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1 Introduction

In this chapter we show how formal knowledge representation and reasoning tech-

niques can be used for the retrieval and interpretation of multimedia data. This section

explains what we mean by an “interpretation” using examples of audio and video inter-

pretation. Intuitively, interpretations are descriptions of media data at a high abstraction

level, exposing interrelations and coherencies. In Section 2.3, we introduce description

logics (DLs) as the formal basis for ontology languages of the OWL (Web Ontology

Language) family and for the interpretation framework described in subsequent sec-

tions. As a concrete example, we consider the interpretation of images describing a

sports event in Section 3. It is shown that interpretations can be obtained by abductive

reasoning, a general interpretation framework is presented. Stepwise construction of

an interpretation can be viewed as navigation in the compositional and taxonomical

hierachies spanned by a conceptual knowledge base.

What do we mean by “interpretation” of media objects? Consider the image shown

in Figure 3.1. One can think of the image as a set of primitive objects such as persons,

garbage containers, a garbage truck, a bicycle, traffic signs, trees etc. An interpretation

of the image is a description which “makes sense” of these primitive objects. In our

example, the interpretation could include the assertions “two workers empty garbage

containers into a garbage truck” and “a mailman distributes mail” expressed in some

knowledge representation language.

When including the figure caption into the interpretation process, we have a multi-

modal interpretation task which in this case involves visual and textual media objects.

The result could be a refinement of the assertions above in terms of the location “in

Hamburg”. Note that the interpretation describes activities extending in time although

it is only based on a snapshot. Interpretations may generally include hypotheses about

things outside the temporal and spatial scope of the available media data.

An interpretation is a “high-level” description of media data in the sense that it

involves terms which abstract from details at lower representation levels. This is typ-



Fig. 3.1. Street scene in Hamburg.

Fig. 3.2. Typical level structure of media interpretation systems exemplified by HEARSAY II

and VISIONS. Signal processing (below dotted line) transforms the raw input signals into prim-

itive media objects, various interpretation processes lead up to higher-level interpretations.

ical for meaningful descriptions in human language and hence also a desirable goal

for machine interpretation. Media interpretation is therefore often structured as a pro-

cess computing higher-level representations from lower-level ones. Figure 3.2 shows

the level structure of two early interpretation systems, the speech recognition system



HEARSAY-II (Erman, Hayes-Roth, Lesser and Reddy 1980) and the image interpre-

tation system VISIONS (Hanson and Riseman 1978).

The basic structure exemplified by each of the two systems also applies to interpre-

tation systems in general: signal processing procedures first transform raw media data

into primitive media objects by low-level processing steps. Then higher-level descrip-

tions are determined based on the primitive media objects. The low-level processing

steps are often called “analysis” (e.g. image analysis, speech analysis), the high-level

steps constitute the interpretation process.

It is useful to view interpretation as a process which is both based on the general

conceptual knowledge and the concrete contextual knowledge which an agent may

possess. The term “contextual knowledge” covers specific prior knowledge relevant

for the interpretation which the agent may possess (e.g. spatial and temporal context

of a video clip) as well as the knowledge about the current task of the agent (e.g. rec-

ognizing criminal acts vs. recognizing sports events). The knowledge-based structure

of an image sequence interpretation system is shown in Figure 3.3.

Fig. 3.3. Knowledge-based structure of a system for image sequence interpretation.

The concepts represented in the conceptual knowledge base typically describe con-

figurations of lower-level entities forming some interesting higher-level entity, for ex-

ample a configuration of an athlete and a horizontal bar forming a “high jump” event.

We call such concepts “aggregates” as they combine several components to a larger

whole. Aggregates form a compositional hierarchy, in addition to the taxonomical hi-

erarchy induced by logic-based concept definitions. In a description logic setting, an

aggregate has the generic structure shown in Figure 3.4 (Neumann and Möller 2006).

An aggregate is defined by (1) inheritance from parent concepts, (2) roles relating the

aggregate to parts, and (3) constraints relating parts to each other. Instantiations of

aggregates are at the core of media interpretations.

In summary, interpretations have the following characteristics: they

• involve several objects;

• depend on the temporal or spatial relations between parts;

• describe the data in qualitative terms, omitting detail;



Aggregate Concept ≡ Parent Concept1 ⊓ . . . ⊓ Parent Conceptn ⊓
∃≥m1

hasPartRole.Part Concept1 ⊓
. . .

∃≥mk
hasPartRole.Part Conceptk ⊓

constraints between parts

Fig. 3.4. Generic structure of a definition for an aggregate concept (ontology design pattern).

• exploit contextual information;

• include inferred facts, not explicit in the data;

• are based on conceptual knowledge about the application domain.

The chapter is structured as follows. We first describe how ontology-based infor-

mation retrieval can be formalized using description-logic inference problems (Section

2). Introducing the necessary technical background we demonstrate for what purpose

the output of media interpretation can be used, and, thereby, derive requirements for the

media interpretation process. Then, in Section 3, the automatic construction of media

interpretations is investigated. Techniques for dealing with uncertain and ambiguous

interpretations are presented in Section 4. We conclude in Section 5.

In summary it is the purpose of this chapter to show that interpretations can be com-

puted in a formal knowledge representation framework using various reasoning pro-

cesses. This has multiple potential benefits. First, the complex computational process

media interpretation is realised via standardised reasoning procedures, i.e. by programs

which have been conceptually shown to meet correctness and completeness conditions,

and have been implemented as reusable tools for a wide range of applications. Second,

the terms by which interpretations are expressed are embedded in a sharable ontology

which provides a transparent declarative representation with well-defined semantics.

Furthermore, ontologies constitute resources not only for media interpretation but also

for other tasks dealing with semantic content, such as information retrieval, communi-

cation, documentation, and various engineering processes.

2 Ontology-based information retrieval

A task addressed in this chapter is information retrieval from the Semantic Web. Media

data with semantic annotations will be an important part of the information provided

by the Semantic Web. It is well-known that the Semantic Web representation language

OWL can be formally described using description logics and that reasoning services

of description logics apply to the Semantic Web. One of those services is media in-

terpretation, which is the main topic in this chapter. In the context of the Semantic

Web, media interpretation may provide the bridge from low-level media annotation

to information retrieval in higher-level terms. One could think, for example, of an

off-line service enriching low-level media annotations with high-level interpretations.

Alternatively, media interpretation could be part of a retrieval service, providing inter-

pretations on-the-fly. Information retrieval w.r.t. high-level interpretations is different

from so-called content-based retrieval (e.g. retrieval based on similarity measures w.r.t.



colour histograms, strings, or other low-level features). In our view, high-level interpre-

tations are attached to media objects as metadata, which are specified using ontology

languages.

2.1 Ontology languages based on description logics

Ontology languages of the OWL family, which provide the skeleton for research on in-

formation retrieval based on high-level media interpretations, are based on description

logics. In this section we introduce the logical basis of several ontology languages of

the OWL family, define their semantics, and specify corresponding reasoning services.

In the following subsections, we start with so-called expressive description logics (ap-

proximately corresponding to, but slightly more expressive than OWL Lite), introduce

additional constructs afterwards (corresponding to OWL DL, OWL 1.1), and also spec-

ify other fragments of first-order logic, some of which have also been standardised by

activities of the World-Wide Web Consortium (W3C). For more details see (Baader,

Calvanese, McGuinness, Nardi and Patel-Schneider 2003).

Expressive Description Logics: Syntax and Semantics

The DL ALCQHIR+(D)− which is also known as SHIQ is briefly introduced as

follows. We assume five disjoint sets: a set of concept names C , a set of role names R,

a set of feature names F , a set of individual names O and a set of names for (concrete)

objects OC . The mutually disjoint subsets P and T of R denote non-transitive and

transitive roles, respectively (R = P ∪ T ).ALCQHIR+(D)− is introduced in Figure

3.5 using a standard Tarski-style semantics with an interpretation ID = (∆I ,∆D, ·I)
where ∆I ∩∆D = ∅ holds. A variable assignment α maps concrete objects to values

in ∆D.

In accordance with (Baader and Hanschke 1991) we also define the notion of a

concrete domain. A concrete domain D is a pair (∆D, ΦD), where ∆D is a set called

the domain, and ΦD is a set of predicate names. The interpretation function maps

each predicate name P from ΦD with arity n to a subset PI of ∆n
D. Concrete objects

from OC are mapped to an element of ∆D. We assume that ⊥D is the negation of

the predicate ⊤D. A concrete domain D is called admissible iff the set of predicate

names ΦD is closed under negation and ΦD contains a name ⊤D for ∆D, and the

satisfiability problem Pn1

1 (x11, . . . , x1n1
) ∧ . . . ∧ Pnm

m (xm1, . . . , xmnm
) is decidable (m

is finite, Pni

i ∈ ΦD, ni is the arity of Pi, and xjk is a concrete object).

If R,S ∈ R are role names, then R ⊑ S is called a role inclusion axiom. A role

hierarchy R is a finite set of role inclusion axioms. Then, we define ⊑∗ as the re-

flexive transitive closure of ⊑ over such a role hierarchyR. Given ⊑∗, the set of roles

R↓ = {S ∈ R |S ⊑∗ R} defines the sub-roles of a role R. R is called a super-role of S if

S ∈ R↓. We also define the set S := {R ∈ P |R↓ ∩ T = ∅} of simple roles that are nei-

ther transitive nor have a transitive role as sub-role. Due to undecidability issues, num-

ber restrictions are only allowed for simple roles (Horrocks, Sattler and Tobies 2000).

In concepts, inverse roles R−1 (or S−1) may be used instead of role names R (or S).

If C and D are concepts, then C ⊑ D is a terminological axiom (generalized concept



(a)

Syntax Semantics

Concepts (R ∈ R, S ∈ S , and f, fi ∈ F )

A A
I ⊆ ∆

I (A is a concept name)

¬C ∆
I \ C

I

C ⊓ D C
I ∩ D

I

C ⊔ D C
I ∪ D

I

∃R . C {a ∈ ∆
I | ∃ b ∈ ∆

I : (a, b) ∈ R
I ∧ b ∈ C

I}
∀R . C {a ∈ ∆

I | ∀ b ∈ ∆
I : (a, b) ∈ R

I ⇒ b ∈ C
I}

∃≥n S . C {a ∈ ∆
I | ‖{x | (a, x) ∈ S

I , x ∈ C
I}‖ ≥ n}

∃≤m S . C {a ∈ ∆
I | ‖{x | (a, x) ∈ S

I , x ∈ C
I}‖ ≤ m}

∃ f1, . . . , fn . P {a ∈ ∆
I | ∃ x1, . . . , xn ∈ ∆

D : (a, x1) ∈ f1
I ∧ . . . ∧ (a, xn) ∈ fn

I∧
(x1, . . . , xn) ∈ P

I}
∀ f1, . . . , fn . P {a ∈ ∆

I | ∀ x1, . . . , xn ∈ ∆
D : (a, x1) ∈ f1

I ∧ . . . ∧ (a, xn) ∈ fn
I ⇒

(x1, . . . , xn) ∈ P
I}

Roles and Features

R R
I ⊆ ∆

I ×∆
I

f f
I : ∆

I → ∆
D (features are partial functions)

‖ · ‖ denotes the cardinality of a set, and n, m ∈ N with n > 1, m > 0.

