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ONTOLOGY-BASED SEARCH ALGORITHMS OVER LARGE-SCALE

UNSTRUCTURED PEER-TO-PEER NETWORKS

by

RASANJALEE HIMALI DISSANAYAKA MUDIYANSELAGE

Under the Direction of Sushil Prasad and Shamkant Navathe

ABSTRACT

Peer-to-Peer(P2P) systems have emerged as a promising paradigm to structure large

scale distributed systems. They provide a robust, scalable and decentralized way to share

and publish data.The unstructured P2P systems have gained much popularity in recent years

for their wide applicability and simplicity. However efficient resource discovery remains a

fundamental challenge for unstructured P2P networks due to the lack of a network structure.

To effectively harness the power of unstructured P2P systems, the challenges in distributed



knowledge management and information search need to be overcome. Current attempts

to solve the problems pertaining to knowledge management and search have focused on

simple term based routing indices and keyword search queries. Many P2P resource discovery

applications will require more complex query functionality, as users will publish semantically

rich data and need efficiently content location algorithms that find target content at moderate

cost. Therefore, effective knowledge and data management techniques and search tools for

information retrieval are imperative and lasting.

In my dissertation, I present a suite of protocols that assist in efficient content loca-

tion and knowledge management in unstructured Peer-to-Peer overlays. The basis of these

schemes is their ability to learn from past peer interactions and increasing their performance

with time.My work aims to provide effective and bandwidth-efficient searching and data

sharing in unstructured P2P environments. A suite of algorithms which provide peers in

unstructured P2P overlays with the state necessary in order to efficiently locate, dissemi-

nate and replicate objects is presented. Also, Existing approaches to federated search are

adapted and new methods are developed for semantic knowledge representation, resource

selection, and knowledge evolution for efficient search in dynamic and distributed P2P net-

work environments. Furthermore,autonomous and decentralized algorithms that reorganizes

an unstructured network topology into a one with desired search-enhancing properties are

proposed in a network evolution model to facilitate effective and efficient semantic search in

dynamic environments.

INDEXWORDS: Peer-to-Peer networks, Query routing, Semantic search, Unstructured
overlay, Indexing, Semantic clustering, Replication
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1

PART 1

INTRODUCTION

1.1 Peer-to-Peer Networks

P2P networks have emerged as a result of the recent advances of storage and network-

ing technologies to provide data sharing and circulation through internet for large number

of users scattered all over the world. They can broadly be classified into structured and

unstructured networks. The links between peers in an unstructured network is arbitrary and

there is no relationship between the data and where peer resides. The unstructured nature

of the network, makes searching a challenging problem. Many popular P2P networks such

as Gnutella [1] and KaZaA [2] are unstructured P2P systems. Peers in structured P2P net-

works on the other hand have more structured pattern of overlay links to ensure guaranteed

search lookups. Structured P2P networks however suffer from high maintenance overhead

in maintaining overlay links in frequent peer join and leaves inherent to P2P systems.

The popularity of P2P networks for file sharing applications comes from numerous

advantages it offers including low maintenance overhead, high scalability and reliability,

synergistic performance, increased autonomy, privacy and dynamism. According to very

conservative estimates [3], there exist more than 10×109 MHz of CPU power and 10,000 TB

of storage not utilized at the edges of the Internet. According to [4] , bandwidth consumption

attributed to popular file-sharing applications amounts to a considerable fraction (up to 60%)

of the total Internet traffic. This indicates that there is a vast amount of unused potential

over the Internet and current resource-sharing applications are responsible for huge amounts

of data transmissions over the network. P2P technology can play a key role in our efforts to

tackle both issues.

P2P systems are popular for large scale information retrieval and search in huge volumes

of data dynamically distributed among many peers. While the data distributed in P2P
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networks are largely unstructured, with the advent of semantic web, more and more users

incorporate semantic meta-data with their resources. Therefore, effective search tools and

techniques for semantic information retrieval are imperative and lasting.

1.2 Motivation

While much research has been devoted to P2P search in last several years [5–9], it

is our belief that some critical areas of searching in purely decentralized information re-

trieval systems have not been thoroughly studied. This includes knowledge representation,

heterogeneous data management, resource replication and decision making in presence of a

partial view of entire system to name a few. With proper attention to these unaddressed

aspects, P2P systems have great potential which could result in significant technological

breakthroughs.

Here we summarize the main challenges and limitations unaddressed by the current

body of work:

• Knowledge Representation : Users today comprehensively generate, manipulate and

exploit shared content on the web by annotating semantic meta-data on web documents

and performing reasoning on such data sources . This phenomena has to be adequately

reflected in the knowledge representational models used in P2P networks . While we

think in general the assumptions of knowledge representation in the Semantic Web

are a good starting point, the knowledge representation in dynamic and distributed

environments such as P2P networks generates special requirements such as ability

gracefully handle peer dynamics and the need to capture the richness of peers in their

semantic entities of interest. Quantifying the richness of semantic entities such as

concepts, properties, and relations has not been addressed in the context of ontologies,

although it is a crucial part of success in P2P search protocols. We identified three core

questions which we try to tackle in the knowledge representation approach presented

in this dissertation:
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1. How can we support the tailoring of ontologies towards different needs in dynamic

and distributed P2P applications such as frequent topology and content change

and storage and bandwidth capacity limitations?

2. How can we represent uncertainty of knowledge inherent to P2P networks using

current semantic knowledge representation models?

3. How can we cope with the heterogeneity of knowledge models and ontologies with

potentially different interpretation schemes?

• Complex Query Routing : The more information we have on the Internet the more

difficult it is to find terms of specific contexts. Simply searching for keywords is not

enough anymore due to incorrect and incomplete keyword declarations and ambiguous

words that exist in our natural languages. Users today should be able to pose more

complex queries that can exploit the full power of semantic knowledge representation

models. Even though complex semantic query languages such a RDQL and SPARQL

exist today, end users are far from experienced in using such complex ontology base

query languages. This mandates developing more simple and end user friendly query

languages. There is also an inadequacy in simple yet powerful semantic knowledge rep-

resentation models that can effectively augment probabilistic representation to current

semantic technologies that allow representing the inherent uncertainty in knowledge in

P2P systems. Little to no research done in integrating probability theory with current

semantic web technologies. The efficiency of P2P search systems largely depends on

the effectiveness of the knowledge representation model and quality of the reasoning

mechanism used for query routing. Information retrieval mechanisms in large scale dy-

namic distributed systems like P2P should account for the fact that they operate based

on incomplete knowledge acquired by peers in interested domain(s). Therefore, knowl-

edge representation models should be capable of representing prior domain knowledge

a peer acquires over time and the reasoning mechanism used for peer selection in query

routing should draw probabilistic conclusions based on this knowledge.
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Moreover, while many P2P query routing algorithms proposed so far exhibit a lack of

perform in routing multi-term queries. As query logs of popular web search engines

suggest, majority of queries issued by users contain more than single term. The naive

solution of maintaining term-set based indices to achieve the purpose will simply result

in exponential growth of indices. Therefore we need space efficient index structures that

can hold large volumes of possible queries(i.e term sets) along with associated relevance

strengths. The research questions that needs to be answered here are two-fold:

1. How can we exploit this potentially probabilistic knowledge in peers to derive new

knowledge and probabilistic conclusions leading to effective query routing using

semantic technologies?

2. How can the semantic knowledge models represent the knowledge necessary for

routing multi-term queries while not resulting in exponential growth of routing

indices?

• Rare Content Search : Unstructured P2P networks have poor search efficiency,especially

for rare objects. Most of the existing search algorithms are very effective for locating

popular objects but are far less effective in searching rare objects. As shown in [10],

as much as 18% of all queries return no response even when results are available in

the widely used Gnutella network. This calls for efficient rare object search with low

communication and storage overhead.

1.3 Contribution

The present dissertation makes the following contributions:

• A survey of state of the art information retrieval approaches and knowledge represen-

tation approaches which are used in P2P networks.

• Design and development of a mechanism to measure the semantic richness of peers

in considering multiple factors such as information content in shared documents, peer
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connections in overlay structure, etc.

• A set of search protocols for completely distributed unstructured networks that com-

bines the powers of both P2P systems and ontologies to improve search efficiency and

interoperability in the network.

• A novel topology adaptation model that reorganize the network overlay based on their

semantic interests expressed using a reference ontology.

• A novel content replication mechanism that proactively replicates rare objects in the

network overlay for high search efficiency.

• Empirical evaluation of the developed algorithms using simulations.

1.4 Structure of the Thesis

The rest of this dissertation is structured as follows.

In Chapter 2 we present our system model and survey the related work, from P2P

systems literature.

Chapter 3 introduces a probabilistic indexing framework that utilize peers past experi-

ence to guide future queries in a successful manner. The index is built upon the core concept

of emergence of successful query paths in the P2P overlay as peers discover, (re)use query

paths queries travel that find target object successfully developing a query traffic system.

The indexing scheme is augmented with a rare object replication mechanism allowing us to

handle rare content location gracefully while leveraging parts of existing structures. In Chap-

ter 5 we present a novel ontology based indexing scheme to summarize and represent peers’

semantic interests in a quantified manner. We also put forward a query routing algorithm

which exploits the index in routing semantic queries in P2P environments. This semantic

framework also provides a dynamic knowledge evolution mechanism as well as a low-overhead

global knowledge acquisition mechanism that aims to improve the query precision over time.
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In Chapter 4 we present a topology adaptation algorithm where peers are physically

grouped based on their semantic interests. This semantic clustering framework utilize the

concepts and the structural relations of a reference ontology to define peers’ semantic interests

as well as to reorganize the network so that P2P overlay clusters and connections mimic the

concepts and the relations in the reference ontology. Query routing utilize the structural

relations in ontology to route query to provide guaranteed look-ups in a steady-state network.

Web query logs shows that more than 60% of queries contain two or more terms. Ma-

jority of semantic search approaches, however, are devised for single concept queries. While

maintaining all term combinations is simply impractical due to exponential growth of index

size, simple cosine similarity measure or set intersection do not exploit the information of-

fered by reference ontology to draw strong enough probabilistic conclusions. In Chapter ??

we present a small size multi-concept index that can efficiently route multi-concept queries

in the semantic overlay. The proposed index structure compresses high dimensional semantic

space into single dimension to maintain small index size while not compromising the quality

of the index.

Chapter 7 summarizes the results obtained in this dissertation and shows directions for

future work.
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PART 2

RELATED WORK

P2P networks have emerged as a result of the recent advances of storage and network-

ing technologies to provide data sharing and circulation through internet for large number

of users scattered all over the world. The popularity of P2P networks for file sharing ap-

plications comes from numerous advantages it offers including low maintenance overhead,

high scalability and reliability, synergistic performance, increased autonomy, privacy and

dynamism.

P2P networks can broadly be classified into structured and unstructured networks based

on the control over data location and network topology. Structured P2P networks have well

defined neighbor links and thus provide guaranteed and bounded-time lookups. Examples

of such systems include Chord [11], Pastry [12], and CAN [13]. A key disadvantage in

structured P2P networks, however, is that, there is a large overhead involved in handling

the frequent peer join and leave. Unlike structured P2P networks, the links between peers

in an unstructured network are arbitrary and there is no relationship between the data and

where a peer resides. The unstructured nature of the network makes searching a challenging

problem. Many popular P2P networks such as Gnutella [1] and KaZaA [2] are unstructured

P2P systems.

In this part of our dissertation, we present work related to each of our contributions:

Search algorithms, knowledge representation schemes, topology optimization mechanisms

and content replication methods for unstructured P2P networks.

2.1 Searching Method

Many techniques have been proposed by the research community for the purpose of

efficient data locating. Searching in P2P networks can be broadly classified to blind search
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and informed search methods.

2.1.1 Blind search methods

Blind search methods do not exploit any knowledge a peer has of its neighborhood

to route queries through the P2P overlay. The most traditional and naive form of blind

search techniques is flooding used by Gnutella [1]. This is a breadth-first-traversal of the

P2P overlay graph. While this mechanism is simple to implement and requires no state

maintained per node, it produces unacceptably large message overhead. In Random Walk

[14], the query generator peer sends k query messages over randomly selected neighbors.

Each message (also called a walker) terminates either when TTL (Time-To-Live) expires

or when the required object is found. One of the most important advantages of Random

Walk is the reduction in message cost (k×TTL in worst case) compared to that of flooding.

However, this comes with the added disadvantage of variable performance based on the

network topology and the random choice of peers. Modified BFS [15], is another variation

of flooding, where peers randomly choose a ratio of its neighbors to forward a query. Even

though this reduces message production compared to flooding, it still produces large number

of messages. Iterative Depending [16] is yet another blind search mechanism that uses

multiple breadth-first searches at successively larger depth limits until the query is satisfied

or the maximum depth limit has been reached. This has lower search cost compared to

flooding, but may result in massive amount of query messages being transmitted for some

queries. Therefore, in certain situations, the search can produce even more messages than

flooding.

2.1.2 Informed search methods

Informed search methods require peers to maintain some routing information that allows

the queries to be forwarded intelligently to relevant peers. Therefore, compared to blind

search approaches, informed search methods offer low message overhead and low latency.

However, this is at the cost of maintaining various indices as local knowledge.
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Works such as Routing Indices [17] , Adaptive Probabilistic Search (APS) [18] and

Local Indices [16] use indexing mechanisms to efficiently route queries to qualified peers. In

Routing Indices [17], each peer maintains indices which contain aggregate count of documents

for predefined set of topics for its shared documents as well as for its neighbors. A goodness

score is computed for each neighbor upon arrival of a topic based query, to find the best peers

to forward it. Due to the intelligent peer selection mechanism, the bandwidth consumption

of this search method is much better than flooding. Routing Indices introduce three indexing

schemes: Compound Routing Index (CRI), Hop-count Routing Index (HRI) and Exponential

Routing Index (ERI). The main disadvantage of CRI is that it does not take into account

the hop count to destination documents into consideration. This problem is rectified by

HRI, but at the cost of higher storage and transmission cost. ERI address these issues at the

cost of potential loss in accuracy. Routing indices are much coarser than local indices which

results in errors such as over-counting and under-counting. Also, the process of updating

CRIs is very costly due to the need of propagating them along overlay paths. In Local

Indices [19], each peer in the network maintains an index over the data of all nodes within

r hops to itself. Therefore, a peer is capable of processing a query on behalf of peers up

to r hops away from it. A system wide policy specifies depths at which a query should be

processed. Only peers listed at given depths in policy process the query while others simply

forward it. In this way, by processing data at fewer peers while not loosing information the

search cost of the system is reduced. APS [18] is yet another intelligent search mechanism

proposed for unstructured P2P networks. APS peers probabilistically forward future queries

based on the responses they received from past queries. Each APS peer maintains an index

which shows the relative probabilities of success of each of its neighbor for objects which it

forwarded queries to. A query is deployed by sending out k walkers to those neighbors with

highest relative probabilities to answer the query for that object. The relative probabilities of

peers along a search path are increased (decreased) if the search walker succeeds (fails). The

success rates and hits achieved in APS are considerably good compared to RandomWalk and

this performance improvement is achieved at same message complexity as Random Walk.



