the 60 turnarounds by low-level processing of project 

partners in France and England.  

To rate interpretations in this experiment, the probability density of clutter has 

been set to 0.01 which is less than the typical probability of a regular piece of evi-

dence for a turnaround. Note that the probability density is taken to measure the 

"probability" of an event. A small constant factor Δt for a time span, over which a 

density must be integrated, is omitted for clarity. Since the ratings are naturally de-

creasing with each step and may reach very small numbers, the natural logarithm of a 

probability is taken, resulting in negative ratings. The primitive events used here be-

long to an ontology version different from the one presented in Section 2. 

In the scene interpreted in this experiment, an Airplane-Enters-ERA event has 

been generated erroneously by low-level processing for a tanker crossing the ERA 

(Entrance Restricted Area) shortly before the arrival of the airplane. Fig. 4 left shows 

the corresponding video frame taken by one of the eight cameras with the crossing 

tanker in the far background. Two threads are generated, Thread A interpreting this 

evidence as part of an Arrival, the Thread B as clutter. Later on, the true aircraft 

arrives (Fig. 4 right), generating an Airplane-Enters-ERA event in the Thread B and 

a clutter event in a new third thread. 

The ratings for the partial interpretations of both alternatives are shown in Table 1. 

Interpretation A is the erroneous and Interpretation B is the correct one. Initially, the 

arrival of the GPU sets a context where a vehicle is expected to enter the ERA, hence 



the crossing tanker is a candidate. But as soon as the true airplane enters, an alterna-

tive arises and is favoured because the probabilistic model expects an Airplane-

Enters-ERA event 8 minutes after GPU-Enters-GPU-Zone, and the airplane's arrival is 

closer to that estimate than the tanker's. Note that clutter events not assigned to either 

of the two interpretations are not shown in the table.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4. Snapshots of the ERA (Entrance Restricted Area) after completing Arrival-Preparation. 

The GPU (Ground Power Unit) is in place. The tanker crossing the ERA in the background 

(left) causes an erroneous interpretation thread (see text). 

Table 1. Initial ratings of the two alternative interpretations 

e1  =  mobile-inside-zone-86 
e2  = mobile-stopped-90 
e3  =  mobile-inside-zone-131 
e4  =  mobile-inside-zone-155 

est = estimated event 

Evidence   Time Interpretation A Ranking A Interpretation B         Ranking B 

e1  17:10:31  GPU-Enters-GPU-Zone   0  GPU-Enters-GPU-Zone    0 
e2  17:10:32  GPU-Stopped-In...   -2,16  GPU-Stopped-In...      -2,16 
e3  17:13:31  Airplane-Enters-ERA -5,32  Clutter        -2,16 
e4  17:20:35  Clutter        -5,32  Airplane-Enters-ERA  -5,09 

est ≥17:13:35 Airplane-Stopped... -6,24 
est ≥17:13:35 Stop-Beacon    -7,71 
est ≥17:20:35      Airplane-Stopped... -6,01 
est ≥17:28:35      Stop-Beacon  -7,48 

 

The table also includes the estimated times of the expected next events Airplane-

Stopped-Inside-ERA and Stop-Beacon together with the expected ratings for the 

competing interpretations. Note that estimated time windows may begin earlier than 

the actual time, allowing for hallucinated events in the past. Considering that Stop-

Beacon will occur after the true aircraft arrival and not at the time expected in Inter-

pretation A, the rating of this interpretation will surely be much lower than the esti-

mated value, further increasing the distance between the right and the wrong interpre-

tation.  

The performance of SCENIOR was evaluated for 20 annotated turnarounds, with 

primitive events provided by low-level image analysis of the project partners. The 



ontology and the probabilistic model were derived from 32 other turnarounds. Be-

cause of the noisy input data, it was necessary to interpret each evidence both as be-

longing to a turnaround (given that the constraints were satisfied) and as clutter. 17 of 

the 20 turnarounds resulted in complete interpretations. This was facilitated by Spe-

cial Vision Tasks with controlled cameras for three crucial events and by "hallucina-

tions" for missing evidence in certain contexts. The three problematic sequences were 

highly irregular and did not match the conceptual model (e.g. GPU arrival after air-

craft arrival). SCENIOR showed a reliable system performance with up to 100 paral-

lel threads (limited by a preset beam width) for partial alternative interpretations, as 

shown in Fig. 5. It can be seen that alltogether more than 1000 partial interpretations 

have been initialised, many caused by the context-free submodels which posed inter-

pretation goals throughout the sequence.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Number of threads for a typical interpretation process as a function of time (in frames). 

The maximum nember of active threads has been set to 100. 

The recognition rate of subactivities is shown in the table below. It was limited to 

75% because of the noisy low-level input data with missing crucial evidence.   

Table 2. Correctly recognised subactivities in 20 test sequences. 

 

 

 

 

 

 

 

 

 

SEQUENCE 1 2 3 4 5 6 8 9 18 25 29 58 59 62 63 66

Arrival 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Passenger-Boarding-Preparation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Unloading-Loading-AFT 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0

Unloading-Loading-FWD 1 1 0 0 1 1 1 1

Refuelling 0 0 0 0 0 0 0

Pushback-Arrival 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0

Passenger-Bridge-Leaves-PBB-Zone 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Departure 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



To prove the domain-independence of SCENIOR, we also applied the system to 

activity data of the smart-home environment CASAS3. After establishing an ontology 

for the new domain, SCENIOR recognised all activities without any problems. 

5 Conclusions 

We have presented the scene interpretation system SCENIOR, designed to work 

with (i) conceptual knowledge bases expressed in the standardised ontology language 

OWL-DL, (ii) extended by SWRL rules for constraints, and (iii) supported by a prob-

abilistic scene model for a preference measure. An interpretation strategy employing 

up to 100 parallel interpretation threads has been realised with JESS rule engines, and 

successful real-time interpretations have been achieved for noisy aircraft turnaround 

scenes. The results show that high-level interpretation of activities in low-structured 

domains and with noisy input data may face formidable ambiguity problems. We 

believe that the system architecture presented in this contribution has all ingredients 

to cope with such problems and may prove its worth in diverse applications. A first 

proof has been obtained in terms of a successful application SCENIOR to the CASAS 

smart-home environment by simply exchanging the ontology. 
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