(b)

Axioms

Syntax Satisfied if

R ∈ T R
I = (RI)

+

R ⊑ S R
I ⊆ S

I

C ⊑ D C
I ⊆ D

I

(c)

Assertions (a, b ∈ O , x, xi ∈ OC )

Syntax Satisfied if

a :C a
I ∈ C

I

(a, b) :R (aI , bI) ∈ R
I

(a, x) : f (aI , α(x)) ∈ f
I

(x1, . . . , xn) :P (α(x1), . . . , α(xn)) ∈ P
I

a = b a
I = b

I

a 6= b a
I 6= b

I

Fig. 3.5. Syntax and Semantics of ALCQHIR+(D)−.

inclusion or GCI). C ≡ D is used as an abbreviation for two GCIs C ⊑ D and D ⊑ C.

A finite set of terminological axioms TR is called a terminology or TBox w.r.t. to a

given role hierarchyR. The reference toR is omitted in the following if we use T . An

ABox A is a finite set of assertional axioms as defined in Figure 3.5c.

An interpretation I is a model of a concept C (or satisfies a concept C) iff CI 6= ∅

and for all R ∈ R it holds that iff (x , y) ∈ RI then (y , x ) ∈ (R−1)
I

. An interpretation

I is a model of a TBox T iff it satisfies all axioms in T (see Figure 3.5b). An interpre-

tation I is a model of an ABoxA w.r.t. a TBox T iff it is a model of T and satisfies all

assertions inA (see Figure 3.5c). Different individuals are mapped to different domain

objects (unique name assumption).

Reasoning about objects from other domains (so-called concrete domains, e.g. for

real numbers) is very important for practical applications, in particular, in the context

of the Semantic Web. For instance, one might want to express intervals for integer val-

ues (“the price range is between 200 and 300 Euro”), state the relationship between the

Fahrenheit and Celsius scales, or describe linear inequalities (“the total price for the

three goods must be below 60 Euro”). In (Baader and Hanschke 1991) the description

logic ALC(D) is investigated and it is shown that, provided a decision procedure for



the concrete domain D exists, the logic ALC(D) is decidable. Unfortunately, adding

concrete domains to expressive description logics such as ALCNHR+ (Haarslev and

Möller 2000) might lead to undecidable inference problems. In (Haarslev, Möller and

Wessel 2001) it has been shown that ALCNHR+ extended by a limited form of con-

crete domains leads to decidable inference problems. This is achieved by disallowing

so-called feature chains inALCNHR+(D)−. It is easy to see that the same pragmatic

approach can also be applied to very expressive DLs. By analogy toALCNHR+(D)−

the description logic ALCQHIR+(D)− extends the logic ALCQHIR+ or SHIQ
(Horrocks, Sattler and Tobies 2000) with concrete domains.

An important property of the language SHIQ is that the subsumption hierarchy

of the TBox part T of a knowledge base (T , A) is stable w.r.t. additions to the ABox

part A (i.e. subsumption relations between concepts cannot be introduced by adding

assertions to the ABox). In case of multiple knowledge bases (T , A1), . . . , (T , An),

for query answering on any of the ABoxes Ai one can reuse computations done so

far for the TBox T (e.g. indexing computations). This is due to the stability of the

subsumption relationships between concepts, since they depend only on axioms in

the TBox T . This important property is lost when introducing nominals, which are

described in the next subsection.

Very Expressive Description Logics

A nominal (the letter O in a language name indicates the presence of nominals) is

a singleton concept, syntactically represented as {o} and semantically interpreted as

{o}I = {oI}. Thus, nominals stand for concepts with exactly one individual in contrast

to concepts which stand for a set of individuals. This allows the use of individuals in

concept definitions, for instance, as names for specific persons, countries, etc., leading

to the situation in which there is no longer a difference between TBoxes and ABoxes.

OWL DL is a language that supports nominals.

SROIQ (Horrocks, Kutz and Sattler 2006) is one of the most expressive DL lan-

guages whose decidability has been proved. On top of SHIQ plus nominals, SROIQ
allows for more expressivity concerning roles, where besides a TBox and an ABox, an

RBox is introduced to include role statements, allowing for:

1. Complex role inclusion axioms of the form R ◦ S ⊑ R and S ◦R ⊑ R where R is

a role and S is a simple role.

2. Disjoint roles

3. Reflexive, irreflexive and antisymmetric roles

4. Negated role assertions

5. Universal role

6. Local expressivity to allow concepts of the form ∃R.Self

SROIQ represents the logical basis of OWL 1.1 plus datatypes and datatypes re-

strictions SROIQ(D+). In (Horrocks et al. 2006) a tableaux algorithm is presented,

proving that SROIQ is decidable if some restrictions concerning the so-called cyclic-

ity of role axioms are obeyed.



As observed in previous sections, decidability is a characteristic that should be pre-

served by ontology languages and which has caused expressivity restrictions. This is

one of the reasons why rules are gaining interest as an option to overcome expressivity

limitations in DLs.

A relevant proposal to extend DL languages (more specifically, the syntactic vari-

ant OWL-DL) with rules, is the rule language called SWRL (Semantic Web Rule Lan-

guage). SWRL uses OWL DL or OWL Lite as the underlying DL language to specify

a KB. The syntax of SWRL is also based on XML. For brevity, however, we prefer a

mathematical notation and define a rule as an axiom of the form

P1(X1, . . . , Xn1
), . . . , Pk(Xn1

, . . . , Xnk
)←

Q1(Y1,1, . . . , Y1,m1
), . . . , Qj(Yj,1, . . . , Yj,mj

)

such that Pik
and Qij

are names and Xi mentioned in the head (lefthand side of the

← constructor) as well as Yi,j (in the body on the righthand side) stand for variable

names (or variables for short). Variables in the head must also be mentioned in the

body. Predicate terms in a rule body are called (rule) atoms.

The semantics of SWRL rules is defined as follows. An interpretation satisfies a

rule of the above form if it satisfies the first-order predicate

∀X1, . . . , Xn1
, Y1,1, . . . , Y1,m1

, . . . , Yj,1, . . . , Yj,mj
:

Q1(Y1,1, . . . , Y1,m1
) ∧ . . . ∧Qj(Yj,1, . . . , Y,mj

)→

P1(X1, . . . , Xn1
) ∧ . . . ∧ Pk(Xn1

, . . . , Xnk
)

The extension of OWL DL with SWRL rules is known to be undecidable if pred-

icate names are mentioned in the ontology (TBox) (Motik, Sattler and Studer 2005).

Various decidable fragments of OWL DL with SWRL rules exist.

In order to add rules and still preserve decidability, a variant of SWRL can be used,

the so called DL-safe rules (Motik et al. 2005). DL-safe rules are rules of the above

form and are formally defined as follows.

Suppose a set of concept names Nc, a set of abstract and concrete role names

NRa
∪ NRc

. A DL atom is of the form C(x) or R(x,y), where C ∈ NC and

R ∈ NRa
∪ NRc

. Rule atoms may be DL atoms or atoms as defined above. A rule

r is called safe if each of its variables also occur in a non-DL atom in the rule body.

All rules must be safe. Additionally, in the ABox, assertions of the following form

are allowed: P (ind1, . . . , indn) where P is a name for a predicate used in a non-DL

atom. The assertions are called facts (rules with empty bodies). Thus, in practice, the

safety restriction introduced for DL-safe rules means that rules are applied to ABox

individuals only. Note, however, that DL-safe rules are not trigger rules, they have a

first-order semantics (and hence, e.g. the law of contraposition holds etc.).

In order to support the recognition of events in image sequences (see Section 3.4),

rules with time variables will be used as part of a specific query language (see Sec-

tion 2.2). We assume that assertions involving time variables such as, e.g. “ind1 ap-

proaching ind2 from t1 to t2” are generated by low-level image sequence analysis

processes. The results are added to an ABox as so-called temporal propositions.



A temporal proposition is a syntactic structure of the following form:

P[t1,t2](ind1, . . . , indn)

where ti denotes an element of a linear temporal structure Θ ⊆ N, indi with i ∈
{1, . . . , n} denotes an individual, and P ∈ Preds.

The semantics for rules with time intervals is different from DL-safe rules, and

formally defined as follows. Let Θ ⊆ N be a linear temporal structure. A temporal

interpretation IT is a tuple (∆, ·I , Θ,ℑ) such that, in addition to the standard compo-

nents of an interpretation, ℑ is an injective mapping from the temporal structure Θ to

a set of standard Tarskian interpretation functions as used in previous sections.

A temporal interpretation IT = (∆, ·I , Θ,ℑ, ) satisfies a GCI or an ABox asser-

tion if the standard part (∆, ·I) satisfies the GCI or the ABox assertion. The remaining

components are used for defining satisfiability of temporal propositions. A temporal

interpretation IT satisfies a temporal proposition P[t1,t2](ind1, . . . , indn) if the predi-

cate is true for all time points in the non-empty interval [t1, t2]. Hence, we assume that

temporal propositions are durative, i.e., the proposition holds for all non-empty subin-

tervals (cf. (Neumann and Novak 1983) for a more detailed analysis). More formally:

IT |= P[t1,t2](ind1, . . . indn)

if for all θ ∈ Θ, |Θ| > 1, it holds that if t1 ≤ θ ≤ t2, then (ind
ℑ(θ)
1 , . . . , ind

ℑ(θ)
n ) ∈

Pℑ(θ). As usual, a temporal interpretation that satisfies a temporal proposition is

called a temporal model for this term. A temporal interpretation which satisfies a

GCI or an ABox assertion is called a (temporal) model for the GCI or ABox as-

sertion, respectively. An Abox with a set of temporal propositions such as, e.g.

{move forward[10,20](ind1), move backward[10,20](ind1)} should be inconsistent,

but this requires (TBox) knowledge about the disjointness of predicates move forward

and move backward for all time points. We ignore these issues here.

Temporal propositions are relevant for queries with time variables, which are de-

scribed in Section 2.2.

2.2 Introduction to basic reasoning problems

Standard Inference Services

In the following we define standard inference services for description logics.

A concept C is called consistent (w.r.t. a TBox T ) if there exists a model of C (that

is also a model of T andR). An ABoxA is consistent (w.r.t. a TBox T ) ifA has model

I (which is also a model of T ). A knowledge base (T , A) is called consistent if there

exists a model for A which is also a model for T . A concept, ABox, or knowledge

base that is not consistent is called inconsistent.

A concept D subsumes a concept C (w.r.t. a TBox T ) if CI ⊆ DI for all interpre-

tations I (that are models of T ). If D subsumes C, then C is said to be subsumed by

D.