10

However, one of the drawbacks of APS is that peers discovered to be successful for certain

objects are overloaded with search requests. Due to initial random selection of peers when

no knowledge has been acquired of neighborhoods and future tendency to use the discovered

successful peers, some peers with target objects do not get a chance to be discovered in a

search process. Also, this method does not work well in finding rare objects.

Many of above mentioned search methods suffer from several drawbacks such as sup-

porting only keyword-based searches and using large or static indices.

Semantic Searching To address the important issue of semantic based search in P2P

systems, many solutions have been proposed over the past recent years. Semantic Overlay

Networks (SON) [20] is one of the earliest works in the area. Here, authors propose a peer

clustering approach based on semantic content a peer shares. Peers with similar semantic

content are clustered together using virtual links with the aim of providing efficient query

processing while preserving high degree of peer autonomy. Multiple SONs exist and queries

are relayed to the most relevant SON and then flooded within that SON. Due to seman-

tic clustering of peers, the search traffic is greatly reduced. This clustering methodology is

completely distributed and also supports self-organization. However, this uses only simple

predefined classification hierarchies for generation of SONs. A careful selection of classifi-

cations is required to obtain good system performance. Also, there is no guarantee that

relevant peers are acquainted in finite time, especially in very large and dynamic P2P net-

works. In SON, peer joining process requires flooding the network to request classification

hierarchy and also for finding semantically related peers, once its semantic interests are de-

termined. The maintenance cost of SONs also grows with increase of peers in the network.

Interest based shortcut [21] model takes a similar approach where peers with similar interests

create shortcuts with one another with the aim of efficient content location. These short-

cuts are generated and updated after each successful query and are used for guiding future

requests. However, these interest based shortcuts are built on top of Gnutella overlay im-

posing the burden of maintaining virtual links on top of the original network overlay. Also,

when these routing shortcuts fail or when no shortcuts exist, the peers need to resort to
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flooding as the search mechanism. SETS [22] is yet another approach where authors propose

a topic-segmentation based overlay for efficient query processing. The main drawback of

SETS however, is that it relies on a single dedicated peer to cluster peers according to topic

segments, requiring all other peers to contact it for cluster information. Also, the dedicated

node can be ruined in presence of highly dynamic networks and frequent content updates.

GES [23] addresses this single-point-of-failure problem in SETS by introducing a fully dis-

tributed cluster management mechanism. Here, peers are organized into semantic clusters

based on the node clusters developed from document term vectors of peers. The queries are

forwarded using biased walk through random long range links and thereafter flooded within

a cluster using short range links once a relevant peer is found. GES introduces Local Data

Clustering where each peer locally clusters its documents using data clustering techniques.

Each cluster corresponds to a virtual node and a peer may host multiple virtual nodes who

participate in topology adaptation and search. There are several drawbacks in GES: (1)

the node vector representation may be inaccurate in presence of documents falling under

multiple semantic categories, (2) the choice of long range links makes query routing less

efficient due to not maintaining local state of peer clusters in the system. CSS [24] extends

GES by presenting a class-based search system where all documents in a peer are clustered

to different classes using a data clustering algorithm. Virtual short range and long range

links are established based on class correlations between peers. Therefore CSS does not

classify physical links like GES. Unlike in GES, a peer in CSS is required to maintain class

vectors of its long range neighbors to intelligently route a query to relevant semantic clusters.

During a search process, a query is routed through a intelligently selected long range link

and flooded through short range links. This class based search is efficient because it uses a

smaller search unit, a class of documents in a peer, instead of all documents in a peer. The

major drawback of CSS however, is that it ignores the high cost of topology maintenance

due to division of virtual nodes. pSearch [25] aims at constructing a semantic overlay on top

of a m-dimensional CAN, a structured P2P network. The documents and queries are repre-

sented as semantic vectors using VSM and Latent Semantic Indexing (LSI) and are mapped
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to semantic space using semantic vectors as keys. This is efficient in content location in

terms of both latency and accuracy. However, LSI used for semantic vector calculation is

very resource intensive, and its system performance under dynamic conditions is not known.

pSearch stores the physical location of data objects in p places to address the issue of high

dimensionality in semantic space, which makes space requirement and index publishing cost

nontrivial. Authors of Semantic Small World (SSW) [26] introduce a novel overlay network

and an index structure for semantic based P2P search to address problems in pSearch. The

peers are dynamically clustered based on their document semantics and are organized into a

small world network. Small worlds are characterized by high clustering coefficient and small

search path length. SSW performs dimension reduction to construct a one dimensional SSW

to address dimensionality issue in pSearch. SSW however, assumes homogeneous data in

a peer which is unrealistic and also selects the largest cluster centroid as a peers semantic

representation.

Several semantic based indexing methods have also been proposed by the research com-

munity. Ontology based Local Index (OLI) [27] is one such scheme where an ontology based

index method for P2P networks is proposed. Implementation is provided for the structured

network HyperCup [28] to reduce network traffic. The peers assume a globally shared on-

tology and the concepts in the ontology are used as reference to build indexes. Limitations

of OLI include, not considering number of documents or information content of each con-

cept, hop distance to documents etc. Also, since it assumes a previously available routing

algorithm, such as one available in HyperCup, OLI cannot be applied for unstructured net-

works. Semantic search methods applied in structured networks generally suffer from the

shortcoming of structured overlays such as strict enforcement of data placement and high

maintenance cost of peers joining, and leaving as well as the cost of content updating. The

authors of [29] introduce an ontology based routing index for unstructured P2P networks to

resolve these issues in OLI. A matching function which takes into account number of docu-

ments accessible via a link is used to rank and select neighbors for query forwarding. Both

OLI and [29] assume a global ontology which is an unrealistic assumption and also exploits
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only inheritance relation in ontology for query routing. There are also P2P database related

methods such as RDFPeers [30], XP2P [31] and PeerDB [32] proposed in the recent past.

The drawback associated with these approaches however is that they require the end user

to specify query in a database query language such as SQL.

Table 2.1 summarizes some popular search techniques in P2P domain.

2.2 Knowledge Representation

A good knowledge representation in peers is crucial for a successful search technique to

perform query routing and local query evaluation. The quality of the query routing directly

depends on the efficiency of the knowledge representation at a peer of its neighborhood as

this information is exploited in selecting neighbors for query routing. Many people have

used Indexing [16], Vector Space Model (VSM) [33] and Bloom filters [34] to represent

and summarize entities of interest in P2P networks. Below we describe popular knowledge

presentation techniques for each category.

2.2.1 Indexing

Index engineering is at the heart of P2P search methods. P2P index can be either a

local, a centralized or a distributed.

Centralized indexing: Centralized indexing typically rely on a unique entity in the net-

work that stores the index. Peers have to query the central index in order to know where

the content of interest is stored. Classic examples of systems adopting centralized indexing

include Napster [35] and iMesh [36]. Several Recent approaches combine global knowledge

with local indexes have also been proposed. For example, PlanetP [37] collects information

regarding other network peers’ shared documents via gossip in an unstructured P2P network

thus maintaining a local copy of the global directory. The system appears to be limited to a

few thousand peers. MINERVA [38] is yet another P2P system where maintains a global in-

dex with peer collection statistics in a structured P2P overlay to facilitate the peer selection

process. MINERVA builds a process where it penalizes peers holding overlapping document
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collections.

Local indexing: A Local indexing allows peers to index of its own content. Therefore

during query routing process each query receiver peer checks its local index for existence of

requested content. This has been used by unstructured P2P networks such as Gnutella [1].In

unstructured networks with super-peers, typically super-peers keep an index for the ordinary

peers attached to them.

Distributed Indexing: With distributed indexes, peers maintain pointers towards the

target objects that reside in some other peers. Distributed indexes are used in most P2P

designs nowadays . Popular works such as Routing Indices [17],APS [18], OLI) [27] etc.

Routing Indeices [17] maintain goodness of neighbors for each content topic using the number

of documents while APS [18] maintains a relative probability of success of each neighbor

per object it has been queried before. Odissea [39] is yet another distributed indexing

mechanism which assumes a two-layered search engine architecture with a global distributed

index structure distributed over the nodes in the system. A single node holds the complete,

Web-scale, index for a given text term .

2.2.2 Vector Space Model (VSM)

VSMs) [33] have several attractive properties. VSMs extract knowledge automatically

from a given corpus, thus they require much less labor than other approaches to semantics,

such as hand-coded knowledge bases and ontologies. They are simple to maintain and up-

date, an attractive property of any knowledge representation structure suitable for dynamic

distributed environments. VSM have been used by the P2P research community for repre-

senting various abstract entities such as documents, peers and even peer clusters due to their

simplicity and effectiveness in information quantification as well as similarity measurement.

Popular works towards this direction include [22], [23] , [24], [40] and [41].
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2.2.3 Bloom Filters

Bloom Filters [34] are bit arrays for representing set of elements. They are well known for

their efficiency in representing large volume data sets in a compact and space efficient manner

and supporting membership queries over the represented data. This dramatic reduction of

space consumption in Bloom filters come at the cost of introducing false positives. Therefore

in P2P networks where space and communication bandwidth is at premium Bloom Filters

offer attractive low cost knowledge representation and dissemination mechanism at a control-

lable false positive rate. Bloom filters have been used in early Web Cache Sharing systems [42]

where proxies represent their known urls using Bloom filters and broadcasted to other proxies

in a space efficient manner for knowledge sharing. Bloom filters also found very early uses

in databases [43], [44]. In the contenxt of P2P, Bloom filters have been used extensively for

both compact information representation and transmission [45], [37], [46], [47], [48], [49], [50].

PlanetP [37] use Bloom Filters to store keywords associated with documents.Reference [46]

introduces a new data structure called Approximate reconciliation trees that uses Bloom

filters. The approximate reconciliation trees use Bloom filters on top of a tree structure,

which are used in cryptographic settings to minimize the amount of data transmitted for

verification. Authors of [47] show how an extension of traditional Bloom filters, called multi-

level Bloom filters, can be used to route path queries in a P2P system where peers store

and query for XML documents. The hierarchical XML documents are encoded in either a

Breadth Bloom Filter where every element in a single level of a XML hierarchy is represented

by a separate Bloom filter, or in a Depth Bloom Filter where paths of the same length are

represented as a separate Bloom filter. Authors further introduce a mechanism where Bloom

filters are be used to build content-based overlay networks where peers with similar content

are link together in the overlay.The similarity of the content of two peers is defined based on

the similarity of their filters. A new extension to traditional Bloom filter called Exponential

Decay Bloom Filter (EDBF) is introduced in [48]. EDBF is capable of encoding probabilistic

information useful for query routing.
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2.2.4 Semantic Models

While many knowledge representation models have been proposed in the past, majority

of these methods however often overlook the need for providing semantically relevant infor-

mation. One of the most primitive forms of semantic meta-data representation is taxonomies.

Taxonomy is a classification of concepts based on inheritance. However taxonomies are too

simple to represent complexity of relationships in real life. Using a thesaurus is another

popular method used in semantic data models. Compared to taxonomy, thesaurus extends

taxonomy by introducing new relationships for similarity and synonymy. Both taxonomies

and thesaurus however suffer from the drawback of not being able to uniquely identify terms

or instances (redundancy) as they allow terms to appear more than once in a taxonomy based

on inheritance relation. Also, a thesaurus is incapable of distinguishing between homonyms.

Another semantic model proposed is topic map, which is a classification of concepts. In

addition to inheritance, similarity and synonymy relationships, it also allows user-defined

relationships to be specified. However, the problem of redundancy is not addressed in topic

maps either. Ontology is defined to be most complete and powerful model for informa-

tion representation. Ontology is richer than any other semantic model in that it allows

classification of not only concepts but also their instances. One can also define complex

relationships and restrictions using an ontology.Popular semantic technologies used by the

research community today include XML, RDF and OWL.

While semantic meta-data models have been proposed extensively in the research com-

munity, most works to date lack many desired characteristics expected from semantic data

representation models suitable for completely decentralized and dynamic P2P environments.

A semantic metadata model optimized for P2P environments would exhibit characteristics

such as (i) ability to encode past domain experience as knowledge in a quantitative manner

(ii) simplicity of model (iii) low dimensionality (iv) low-overhead maintenance and (v) abil-

ity to make probabilistic inferences on semantic data. While classical TF-IDF scheme based

information quantification methods used in Vector Space Models (VSMs) are simple and

straightforward, they lack in semantic expressiveness and suffer from large dimensionality of
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the resulting term vectors which is computationally expensive. More sophisticated semantic

representation models such as latent semantic indexing [51] are too resource consuming to

construct and maintain in dynamic P2P networks and there are no proper guidelines to

determine the number of dimensions for Singular Value Decomposition (SVD).

Use of ontologies to overcome the limitations of existing knowledge representation meth-

ods has been popular since the emergence of semantic web. While there have been many

contributions in this direction over the last few years [52], [53], [54], many do not use the full

potential of expressive capability of ontologies or are based on Boolean retrieval models. As

surprising as it may sound, ontologies are a shallow form of semantic representation as long

as they are not integrated with proper knowledge quantification methodologies and appro-

priate quantitative reasoning techniques. Massive amounts of information available in web

today are largely unstructured. Converting such a huge amount of heterogeneous unstruc-

tured data distributed over a network at an affordable cost is a problem yet to be solved.

The knowledge representation data structure devised for P2P environments should also pro-

vide probabilistic reasoning to be acted upon them for query routing purposes. Probabilistic

reasoning is a well-understood and theoretically-sound method for combining information

from varying data sources with varying reliability. It has shown its applicability across

many applications including query routing in P2P networks. However, only limited amount

of work has been done to combine probabilistic reasoning capabilities with ontologies [55].

Heterogeneity of data and ontologies in distributed networks poses further challenges to the

problem of probabilistic reasoning in P2P networks. While probability theory provides the

pathway to produce solutions that indicate the degree of plausibility, ontologies use logical

reasoning which provides only definite answers.

Following table summarizes some of the popular knowledge representation techniques,

their advantages and disadvantages.
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2.3 Topology Optimization

Topology adaptation is a widely used approach to enhance search performance in P2P

networks. There have been multiple studies on how to enhance search performance by

changing P2P topology. Authors of [59] introduce a mechanism for building and maintaining

the square-root topology. However, authors make the unrealistic assumptions that each data

type has only one replica and there is no limit on hop count. Reference [60] . Most existing

works on topology adaptation are based on the heterogeneous features on P2P networks.

Physical heterogeneity in P2P networks are measured using parameters such as network

bandwidth, peers’ processing capacity and distance between peers. Works on this aspect

include [61], [62], [63], [64] and [65]. Topology optimization based on peers similarity of

interests has also been a popular mechanism of reorganizing the network structure. To

this end, works such as [66], have been proposed to organize the P2P overlay so that peers

with similar content are physically grouped together. In PROSA [66] , peer may establish

three types of links: Fully Semantic Link, Temporary Semantic Link or Acquaintance Link

according to the degree of knowing each other. The works [20], [67], [22] and [23] build

a semantic overlay by establishing links among most semantic similar nodes.Query routing

is first done by global routing through long links which are established between semantic

dissimilar nodes, and then does flooding by local routing through short links which are

established between semantic similar peers.Works such as [68], [69] and [70] optimize the

original P2P topology based on small world phenomenon [71]. The notion of small-world

phenomenon originated from social science research. Recent studies show that peer-to-peer

networks like Freenet may exhibit the small-world properties [72].

2.4 Content Replication

Replication is a popular mechanism used to achieve high availability and improved

search performance in P2P networks. A good replication mechanism should intelligently

decide on what items need to be replicated, where and when so that the overhead introduced
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on network by replication is minimal. Mechanisms such as owner replication, path replication

and random replication [14], [73], [74], are based on site selection policy for replicating an

object found by a query. The owner replication replicates an object only at the requesting

peer. In path based replication mechanism [14] the replicas are placed in all peers in along

the path a query traveled. A variation of this called path random replication is introduced

in [75]. Each intermediate peer randomly determines whether or not the replica is created

and placed there, based on the probability of the pre-determined replication ratio. With

Push-the-pull replication [76], after a successful search, the requesting node enters a replicate-

push phase where it transmits copies of the item to its neighbors in order to obtain square

root replication. Adaptive Probabilistic Replication (APRE) [77] is yet another distributed

protocol that automatically fine-tunes the replication ratio of each shared object according to

the current demand for it. APRE offers a direct response to workload changes. Reference [78]

introduce an adaptive, fully distributed technique that dynamically replicates content in a

near-optimal manner. The optimal object replication includes a logarithmic assignment

rule, which provides a closed-form optimal solution to the continuous approximation of the

problem.

Table 2.3 summarizes some popular replication techniques.
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Table (2.1) Comparison of P2P Search Techniques

Search al-
gorithm

Network
Type

Search
Type

Query Processing
Strategy

Commments

Gnutella
[1]

UnstructuredBlind Flooding queries to
whole neighborhood
with fixed TTL

High Recall at small
TTLs, Large message
overhead, Low scala-
bility

Random
Walk [14]

UnstructuredBlind K nods selected ran-
domly to forward
query with fixed TTL

Low message overhead
than flooding, Vari-
able performance with
network topology and
random choice

Routing
Indices [17]

UnstructuredInformed
(Indexing)

The best set of neigh-
bors are selected
based on a goodness
score computed based
on routing indices

Low bandwidth con-
sumption, High up-
dating cost of indices,
Over-counting and
under-counting errors
due to summarization

SON [20] UnstructuredInformed
(Cluster-
ing)

The query is first
forwarded to the most
suited SON and then
flooded within the
SON

High recall at low mes-
sage cost, No guaran-
tee provided that rele-
vant peers acquired in
finite time

pSearch
[25]

Structured Informed
(Cluster-
ing)

A query is routed
through CAN based
on its semantics to
relevant peer. Upon
reaching destination,
query is flooded
within radius r

High recall, LSI
is computationally
expensive

SSW [26] UnstructuredInformed
(Semantic
cluster-
ing and
indexing)

A search query is
evaluated against
current cluster by
flooding query within
neighborhood of
query receiver peer if
its cluster qualifies to
answer query

Scalable to very large
network sizes and very
large number of data
objects, Introduce
attractive tradeoff
between search path
length and mainte-
nance cost due to
Small world, Assumes
homogeneous data
within a peer
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Table (2.2) Comparison of Knowledge Representation Techniques

Technique P2P
Releted
Work

Advantages Disadvantages

Document Iden-
tifier

[18], [21] Simple to implement Difficult to encode docu-
ment semantics

VSM [19], [22] Simple to implement, Al-
lows easy evaluation of
queries against documents
using cosine similarity

semantic relations be-
tween terms cannot be
represented, Term co-
occurrences in document
and order of terms is lost

Latent Semantic
Indexing (LSI)

[25], [26] Resolves synonymy and pol-
ysemy issues, Strictly math-
ematical structure requires
no thesauri or dictionary

High computational cost
and high memory consump-
tion, Difficult to determine
number of dimensions for
singular value decomposi-
tion

Bloom Filters [48], [37] Compact data representa-
tion, Constant time re-
quired to add or check an
item in a set, regardless of
number of elements in the
set

False positives are possible,
in presence of large number
of elements in a set

XML [56], [57] Easily encode objects, their
properties and relations,
Query languages are readily
available for XML data,
Custom tags can be defined
by user

Unstructured documents
cannot be automatically
converted to XML format.
Manual intervention re-
quired, query languages
for XML such as XQuery
which are complex and not
end-user friendly

RDF [30], [58] Allows inference to contex-
tually broaden search, re-
trieval and analysis, Allows
semantic based representa-
tion and queries

Unstructured documents
cannot be automatically
converted to RDF for-
mat. Manual intervention
required

Ontology(E.g.
OWL)

[27], [29] Allows inference to contex-
tually broaden search, re-
trieval and analysis, Pro-
vides richer properties, ad-
ditional class restrictions,
relationships than RDF

User needs to learn query
languages such as SPARQL,
OWLQL which are complex
and not end-user friendly
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Table (2.3) Comparison of Replication Techniques

Replication
Technique

Strategy of replica-
tion

Advantages Disadvantages

Uniform Repli-
cation

Replicates all objects
uniformly in the net-
work

All resources
are equally
replicated re-
gardless of their
popularity

replicas may be
unnecessarily
replicated

Square Root
Replication

The number of repli-
cas of a file is propor-
tional to the square-
root of query distribu-
tion

Optimal replica-
tion

The search per-
formance relies
on the selection
of suitable sites
for hosting new
replicas

Owner Replica-
tion

The object is repli-
cated only at the re-
quester node once the
file is found

The number of
replicas is pro-
portion to the
number of re-
quests

Takes a large
amount of time
to propagate
replicas over the
P2P network

Random Repli-
cation

Replicate object in
randomly selected
peers

Creates the
same number
of replicas as of
path replication

The peer re-
quire global
knowledge of
the existence of
all the peers in
overlay

Path Replica-
tion

Stores the object
along the path of
a successful query
walker

simple to imple-
ment

creates large
number of
replicas
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PART 3

REPLICATION BASED RARE OBJECT LOCATION

Resource management and search is very important yet challenging in large-scale dis-

tributed systems like P2P networks. While many work have been proposed for search in

P2P networks, the problem of efficient object discovery especially for rare objects has not

been addressed adequately.

Unstructured P2P networks [1,2] do not impose any such constraints resulting in peers

exercising full autonomy over their data and overlay links they establish. These networks

are arguably more resilient to peer population transiency. Being large-scale unsupervised

environments, however, unstructured P2P networks often suffer from low search efficiency

and high search traffic. The poor search efficiency of unstructured P2P networks is especially

observed in search for rare objects. The problem of search for unstructured P2P networks

has been addressed by many previous work such as flooding, expanding ring [14], random

walk [79] and Adaptive Probabilistic Search [80]. While most of these algorithms are very

effective in locating popular content, they fall short in locating rare content. As shown

in [10], 18% of queries return no responses even when the target objects exist in the overlay

network.

Often in real world P2P networks the popularity of content (measured with respect to

the number of object replicas distributed in the network) are not uniform but skewed. Stud-

ies have shown that web requests on the internet space follows a Zip-like distribution [81].

Therefore, in the reality, this skewed popularity distribution will result in unbalanced load

among peers heavily loading those peers highly rich in searched content. Therefor a pop-

ularity estimation techniques for a unpredictable environments with transient populations

such as P2P overlays should be capable of dynamically estimating popularity of documents.

While due to high number of replicas distributed, finding a popular object in unstructured
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P2P networks can be performed efficiently using simple indexing strategies, in finding a rare

object, the search scope should be extended to increase the probability of locating the object.

Such a solution, however, results is unacceptably high search traffic.

In this thesis, we propose a simple, yet powerful probabilistic indexing mechanism called

R-SPUN to increase efficiency of search in unstructured P2P networks. The indexing mech-

anism utilizes the phenomena of emergence of paths that successful queries travel and peers’

degree of connectivity to those paths to derive probabilistic conclusions regarding success

strength of each peer for requested objects. In combination with the indexing strategy,

we present a novel rare object replication mechanism that utilize the graph property of

Connected Dominating Sets(CDS) for rare object replication. We also present a resource

discovery algorithm where the peer selection decision in query routing is based on the popu-

larity of the requested object as well as connectivity of the peer to the successful query paths

developed over time in the network. To achieve small index sizes, we limit the index size of

a peer based on its storage capacity. We propose a Bloom Filter based strategy for a peer

to keep track of the set of documents reachable in a given hop radius that compensates for

the knowledge loss due to bounding index sizes. Performance evaluation demonstrates that

our proposed approach can dramatically improve the search efficiency of unstructured P2P

systems while keeping the communication cost at a level comparable with the state-of-art

unstructured P2P systems.

Efficient object popularity estimation is a crucial component in object replication al-

gorithms. We utilize Bloom filters as well as the Connected Dominating Set(CDS) of the

network to estimate the global popularity of distributed objects in the network. Bloom fil-

ters are space efficient probabilistic data structures that can encode large volumes of data.

CDS of a network is a connected subset of peers that are ever other peer not in CDS is

connected to. Thus utilizing CDS as a communication backbone and Bloom filters as data

transfer medium results in low communication cost of popularity estimation and replication.

The rare objects are replicated along the CDS of the overlay so that any peer can reach rare

objects in a few hops. The search requests are forwarded to the peers more likely to contain
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target objects by exploiting peers’ local knowledge of the popularity of the requested object

as well as the relevance strength of their neighbors in terms of the degree of connectivity to

the previously discovered query paths neighbors lead to. Simulations show that our index-

ing and replication strategy greatly improves the search efficiency at moderate search cost

regardless of the popularity of the search object.

The rest of the chapter is organized as follows. In Section 4.1 we present the preliminaries

of our work. In Section 3.2 we present our novel idea of evolution of successful query paths

and associated data structures. We present our indexing scheme in Section 3.3 followed by

our replication strategy in Section 3.4. Section 6.3.3 presents our query routing algorithm.

In Section 4.6 we summarize our contributions and conclude the chapter.

3.1 Preliminaries

3.1.1 System Model

In R-SPUN we put forward a controlled flooding algorithm, where each peer probabilis-

tically forwards queries to its neighbors based on the popularity of objects requested. Our

model framework is defined for an unstructured P2P network where peers launch queries for

various objects distributed across the network. A search process is initiated when a peer

launches a query to find a specific object by deploying k walkers. A walker is a duplicate

of the original query. Once deployed, a walker continues traveling the network along its

own path until the requested object is found or until Time-To-Live (TTL), an upper bound

on number of hops, expires, in which case the walker terminates. If the requested object

is not found until TTL has expired, a miss is returned along the return path of the query.

Otherwise, a hit is returned in the reverse query path. This returned hit or miss information

is used by each intermediate peer along the query path (including the querying peer) to

update its routing index’s relative probability of success assigned to its neighbor who sent

hit or miss as well as to determine object popularity in its local vicinity. For example, if a

search walker is generated at peer A and sent along the path A→ B → C → D, the hit or
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miss will be returned in the path D → C → B → A. The information carried by hit or miss

message is used by C to update its local knowledge about D, B to update its local knowledge

about C, and finally A to update its local knowledge about B. A search query terminates

when all the deployed walkers have terminated either with a success or a failure.

3.1.2 Bloom Filters

A Bloom Filter (BF) is a data structure suitable for performing set membership queries

very efficiently. A Standard Bloom Filter representing a set S = {s1, s2, ..., sn} of n elements

is generated by an array of m bits and uses k independent hash functions h1,h2,...,hk. They

are space efficient data structures which provide constant time lookups and no false nega-

tives. The downsides of BFs are that they can result in false positives and do not allow

item deletion. However, based on the application requirement the false positive rate can be

significantly lowered. There are many variants of standard BF such as Spectral BF, counting

BF, compressed BF, etc. In our work we utilize Spectral Bloom Filters (SBF). SBFs is an ex-

tension of the traditional BF for multi-sets allowing filtering of elements whose multiplicities

are below a threshold. They allow querying on item multiplicities as well as deletion.