For the definitions above, corresponding decision problems are defined as usual.

In order to solve these problems, practical description logic systems implement algo-

rithms as so-called inference services. Besides services for the basic decision problems

introduced above, DL inference servers usually provide some additional inference ser-

vices. A basic reasoning service is to compute the subsumption relationship between

every pair of concept names mentioned in a TBox (i.e. elements from C ). This infer-

ence is needed to build a hierarchy of concept names w.r.t. specificity. The problem

of computing the most-specific concept names mentioned in T that subsume a cer-

tain concept is known as computing the parents of a concept. The children are the

most-general concept names mentioned in T that are subsumed by a certain concept.

We use the name concept ancestors (concept descendants) for the transitive closure of

the parents (children) relation. The computation of the parents and children of every

concept name is also called classification of the TBox. Another important inference

service for practical knowledge representation is to check whether a certain concept

name occcurring in a TBox is inconsistent. Usually, inconsistent concept names are

the consequence of modelling errors. Checking the consistency of all concept names

mentioned in a TBox without computing the parents and children is called a TBox

coherence check.

If the description logic supports full negation, consistency and subsumption can be

mutually reduced to each other since D subsumes C (w.r.t. a TBox T ) iff C ⊓ ¬D is

inconsistent (w.r.t. T ), and C is inconsistent (w.r.t. T ) iff C is subsumed by⊥ (w.r.t. T ).

Consistency of concepts can be reduced to ABox consistency as follows: A concept C

is consistent (w.r.t. a TBox T ) iff the ABox {a :C} is consistent (w.r.t. T ).

An individual i is an instance of a concept C (w.r.t. a TBox T and an ABox A) iff

iI ∈ CI for all models I (of T andA). For description logics that support full negation

for concepts, the instance problem can be reduced to the problem of deciding if the

ABox A ∪ {i :¬C} is inconsistent (w.r.t. T ). This test is also called instance checking.

The most-specific concept names mentioned in a TBox T that an individual is an

instance of are called the direct types of the individual w.r.t. a knowledge base (T ,A).
The direct type inference problem can be reduced to subsequent instance problems

(see e.g. (Baader, Franconi, Hollunder, Nebel and Profitlich 1994) for details).

An ABoxA′ is entailed by a TBox T and an ABoxA if all models of T andA are

also models of A′. For ABox entailment we write T ∪ A |= A′.

ABox entailment can be reduced to query answering. An ABox A′ is entailed by a

TBox T and an ABox A if for all assertions α in A′ it holds that the boolean query

{() | α} returns true. Query answering is discussed in the next subsection.

TBox inference services are provided by the systems CEL (Baader, Lutz and

Suntisrivaraporn 2006), Fact++ (Tsarkov and Horrocks 2006), KAON2 (Hustadt,

Motik and Sattler 2004), Pellet (Sirin and Parsia 2006), QuOnto (Calvanese, De Gia-

como, Lembo, Lenzerini and Rosati 2005), and RacerPro (Haarslev and Möller 2001).

At the time of this writing, only the latter four systems also support ABox inferences

services.



Retrieval Inference Services

For practical applications, another set of inference services deals with finding individ-

uals (or roles) that satisfy certain conditions.

The retrieval inference problem is to find all individuals mentioned in an ABox that

are instances of a certain concept C. The set of fillers of a role R for an individual i w.r.t.

a knowledge base (T ,A) is defined as {x | (T ,A) |= (i, x) :R} where (T ,A) |= ax

means that all models of T and A also satisfy ax. The set of roles between two indi-

viduals i and j w.r.t. a knowledge base (T ,A) is defined as {R | (T ,A) |= (i, j) :R}.
In practical systems such as RacerPro, there are some auxiliary queries supported:

retrieval of the concept names or individuals mentioned in a knowledge base, retrieval

of the set of roles, retrieval of the role parents and children (defined analogously to the

concept parents and children, see above), retrieval of the set of individuals in the do-

main and in the range of a role, etc. As a distinguishing feature to other systems, which

is important for many applications, we would like to emphasize that RacerPro supports

multiple TBoxes and ABoxes. Assertions can be added to ABoxes after queries have

been answered. In addition, RacerPro and Pellet also provide support for retraction of

assertions in particular ABoxes. The system Pellet can reuse previous computations.

Grounded conjunctive queries

In addition to the basic retrieval inference service described above (concept-based in-

stance retrieval), more expressive query languages are required in practical applica-

tions. Well-established is the class of conjunctive queries.

A conjunctive query consists of a head and a body. The head lists variables for

which the user would like to compute bindings. The body consists of query atoms (see

below) in which all variables from the head must be mentioned. If the body contains

additional variables, they are seen as existentially quantified. A query answer is a set

of tuples representing bindings for variables mentioned in the head. A query is written

{(X1, . . . , Xn) | atom1, . . . , atomm}.
Query atoms can be concept query atoms (C(X)), role query atoms (R(X, Y )),

same-as query atoms (X = Y ) as well as so-called concrete domain query atoms.

The latter are introduced to provide support for querying the concrete domain part of

a knowledge base and will not be covered in detail here.

In the literature (e.g. (Horrocks, Sattler, Tessaris and Tobies 2000; Glimm, Hor-

rocks, Lutz and Sattler 2007; Wessel and Möller 2006)), two different semantics for

these kinds of queries are discussed. In standard conjunctive queries, variables (in

the head and in query atoms in the body) are bound to (possibly anonymous) domain

objects. A system supporting (unions of) grounded conjunctive queries is QuOnto.

In so-called grounded conjunctive queries, variables are bound to named domain

objects (object constants). However, in grounded conjunctive queries the standard se-

mantics can be obtained (only) for so-called tree-shaped queries by using existential

restrictions in query atoms. Due to space restrictions, we cannot discuss the details

here. In the following, we consider only (unions of) grounded conjunctive queries,

which are supported by KAON2, RacerPro, and Pellet.



Complex queries are built from query atoms using boolean constructs for conjunc-

tion (indicated with comma), union (∨) and negation (\). Note that the latter refers to

atom negation not concept negation and, for instance, negation as failure semantics is

assumed in (Wessel and Möller 2005). In addition, a projection operator π is supported

in order to reduce the dimensionality of an intermediate tuple set. This operator is par-

ticularly important in combination with negation (complement). These operators are

only supported by RacerPro (for details see (Wessel and Möller 2005)).

In practical applications it is advantageous to name subqueries for later reuse, and

practical systems, such as for instance RacerPro, support this for grounded conjunctive

queries with non-recursive rules of the following form.

P (X1, . . . , Xn1
)← A1(Y1),

. . .

Al(Yl),
R1(Z1, Z2),
. . .

Rh(Z2h−1, Z2h).

The predicate term to the left of← is called the head and the rest is called the body,

which, informally speaking, is seen as a conjunction of predicate terms. All variables in

the head must be mentioned in the body, and rules must be non-recursive (with the ob-

vious definition of non-recursivity). Since rules must be non-recursive there is no need

to specify the semantics of rules because subsequent replacements (with well-known

variable substitutions and variables renaming) of query atoms with their rule-defined

body is possible (unfolding). For instance, unfolding an atom P (X1, . . . , Xn1
) results

in a term π(X1, . . . , Xn1
) : A1(Y1), . . . Al(Yl), R1(Z1, Z2), . . . Rh(Z2h−1, Z2h). If

there are multiple rules (definitions) for the same predicate P , corresponding disjunc-

tions are generated. We do not discuss these details here, however.

It should be noted that answering queries in DL systems goes beyond query answer-

ing in relational databases. In databases, query answering amounts to model checking

(a database instance is seen as a model of the conceptual schema). Query answering

w.r.t. TBoxes and ABoxes must take all models into account, and thus requires de-

duction. The aim is to define expressive but decidable query languages. Well known

classes of queries such as conjunctive queries and unions of conjunctive queries are

topics of current investigations in this context.

A tuple (ind1, . . . , indn) is in the result set of a grounded conjunctive query

{(X1, . . . , Xn) | A1(Y1),
. . .

Al(Yl),
R1(Z1, Z2),
. . .

Rh(Z2h−1, ZW2h)}

if the variable substitution [X1 ← ind1, . . . , Xn ← indn] can be extended such that

additional substitutions for all other variables in the body can be found such that the

resulting query atoms after applying the substitution are satisfied in all models of the



ontology (TBox and ABox). Hence, given a variable substitution, grounded conjunc-

tive queries can be reduced to standard inference problems, which are discussed above.

For unions and projections, the semantics is slightly more complicated, and we refer to

(Wessel and Möller 2006). Although, for brevity, in this chapter we use a mathemati-

cal notation for conjunctive queries, there exist proposals for conjunctive queries in the

XML-based DIG 2.0 format (Turhan, Bechhofer, Kaplunova, Liebig, Luther, Möller,

Noppens, Patel-Schneider, Suntisrivaraporn and Weithöner 2006). In addition, another

XML-based format called OWL-QL has been proposed, and practical query answering

systems are available (e.g. (Kaplunova, Kaya and Möller 2006)).

Queries w.r.t. temporal propositions:

In order to support event recognition in an ontology-based media interpretation sys-

tem, we introduced temporal propositions. For queries over ABoxes that also contain

temporal propositions, rules with time intervals can be defined. Suppose three disjoint

sets of names Preds, TimeV ars and V ars neither of which is a subset of the names

mentioned in the axioms of the ontology. Then, a rule with time intervals has the fol-

lowing structure:

P[T0,T1](X1, . . . , Xn1
)← Q1[T2,T3](Y1,1, . . . , Y1,m1

),

. . .

Qk[T2k,T2k+1]
(Yk,1, . . . , Yk,mk

),

A1(Z1),
. . .

Al(Zl),
R1(W1, W2),
. . .

Rh(W2h−1, W2h).

where the Ti ∈ TimeV ars are temporal variables and Xi, Yj,k, Zl, Wh ∈ V ars

are (not necessarily disjoint) variables that are bound to individuals mentioned in the

ABox, P,Qi ∈ Preds, and Aj , Rk are concept names and role names, respectively.

In a similar way as for conjunctive queries introduced above, all variables in the head

must be mentioned in the body, and rules must be non-recursive. Thus, queries w.r.t.

time variables are unfolded, similar to rules for defined queries.

A conjunctive query with time variables is an expression of the following form:

{(X1, . . . , Xn)[T1,T2] | Q1[T2,T3](Y1,1, . . . , Y1,m1
),

. . .

Qk[T2k,T2k+1]
(Yk,1, . . . , Yk,mk

),

A1(Z1),
. . .

Al(Zl),
R1(W1, W2),
. . .