3.1.3 Connected Dominating Sets

A Dominating Set of a graph is a subset of nodes such that every node not in the DS is

adjacent to at least one member of DS. A Connected Dominating Set (CDS) is a DS where

sub-graph induced by DS is connected. Therefore a CDS of a P2P network is a connected

subset of nodes of the network from which all nodes in the network can be reached in one-

hop. Finding a minimum CDS is NP-complete for most graphs. Authors of [82] put forward

a marking process based distributed algorithm for calculating CDS.

3.1.4 Reinforcement Learning

Reinforcement Learning(RL) addresses the general issue of how a learner that interacts

with its environment can learn the optimal actions to achieve its goal. RL is characterized
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by the trial-and-error learning and the delayed reward mechanism. In each step the agent

chooses an action for the state of the environments. Whenever a learner takes an action,

it receives an immediate reward and the environment changes its state. Depending on the

reward and the latest states, agent chooses the next action to increase the probability of

the plus rewards. RL has been proven in artificial intelligence to be able to learn the best

sequence of actions in order to achieve a certain goal.

3.2 System Architecture

Existing unstructured networks have one main problem: they are highly limited in their

ability to locate rare items. The goal of our work is to develop techniques that that perform

efficient search regardless of the popularity of the objects in unstructured networks.

Four main techniques lie at the core of our design:

1. Successful query path evolution based indexing

2. Bloom Filter based knowledge representation and dissemination

3. Rare object replication and

4. Connected Dominating Set assisted query routing

The main intuition behind them is to guide future queries along successful query paths

previously discovered. To ensure that queries terminate with high success rate, we need to

efficiently replicate rare objects at sufficiently close distance from peers . Our routing index,

Bloom Filter based knowledge representation and search algorithms address the former while

our local object popularity estimation and CDS based replication achieves the latter.

Next we describe the core concept of evolution of successful query paths that our search-

ing framework is built around.

3.2.1 Evolution of Successful Query Paths

Peers in the P2P network launch queries for various objects during their lifetime. Un-

derstandably, peers at various physical locations in the network may be interested in finding
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Figure (3.1) An example of successful query path development. The values on edges show
the relative probability of success value assigned to a peer by its neighbor. The arrow shows
the direction of assignment.

some popular objects. Multiple replicas of such objects may be distributed among differ-

ent peers in the network. When various peers launch search walkers for the same object,

some walkers succeed at finding the requested object. In this way, many successful query

paths develop in the P2P network over time. We call a query path that a successful walker

travels a successful query path. R-SPUN algorithm track successful query paths as these

develop. Fig.3.1 shows an example of three success query paths for a given object 01:

A→B→C→D→E, F→C→D→E and G→D→E in a twelve node P2P network developed as

a result of successful queries generated by A, F and G for object 01.

We propose to use reinforcement learning (RL)to catalyze emergence and reuse of dis-

covered successful query paths. In R-SPUN, we employ RL by allowing each intermediate

peer P in a query path to assign a relative probability value to its neighbor in a query path,

farther away from query originator peer. This relative probability value represents how suc-

cessful the neighbor is at finding the queried object compared to P ’s other neighbors and

the query is routed through the neighbor(s) with highest relative probability values(s). The

values on edges in Fig. 3.1 are these relative probabilities of success assigned by one peer to

another. For example, the value 40 on edge from A to B represents the relative probability

of success (i.e., success ratio) assigned by A to B for object 01.

Intuitively, multiple successful query paths for a given object may intersect at some peer

and join to form a single path from that peer to the destination peer containing the target
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object. For example, in Fig.3.1, the two query paths starting at A and F intersect at C to

form a single successful query path C→D→E. This phenomenon occurs as a result of the

associated positive feedback loop with the (re)use of successful query path so that peers who

forward a query along a successful query path receive an immediately reward thus reinforcing

the successful query path. Employment of a successful query path to deploy a search walker

results in higher probability of hits. This in turn contributes to peers increasing the relative

probabilities of success assigned to their neighbors along such query paths. Therefore, due

to reuse, the success ratios in a successful query path monotonically increase from querying

peer towards the destination peer. In R-SPUN, peers identify these successful query paths

using Best Path Gradient (BPG) criterion which will be introduced in section 6.3.3.

The intelligent neighbor selection process in R-SPUN is assisted by four different data

structures as described in the section 3.2.2.

3.2.2 Local Knowledge of a Peer

Here we describe the local data structures a peer maintains for intelligent query routing.

Routing Index (R-SPUN Index)

R-SPUN requires each peer to keep a local index of relative probabilities of success per neigh-

bor, for each object it requested through that neighbor. We call these relative probabilities of

success values, the Relative Success Ratios (RSRs), and the local index, the R-SPUN index.

Each peer in R-SPUN keeps a vector of relative success ratios per neighbor for each object

it has requested for. Each element of a given vector represents the relative probability of

success at certain hops away from the neighbor. The formal definition of a Relative Success

Ratio Vector (RSRV) is given below:

Definition 3.1. Relative Success Ratio Vector :

The Relative Success Ratio Vector (RSRV) of a given neighbor P in SPUN index of a peer
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for object o is denoted as (RSRV o
P ) and a RSR value in vector is defined as follows:

RSRV o
P [h] =

Relative success ratio at h hops

fromneighbor P for object o
(3.1)

Figure (3.2) Example SPUN Index of peer A in Figure 3.1. The RSRi in A’s SPUN index
stands for the relative success ratio i hops away from considered neighbor for a given object.

The objective of our search process is to locate at least one document containing the

queried object. A search walker therefore terminates either once the requested object is

found or its TTL expires. Therefore the distance a search walker travels might vary from

one hop up to TTL hops. Therefore, the vectors maintained per peer for an object may be of

different lengths Fig.3.2 shows an example R-SPUN index for peer A in Fig.3.1. The RSRi

denotes the relative success ratio i hops away from A through a given neighbor for a given

object. For instance, the value 40 in the second entry under column RSR0 represents the

RSR of neighbor B at zero hop distance from A , value 50 in under column RSR1 represents

the RSR of B at one hop distance from A and so on. The figure also highlights the RSRV

of neighbor B for object 01. How these entries in R-SPUN indices are created and updated

will be discussed in detail under section 3.3.1.



31

Reachable Documents Bloom Filter

One of the major restrictions to observe in devising indexing structures is storage capac-

ity. Given a limited storage space we need to limit index size to maintain smaller indices.

Therefore completely relying in the routing index results in the unavoidable possibility of

misses even when the desired object is at a reachable distance to a querying peer. This will

degrade the performance of our search process. Any other mechanism used for compensating

for this degrade in performance should not consume unacceptably large storage and com-

munication cost. To overcome this problem, we use Bloom Filters to represent the set of

documents reachable by a peer within a given hop radius. Bloom filters are well know for

its space efficient representation. The Bloom filter maintenance mechanism does not incur

any additional overhead of communication cost as it relies on the same information that is

used for updating the routing index. Let BP be the Bloom filter of peer P. Each peer P in

R-SPUN disseminate BP to all peers within a TTL hop radius, so that every peer within

the TTL radius limit can answer queries about whether P might have a particular document

one is looking for even when the queried document is not recorded in its routing index.

Peer Profile

A peers profile consists of its latest history of the queries either generated by or forwarded

through it and is formally defined below.

Definition 2. Peer Profile

The profile of a peer P (PPP ) can be represented by a set whose elements are a pair: queried

object ID and associated RSR:

PPP = {(o, r)|o : objectID, r : relative success ratio of o} (3.2)

If a hit or miss is generated by the peer itself in response to a query for an object o, the

filed RSR contains a Boolean value stating whether it is a hit or a miss. Otherwise, RSR

contains the RSR0 for the neighbor associated with the latest query for o that passed through

P. For example, consider a profile of a peer B (PPB) in Fig.3.3(b) (05,60), (08,MISS). The
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(a) (b)

Figure (3.3) (a) SPUN Index before and after updated by received neighbor profiles. (b)
Peer Profiles received by peers in query path A→ B → C → D

(a) (b)

Figure (3.4) (a) SPUN Index before and after update by RSRVs received in messages. (b)
The RSRVs received by peers in two query paths.

first element means that B has seen a hit or miss for object 05 recently and the RSR0 value

for object 05 is 60 for B’s neighbor associated with the query. The second element denotes

B generated a miss for a recent query for object 08.

3.2.3 Message Format

Fig. 3.5 shows the message format ued in R-SPUN protocol. The sequence number

allows the message to be uniquely identified. During query transition TTL decrease at every

hop. While the size of the visited peer list size increases as the message travels more hops, it

is bounded by the TTL value. Similarly, the RSRV vector size and number Of Bloom Filters

in a message are also bounded by the same parameter TTL. A message transmits one peer

profile at a time and its size is fixed by a system defined parameter. Therefore, peer profile

does not have an effect on the message payload size.
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Figure (3.5) Example SPUN Index of peer A in Figure 3.1. The RSRi in A’s SPUN index
stands for the relative success ratio i hops away from considered neighbor for a given object.

3.3 Local knowledge Construction and Maintenance

In this section we discuss how the local knowledge of a peer is created and updated.

3.3.1 Routing Index Construction and Maintenance

R-SPUN routing index is created and updated on the fly when peers discover documents

reachable through its neighbors. The R-SPUN index of a peer is updated in two ways: (i)

Proactive update before sending a query, (ii) Reactive update based on return message

Proactive Update

Whatever is the peer selection criterion used, each intermediate peer in a query path includ-

ing querying peer, updates the RSR0 values of the selected neighbors for the queried object

in its local R-SPUN index prior to sending or forwarding a query. In case there are no entries

for the queried object in a query sending (or forwarding) peers R-SPUN index, the peer will

create an entry for the queried object for each of its neighbors, by placing a default RSR

value of 30 in RSR0 field in each new entry. Placing the same RSR value indicates that all

peers have the same probability of success for the query. If entries already existed for the

queried object in peers local R-SPUN index, however, the peer will proactively increase the

RSR0 value of the entries for the querying object of selected neighbors by a default value of

10, before launching or forwarding the query assuming the query will succeed. This increased
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index value denotes higher relative probability of success in discovering that object through

the given neighbor compared to other neighbors.

Reactive Update A reactive update of index occurs when a peer recieves a hit or a

miss message for a query it transmitted. The update is carried out based on the information

encapsulated in the recived return message. Based on the types of information, a peer

perform three updates:

• Update based on return message type

The proactive increments discussed above are performed by peers in a query path

assuming the walker will succeed. If the walker actually returns a hit, no further

changes need to be made to their SPUN indices. If the walker returns a miss, however,

each miss receiver peer will decrement the RSR0 values of the neighbor who sent the

miss for the queried object by a default value of 20 to reflect that the neighbor was

unsuccessful in finding the object. We select the post decrement value (i.e., 20) to be

greater than proactive increment (i.e., 10) to make the relative probability of success

of the unsuccessful peers for the queried object to be less than (or equal to) other

neighbors.

Fig.3.4(b) shows the RSR0 values of R-SPUN indices of peers involved in two walkers

deployed by A shown in Fig.6.2 for the queried object. Both the RSR0 values for before

and after update with hit or miss information are also shown. The RSR0(X → Y )

in the figure denotes the RSR0 value of neighbor Y in Xs R-SPUN index for the

queried object. As Fig.3.4(b) shows, the proactive update of R-SPUN index values

of RSR0(A → F ) and RSR0(F → G) are decremented from 40 (i.e., proactive in-

crement) to 20 as walker through F and G eventually failed while RSR0(A → B),

RSR0(B → C) and RSR0(C → D) remained 40 as walkers through path A→ B → C

succeeded.

• Update based on RSRV s in return message
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Each return message, whether a hit or a miss, contains a vector of relative success

ratio values (RSRV ). This RSRV contains the relative success ratios that have been

appended by the intermediate peers in the query path that the message has visited so

far along the query path.

For example, if a query is sent along path A→ B → C → D) for object 01, the hit or

miss message A receives from B contains a vector of relative success ratios consisting

of two elements: RSR0 value of D for object 01 in C’s R-SPUN index and RSR0

value of C for object 01 in B’s R-SPUN index. Each intermediate peer in a query

path (including querying peer) updates its R-SPUN index using this RSRV of a hit

or miss message query. Fig.3.4(b) shows set of RSRV s returned in two query paths

A → F → G) and A → B → C → D). In the figure, a RSRV received by a peer X

from a neighbor P for object o is denoted by RSRV o
P . For example, the RSRV peer

A receives from peer B for an object o, o B RSRV =[40, 50]. The information in o

B RSRV carried by the return message is the most recent information A has for B.

Therefore these values are inserted at relevant RSRi fields of B’s entry in A’s R-SPUN

for the given object, replacing any existing stale values. For example, value 40 in o B

RSRV is assigned to RSR1 in As SPUN index while value 50 replaces the old RSR2

value 40 in neighbor Bs entry for object o.

• Update based on Peer Profile of the sender of the message

Unlike for RSRV s which require a hit or miss message to be carried, peer profiles can be

piggybacked in any type of message. Therefore this update technique occurs at receipt

of message of any type at a peer. A peer profile travels only one hop distance. Each

peer currently visited by a message makes use of the peer profile sent by its neighbor to

update its R-SPUN index. A peer also appends its own profile to messages generated

or forwarded through it. For each queried object listed in a neighbor’s profile, receiver

of the neighbor’s profile updates the corresponding entry of its R-SPUN index. If an

entry in the neighbor’s profile has the binary information HIT or MISS associated with
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(a) (b)

Figure (3.6) (a) Query for an object stored at peer D. Two search walkers are deployed by
A. (b) R-SPUN Index before and after update by Hit or Miss Information. X → Y denotes
the RSR0 value of peer Y stored at SPUN index of peer X for the queried object.

an object, the RSR0 value of neighbor for queried object in receiver peer’s R-SPUN

index is incremented or decremented respectively, according to APS criterion. If the

entry in neighbor’s profile contains an actual relative success ratio, the current RSR0

value of the relevant entry in receiver peer’s R-SPUN index is replaced by this latest

information. Fig.3.3(b) shows the profiles of peers that are sent to their neighbors

along the reverse query path and Fig.3.6 show RSR0 values before and after updating

corresponding R-SPUN indices using these peer profiles.

These R-SPUN index updates take places at every intermediate peer in a query path a

walker travels, including the querying peer. The algorithm for SPUN index update of a peer

based on return message is given in Algorithm 3.1.

3.3.2 Bloom Filter based Knowledge Dissemination and Update

As mentioned in section 3.1.2, bloom filters can be efficiently used to represent large

document collection in compact manner. Objective of a peers P’s bloom filter BP is to allow

P to acquire knowledge of the set of all the documents reachable through each neighbor

within a TTL radius. To acquire such information at lower communication cos we propose

the following method:
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Algorithm 3.1 R-SPUN Index Update

Input:

Mes = Message
P = Message receiver peer
N = Message sender peer
o = Associated Requested Object
Index(P ) = R-SPUN index of message receiver peer P
type = The message type

Output: ‘
Index(P ) = R-SPUN index of P after update

1: ▽ Reactive Update based on message type:

2: if Mes.Type = MISS then

3: Index(P ).RSRV o
N [0]←Mes.RSRV o

N [0]− 20
4: end if

5: ▽ Reactive Update based on message RSRV :

6: if Mes.Type = MISS orHIT then

7: for i = 1 to RSRV o
N .length do

8: Index(P ).RSRV o
N [i]←Mes.RSRV o

N [i]
9: end for

10: end if

11: ▽ Reactive Update based on message PPN :

12: for each < Object o, Success s > entry ∈ PPN do

13: if s denotes a HIT then

14: Index(P ).RSRV o
N [0]←Mes.RSRV o

N [0] + 10
15: else if s denotes a MISS then

16: Index(P ).RSRV o
N [0]←Mes.RSRV o

N [0]− 20
17: else if s denotes a RSR value then

18: Index(P ).RSRV o
N [0]← s

19: end if

20: end for
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During query forwarding and response returning in the flooding process, every message

receiver peer in the query path appends a Bloom Filter representing its local data to the

message before forwarding it to the next query path neighbor. As a result a message receiver

peer gets a set of Bloom Filters representing documents reachable at various hop distances

through a the message sender neighbor. A message receiver peer generates a single Bloom

Filter called unionB which contains the bitwise−OR of all the Bloom Filters in the message.

This resulting bloom filter has been shown to accurately represent the union of document

sets represented by the Bloom Filters in the message [83]. Such a Bloom Filter in a peer P

serves two purposes: first, if a object is reachable to a peer within TTL radius but was is not

represented in its R-SPUN index, this compensate for the loss of information by allowing a

peer to know the object is not rare and is within a reachable distance. Since P maintains a

unionB per each neighbor this also allows a peer to identify the subset of neighbors who are

in sufficiently close distance to the considered object.

3.3.3 Peer Profile Maintenance

A peer’s profile is updated based on First-In-First-Out (FIFO) replacement policy. Peer

profiles are exchanged between neighbors by piggybacking with messages sent in the network,

without incurring additional overhead. These peer-profile exchanges provides a peer the

latest query history of a neighbor which enables it to create local knowledge about neighbor

for certain objects it has not queried. This essentially eliminates resorting to the initial

random choice of neighbors for a query sent very first time by a peer. Also, this allows peers

to dynamically discover how successful the neighbor is at finding objects.

3.4 Rare Object Replication Strategy

Definition 3. Object Popularity

We define the object popularity to be the fraction of peers in the network which contains a

replica of the considering object. For a P2P network with N peers in an unstructured P2P

network, where object o has r copies distributed in r peers , then object o’s popularity is
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defined as follows:

r =
r

N
(3.3)

Due to high number of replicas distributed, finding a popular object in unstructured

P2P networks can be performed efficiently. However, when an object is rare, the search

scope should be extended to increase the probability of locating the object. Such a solution,

however, results is high search traffic. Researchers often times resort to replication of content

as the solution. However such methods increase the additional storage and communication

cost. Therefore we propose to use Bloom filters for replicating content to reduce space and

communication cost. Next we describe our object popularity estimation and replication

mechanism.

3.4.1 Object Popularity Estimation

The key issue of replication strategies in unstructured P2P networks is to estimate

the popularity of objects distributed in a network. Obtaining such global information in an

accurate manner in dynamic, large and unpredictable environments incurs the additional cost

of transmitting additional information over the overlay links. We propose to use Spectral

Bloom Filters(SBFs) [84] as a space efficient mechanism of measuring object popularity.

Spectral Bloom Filters allow associating frequencies of occurrence of individual items in a

Bloom Filter. We propose an efficient mechanism to accurately estimate global statistics of

object popularity using SBFs as follows: Once peers construct the CDS sub-network, every

non-CDS peer periodically randomly selects one of its CDS neighbors to send a Bloom filter

containing set of local documents. Upon receipt, the CDS peer aggregates this information

to its own Bloom filter representing the same using union equivalent operation. This is

bit-wise count addition for Spectral Bloom filters. Then CDS peers communicate with each

other to exchange these aggregated Bloom filters. Upon receipt of Bloom filters of other

CDS peers, a CDS peer aggregates them to its partially aggregated Bloom filter to complete

estimation of global statistics of object popularity. CDS peers then push these Bloom filter

containing global object popularity statistics to the previously contacted non-cDS peers.
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Using the CDS backbone in estimating global popularity has several advantages. First,

it generates much less traffic compared to other techniques such as gossip and is much

faster as the popularity estimation communication is localized to a small sub-network, the

CDS backbone. The estimation quality is much superior as it is guaranteed that all the

peers in the network are contacted in the popularity estimation process. Also, since peers

only communicate bloom filter representations of distributed objects, the communication

overhead involved is low.

3.4.2 Rare Object Replication

R-SPUN replicates the rare object in the CDS backbone. By distributing the object

replicas in the CDS backbone, R-SPUN is able to achieve significant low latency while

supporting the successful retrieval of rare objects high probability. Even though the non-

CDS peer send ”locally rare” objects to be replicated at the CDS backbone, CDS peers take

measures to only replicate those objects which are ”globaly rare”. The basic idea of the

scheme is as below.

By comparing the bloom filter containing global popularity statistics against its local

data-set, each peer identifies a list of local objects that are rare in the entire network which

needs replicating. Once a peer identifies the list of local objects it wants to replicate, it first

sends this list to its closest CDS peer. The receiver CDS peer launches a random walk within

the CDS backbone to replicate its rare content. A replica of rare objects are established at

the peer the random walk terminated. The replication establishment only occurs only for

those objects the random walker does not find any replicas at sufficiently closer distances (i.e.

within TTL distance) to random walker initializer peer. To determine this, random walker

compares the objects to be replicated with the aggregated Bloom filters at each visited CDS

peer. This replication strategy improves search efficiency of rare objects effectively. However,

this might result in additional communication overhead and storage capacity consumption

in replicating objects. To reduce communication and storage overhead, we can simply chose

to install a reference to a rare object instead of installing a replica.
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We see that our replication algorithm posses many desirable properties. The content

replication is performed dynamically without assuming a prior knowledge of object request

pattern or peer churn rates. It is a fully distributed, low overhead algorithm.

3.4.3 CDS construction and Maintenance

Constricting a Minimum Connected Dominating Set (MCDS) is a NP-complete problem.

There exists many literature focusing on deriving approximation algorithms on constructing

Connected Dominating Sets at various costs. In this work we use a simple and distributed

approximation algorithm to construct CDS proposed by authrs of [82]. The algorithm uses

a marking process that marks every vertex in a given connected and unweighted graph

G = (V,E) representing the P2P overlay where nodes represent peers and edges represent

links between them. m(v) is a marker for peer v ∈ V , which is either T (marked) orF

(unmarked). All vertices are unmarked initially. N(v) = u|{v, u} ∈ E represents the open

neighbor set of peer v and v has N(v) initially. The marking process is following: (1) Initially

assign marker F to every v in V . (2) Every v exchanges its open neighbor set N(v) with

all its neighbors. (3) Every v assigns its marker m(v) to T if there exist two unconnected

neighbors. The authors show that peer marked as T form a CDS. Authors also propose two

rules to reduce the number of peers in the CDS.

Peer Join The authors also puts forward a low overhead CDS maintenance mecha-

nism. When a new peer v joins the network, only v along with its neighbors not in current

CDS needs to update their status. The corresponding marking process can be the following:

(1) New peer v broadcasts to its neighbors about its joining the network. (2) Each neighbor

w ∈ N [v] exchanges its open neighbor set N(w) with its neighbors. (3) Peer v assigns its

marker m(v) to T if there are two unconnected neighbors. (4) Each neighbor w ∈ N(v) not

in current CDS assigns its marker m(w) to T if it has two unconnected neighbors.

Peer Leave When a peer v leaves the network, only CDS neighbors of that leaving

neighbor need to update their status, because any non-CDS neighbor will still remain as
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non-CDS peer after peer v leaves. The corresponding marking process can be the following:

(1) Peer v broadcasts to its neighbors about its leaving. (2) Each CDS neighbor w ∈ N(v)

exchanges its open neighbor set N(W ) with its neighbors. (3)Each CDS neighbor w changes

its marker m(w) to F if all neighbors are pairwise connected.

3.5 Query Routing

To achieve a high search rate for both popular and rare objects, we propose a search

mechanism that takes advantage of the concept of successful query path evolution and the

overlay graph property- Connected Dominating Sets- to allow peers to make query routing

decisions.

Upon generation or receipt of a query for an object o, a peer P estimates the popularity

of the requested object. P’s action differs based on whether the object is poular or not.

3.5.1 Popular Object Search

In our work, an object o is popular if at least one copy of the object is within sufficiently

reachable distance (bounded by TTL) to P. This is denoted by the either an existence of an

entry for o in P’s routing index or its bloom filter data structure. If the object has records in

its routing index P will compute a score for each its neighbors called a Path Gradient(PG)

based on the evolution of successful query paths for o through each neighbor.

Best Path Gradient (BPG) Criterion

If the R-SPUN index of P already contains entries for the queried object, the neighbors

leading to the most successful query path for object are chosen based on its local knowledge.

We define a new metric called Path Gradient (PG) to quantitatively measure the success of

a query path of a given neighbor N for a given object o as follows:

PGN =

∑d−1
i=1 (RSRV o

N [i]−RSRV o
N [i− 1])

d− 1
(3.4)

where RSRV o
N is the RSRV of N for o in Ps R-SPUN index and d is the length of the
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vector RSRV o
N . One of the major properties of a successful query path is the monotonically

increasing property of success ratios assigned to edges between neighbors in the query path.

PG metric captures this property by calculating the gradient of success ratios in a query

path. A successful query path has a non-negative PG value with large magnitude. For

example, if RSRV o
N = [30,40,50,60] then PGP=[(40-30)+(50-40)+(60-50)]/3 = 10. PG is

calculated by P for each neighbor based on their RSRVs in Ps R-SPUN index for object

o. The top k neighbors with highest PG values are then selected to deploy search walkers.

However, when the RSRV o
N vectors of neighbors are of length d=1, only RSR0 values exist

in P’s R-SPUN index for neighbors for object o, simply the RSR0 values for each neighbor

is regarded as their corresponding score .

On the other hand if an entry does not exist for o at P’s index, P examine each of the

bloom filters representing its neighbors to select the subset of neighbors that contain o. Then

k neighbors are randomly selected to launch the query. While traditional Bloom Filters do

not give an indication of the strength of peers, we may use Spectral Bloom Filters to avoid

this situation. Spectral Bloom Filters provide an indication of the frequency of items in the

Bloom Filter. The frequency usually represents the number of times the object was inserted

into the Bloom Filter and thus can be considered as the number of replicas of o reachable

through the neighbor. Therefore considering object frequency of the neighbor as its scores

allows us to select the neighbors leading to replica rich areas for o thus increasing probability

of finding o successfully.

3.5.2 Rare Object Search

If an entry for the object does not exist in P’s index or reachable Objects Bloom Filter,

it decides that the object is rare. Then it changes the search mode to CDS routing. Here,

the peer selects one of its CDS neighbors and sends the query to the CDS peer. Once in

CDS mode CDS peer routes the query along the CDS backbone until TTL expires or a CDS

member containing a reference to requested object is found.

Thr search algorithm is stated in Algorithm 3.2.
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Algorithm 3.2 R-SPUN Query Routing

Input:

Q = Query Message
P = Message receiver peer
N = Message sender peer
o = Requested Object
SearchMode = the search mode
Index(P ) = R-SPUN index of P
BReach(P ) = Reachable Documents Bloom Filter of P
Candidates(Q) = Neighborhood(P )Q.V isitedPeers

NeiborhoodCDS(P ) = neighbors of P in CDS backbone
k = the walker count

Output: ‘
R = Retrieved documents and references
SearchMode = the search mode
Selected(Q) = the selected peers for query routing

1: Selected(Q)← φ

2: Q.TTL← Q.TTL− 1
3: R← LocalSearch(o)
4: ▽ Found target Object

5: if R 6= φ then

6: Return a HIT with R and terminate search
7: else if P ∈ CDS AND P has a reference to o then

8: R← P ′s reference to o

9: Return a HIT with R and terminate search
10: else if Q.TTL ≥ 0 then

11: Return a MISS with R and terminate search
12: else

13: if Index(P ) contains entries for o then

14: ▽ Regular Search Mode

15: for each Peer N ∈ Candidates(Q) do
16: Score← CalculateBPGradient

17: end for

18: else if BReach(P )) contains entries for o then

19: for each Peer N ∈ Candidates(Q) do
20: Score← Get frequency of o for N in BReach(P )
21: end for

22: Sort Candidates(Q) based on scores
23: Selected(Q)← Top Candidates(Q) with highest score
24: SearchMode← Regular

25: else

26: ▽ CDS Search Mode

27: Selected(Q)← Randomly select 1 neighbor from CDS(P )
⋂

Candidates(Q)
28: SearchMode← CDS

29: end if

30: Return Selected(Q),SearchMode and R

31: end if



45

3.6 Experimental Evaluation

3.6.1 Simulation Setup

We simulated the unstructured P2P network using Peersim [85] simulator. The exper-

iments were performed on both random and scale-free network topologies. The object and

query replication were chosen from both uniform and zipf distributions. Requesters were

randomly chosen and always represented a noticeable fraction (around 10%) of the size of

the graph. The default graph had 10,000 nodes with an average out-degree of 10. The

default values for walkers and TLL were 12 and 6 respectively. For object replication, we

used 100 objects. These objects were selected to be of varying popularity. This was simu-

lated using number of replicas and queries assigned to an object. The highest-ranked 10%

of objects amounts to about 50% of the total number of stored objects and receive about

half of the requests. The most popular objects were stored in more than 10% of peers while

least popular objects were stored in 0.25% of the peers only. The default maximum number

of entries per peer profile was set to 10.