Rh(W2h−1, W2h)}



Note that the variables Xi, Yi,j , Zi, and Wi are not necessarily disjoint. A tuple

(ind1, . . . , indn)[t1,t2] is a potential solution of a grounded unfolded temporal con-

junctive query (temporal query for short) if the variable substitution [X1 ← ind1, . . . , Xn ←
indn, T1 ← t1, T2 ← t2] can be extended with additional assignments for all other

variables in the body such that the resulting query atoms after applying the substitution

are satisfied in all temporal models of the ontology (TBox and ABox). The result set

for a temporal query comprises all tuples (ind1, . . . , indn)[(t1min
,t1max ),(t2min

,t2max )]

such that there exists no other potential solution (ind1, . . . , indn)[t1,t2] with t1 <

t1min
or t1 > t1max

or t2 < t2min
or t2 > t2max

.

Algorithms for answering queries involving rules with time variables have been

published in (Neumann and Novak 1983) and (Neumann 1985). The algorithms are

implemented as inferences only in the RacerPro description logic system. In addition

to the original Prolog-style approach in (Neumann 1985), conjunctive query atoms for

ABoxes are provided for queries with time variables.

Nonstandard Inference Services

Many inference services different from those mentioned above have been introduced

in the literature (non-standard inference services). We discuss only one non-standard

inference service, namely abduction, which is relevant for the media interpretation

processes described below (Elsenbroich, Kutz and Sattler 2006).

The abduction inference service aims to construct a set of (minimal) explanations

∆ for a given set of assertions Γ such that ∆ is consistent w.r.t. to the ontology (T ,A)
and satisfies:

1. T ∪ A ∪∆ |= Γ and

2. If ∆′ is an ABox satisfying T ∪ A ∪∆′ |= Γ , then ∆′ |= ∆ (∆ is least specific)

This inference service is used in Section 3 as the basis for formalizing the deriva-

tion of annotations (metadata) for media objects. The annotations describe high-level

interpretations of media objects. Furthermore, they can be used to retrieve the media

objects from which they are derived. Often, the names in ∆ and Γ are predefined (and

are called abducibles and observables, respectively).

2.3 Retrieval of media objects

An application scenario for automatically derived interpretations of media objects is

information retrieval, for instance, in the Semantic Web. Interpretations are seen as

annotations of media objects and can be practically represented in RDF or OWL for-

mat. In our view, annotations describe “real-world” objects and events. It is not the

goal to merely “classify” images and attach keywords but to construct a high-level

interpretation of the content of a media object. The former approach has a limited ap-

plicability if examples such as Figure 3.1 are considered and queries for, e.g. media

objects with a mailman have to be answered. The goal of this section is to motivate

the use of Aboxes for describing media content in constrast to using just keywords



(or concept names) for classifying media objects. Details about how description log-

ics can be used for media retrieval based on description logics have been published

in (Möller, Haarslev and Neumann 1998), see also subsequent work in (Di Sciascio,

Donini and Mongiello 1999; Di Sciascio, Donini and Mongiello 2000; Schober, Her-

mes and Herzog 2005). In a more general setting, (Sebastiani 1994) deals with descrip-

tion logic and information retrieval.

A set of media objects with annotations attached to each media object can be made

available via a web server with standard application server technology. We assume that

the web server provides a query interface (for instance, using the XML-based DIG

2.0 or OWL-QL query language, see Section 2.2). For readability reasons, however,

here we use ABoxes for content descriptions, and employ a mathematical notation for

queries. Details about XML-based multimedia content descriptions and MPEG-7 have

been described in Chapters 2 and 3 of this book.

mailman1 : Mailman

bicycle1 : Bicycle

mail deliv1 : MailDeliv

(mail deliv1, mailman1) : hasPart

(mail deliv1, bicycle1) : hasPart

(mail deliv1, url 1) : hasURL

(mailman1, url 2) : hasURL

(bicycle1, url 3) : hasURL

(url 1) : ="http://www.img.de/image-1.jpg"

(url 2) : ="http://www.img.de/image-1.jpg#(200,400)/(300/500)"

(url 3) : ="http://www.img.de/image-1.jpg#(100,400)/(150/500)"

garbageman1 : Garbageman

garbageman2 : Garbageman

garbagetruck1 : Garbage Truck

gc1 : Garbage Collection

(gc1, garbageman1) : hasPart

(gc1, garbageman2) : hasPart

(gc1, garbagetruck1) : hasPart

(gc1, url 4) : hasURL

. . .

Fig. 3.6. An ABox representing the annotation of the image in Figure 3.1. The predicate =string

stands for a one-place predicate p(x) which is true for x = string.

ImageQuery1 := {(X, Y ) | MailDeliv(X), Bicycle(Y ), hasPart(X, Y )}
URLQuery1 := {(X, value(X)) | hasURL(mail deliv1, X)}
URLQuery2 := {(X, value(X)) | hasURL(bicycle1, X)}

Fig. 3.7. Query for “a mail delivery with a bicycle” and subsequent queries for retrieving the

URLs w.r.t. the result for ImageQuery1.



Using the example from Figure 3.1 we sketch how media interpretations are used

to implement a media retrieval system. Figure 3.6 illustrates the main ideas about an-

notations for media objects using ABoxes (we omit the TBox for brevity). It would

have been possible to more appropriately describe the role which the parts play in the

events (in the sense of case frames). We omit the discussion of these issues here for

brevity, however, and use a “generic” role hasPart. It is also possible to use another

“aggregate” street scene1 for combining the garbage collection and mail delivery

events.

A query which might be posed in an information system is shown in Figure 3.7.

As a result, the inference system returns the tuple (mail deliv1, bicycle1), and in or-

der to show the image (and highlight the area with the bicycle), the associated URL

names can be retrieved (see also Figure 3.7). The form value(x) returns a unique

binding for a variable (in this case a string) if it exists, and ∅ otherwise. In case

of URLQuery1 the answer is (url1,"http://www.img.de/image-1.jpg").
The result of URLQuery2 is defined analogously. The URLs can be used to ac-

tually retrieve the image data. Subsequent queries w.r.t. the annotation individuals

mail deliv1 and bicycle1 are certainly possible. We do not discuss details here, how-

ever. In summary, it should be clear now, how annotations with metadata are used in

an ontology-based information retrieval system.

With axioms such as

Mailman ⊑ Postal Employee

Mailman ≡ Postman

a query for a Postal Employee or a Postman will also return the media object

shown in Figure 3.1. In general, all benefits of description logic reasoning carry over

to query answering in an information retrieval system of the kind sketched above.

It is easy to see that annotations such as the ones shown in Figure 3.6 can be set up

such that the URLs are tied to the ABox individuals comprising the high-level descrip-

tions. In particular, one can easily imagine a situation in which there exist multiple in-

terpretations of an image, which results in multiple annotations being associated with

an image. In addition, it is obvious that a repository of media objects together with

their annotations (metadata) gives rise to one or more ABoxes that are managed by the

ontology-based information system. Not so obvious is how metadata can be automat-

ically derived since manual annotation is too costly in almost all practical scenarios.

The derivation of metadata representing high-level interpretation of media content is

discussed in the next section. Querying as discussed in this section refers to metadata

(Aboxes) but not directly to media content. Processes for the automatic derivation of

metadata, however, do refer to media content, and as we will see later, a set of given

queries can indeed influence media interpretation.

3 Automatic construction of metadata for media objects

In this section we will discuss how media objects can be automatically interpreted. We

start with images, continue with text, and finally discuss image sequence interpretation.



A first attempt to understand fusion of information gained w.r.t. different modalities is

presented afterwards.

3.1 Image interpretation

An ontology in a description logic framework is seen as a tuple consisting of a TBox

and an ABox. In order to construct a high-level interpretation, the ABox part of the on-

tology is extended with some new assertions describing individuals and their relations.

These descriptions are derived by media interpretation processes using the ontology

(we assume the ontology axioms are denoted in a set Σ).

Interpretation processes are set up for different modalities, still images, videos,

audio data, and texts. In this section we discuss the interpretation process using an ex-

ample interpretation for still images. The output is a symbolic description represented

as an ABox. This ABox is the result of an abduction process (see (Hobbs, Stickel,

Appelt and Martin 1993; Shanahan 2005) for a general introduction). In this process

a solution for the following equation is computed: Σ ∪∆ |= Γ . The solution ∆ must

satisfy certain side conditions (see Section 2.2).

Fig. 3.8. Still image displaying a pole-vault event.

In Figure 3.8 an example from the athletics domain is presented. Assuming it is

possible to detect a horizontal bar bar1, a human human1, and a pole pole1 by im-

age analysis processes, the output of the analysis phase is represented as an ABox Γ .

Assertions for the individuals and (some of) their relations detected by analysing Fig-

ure 3.8 are shown in Figure 3.9. We are aware of the fact that crisp object recognition

might be hard to achieve. Therefore, in Section 4 we develop an approach that deals

with uncertainty in this respect.

In order to continue the interpretation example, we assume that the ontology con-

tains the axioms shown in Figure 3.10 (the ABox of the ontology is assumed to be



pole1 : Pole

human1 : Human

bar1 : Horizontal Bar

(bar1, human1) : near

(human1, pole1) : touches

Fig. 3.9. An ABox Γ representing the result of the image analysis phase.

Man ⊑ Human

Woman ⊑ Human

Man ⊑ ¬Woman

Athlete ≡ Human ⊓ ∃hasProfession.Sport

Jumper ⊑ Athlete

Foam Mat ⊑ SportEquipment

Pole ⊑ SportEquipment

Javelin ⊑ SportEquipment

Horizontal bar ⊑ SportEquipment

Jumping Event ⊑ Event⊓
∃hasPart.Jumper⊓
∃≤1hasPart.Jumper

Pole V ault ⊑ Jumping Event⊓
∃hasPart.Pole⊓
∃hasPart.Horizontal Bar⊓
∃hasPart.Foam Mat

High Jump ⊑ Jumping Event⊓
∃hasPart.Horizontal Bar⊓
∃hasPart.Foam Mat

PV InStartPhase ⊑ ⊤
PV InEndStartPhase ⊑ ⊤

HJ InJumpPhase ⊑ ⊤
. . .

Fig. 3.10. An tiny example TBox Σ for the athletics domain.

empty). If we compare with the aggregate design patterns shown in Figure 3.4, axioms

for both, Pole V ault as well as High Jump, contain parent concepts and restric-

tions for parts. However, in Figure 3.10 there are no constraints between part objects.

Therefore, the conditions mentioned on the right-hand side are only necessary and not

sufficient conditions as in Figure 3.4. For expressing constraints between parts in an

aggregate (at least three objects are involved), description logics are not expressive

enough (only the two-variable fragment of first order logic is captured). Thus, some

additional mechanism is required without jeopardizing decidability. In order to cap-

ture constraints among aggregate parts, we assume that the ontology is extended with

DL-safe rules (rules that are applied to ABox individuals only, see Section 2.1). In

Figure 3.11 a set of rules for the athletics example is specified. Note that the spatial

constraints touches and near for the parts of a Pole V ault event (or a High Jump

event) are not imposed by the TBox in Figure 3.10. Thus, rules are used to represent

additional knowledge. Since spatial relations depend on the specific “subphases” of



the events, corresponding clauses are included on the right-hand sides of the rules.