3.6.2 Performance Metrics

Three basic performance metrics are used to evaluate the performance of SPUN: (i)

success ratio per query, (ii) messages per query and (iii) hits per query. The success ratio is

the ratio of successful to total searches made. Success ratio per query is the average success

ratio observed for a query. Messages per query is the average number of messages sent for

each query. This accounts for the walkers deployed for each query and the return messages.

The messages represent the cost of search. Since multiple walkers can be deployed by the

query originator, multiple hits can result for a single query, one per each walker. Hits per

query is the average number of object replicas found through a query.
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Figure (3.7) Single walker performance. (a) Success ratio per query (b) Messages per query
and (c) Hits per query.

3.6.3 Performance Evaluation

We performed extensive simulations to asses the efficacy of the proposed SPUN search

algorithm. The performance of the algorithm was compared with two state-of-the-art algo-

rithms, APS [80] and RW [79]. Simulation results obtained with zipf and uniform distribu-

tions for query and object replications on random and scale-free topologies were quantita-

tively similar.

Fig. 5.2 shows the average success ratios, messages and hits per query for each of

the algorithms for one walker. The simulation results in Fig. 5.2 demonstrate that SPUN

produced the best performance in all three metrics than other algorithms evaluated. As

shown in Fig. 3.7(a), SPUN performs 25% better than standard APS in terms of success

ratio. The reasons for this behavior are two fold. First, compared to APS which only uses

single relative success ratio for peer selection decision, SPUN uses the BPG criterion for

neighbor selection that utilize relative success ratios at multiple hops from a querying peer

through a given neighbor. Second, SPUN peers have access to more current information

about their neighborhoods than APS peers. As shown in Fig. 3.7(b), the high success ratios

in SPUN are achieved at similar message complexity of APS. Fig. 3.7(c) shows hits per

query for each compared scheme. SPUN showed 20% more hits per query than standard

APS when only one walker is deployed.

Fig. 5.3 provides a detailed comparison of the performances between SPUN and APS
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Figure (3.8) (a) Success ratio per query, (b) Messages per query, and (c) Hits per query vs.
number of walkers in SPUN.

for varying number of walkers. The objective of SPUN is to achieve high success ratios using

few walkers as this reduces communication cost. As Fig. 3.8(a) depicts, SPUN achieves

this goal successfully by achieving 25% rate of increase in success ratio than APS. As 3.8(b)

shows, SPUN achieves high success ratios with same number of messages produced by APS

for any number of walkers. This is because SPUN differs from APS only from the peer

selection criteria and content a message carries. Fig. 3.8(c) shows that SPUN outperforms

APS in terms of hits returned per query as well. On average, 34.81% of increase in hits

per query was observed for SPUN over APS. With increasing number of walkers, we also

observed a considerable increase in percentage improvement in hits per query over APS. The

effective utilization of more precise results generated by SPUN, results in its performance.

Towards the end of plot in Fig. 3.8(a) where higher number of walkers are deployed, the

success ratios of APS and SPUN converge towards 100% (shown by 1.0 in Y axis). This is

expected when the number of walkers reaches the maximum peer degree when more walkers

are deployed (set to 10 in our simulations). In this case, both algorithms default to a limited

flooding, where all the neighbors are explored by the querying peer.

Fig. 5.6 compares the average number of hops visited for a search operation by SPUN

and other compared algorithms. In both SPUN and APS, a search walker travels 4 hops on

average.

Fig. 5.7 shows the relationship between the hits per query and hop distance from the
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Figure (3.10) Hits per query vs. hop distance from requesters in SPUN

query originator. As can be seen from the figure, SPUN efficiently locates objects at shorter

hop distances from the querying peers. Both SPUN and APS show highest hits at 2 hop

distance and SPUN shows 20% more hits per query at this hop distance.

The dynamic behavior of the P2P network under peer churn was simulated by adding

new nodes to the network, permanently and temporarily removing online peers from the

network at varying frequencies. During a simulation, the network size was maintained at

roughly 10000 nodes by ensuring the number of nodes joining and re-joining the network were

same as that leaving the network temporarily and permanently. Fig. 5.8 shows the success

ratios of SPUN and APS at two levels of dynamicity of the P2P network. A simulation run

comprised 300 time steps. In a less dynamic setting, the fraction of nodes joining the network,

rejoining after temporary removal, leaving permanently, and temporarily removing from the
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Figure (3.11) Success ratio per query for varying levels of dynamicity.

network were set to 0.2% in each time step. This corresponds to about 20 nodes joining or

leaving each time step, or about 80 nodes changing while a walker takes an average of 4 hops.

In the more dynamic setting, the same parameters were set to 2% for each time step. Thus,

an average walker may be impacted by about 800 node join and leave events. SPUN achieved

almost 12% better success ratio compared to APS in the less dynamic setting, and 8% better

success ratio compared to APS in the more dynamic setting especially when a single walker

is deployed. The reason for the better performance in SPUN in both dynamic settings is

that its ability to discover multiple successful neighbors for a queried object using profile

exchange mechanism. Therefore, it has a better tolerance than APS, when the network

structure changes dynamically.

3.7 Discussion

3.7.1 Message Complexity

In the worst case for a search process, all the k walkers deployed by a querying peer

will travel TTL hops and return a hit or a miss along query path. Therefore the number of

messages sent per query is 2×k×TTL in the worst case. This is the same message complexity

of APS. However, unlike APS, a message in SPUN may carry the message sender’s profile

and a vector of success ratios.
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SPUN.

Fig. 5.9 shows the change in return message size in SPUN with the hop distance from

querying peer. In addition to the content an APS return message carry, a SPUN message

also carries a peer profile and an RSRV (shown as separate partitions in each bar). Bytes

consumed for these three components are also shown in the figure. APS messages contain 15

bytes each. Both algorithms showed a gradual increase in return message size with increasing

hop distance from querying peer. This is because return messages carry the visited node list

in the query path (shown by APS partition in each bar) which is updated at every visited

peer. A return message in SPUN on average traveled 5 hops and average size of a SPUN

return message was 71 bytes. This size however is considerably low and does not affect

message complexity as the most important parameter - number of messages per query- is

same as that of APS. In addition to this, we observed an average SPUN query message size

of 47.2 bytes. This is because, sender profile itself consumed 40 bytes.

3.7.2 Space Complexity

Compared to APS, a peer in SPUN maintains a vector of success ratios per neighbor

for each object it requested in its local SPUN index. The maximum number of elements in

this vector is TTL, as a query can propagate maximum TTL hops only. Therefore, for N

such objects and for maximum P neighbors, in worst case, O(PNTTL) space is required by
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a SPUN index. APS on the other hand, maintains a single index value per peer per object.

Therefore in the worst case scenario, APS needs only O(P × N) space. In SPUN, each

peer also maintains a profile which keeps past queries answered or passed through it. For a

maximum number of R records, the profile requires O(R) space. This storage requirement is

not a burden to an average internet computing device. However, the peers with low storage

capacity can choose to erase some of their locally kept knowledge according to some policy

such as FIFO policy or Least Recently Used (LRU) policy.

Our SPUN algorithm eliminates many problems associated with APS. First, it min-

imizes initial random selection of neighbors in APS using peer profile exchange. Second,

unlike APS which has considerable performance degradation in dynamic setting due to its

adaptive environment, SPUN is more tolerant in dynamic environments due to dynamic

discovery of successful paths using peer profile exchanges. SPUN also has access to more

current and larger amount of information than APS. For both dynamic and static networks,

SPUN outperforms APS and RW. This performance gain is due to reinforcement learning

mechanism a peer exercises which result in local knowledge of a peer getting more precise

and less ambiguous over time. SPUN captures the synergistic effect of these more precise

success ratios resulting in better selections of peers to send queries. One of the major ad-

vantages of our SPUN protocol is that there is no overhead involved in peer arrivals and

departures. Also, since RSRs are not related to file content, there is no action required

after object updates. Therefore, the maintenance cost is considerably low which is a major

advantage compared to many current approaches.

3.8 Summary

SPUN introduces a new peer selection criterion based on the phenomena of development

of successful query paths in the P2P network. The best subset of peers selected to send a

query are the ones leading to more successful query paths for the queried object. The algo-

rithm is shown to yield considerable increase in success ratio than APS and RW for similar

message cost. Our simulations on a variety of environments demonstrated the versatility of
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the SPUN algorithm. Results showed that SPUN achieves 25% improvement in success ratio

and 20% improvement in hits per query over APS for static networks, and continues to be

superior for dynamic networks.
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PART 4

ONTOLOGY BASED CLUSTERING

Resource management is very important yet challenging in large scale distributed sys-

tems like P2P networks. With more and more users incorporating semantic meta-data with

their resources, the resource discovery mechanism should not only be able to scale well with

the large number of information resources but also be capable of retrieving semantically

relevant resources distributed in the P2P network with high accuracy and efficiency. In this

thesis we address these problems by proposing an ontology-based fully-decentralized peer

clustering scheme where the network topology is optimized to perform efficient semantic

query routing. The proposed semantic clustering scheme utilizes the structural relationships

in ontology to organize peers into clusters based on the semantics of the resources they share.

Performance evaluation demonstrates that our proposed approach can dramatically improve

the search efficiency of unstructured P2P systems while keeping the communication cost at

a level comparable with the state-of-art unstructured P2P systems.

Semantic clustering has been studied by the research community as a means of improv-

ing search performance of the P2P network. Works such as [17, 22, 41] use Vector Space

Model (VSM ) based node vectors as the basis for semantic clustering. While it is simple

to implement and allows easy clustering of peers based on cosine similarity measurements,

VSM is a poor choice for representing semantics. Clustering algorithms that rely solely on

statistical correlations may only serve to disrupt the more complex semantic significance

attributed to document collections by richer ontologies. SONs [20] is one of the early ap-

proaches that used semantic clustering using ontologies but it heavily relies on broadcasting

for query routing and peer join. There are several Distributed Hash Table (DHT) based se-

mantic clustering approaches proposed such as [7] to provide efficient exact match searches.

Maintenance cost of DHT overlays, however, is costly during frequent joining and leaving of
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peers. Moreover, the rigid topology structure may not allow a peer to accept new neighbors

or content as peer autonomy is highly restricted in a structured P2P environment.

In contrast to these approaches, we propose a semantic clustering and routing scheme

which aims to improve the quality and efficiency of search. The basis for semantic clusters

are concepts of an already agreed-upon shared semantic ontology. We use this semantic

ontology with the vision of improving information searching and facilitating interoperabil-

ity. In this thesis we propose a novel dynamic cluster construction technique where peers

discover semantic neighbors by taking into account the structural relationships of concepts

in the ontology. We also propose a novel query routing mechanism that exploits the concept

hierarchy to quickly route a query to the target cluster. Both search traffic and gossiping

are employed by peers to acquire global information regarding peer interests.

Our main contributions and results of this work are as follows:

• We develop a novel distributed, dynamic semantic search infrastructure that performs

efficient query routing and information retrieval using synergy between ontologies and

P2P systems. The proposed ontology-aware topology construction technique exploits

global semantic taxonomy relationships between concepts to construct concept clusters

and establish connectivity between concept clusters so as to limit the query response

time and achieve high recall rates. A peer in a given cluster selectively chooses the

concept clusters to establish connections in such a way as to ensure rapid access to

target clusters regardless of whether a given concept cluster is semantically closer or

further from the concept clusters to which a querying peer belongs.

• We introduce a novel query routing mechanism with concepts like same-cluster-links,

family-tree-links, and random-cluster-links where a peer effectively exploits the se-

mantic taxonomical relationships between clusters to quickly route a query to target

concept clusters. The hierarchical organization of concept clusters always provides a

guaranteed path from one concept cluster to another through parent/child links for

query routing.
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• We experiment with two techniques for neighbor discovery in cluster construction and

maintenance: gossip based neighbor discovery and query traffic based neighbor dis-

covery. In the gossip based neighbor discovery mechanism, a peer simply selects a

neighbor at random and exchanges information about the peers it has in its cache. In

query traffic based neighbor discovery, a peer uses cache information appended by all

peers visited by a query or query response message to discover new peers.

• We compare our algorithm with state-of-the-art search techniques Gnutella [1] and BF-

SKIP [41]. The experimental evaluation shows that SAS outperforms the comparison

counter-parts for both static and dynamic environments.

4.1 Preliminaries

4.1.1 System Model

We make the following assumptions about our proposed search model:

Network Topology We consider an unstructured P2P network with a set of peers

{P1, P2, ..., PP}with average degree γ. Each peer in the network is able to communicate with

its direct neighbors (i.e. one hop neighborhood) only.

Global Semantic Ontology A globally known reference ontology is agreed upon

by all peers in the network. This ontology O consists of a set of semantic concepts

C = {c1, c2, ..., cm} with total m concepts and relationships among them. For simplicity,

we assume a semantic hierarchy where the relationships among concepts are only IS-A(i.e.

hypernym/hyponym) relations.

Data Distribution There can exist multiple copies of the same documents dis-

tributed among peers. For each document a peer has in its local storage, it constructs a

concept weight vector that depicts the semantic weight of each ontology concept present

in that document.For a peer P with a set of documents D(P ) = {dj, j = 1, 2, .., n} in its
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local storage, we use the following Concepts Vs. Documents matrix CD(P ) to describe the

concept weights of the documents in P for the concepts in the shared ontology:

CD(P ) =



















w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

...
...

. . .
...

wm,1 wm,2 · · · wm,n


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













where wi,j is the weight of concept si where i=1,2,..,m in document dj.

The weight wi,j of concept ci in document dj in peer P is calculated as follows: First, the

concept frequencies of all concepts for each document in P s local storage are calculated by

a process of text mining followed by word sense disambiguation. The concept frequencies of

each document are added bottom up the semantic hierarchy to account for the contribution

from each concept to its ancestor concepts in the hierarchy due to the IS-A relationships.