For instance, a jumper as part of a High Jump is near the bar if the image shows a

High Jump in the jump phase. Later, in the context of fusion discussed in Section 3.5,

we will see how information about the phase (e.g. HJ InJumpPhase) as captured in

an image is related to the spatio-temporal knowledge of the image sequence modality.

In the following we assume that rules such as those shown in Figure 3.11 are part

of the TBox Σ.

touches(Y, Z) ← Pole V ault(X),
PV InStartPhase(X),
hasPart(X, Y ), Jumper(Y ),
hasPart(X, Z), Pole(Z).

near(Y, Z) ← Pole V ault(X),
PV InEndStartPhase(X),
hasPart(X, Y ), Horizontal Bar(Y ),
hasPart(X, Z), Jumper(Z).

near(Y, Z) ← High Jump(X),
HJ InJumpPhase(X),
hasPart(X, Y ), Horizontal Bar(Y ),
hasPart(X, Z), Jumper(Z).

. . .

Fig. 3.11. Additional restrictions for Pole V ault and High Jump in the form of rules.

In order to provide a high-level interpretation, i.e. to provide a description of the

image content in the form of high-level aggregates, we assume that spatial relations

between certain objects detected by low-level analysis processes are not arbitrary. In

order to construct an interpretation, an explanation is computed why it is the case that

a jumper touches a pole and is near a horizontal bar. Such explanations are considered

the results of image interpretation processes. As mentioned above, the idea is to use

the abduction inference service for deriving these kinds of (minimal) explanations (in

the sense of interpretations). Minimal explanations can be extended appropriately in

order to match expectations and task context.

We start with the computation of a minimal explanation in our athletics scenario.

For this purpose, we slightly modify the abduction equation by taking into consid-

eration that initially the ABox does not need to be empty. Thus, we divide Γ (see

Figure 3.9) into a part Γ2 that the agent would like to have explained, and a part Γ1

that the interpretation agent takes for granted. In our case Γ2 is {(bar1, human1) :
near, (human1, pole1) : touches} and Γ1 is {pole1 : Pole, human1 : Human, bar1 :
Horizontal Bar}.

Coming back to the abduction problem specified above, we need solution(s) for the

equation Σ ∪ ∆ ∪ Γ1 |= Γ2. In other words, given the background ontology Σ from

Figures 3.10 and 3.11, a query as derived from Γ2 should return true (see Figure 3.12).

Obviously, this is not the case if ∆ is empty. In order to see how an appropriate

∆ could be derived, let us have a look at the rules in Figure 3.11. In particular, let



Q1 := {() | near(bar1, human1),
touches(human1, pole1)}

Fig. 3.12. Query representing Γ2.

us focus on the rules for Pole V ault first. If we apply the rules to the query in a

backward chaining way (i.e. from left to right) and unify corresponding terms we get

variable bindings for Y and Z. The “unbound” variable X of the corresponding rules is

instantiated with fresh individuals (e.g. pv1 and pv2). Since the parts and their relations

can be explained with one aggregate, it is reasonable to assume that only one event

provides a complete explanation, i.e. only one individual pv1 is used (Occam’s Razor).

Then, a possible solution ∆ for the abduction equation can be derived. ∆ is shown in

Figure 3.13.

pv1 : Pole V ault

pv1 : PV InStartPhase

pv1 : PV InEndStartPhase

human1 : Jumper

(pv1, human1) : hasPart

(pv1, bar1) : hasPart

(pv1, pole1) : hasPart

Fig. 3.13. One possible solution of the abduction equation.

Note that due to the involvement of human1 in the pole-vault event, human1

is now seen as an instance of Jumper, and, due to the TBox, also as an Athlete.

Thus, information from high-level events also influences information that is available

about the related parts. With queries for Jumpers the corresponding media objects

would not have been found otherwise. Thus, recognizing high-level events is of utmost

importance in information retrieval systems (and pure content-based retrieval does not

help).

Considering the GCIs involving Pole V ault in the TBox shown in Figure 3.10 it

becomes apparent that for a pole vault there also exists a foam mat which is not found

by the image analysis module: Maybe it is not visible or the analysis just could not

detect it. In the latter situation, one could somehow adapt the image analysis processes

and start a feedback loop. This feedback from the image interpretation module (high

level) to the image analysis module (low-level) is subject to ongoing research and

will be covered in more detail in Section 3.6. The assertions concerning the relation

hasPart and the phases derived by the rule are included in the interpretation result.

Thus, the output of the interpretation phase in our example is the ABox shown in

Figure 3.14.

The example discussed here covers the interpretation of still images. It is necessary,

however, to keep in mind that each media object might consist of multiple modalities,

each of which will be the basis of modality-specific interpretation results (ABoxes). In

order to provide for an integrated representation of the interpretation of media objects



pole1 : Pole

human1 : Human

bar1 : Horizontal Bar

(bar1, human1) : near

(human1, pole1) : touches

pv1 : Pole V ault

pv1 : PV InStartPhase

pv1 : PV InEndStartPhase

human1 : Jumper

(pv1, human1) : hasPart

(pv1, bar1) : hasPart

(pv1, pole1) : hasPart

Fig. 3.14. An ABox representing the result of the image interpretation phase.

as a whole, these modality-specific interpretation results must be appropriately inte-

grated. A cornerstone of this integration process will be to determine which modality-

specific names refer to the same domain object. This will be discussed in later sections.

In the following, both modality-specific and media-specific ABoxes will be called in-

terpretation ABoxes. In a specific context, ambiguities should not arise.

Fig. 3.15. Image displaying a snapshot of a high jump or pole vault (where the pole is outside

the image).

So far we have discussed an example where there is one unique explanation (and,

hence, one unique interpretation). However, this need not necessarily be the case. In

Figure 3.15 an example is presented that might lead to two different interpretations.

For the example we assume that the ABox in Figure 3.16 is produced by the image

analysis component.



bar2 : Horizontal Bar

human2 : Human

(bar2, human2) : near

Fig. 3.16. An ABox Γ representing the result of the analysis of the image in Figure 3.15.

For the interpretation process we assume the same ontology as above. It is easy to

see that we can get two explanations by the abduction process (see Figures 3.17 and

3.18). Note that new names which might refer to the same domain object are used in

each explanation.

Continuing the example, it might be the case that for some images the ontology

does not contain relevant axioms or rules. In this case, the interpretation result, i.e. the

result of solving the abduction problem Σ ∪∆∪Γ1 |= Γ2 will be degenerate because,

due to missing axioms or rules in Σ, ∆ must necessarily be equal to Γ2 in order to

solve the equation. As an example of such a situation we can discuss an interpretation

of Figures 3.8 or 3.15 without the rules from Figure 3.11 and the GCIs for Pole V ault

and High Jump in Figure 3.10. The degenerate interpretation result is shown (as Γ )

in Figure 3.9. An annotation based on such a degenerate interpretation will certain not

support queries such as {(x) | Pole V ault(x) ∨High Jump(x)}.

human2 : Human

bar2 : Horizontal Bar

(bar2, human2) : near

hj2 : High jump

hj2 : HJ InJumpPhase

human2 : Jumper

(hj2, human2) : hasPart

(hj2, bar2) : hasPart

Fig. 3.17. An ABox representing the first result of the image interpretation process.

human2 : Human

bar2 : Horizontal Bar

(bar2, human2) : near

pv2 : Pole V ault

pv2 : PV InEndStartPhase

human2 : Jumper

(pv2, human2) : hasPart

(pv2, bar2) : hasPart

Fig. 3.18. An ABox representing the second result of the image interpretation process.

In Figure 3.19 a pole vault is shown. Suppose the ABox shown in Figure 3.20 is

generated by image analysis processes. Compared to Figure 3.16 there is only one



Fig. 3.19. Image displaying a snapshot of a pole vault (where the pole is partially outside the

image).

bar3 : Horizontal Bar

jumper3 : Human

pole3 : Pole

(bar3, jumper3) : near

Fig. 3.20. An ABox Γ representing the result of the analysis of the image in Figure 3.19.

additional assertion, the assertion for the pole. If we apply the abduction process in

a naive way, the result will also be two interpretation ABoxes as shown above (one

for a pole vault and one for a high jump). In the high-jump event, the pole is just

ignored (and erroneously considered as “noise”). As the abduction process is defined

now, there is no reason to explain the pole since up to now only the spatial relations are

put into Γ2 and hence are “explained”. The example demonstrates, that also assertions

about single objects have to be put into Γ2 in order to avoid spurious effects.

3.2 Towards an abduction procedure

The interpretation example presented so far exhibits several interesting characteristics

which will now be discussed in greater generality.

First, it is important to note that, in general, interpretations do not logically follow

from the data and the knowledge base. Visual or audio data are inherently ambiguous,

and multiple interpretations may be possible. Hence deductive reasoning is not ade-

quate. Rather, media data must be seen as a causal consequence of some real-world

scenario which is to be described by an interpretation. For example, natural images

are caused by projecting 3D scenes, and interpretations of the images should provide

descriptions of the underlying 3D scenes. Furthermore, media data may be sparse,

describing only parts of a scenario. For example, Figure 3.15 is just a snapshot of a

complete high-jump occurrence. Obviously, sparse data may be ambiguous and inter-

preted in several ways, in this case as a high-jump or a pole-vault event.

In the example, the causal relationship between high-level concepts (such as

Pole V ault(X)) and relations between low-level data (such as near(Y, Z)) is rep-

resented by rules because description logics are not expressive enough for these kinds



of constraints. In some case, however, there might be axioms in the Tbox that provide

necessary conditions (see, e.g. the axiom for Athlete in Figure 3.10). These axioms are

more general than corresponding rules (they apply to all domain objects, not only to

objects for which there is a name in the Abox). A rule rule such as

Athlete(X)← Human(X)
hasProfession(X,Y )
Sport(Y )

might be implicitly derived from the axiom. This approximation process might take

into account a set of externally-defined abducibles in order to limit the number of

axioms to be considered for the abduction operation. Details of the approximation

process are subject to further research. Using rules for sufficient conditions is one

way to enable backward chaining from low-level data to high-level explanations. In

general, such rules should also be available for all conjunctive constituents of a high-

level concept in order to enable backward chaining along multiple paths. For instance,

the following concept inclusion (see Figure 3.10)

High Jump ⊑ Jumping Event⊓
∃hasPart.Horizontal Bar⊓
∃hasPart.Foam Mat

should give also rise to the rules

Jumping Event(X)← High Jump(X)
Horizontal Bar(X)← High Jump(Y ),

hasPartBar(Y,X).
Foam Mat(X)← High Jump(Y ),

hasPartMat(Y,X).

where hasPartC represents a relation (or role) that associates a high-jump instance

with a part instance of concept C (the role hasPartC is range-restricted to C).