Then the concept frequencies of each concept are normalized to a [0-1] range by applying

maximum frequency normalization by dividing them by the maximum concept frequency for

that concept known so far by the peer.

Semantic Query A query consists of the conjunction of one to n concepts in the

ontology. The document locating problem therefore is to find as many documents in the

P2P network that satisfy the query and that exceed a pre-specified relevance threshold.

Existing techniques [51,86] proposed by the research community can be employed to convert

keyword queries to concept queries.

Semantic Similarity Calculation We used the following well-known similarity mea-

sure Sim to calculate the similarity between two concepts c1 and c2 in the hierarchy [87]:

Sim(c1, c2) =







eαl. e
βh−e−βh

eβh+e−βh ifc1 6= c2

1 otherwise
(4.1)
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Where l is the shortest path distance between c1 and c2 in taxonomy and h is the depth

of the least common subsumer of c1 and c2, α and β are parameters scaling the contribution

of shortest path length l and depth h, respectively where the optimal values were defined as

0.2 and 0.6, respectively [87].

4.2 System Architecture

Here we describe in detail our design of the SAS system that utilizes the synergy between

ontologies and P2P systems to provide high quality search performance.

4.2.1 System Overview

Peers in a distributed network are rich in a variety of semantic interests that are based

on their sharable local document collections. Our clustering policy is based on the intuition

that given a global ontology that describes the semantics of those shared documents, each

peer’s expertise can be described by a set of concepts in that ontology. This allows one

to model different semantic relationships between peers using ontological relationships that

exist between concepts and further enables a physical organization of peers into semantic

clusters. More specifically, peers specializing in the same concept are physically grouped

together as a cluster. A peer can specialize in zero or more concepts based on its shared

document collection. This implies that the peer may participate in zero or more concept

clusters.

In our SAS framework, we model different types of semantic relationships between peers.

A peer P can maintain a same cluster link to another peer for common concept they both

specialize in. Similarly, P can maintain a family tree link to another peer that specializes in

a concept that falls under the family tree of P . The family tree of a peer is the minimal sub-

tree in the shared ontology semantic tree that subsumes all the concepts the peer is rich in.

For every peer, for every concept for which it has richness of content, a parent link and a child

link is created to the representative parent and child concept clusters. Any concept falling

inside its family tree is considered a semantically close concept to its semantic expertise by
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a given peer. P can also maintain a few random cluster links with some selected peers in

the network. These would be peers for which their high frequency concepts fall outside the

family tree of P and thus are considered semantically distant neighbors. Therefore, concept

clusters self-organize into a hierarchical tree using parent links and child links while also

maintaining other types of links for faster accessibility. We propose a scheme where these

different types of relationships are effectively exploited to route queries to peers specializing

in requested semantics, thus enabling efficient query routing.

Fig.4.1 shows a high level view of the network topology. The dotted circles and lines

show the concept clusters and their IS-A relationships in the ontology respectively. While

many links are maintained between peers, the different cluster connections of only peer F

are shown for clarity assuming a simplified scenario where F belongs only to concept cluster

C7.

4.2.2 Clustering Policy

Physically grouping peers to create peer clusters based on their semantic richness man-

dates a good clustering policy. In our work, we use ontology concepts as the basis for peer
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clustering. Since peer’s interests can be represented by its local data, the ontology metadata

is used to extract semantics of shared documents and thus the conceptual interests of the

peer. Peers rich in certain concepts in terms of both information content and number of

relevant documents for those concepts, categorize themselves as belonging to those concept

clusters.

Each document in SAS is represented as a concept vector. These concept vectors contain

log weighted concept frequencies 1+log(concept frequency). Compared to traditional tf-idf

measure, log frequency weighting produces higher quality clusters [88] and does not require

global information for computation. For a document to be considered relevant for a given

concept ci, the concept frequency of ci in document should exceed a certain threshold. This

threshold concept frequency for concept ci at peer P is calculated as follows:

CFThredhi,P = RelThresh×MaxCFi(P ) where ci ∈ C(P ) (4.2)

Where RelThresh is the system specified relevance threshold for a document which is a

value in [0-1] range.MaxCFi(P ) is the maximum concept frequency known by P for concept

ci. It is initially computed from P s local document collection and later it is kept updated by

any new higher ci values discovered from other documents in the network through message

exchanges ensuring that eventually reaches its globally equivalent value with time. The

calculation ensures P is considered relevant for only those documents having large enough

semantic weights for the given concept. This mechanism improves the precision of search over

time by allowing a query to identify only those documents that are actually semantically rich

and thus relevant for a queried concept. This precision improvement mechanism is briefly

described in section 4.3.2 and more details can be found in our previous paper [89].

Once the number of relevant local documents per concept is determined for each peer,

there are two basic criteria that can be used to classify a peer to a concept cluster. One way

is to conservatively classify a peer to the concept cluster if it merely contains any relevant

document for that concept. While this method increases recall, it also increases message
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production, peers per cluster as well as clusters per peer. The other method is to classify

only highly semantically rich peers (i.e. peers with significantly large number of relevant

documents for that concept) for a relevant concept cluster. This has two advantages: first,

this reduces the number of peers in a cluster thus reducing query traffic, next it will also

reduce number of cluster connections a peer needs to maintain as a peer will belong only

to a few clusters. However, this method might result in reduced recall as a query is not

able to locate all the relevant documents for the queried concept. On the other hand, while

classifying every peer with even a single relevant document for a given concept cluster ensures

maximum recall, this will increase the peers per cluster and the message traffic.

4.2.3 Types of Semantic Links

Peers maintain three types of semantic links with their neighbors. To illustrate these

links consider Fig.4.1. The figure shows the shared ontology containing concepts C1 to C11.

Let us assume a peer P is rich in concepts C7 and C11.

Same Cluster links These links are established between peers who belong to the

same concept cluster. For example, according to Fig.4.1, peer P can establish same cluster

links with other peers in clusters C7 and C11.

Family Tree links To achieve high semantic reachability, each peer maintains a rel-

atively few number of links called family tree links which are selected among the member

concepts in the family tree of the peer. A family tree of a peer P , familyTree(P ), is the

sub-tree of the ontology rooted at the least common concept that subsumes semantic cluster

concepts a peer P belongs to. This least common ancestor (lca) concept of familyTree(P ) is

called the lca(P ). To ensure hierarchical connectivity of concept clusters based on semantic

taxonomical relationships, a peer always maintains family tree links for its parent concept

cluster and child concept clusters called parent links and child links respectively. These par-

ent and child links essentially allow the network topology to be organized to mimic the global

semantic hierarchy. For the example in Fig.4.1, lca(P ) is C4 as this is the least common
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ancestor that subsumes both C7 and C11. The familyTree(P ) is the sub-tree rooted under

C4 and is marked in the figure. Any concept in familyTree(P ) excluding C7 and C11 are

candidates for establishing family-tree links.

Random Cluster Links To obtain faster access to semantically distant clusters,

peers can also maintain a few random cluster links in its random neighbor cache to its

semantically distant clusters. According to Fig.4.1, all the concepts in ontology outside

family tree of P such as C5 and C6 are perfect candidates for P to establish random cluster

links.

4.2.4 Information Organization at a Peer

A Peer maintains several data structures to aid in clustering and query routing. Each

peer in SAS maintains three data structures:

CD(P) CD(P ) to describe the concept weights of the documents in P for the concepts

in the shared ontology

MaxV ector(P ) TheMaxV ector(P ) is used for document re-normalizing purposes and

holds global statistics of highest information content (calculated as concept frequency) for

each concept in the ontology, for entire data set distributed in the network. This information

is obtained gradually using message passing mechanisms.

MyClusters(P )) This is the set of concept clusters in which peer P categorizes itself

as a member.

SemanticNeighborCache(P ) Semantic neighbor cache keeps track of different concept

clusters the peer has discovered and regards as being semantically close to its semantic

interests. An entry in the semantic cache takes the form < c, neighbors > where c is the

concept cluster for which the peer has established a connection with given neighbors. This

includes entries for the same cluster concepts (i.e. concepts in MyClusters(P)) and familyTree
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cluster concepts. To avoid unnecessarily adding entries for all candidate familyTree cluster

concepts, a newly discovered family tree link is added to Semantic neighbor cache only if

the semantic similarity between its representative familyTree concept and the familyTree

concept already in cache semantically closest to it is less than a given threshold.

RandomNeighborCache(P ) A peer also keeps a second cache called random neighbor

cache where it includes pointers to peers, whose clusters are semantically farther away from

the clusters the peer belongs to. An entry in the random neighbor cache takes the form

< c, neighbors > where c is the concept cluster with which the peer has established a

connection with given neighbors. Similar to family tree link addition policy, to minimize the

number of entries in random neighbor cache, a newly discovered random link is added to

cache only if the semantic similarity between its representative random cluster concept and

the random cluster concept already in cache semantically closest to it is less than a given

threshold.

Both caches are refreshed using Least Recently Used(LRU) policy.The maximum num-

ber of entries allowed in each cache including the maximum number of neighbors allowed

per each cluster entry are system specified parameters. Fig 4.1 provides some example cache

entries for a peer F with a family tree as shown.

4.3 Dynamic Peer Evolution

4.3.1 Cluster Construction

We assume that the initial network is a pure unstructured network with a randomly

connected set of peers. At the configuration stage, each peer constructs document concept

vectors for each of its document in the shared document collection. These document concept

vectors are used by peers to classify themselves into a set of concept clusters to which they

belong.



63

Neighbor Discovery To establish inter-cluster connectivity, it is crucial that each

peer acquire cluster connections by neighbor discovery. We propose two methods to acquire

cluster links: (i) a gossip based neighbor discovery which actively discovers new semantic

peers and (ii) a passive query traffic based neighbor discovery algorithm.

(i)Gossip Based Neighbor Discovery : Gossip protocols are highly scalable and resilient

communication protocols that are widely used to solve problems such as information dis-

semination, data aggregation etc. when the underlying network structure is inconvenient

or extremely large. To implement gossip based neighbor discovery in a P2P network, each

peer at each given fixed intervals of time randomly chooses a peer from its neighborhood

to exchange information about the concept clusters links they maintain to update their

random neighbor cache and semantic neighbor caches with new links learnt. Due to the

characteristics of gossip-based algorithms, it is guaranteed that every peer could establish

cluster connections with every other concept cluster it is interested in with high probability

in logarithmic steps of the size of the network.

Gossiping can be specialized just for the purpose of discovering a disconnected same

concept cluster where peer chooses one of its parent or ancestor semantic links instead of

just a random link to gossip. In fact, due to the ontology structural relationships, a peer

can contact a same-cluster-neighbor to obtain ancestor, descendant, parent and child links

and vice versa.

(ii)Query Traffic Based Neighbor Discovery Alternative to gossip based neighbor dis-

covery, we propose a query traffic (i.e. query messages and query response messages) based

neighbor discovery method where a peer’s local knowledge is propagated along a query path

by piggybacking its MyClusters data structure and links maintained in its caches in query

traffic messages in a passive fashion. A Peer receiving a query traffic message uses the neigh-

bor links already stored in the message by every visited peer of the message to update its

cache. The message receiver peer then appends its local knowledge to the message before

forwarding it to the next intended neighbor.Piggybacking information in this way using nor-

mal query traffic is an excellent idea to reduce communication cost as this does not incur
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additional messages for neighbor discovery.

4.3.2 Cluster Maintenance

Cluster Merging A peer initially starts by creating a concept cluster per each

concept it belongs to by adding itself as the only member in the cluster. Understandably,

this will create many clusters for the same concepts scattered in the P2P network. Over

time, when peers acquire knowledge through gossiping or querying, they will also discover

such new clusters for the same concepts they belong to. When this happens, the peer merges

its cluster with the newly discovered cluster to form a larger cluster. To achieve this, each

peer assigns a unique ID to its concept cluster at the configuration stage generated by a

consistent hash function. When a peer merges its cluster with a new cluster, the lower ID

of the two is assigned to the merged cluster.

Cluster Re-computing Understandably, data re-computation that occurs as a part

of precision improvement mechanism may result in changing the number of relevant docu-

ments for certain concept clusters a peer belongs to thereby changing the participation of the

peer in certain concept clusters. Therefore, it is necessary to re-compute the clusters a peer

belongs to for those concepts for which the data re-normalization occurred. Over time, how-

ever, when MaxVector values of a peer P reach their global equivalent values, these updates

become unnecessary as the dataset will be normalized against globally stable MaxCFi(P)

values. Such a change in a peer cluster in turn mandates the peer to review and update its

semantic cluster links.

Precision Improvement Learning Mechanism (MaxVector Learning) The

documents distributed in the P2P network are first text processed with the aid of shared

ontology and Wordnet thesaurus to arrive at concept vectors per document. These docu-

ments are initially normalized per concept using maximum frequency normalization based

on the highest concept frequencies known by each peer based on its local document collec-

tion. However, as long as the actual highest concept frequencies based on entire dataset
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distributed in the network is known these normalizations do not produce the most accurate

concept vectors. This results in peers wrongfully identifying irrelevant local documents for

certain queries as relevant reducing precision of queries. To improve the precision over time,

each peer keeps track of most recently known highest concept frequencies in a data struc-

ture called MaxVector. New higher concept frequencies are revealed when messages pass

through peers (query traffic; no extra messages produced) and MaxVectors are exchanged.

This results in peers re-normalizing original concepts vectors of local documents making

their semantic representations more accurate. Therefore through these message exchanges,

locally known highest concept frequencies reach their actual globally equivalent values, thus

increasing query precision over time.

4.3.3 Dynamicity of the System

Peer Joins When a peer joins the network for the first time, it first connects to a

random set of peers. The peer first classifies itself to a set of clusters based on its shared

document collection and sends a join request to all its neighbors, piggybacking the set of

clusters it belongs to. Upon receipt of a peer join request, an existing peer provides its

existing semantic and random cache links and the set of clusters it belongs to, to the new

peer. The new peer then constructs its initial random cache and semantic cache links by using

this information. The highest priority in constructing a peer soft state goes to establishing

semantic links, especially same-cluster-links. Therefore, after this initial link establishment,

a peer can choose to actively seek same-cluster-neighbors from parent (or ancestor) or child

(or descendant) cluster neighbors if it already has none in the cache or vice versa.