In this case there is no simple syntactic transformation for exploiting the GCI for

High Jump in the abduction process. A possible explanation for the data

bar1 : Horizonal Bar

could be generated by the rule which states that a Horizontal Bar can be part of a

High Jump. Hence, a high-jump aggregate can be generated to which bar1 is associ-

ated via the function hasPartBar. Similar arguments and rules derived from the Tbox

will lead to a pole-vault aggregate as another (minimal) explanation for a bar in a pic-

ture (without the pole being shown). If, additionally, there is a pole as in Figure 3.19,

and it is mentioned in the analysis ABox, e.g.

pole1 : Pole

then, unfortunately, a high jump does provide an explantion for the bar (neglecting

the pole). Thus if we require the process to explain the existence of objects, spurious



interpretations such as “a high jump with some arbitrary pole” (see Figure 3.20) can

be avoided. This has been discussed in the literature as the principle of consilience

(Hobbs, Stickel, Martin and Edwards 1988; Hobbs et al. 1988; Hobbs, Stickel, Appelt

and Martin 1990).

It is evident that interpretation by abduction can in general be achieved by exploit-

ing the hasPart structure of concepts and explaining data as part of a larger whole. It

is therefore useful to view possible interpretation steps within the compositional hier-

archy of aggregate concepts (Neumann and Weiss 2003). Figure 3.21 shows a compo-

sitional hierarchy for the domain of sports events, based on and extending the example

TBox in Figure 3.10. Given the media data shown in Figure 3.8, the compositional

hierarchy exposes all aggregate concepts which could explain the data.

In order to provide additional support for an explanation, it may also be useful to

follow hasPart arcs from aggregates to parts. For instance, to verify a pole vault, one

may check whether the media data includes a pole.

Besides the compositional hierarchy, the taxonomical hierarchy can also be ex-

ploited for generating explanations. For example, athlete1 : Athlete may not have

been recognized, and moving object1 : Person is included in the media data in-

stead. In this case it proves useful to explore a possible specialization of Person which

would then lead to interesting aggregate concepts.

Fig. 3.21. Compositional hierarchy induced by hasPart roles in aggregate concepts. The dotted

arrows indicate specialisation relations.

In summary, possible explanations can be generated by navigating from data to

higher-level concepts by

• aggregate instantiation,

• aggregate expansion, and

• instance specialization.



These considerations can be used to guide the knowledge modelling process and

might help to find appropriate rules for the abduction process described above.

As already shown by (Reiter and Mackworth 1990) and further elaborated in

(Schröder 1999), image interpretation can also be formally described as constructing

a partial model. ”Model” is used here in the logical sense and means a mapping from

the symbols of logical formulae into a real-world domain such that the formulae are

true. A partial model can be constructed by a computer (which has no direct access to

the real-world domain) by building the model on top of the primitive media data which

are taken to map into the intended real-world objects. As opposed to interpretation by

abduction, interpretation by model construction does not focus on the data but aims

at constructing a symbolic description of some real-world scenario consistent with the

data.

As pointed out in Section 1, the scope of an interpretation depends also on the

task and other contextual information. However, the logical formalisation in terms of

model construction gives no clue as to what to include and what not to include in an

interpretation as long as the interpretation is consistent and entails the data. One way

to restrict interpretations is by introducing a notion of dependency and by requiring

that the interpretation should depend on the data. This can be formalised by consider-

ing the compositional hierarchy formed by aggregate concepts. We say that a concept

depends on data D if it is a predecessor of some element of D or a successor of a prede-

cessor. This notion of dependency is the same as in Bayesian Networks with causality

arcs corresponding to the hasPart relations in the figure. In Figure 3.21, it is assumed

that Horizontal Bar is the data. All concepts dependent on Horizontal Bar are

depicted in light grey.

The dependency definition can be further refined by distinguishing between neces-

sary and optional parts (expressed by cardinality restrictions for the hasPart roles).

If, for example, a sports event has all its parts as optional parts, it would make little

sense to include a High Jump as part of the explanation for a Pole V ault.

Restricting interpretations to assertions which in this sense depend on the data

appears to be useful for many interpretation tasks. However, one can also conceive

of tasks where non-dependent assertions may be interesting, for example providing

further explanations for some of the hypothesized instances. In any case, a task-based

control of the scope of an interpretation remains necessary.

3.3 Shallow text interpretation

Another modality which might provide additional information for media interpreta-

tion is “text”. There exists a large amount of publications about natural language un-

derstanding, text interpretation, information retrieval from text, etc. We cannot give a

survey of all trends and current research results here. However, using an example, we

show how the technique of abduction introduced in the previous section can be used to

provide interpretation ABoxes. The goal of the example discussed in this subsection

is to demonstrate the feasibility of the general approach for multimedia interpretation.

Abduction for natural language interpretation is investigated in much more detail in



(Hobbs et al. 1988). Abduction is even used to formalise discourse understanding. No

decidable representation formalism is used, however.

Our example assumes that standard techniques from information retrieval ap-

proaches are applied (“shallow text processing”). Consider the sentences “A new world

record in this year’s event was missed. The remaining famous athlete touched the cross-

bar and failed 2.40m.” We assume that the ABox shown in Figure 3.22 is generated

by low-level text analysis components. For the nouns, individuals are generated as in-

stances of appropriate concepts (we suppose a mapping from word to concepts is taken

from a gazetteer e.g. “crossbar”→ Horizontal Bar). The role precedes represents

the fact that there exists a linear precedence between corresponding nouns across ad-

jacent sentence boundaries. In our example, the athlete and the crossbar are mentioned

in the sentence immediately after the sentence with the event.

object1 : Event

object2 : Horizontal Bar

object3 : Athlete

object3 : Famous

(object1, object2) : precedes

(object1, object3) : precedes

Fig. 3.22. Interpretation ABox produced by shallow text analysis.

Note that in Figure 3.22 for the word “famous” there is no new object generated.

The word “famous” is used as an adjective here, and this can be easily detected even by

shallow text processing techniques. For generating an interpretation ABox we assume

that the precedes assertions are to be explained (Γ2) whereas the first four assertions

are taken for granted (Γ1). The query

Q2 := {() | precedes(object1, object2), precedes(object1, object3)}

represents Γ2 in a similar way as discussed in Section 3.1. The goal is to compute a ∆

that explains the “surface relation” precedes with a “semantically deep relation” such

has hasPart. We assume that the TBox Σ is extended with the axiom

hasPart ⊑ precedes

The role hasPart represents a domain-specific relation whereas the role precedes rep-

resents an “abstraction” of this role. With the verbalization technique in our example,

there is no explicit part relation mentioned in the text. The part-of relation is expressed

by corresponding associations in the text (linear precedence and local connectedness).

The deep domain-specific interpretation is induced by abduction, and hence, as a result,

the abduction process returns the ∆ shown in Figure 3.23. Together with Figure 3.22,

an interpretation ABox can be constructed (the “modality-specific” assertions for the

role precedes might be removed if appropriate). It is obvious that hasPart might not

be the only deep interpretation. In order to keep the discussion focussed we do not dis-

cuss further possibilities, but we keep in mind that possible alternatives might be ruled



out later on due to results in fusion (see Section 3.5). In addition, it should be men-

tioned that even in shallow text interpretation, for instance, the tense of detected verbs

could be taken into consideration and so a more liguistic-based precedence relation

could be established. The example we discussed here illustrates the general principles,

however.

object1 : High Jump

(object1, object2) : hasPart

(object1, object3) : hasPart

Fig. 3.23. Addendum to the interpretation ABox shown in Figure 3.22.

3.4 Image sequence interpretation

In contrast to still images, events in image sequences have a temporal extension that has

to be appropriately considered for constructing media interpretations. In order to de-

tect high-level events such as “high-jump”, event predicates are described using rules

with time variables. For high-jump events we sketch the rule design pattern in Fig-

ure 3.24. In our approach we suppose that basic events can be detected by image anal-

ysis processes. Basic events are described with temporal propositions (being added to

an interpretation ABox by low-level processes). An example is shown in Figure 3.25.

High Jump Event[T1,T2](X, Y ) ← accelerate horizontally[T1,T3](Y ),
vertical upward movement[T3,T4](Y ),
turn[T4,T5](Y ),
vertical downward movement[T5,T2](Y ).
Jumper(Y ),
High Jump(X),
hasPart(X, Y ),

Fig. 3.24. Rule with time intervals for recognizing high jump events.

In order to actually recognize events for particular individuals which satisfy re-

strictions w.r.t. the ontology, the query language for temporal propositions introduced

in Section 2.2 is applied. An example for a query involving events and time intervals

is shown below.

{(X)[T1,T2] | High Jump Event[T1,T2](X,Y )}

To answer a query, two steps have to be carried out. First, an assignment α for query

variables (i.e. X in the query shown above) has to be found such that the body pred-

icate terms and atoms are satisfied. Second, the goal is to determine lower bound and

upper bound values for the temporal variables (T1, T2 in the example) such that the

temporal propositions in the query body are satisfied. The result of the example query



accelerate horizontally[219,224] (moving object1)
vertical upward movement[224,226] (moving object1)

turn[226,228] (moving object1)
vertical downward movement[228,230] (moving object1)

moving object1 : Jumper

event1 : High Jump

(event1, moving object1) : hasPart

Fig. 3.25. Abox assertions for basic events (temporal propositions) that are detected by image

sequence analysis components. In addition, three standard assertions possibly extracted from

other sources (e.g. images and text) are added.

is (event1)[(219,223),(229,230)]. Thus, for all T1 ∈ (219, 223) and T2 ∈ (229, 230) and

for all remaining temporal variables in the body of the rule in Figure 3.24 there ex-

ist values such that all predicate terms in the body are satisfied with the assignment

α(X)→ event1.

If a high-jump event is expected but the query for the high-jump event (see above)

returns false, then abduction can be used to determine what has to be added to the

interpretation ABox. For instance, the temporal proposition

accelerate horizontally[219,224](moving object1)

might probably be missing, and will be added by abduction such that the answer will

be true and the high jump event is “explained”. It might also be the case that the image

sequence analysis determined a mutilated partial basic event such as

accelerate horizontally[219,223](moving object1)

instead. In this case, abduction would just add the proposition as in the case before.

However, in this case we prefer that a near-miss is recognized, and believe that a “re-

pair” operation for the assertion in the analysis ABox should be proposed.

3.5 Formalization of fusion

In the preceding subsections we have discussed how an interpretation ABox can be

constructed for different modalities. The main idea of the approach is to use abduction

and a decision procedure for determining which assertions of the analysis ABox com-

puted by low-level analysis processes have to be explained. We did not investigate the

latter decision procedure in this chapter, however.

In Figure 3.26 three interpretation pipelines for the modalities “image”, “text”, and

“video” are shown. (see also Figure 3.3 details of the “processing pipelines” for “au-

dio” and “image”). Let us assume that interpretation ABoxes have been computed in

the “Interpretation” phase (see Figure 3.26). Actually, for every modality there might

be multiple interpretation ABoxes representing multiple possibilities for high-level in-

terpretations.

One of the problems to be solved if information from different modalities has to be

combined is the identification problem, which is the problem of determining equality



Fig. 3.26. Multimedia interpretation architecture.

assertions in order to declare co-references of different identifiers (individuals in an

ABox) to the same domain objects. This problem is also relevant for single modalities

(see e.g. (Gabsdil, Koller and Striegnitz 2001) for the text modality) but obviously

is particularly important for multiple modalities. Heuristics, such as having the same

direct types, will lead a fusion process to generate assumptions for individual equality

assertions. The overall goal is to minimize the number of different domain objects

(principle of Occam’s Razor).

In the interpretation ABoxes for different modalities, individuals are mentioned

that might refer to the same domain object. For instance, in the multimedia document

about high-jump events which we used for the discussion above, there may be an image

from which hj2 and human2 are extracted (see Figure 3.17). Let us assume, the image

has a caption which gives rise to object3 (see Figure 3.22). In addition, there could

be a video from which an individual event1 is extracted (see Figure 3.25). In this

example, there are three different interpretation ABoxes (see Figure 3.26). Fusing these

ABoxes means to construct a combined interpretation ABox. We assume that during

this process, the following questions arise. Could it be the case that hj2 and event1
are names for the same event? In addition, is it reasonable to assume that human2

and object3 are identical? In order to test whether these assumptions do not lead to an

inconsistency, the following assertions are added to the ABox.

hj2 = event1



human2 = object3

In both events the same jumper must be involved because, due to the TBox (see

Figure 3.10), at most one Jumper must participate in a Jumping Event (a parent of

High Jump). The resulting ABox is consistent (the unique name assumption is not

applied, see Section 2.1). However, from a logical point of view, adding the above-

mentioned equality assertions is not really motivated. The resulting ABox stays con-

sistent but why should an agent assume object identity in this case? In the same spirit

as we argued above, there must be a motivation for adding assertions (in the sense of

assumptions). In the abduction example for constructing interpretation ABoxes that we

have discussed above, adding assertions allows the agent to prove certain entailments

(assumptions serve as explanations for the Γ2 assertions). In other words, queries are

answered with true. We believe that similar mechanisms are required for a formaliza-

tion of the fusion process. The key insight is that fusing objects will allow the agent to

answer certain queries, too. Consider the following example.

HJ Occurs[T1,T2](X)← High Jump(X),
HJ InJumpPhase(X),
hasPart(X, Y ),
Jumper(Y ),
vertical upward movement[T1,T3](Y ),
turn[T3,T4](Y ),
vertical downward movement[T4,T2](Y ).

Under the assumption that hj2 and event1 denote the same domain object, we can

query the knowledge base about temporal information about a high-jump event with a

famous athlete.

Q3 := {(X)[T1,T2] | HJ Occurs[T1,T2](X), hasPart(X,Y ), Famous(Y )}

The result (hj2)[(224,225),(229,230)] cannot be derived without fusing the informa-

tion from multiple modalities. The query result would have been the empty set if it

was not possible to prove that for event1 the predicate HJ InJumpPhase holds.

This is possible due to the equality assertion hj2 = event1 (see above). Thus, fusion

is motivated in this case.

Up to now it is unclear how to formalize what kinds of queries are important in

a certain situation. In other words, we do not formalize what questions to ask and

assume that this is represented by “context knowledge” as indicated in Figure 3.3.

Context knowledge is induced by a feedback-loop from higher-level processes, which

are not investigated in this work. However, feedback can also occur between analysis

and interpretation. This is discussed in the next section.

3.6 Relating analysis and interpretation

Looking at the image shown in Figure 3.8 and the corresponding analysis ABox given

in Figure 3.9, it becomes clear that the foam mat is not detected in this example. Even

in the interpretation ABox (Figure 3.14) there is no explicit name for a foam mat



involved in the pole-vault event. However, due to the TBox underlying the interpre-

tation process (see Figure 3.10), a foam mat must exist implicitly. In other words, in

all models of the interpretation ABox, the pole vault individual pv1 is associated with

a foam-mat object. If this is made explicit, feedback might be given to the analysis

module (see Figure 3.26), which might use specifically parameterized image analysis

techniques to then localize a foam mat in the image. In general, the more objects are

made explicit in the analysis and interpretation ABoxes, the better is the interpretation.

Let us assume that in the example an assertion f1 : Foam Mat is added to the anal-

ysis ABox, maybe together with spatial relations to the other objects localized in the

scene. Then, the interpretation process will reuse the previously generated pole-vault

object pv1 and associates it with f1 appropriately such that the following is added:

f1 : Foam Mat

(pv1, f1) : hasPart

The derivation of a complete (fused) interpretation ABox can be seen as a bootstrap

process. In case the foam mat is not visible in the image, the interpretation might be

considered as less plausible for a high-jump event. With the help of the distinction

between domain and pictures objects and a theory for dealing with uncertainty, this is

formalised in the next section.

4 Uncertain and ambiguous interpretations

Interpretations are generally ambiguous and not clearly defined with respect to a task.

When constructing an explanation for media data, one often has the choice between

alternatives. For example, given the limited knowledge base in Figure 3.10, the image

in Figure 3.15 can be interpreted both as Pole V ault or High Jump. In the course

of a stepwise interpretation, there can be many more decision points where multiple

choices are available. For example, a High Jump or Pole V ault may be part of a

Training Event or Sports Event. As humans, we seem to exploit our experiences

for such decisions and prefer the most likely choice given all we know about the do-

main and the current scenario. Hence it appears natural to provide a probabilistic model

for the uncertainty of logically ambiguous choices. In this section we sketch a prob-

abilistic model which is intended to guide choices in the logic-based interpretation

process presented so far.

4.1 Towards a probabilistic preference measure

The task of the probabilistic model is illustrated in Figure 3.27. In this figure we dis-

tinguish between the concepts describing real-world objects and concepts describing

the corresponding media objects, a distinction which we omitted so far to simplify the

presentation. All media-object concept names are marked with the suffix “pict” and

describe the properties of pictures taken from the corresponding real-world objects.

This way it can be explained, for example, that a real-world pole vault requires a pole

but that a picture of a pole vault may not show a pole.



Fig. 3.27. Aggregate concepts relating a high jump and a pole vault to corresponding me-

dia object concepts. The Horizontal-Bar-Pict can be interpreted as an instance of a

high-jump-horizontal-bar picture (HJ-HB-Pict) or of a pole-vault-horizontal-bar picture

(PV -HB-Pict).

Figure 3.27 illustrates the interpretation step where the media object

Horizontal-Bar-Pict must be explained. Pole V ault and High Jump are both

logically possible, hence this is a point where a probabilistic preference measure

should help.

The basic idea is to provide an estimate of how likely Horizontal-Bar-Pict is

a high-jump picture (i.e. an instance of HJ-HB-Pict) or a pole-vault picture (i.e.

an instance of PV -HB-Pict). For this we need probability distributions such that

the probabilities of one or another aggregate having a media object as part can be

compared and the most probable choice can be made.

We take a frequentist approach and want the probabilities to reflect the statistics of

the domain, including the statistics of corresponding media objects. Determining these

statistics is, of course, a formidable task. But the example illustrates that estimates

of the frequency of occurrence of pole-vault pictures without pole as opposed to the

frequeny of occurrence of high-jump pictures may very well tip the balance for one

interpretation rather than the other.

To compute such estimates we invoke Bayes Net technology. We consider concepts

as random variables with probability distributions which govern the likelihood of in-

stantiations which satisfy the concept. A general approach to constructing Bayes Nets

for first-order logic expressions is presented in (Russell and Norvig 2003, p. 519ff.).

For details see also (Koller and Pfeffer 1997; Koller and Pfeffer 1998; Pfeffer, Koller,

Milch and Takusagawa 1999). Our approach exploits the fact that aggregates are the



concepts of interest for an interpretation task and dependencies between objects can

effectively be encapsulated in aggregates. This limits probabilistic dependencies and

provides for efficient propagation mechanisms.

To show this, consider a probabilistic model for the interpretation task in Fig-

ure 3.27. We propose that each aggregate is described by a structure shown in Fig-

ure 3.28.

Fig. 3.28. Probabilistic structure of an aggregate. Internal properties Ai represent parts, external

properties B represent the aggregate as a whole.

In the aggregate structure, we distinguish between an internal probabilistic descrip-

tion P (A1, A2, ..., AN ) of the parts (each represented by properties Ai and depicted

as a node at the bottom of Figure 3.28) and an external, abstracted description P (B)
which is used to represent the aggregate as part of higher-level aggregates in the com-

positional hierarchy. P (A1, A2, ..., AN ) follows from P (B) by means of the condi-

tional probability distribution P (A1 . . . AN |B) which specifies the internal probabilis-

tic structure of the aggregate.

For the time being, we consider all constituents of a high-jump event, including the

pictures taken thereof, as parts of an aggregate High-Jump and do not go into de-

tails about the internal dependency structure between real-world concepts and pictures

thereof. Similarly, the pole-vault event is modelled as an aggregate Pole-V ault, and

both are parts of a higher-level aggregate Sports-Event-Programme. The structure

of an aggregate hierarchy induced by this aggregate structure is shown in Figure 3.29.

In order to provide a preference measure, we must be able to compute the effect of

evidence for one node on the probabilities of other nodes. It is not obvious under which

conditions this can be done based on the joint probability distributions (JPDs) of the

individual aggregates as specified in Figure 3.29. The following requirements ensure

that the compositional hierarchy constitutes an abstraction hierarchy where a complete

JPD encompassing all aggregates can in principle be computed from the individual

JPDs:

Let X be any node, parts(X) = Y1 . . . YN its parts and succ(X) all its successor

nodes in the aggregate hierarchy. Then for a compositional hierarchy to be an abstrac-

tion hierarchy we require that

P (X|succ(X)) = P (X | Y 1 . . . Y N ) (1)



Fig. 3.29. Structure of aggregate hierarchy induced by aggregate structure. The quasi-tree struc-

ture reflects abstraction properties and allows for efficient probabilistic inferences.

Aggregate properties do not depend on details below the part properties.

P (succ(Y i) | Y 1 . . . Y N ) = P (succ(Y i) | Y i) (2)

Part properties only depend on the properties of the corresponding mother aggregate,

not on correlations the mother aggregate may have as a part in a higher-level aggregate.

P (succ(Y 1 . . . Y N ) | Y 1 . . . Y N ) =

N∏

i=1

P (succ(Y i) | Y 1 . . . Y N ) (3)

Parts of different aggregates are statistically independent given their mother aggre-

gates.

From (2) and (3) it follows that

P (succ(Y 1 . . . Y N ) | Y 1 . . . Y N ) =

N∏

i=1

P (succ(Y i) | Y i) (4)

These requirements agree well with intuitions of an abstraction hierarchy. If they are

fulfilled, one can show that the JPD of the aggregate hierarchy can be written as

P (Z0 . . . ZM ) = P (Z0)

M∏

i=1

P (parts(Zi) | Zi) (5)

where Zi, i = 0 . . . M are all nodes of the hierarchy and Z0 is the root node (repre-

senting the general aggregate “any scene”).

Hence for an abstraction hierarchy, the JPD of the complete hierarchy is defined

by the product of all conditional aggregate JPDs similar to a Bayes Net. Furthermore,

Equation 5 applies also to branches of the abstraction hierarchy. Hence, probabilities

within a branch can be compared without considering the rest of the hierarchy. For

example, in the interpretation task shown in Figure 3.27, only the probabilities below



the node Sports-Events-Programme have to be evaluated for choosing the most proba-

ble interpretation of Horizontal-Bar-Pict. After making the choice, Horizontal-Bar-Pict

is entered into the probabilistic structure as evidence and other probabilities must be

updated. Again, this can be restricted to the relevant branch of the compositional hier-

archy. Updating can be performed by propagation procedures similar to those in tree-

shaped Bayes Nets. On the other hand, for updates within an aggregate no simplifying

dependency structure can be assumed in general, and a Bayes Net representing the in-

ternal probability structure need not be tree-shaped. This higher complexity remains

local, however, due to the abstraction property.

The approach for exploiting conditional independencies discussed above allows

for the construction of Bayesian networks based on the aggregate structure of domain

objects. The purpose is to provide a preference measure for multiple interpretations

arising naturally from abduction, and for the interpretation steps leading to such in-

terpretations. Different from several other marriages between probabilities and logics

(e.g. as discussed in the following section), our approach does not require a reinterpre-

tation of description logic formulas but fills the space left open by multiple abduction

solutions, ambiguous object classifications, and qualitative predicates over quantitative

values. In consequence, there is no conceptual conflict in combining this probabilistic

preference measure with a description logic framework. Combinations of description

logics with approaches for modelling uncertainty are investigated in the next section.

4.2 Related work about uncertainty and description logics

Modelling uncertainty in the context of description logics has been a topic of re-

search for many years. An overview of such extensions to classical description log-

ics is presented in (Baader, Küsters and Wolter 2003). The research is oriented to

the work of modelling uncertain knowledge on the basis of first-order structures

(Nilsson 1986; Bacchus 1990; Halpern 1990). The fundamental view of the approaches

based on description logics is such that it should also be possible to represent the de-

gree of overlap between concepts (and not only subsumption or disjunction) through

probabilities. Furthermore it should also be possible to formulate uncertainty about the

structure of objects. Initial approaches considered primarily probabilistic knowledge

at the conceptual level, this means, at the level of the TBox (Heinsohn 1994). Also

knowledge representation for single objects and their relations from a probabilistic

view were studied (Jaeger 1994), such that structural uncertainty could potentially be

modeled. Along with early research results about decidability of very expressive logics

(e.g. OWL DL), proposals for the modelling of uncertain knowledge were given.

In (Giugno and Lukasiewicz 2002), a probabilistic description logic language

was studied, in which it is possible to formulate in addition to probabilistic knowl-

edge at the conceptual level (i.e. TBox), also assertional probabilistic knowledge (i.e.

ABbox) about concepts and role instances. In this language (P-SHOQ) there is no

longer a separation between TBox and ABox for the modelling of uncertainty. Its un-

derlying reasoning formalism is based on probabilistic lexicographic entailment by

(Lehmann 1995). Lexicographic entailment is based on default logic and makes use

of model creation to look for preferred minimal models, where the minimal verifying



(resp. falsifying) model determines entailment (resp. non-entailment). In (Giugno and

Lukasiewicz 2002) the work of (Lehmann 1995) is extended from a propositional logic

to a first-order logic, furthermore (Giugno and Lukasiewicz 2002) generalises classical

interpretations to probabilistic interpretations by adding a probability distribution over

the abstract domain and by interpreting defaults as statements of high conditional prob-

ability. E.g. in (Lehmann 1995) a default like P (bird → fly) ≥ 1 − ε is in (Giugno

and Lukasiewicz 2002) a conditional constraint like l ≤ P (fly|bird) ≤ u. The work

of (Giugno and Lukasiewicz 2002) allows represention of probabilistic knowledge in

a description logic language with high expressivity.

It is important to observe that the semantics used in the different approaches do not

differ much (for example w.r.t. (Jaeger 1994) and (Giugno and Lukasiewicz 2002)).

An approach for the modelling of uncertain structures for a less expressive language is

presented in (Dürig and Studer 2005). However, no specific inference algorithms are

known for this approach. An important step for the practical use of description logics

with probabilities occurred with the integration of Bayesian networks in P-CLASSIC

(Koller, Levy and Pfeffer 1997), nevertheless very strong disadvantages were obtained:

for number restrictions the supremum limits must be known and separate Bayesian net-

works are necessary to consider role fillers. Along with this problem, the probabilistic

dependencies between instances must also be modeled. This problem was overcome in

(Koller and Pfeffer 1998) - however not in the context of description logics but with a

frame-based approach, in which the treatment of default values is given without formal

semantics. The main idea in (Koller and Pfeffer 1998) is the view of considering role

fillers as nodes in Bayesian networks which have CPTs (conditional probability tables)

associated to them as generalized number restrictions in the sense of description logics.

Related studies followed in (Pfeffer et al. 1999).

Complementary to the P-CLASSIC approach, another approach called PTDL

(Yelland 2000) was developed for probabilistic modelling with the use of first-order

structures. In this approach the Bayesian network theory is considered as basis ref-

erence for further extensions, instead of (classical) description logics. The Bayesian

network nodes represent function values and an individual is associated to other nodes

through these function values. The approach in (Yelland 2000) avoids some disad-

vantages of P-CLASSIC, but it offers minimal expressivity on the side of description

logics. In context with very expressive description logics another approach (Ding and

Peng 2004; Ding, Peng and Pan 2005) was presented for the integration of Bayes net-

works. Algorithms for deduction over probabilistic first-order structures were devel-

oped by Poole (Poole 2003). Poole observes, that the existing approaches (e.g. (Koller

and Pfeffer 1998; Pfeffer et al. 1999)) only consider individuals that are explicitly

named. Qualitative probabilistic matching with hierarchical descriptions was studied

(Smyth and Poole 2004). It allows for a variation of the level of abstraction.

Previous studies have investigated the combination of Datalog and description log-

ics (so-called description logic programs) (Nottelmann and Fuhr 2004; Lukasiewicz

2005a; Lukasiewicz 2005b; Nottelmann and Fuhr 2006). Approaches for informa-

tion retrieval with probabilistic Datalog are presented in (Fuhr 2000; Fuhr 1995). In

this area, work on learning from Datalog-predicates with uncertainty is also relevant

(Nottelmann and Fuhr 2001).



Modelling vagueness to capture notions of imprecise knowledge has been inten-

sively studied (Straccia 2001; Tresp and Molitor 1998; Yen 1991), such that existing

knowledge representation formalisms like first-order logic can be extended to repre-

sent vague concepts (e.g. hot, cold) which are not entirely true or false, but rather have

a truth value between true and false. Fuzzy Logic, with a basis in fuzzy set theory,

allows the modelling of vagueness, and its fundamental view is that the classical ideas

of satisfiability and subsumption are modified such that concepts are satisfiable to a

certain degree, or a concept subsumes another to a certain degree.

In (Tresp and Molitor 1998) a tableau-like method for computing the degree of sub-

sumption between two concepts in the languageALCfm was presented. In (Yen 1991)

work on extending description logics with fuzzy features is presented for the language

FL−, in which it is possible to determine subsumption, but not possible to deter-

mine whether an individual is an instance of a concept with a certain probability. In

(Straccia 2001), the use of fuzzy logic is highlighted in the context of multimedia in-

formation retrieval, in which images are semantically annotated with fuzzy statements.

Recently, more expressive fuzzy description logics have been investigated (Stoilos,

Stamou, Tzouvaras, Pan and Horrocks 2005b; Stoilos, Stamou, Tzouvaras, Pan and

Horrocks 2005c; Stoilos, Stamou, Tzouvaras, Pan and Horrocks 2005a; Pan, Stoilos,

Stamou, Tzouvaras and Horrocks 2006; Stoilos, Straccia, Stamou and Pan 2006; Stoi-

los, Stamou and Pan 2006).

At the time of this writing, details of a probabilistic (and fuzzy) inference scheme

for media interpretation in a local context are still being investigated in ongoing re-

search. One of the open questions is how to trade off precision (which may not be vital

for a preference measure) against computational effort (which may be unaccepable if

all dependencies in a large knowledge base have to be considered).

4.3 Probabilities, description logics, abduction, and logic programming

While (Hobbs et al. 1993; Shanahan 2005) use first-order logic for text and im-

age/video interpretation, with description logics, we use a decidable knowledge rep-

resentation formalism with well-tested implementations that are known to be efficient

for many typical-case inputs. The use of logical rules and backward chaining for im-

plementing an abduction algorithm as described in Section 3 is also investigated in

the area of logic programming (Kakas, Kowalski and Toni 1992; Poole 1993a; Poole

1992; Kakas and Denecker 2002; Flach and Kakas 2000). In our approach, however,

predicate names in rules are defined w.r.t. ontologies represented as description logic

Tboxes, and thus we use another expressive fragment of first-order logic. In the context

of information retrieval, user queries can be answered regarding user-specified Tboxes.

In the previous sections, we have argued that probabilistic reasoning would really add

to the application scenario of information retrieval we have used in this chapter. In

(Sebastiani 1994) an proposal is made for using probabilistic description logics for

information retrieval. No system implementation has been developed, though.

In the previous section we have discussed related work for integrating probabilis-

tic and description logic reasoning. Only recently, however, abduction has been in-

vestigated in the context of description logics (Colucci, Noia, Sciascio, Mongiello



and Donini 2004). However, in this work, abduction is considered for concepts, not

Aboxes and queries. Due to the best of our knowledge, abduction has not yet been

considered in the context of probabilistic description logics. Interesting input to this

research is provided by abduction in probabilistic logic programming (Charniak and

Goldman 1991; Poole 1993b).

5 Conclusions

In this chapter a formal account of media interpretation has been presented. It has been

shown that results from media analysis processes can be appropriately enriched with

high-level descriptions using automatic processes. Thus, applications which require

access to high-level descriptions can be supported, for example, retrieval of media

in a Semantic Web context. The central idea is to use abduction and deduction in

concert to construct high-level descriptions for characterizing media content. It should

be emphasise that the architecture not just describes an algorithm that constructs the

descriptions but formalises the description generation in a meaningful way. High-level

descriptions are constructed to explain assertions from media analysis. The same holds

also for the way we tackle the fusion problem. In its current state, our architecture

does not specify which assertions are taken to be explained (and which queries are

constructed or selected in the case of fusion). This is seen as an even higher-level

process and is left for future work

It has also been shown that the crisp logical framework should be supported by

probabilistic preference measures in order to provide the most desirable interpreta-

tions. We have made a first contribution towards a probabilistic preference measure

which can be used to rank different interpretations.
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