Peer Leaves and Failures When leaving the network, a peer provides its semantic

and random cache link information to its neighbors along with the notification that it is

leaving the network. This information is utilized by a notification receiving peer to update

its semantic and random caches with appropriate links, removing soft state maintained for

the leaving neighbor and also acquiring appropriate links from the links maintained by the
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neighbor leaving the network. If a neighbor crashes, peers eventually discover absence of

a peer when query routing to the neighbor fails and it updates its soft state accordingly.

Gossip and query traffic based neighbor discovery eventually re-establishes lost links.

4.4 Query routing strategy

The goal of query routing strategy is to locate as many relevant documents as possi-

ble. Initially, when no semantic links are acquired, peers resort to flooding the query to its

originally connected neighbors. This initial flooding combined with gossip described in sec-

tion4.3.1 help peers to initially build up their semantic links. Once some links are acquired,

peer can intelligently route a semantic query to target semantic clusters avoiding flooding.

Examining the queried concepts, a peer first decides which cache it should look up for target

cluster. If a direct link is present in cache for the queried concept in the query is directly

forwarded to the target cluster. Otherwise it calculates the semantically closest concept in

cache and forwards the query to the respective links.

When a query contains a conjunction of multiple concepts, the querying peer constructs

a sub-query per queried concept with the same message id with original query included. The

basic idea is to propagate the concept based sub-queries to relevant target clusters, where the

original query will be evaluated. The query is propagated until a system specified Time to

Live (TTL) is reached. The results will return in the reverse path of the query propagation.

The query originator then collects and returns the merged results to the end user upon receipt

of responses for all sub queries dispatched. Below we describe the inter-cluster routing

mechanism that propagates the query to the target cluster and the intra-cluster routing

mechanism which takes care of forwarding the sub query to all cluster neighbors with high

probability.

4.4.1 Intra-cluster routing

When a peer receives a query targeted at a concept cluster that a peer belongs to,

the query enters the intra-cluster routing mode. Here, the peer simply broadcasts the query
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through its same cluster links to exhaustively propagate the query within the concept cluster.

If the peer does not have any same-cluster-links established yet, it chooses a family-tree-link

semantically closest to the target concept cluster, preferably a parent link or a child link to

forward the query as those will have the highest probability to maintain a direct link to the

target concept cluster.

4.4.2 Inter-cluster routing

If one of the concept clusters the peer belongs to cannot satisfy the query, peers then

check if the target concept falls within its family tree. For this to happen, the queried

concept should be a member of the family tree of the peer and the peer must have a direct

or semantically close family tree link in its semantic cache for the target concept cluster. In

this case, query will be forwarded to that concept cluster. If the queried concept falls outside

of its family tree, the peer will dispatch the query to the random-cluster-link semantically

closest to the queried concept(s). In situations where same-cluster links or family-tree-links

are not obtainable, the peer resorts to random-cluster-links to forward a query to a randomly

selected cluster.

When the network eventually reaches a steady state, every peer P will establish mini-

mum one parent links and child links per concept in Myclusters(P ). Therefore, these parent

links and child links provide a guaranteed path to navigate from one concept cluster to an-

other by mimicking IS-A links in the ontology. Therefore a concept query can be propagated

from one peer to another until a peer belonging to the target cluster is reached through

these parent/child links whichever is semantically closest to the concept query. Therefore,

in a steady state network, discovering a link by a new peer will take O(logn) worst case

where n is the total number of concepts in ontology. However, the high probability of peers

maintaining all other types of links will ensure much faster rate of link establishment of new

peer. Additional family tree links and random cluster links allow faster location of the target

cluster regardless of its semantic proximity to the peer.

Algorithm4.1 depicts our query routing algorithm. Please note that the background
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piggybacking of information through query messages and local state update still occurs

when a peer receives a query message. It has been removed from code here to reduce clutter.

4.4.3 Local Search inside a Peer

Once a query is received at a peer, it evaluates the query against its local storage.

For a document to be considered relevant for the query, it must contain all the concepts

in query and furthermore, should have a relevance exceeding a predefined relevance thresh-

old. For a document di in peer P s local storage, the relevance score of di for query Q,

RelevanceScore(dj, Q), is computed as the minimum of its normalized concept weights for

those queried concepts:

RelevanceScore(dj, Q) = Mini(wij) where ci ∈ Q (4.3)

where wij is the weight of concept ci in document dj in its concept vector.

4.5 Experiments

4.5.1 Design of Experiments

In this section we present our experimental design parameters such as query generation,

document generation, shared ontology, and state-of-the-art algorithms used for comparison

purposes.

Ontology The Reuters21578 text classification corpus [90] was used with the cat-

egory Country as the basis for constructing the semantic taxonomy. We then used the

hypernym/hyponym relations of Wordnet ontology to further extend this classification by

adding descendant sub trees of each of these core concepts and also to create the core on-

tology by adding all ancestor concepts of these core concepts in all ancestor concept paths

toward the root concept entity in Wordnet ontology. The ontology built this way contains a

total of 235 concepts.



69

Algorithm 4.1 SAS Query Routing Algorithm

Input:

QMes = Query Message ( Qc = Queried Concept Set, Pv = Visited Peers list, TTL,
MaxV ectorsub = subset of MaxV ector of query sender for its most recently updated x con-
cepts, RQ = Relevant Docs for Qc per peer in Pv, Rc = relevant docs per concept in CAns per
peer in Pv)
P = this peer executing query routing procedure
Relthresh = Relevance Threshold
familyTree(P ) = the minimal ontology sub-tree containing all concept clusters P belongs to
myClusters(P ) = set of clusters P belong to
ks = same cluster walkers
kf = family cluster walkers
kr = random cluster walkers

1: QMes.TTL← QMes.TTL− 1
2: QMes.Pv.add(P )
3: if QMes.TTL > 0 then

4: if caches = ∅ then
5: flood query to originally overlay neighbors
6: else

7: for each Concept c ∈ Qc do

8: Selected(ci) ← ∅
9: Q′

Mes.TTL ← generate Concept Query(ci)
10: Q′

Mes.TTL← QMes.TTL

11: Q′
Mes.Rc ← QMes.Rc

12: linkType← get link type (ci, myClusters(P ))
13: ▽ Same-Cluster routing:

14: if linkType = Same− cluster − link then

15: RelevantDocs(P )← Local search(Q′
Mes.Qc)

16: Q′
Mes.RQ.add(P,RelevantDocs(P ))

17: Selected(ci)←get Semantic Cache Neighbors(ci,ks)
18: ▽ Family-Cluster routing:

19: else if (linkType = Family − tree − link OR (linkType = Same − cluster − link

AND Selected(Q′
Mes) = ∅)) then

20: Concept c′ ← get highest similarity concept in semantic neighbor cache
21: Selected(ci).add(get Semantic Cache Neighbors(c′, kf ))
22: end if

23: ▽ Random-Cluster routing:

24: if Selected(ci) = ∅ then
25: Concept c′ ← get highest similarity concept in random neighbor cache
26: Selected(ci).add(get Random Cache Neighbors(c′, kr))
27: end if

28: ▽ send response message:

29: Send RMes to Q′
Mes sender

30: end for

31: end if

32: end if
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Data Generation We used the documents from the Reuters21578 dataset in our

simulation experiments. There were 21,578 newswire documents in the dataset and after

text processing and words-sense disambiguation, a total of 15,191 documents that produced

non-zero length concept frequency vectors were selected. For each of these documents, a

concept frequency vector was generated by analyzing the document.

Network Generation We implement our system on top of Peersim simulator [91].

We used the measurement study on real world Gnutella networks [92] as the guideline for

network generation and data distribution. We used power law topology to generate the initial

network. The default network size was set to 1024 nodes. The initial average peer degree was

set to 5. The document distribution among peers follows a Zipf (α = 1.0) distribution and

each peer contained 100 documents on an average in its local storage. In total we selected

15,191 documents distributed in the P2P network. The TTL varied from 2 to 4 and the

default was set to 3. The dynamic behavior was simulated by inserting online nodes to the

network while removing active nodes at varying frequencies. On an average, 0.20% of nodes

each are added and removed from the network during each simulation time step.

Query Generation We generated 100 random queries each for single and two concept

queries from the concepts in the ontology. On average, every peer issues 50 queries during

its lifetime randomly selected from generated queries.

In addition to this, the maximum entries allowed per random cluster cache(MaxCacheRandom)

and semantic cluster cache (MaxLinksSemantic)are set to 5 and 100 respectively. The max-

imum number of neighbors allowed per cluster entry is 5,5 and 10 respectively for ran-

dom cluster links(MaxLinksRandom), familytree cluster links(MaxFamily) and same cluster

links(MaxLinksSame). The threshold semantic similarity for adding new family tree link

(SimThreshFamilyTree) and random cluster link (SimThreshRandom) are 0.5 and 0.5 respec-

tively.

A combination of gossip and query-traffic based neighbor discovery is used for neighbor

discovery mechanism as this proved to give the best performance in preliminary experiments
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conducted. The neighbor discovery is initiated every 5th simulation cycle (i.e. after issuance

of every 5000 queries). Additional parameters are stated in Table 6.1.

4.5.2 Comparison Algorithms

We compare the performance of our algorithm with the state-of-the-art algorithm BF-

SKIP [41] and Gnutella [1] based search.

BF-SKIP Authors of [41] introduce BF-SKIP(Biased Walk, Flooding and Search with

K-Iteration Preference), a semantic clustering algorithm based on VSM model. In BF-SKIP,

every peer defines a node vector which summarizes the term frequencies of each peer based

on its local document collection. A peer maintains two types of connections: random links

to semantically irrelevant peers and semantic links to semantically relevant peers(i.e. peers

who exceed a given relevance threshold 0.7 based on cosine similarity of node vectors).The

neighbor discovery is performed by periodically sending random walk neighbor discovery

messages. Given a query, BF-SKIP first relies on biased walks through random links to

locate a relevant semantic group, then uses flooding within this group through semantic

links to retrieve relevant documents in only one hop. Once in the target cluster, the number

of flooded messages in query is iteratively reduced at each hop to reduce unnecessary message

production. We set the maximum links to 8 and relevance threshold to 0.7. The iteration

depth k is set from 1 to TTL.

Gnutella Gnutella flooding [1] is the most fundamental blind search mechanism where

a querying peer floods a query within a TTL hop radius.

4.5.3 Performance Metrics

For our evaluation we rely on following retrieval performance measures:

Recall Recall is the ratio of the number of relevant results(documents) obtained

against the total number of relevant results (documents) in the entire P2P network.
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Precision Precision is the fraction of documents retrieved that are relevant to a search

query.

Message Cost This is the average number of bytes transferred per search query.

Recall per Message This is the ratio of recall to communication cost.

Recall per Query =
Recall

Communication Cost
(4.4)

F-Measure We adopted the F Measure to measure the quality of clustering. F Mea-

sure is harmonic mean of precision and recall. Each cluster obtained can be considered as

the result of a query whereas each pre-classified set of documents can be considered as the

desired set of documents towards that query. The precision P (i, j) and recall R(i, j) of each

cluster j for each class i is calculated. If ni is the number of members of the class i, nj is

the number of members of the cluster j,and nij is the number of members of the class i in

the cluster j, then P (i, j) and R(i, j) can be defined as

P (i, j) =
nij

nj

(4.5)

R(i, j) =
nij

ni

(4.6)

The corresponding F-measure F (i, j) is defined as

F (i, j) =
2 ∗ P (i, j) ∗R(i, j)

P (i, j) +R(i, j)
(4.7)

Then, the F-measure of the whole clustering result is defined as

F −Measure =
i
∑

n
nj

max
i

(F (i, j)) (4.8)
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Same-Cluster link establishment rate This measures the percentage of clusters in

an average peer’s MyClusters data structure that has established at least one same-cluster

link.

Table (4.1) Simulation Parameters

Parameter Range and Default value
Network size 29-215 Default:210

Ontology Concepts 235
TTL 1-3 Default:3

RelThresh 0.7
MaxCacheSemantic 100
MaxLinksSame 10

MaxLinksFamilyTree 5
MaxCacheRandom 10
MaxLinksRandom 5

SimThreshFamilyTree 0.5
SimThreshRandom 0.5

neighbor discovery interval every 5th cycle

4.5.4 Results and Analysis

In this section, we discuss the results we obtained for P2P environment. We measured

performance of the search algorithms for various network sizes, and results show that per-

formance of SAS is scalable regardless of the network size. Experiments were carried out

for both single concept queries and two concept conjunction queries. Due to space limita-

tion, we report only partial results. Results are reported after network convergence based

on clustering protocol. Our simulations also show that our SAS algorithm improves recall

and precision significantly over BF-SKIP as well as Gnutella flooding counterparts at much

lower message cost and produce high quality clusters compared to BF-SKIP.

Query Efficiency Fig. 4.2(a) illustrates the relationship between the query recall and

the TTL. The experiments were conducted on a default 1024 nodes network while varying

the TTL from 1 to 3. According to Fig. 4.2(a), SAS achieves a high recall rate with small
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TTL. While our SAS protocol achieves 9.00%, 42.01% and 72.12% recall rates for TTL

values 1, 2, and 3, respectively, BF-SKIP achieved only 1.64%, 13.58% and 55.77% recall

and Gnutella achieved only 1.18%, 10.15% and 43.28% for the respective TTL values. The

reason behind this is that SAS can locate target clusters much faster thereby resolving the

query quickly. This indicates that a greater portion of the number of hops travelled by a

query is spent within the target cluster flooding semantically relevant nodes thus proving

the effectiveness of our link establishment strategy within clusters and between clusters. On

average, we observed a 342% improvement in SAS over Gnutella and 223% improvement

over BF-SKIP for one concept queries and 350% and 176% improvement over BF-SKIP and

Gnutella respectively for two concept queries.

Fig. 4.2(b) illustrates the relationship between precision and TTL. The experiments

were conducted on a default 1024 nodes network. According to figure, SAS achieves high

precision values compared to BF-SKIP and Gnutella due to the MaxVector learning employed

in SAS. Overall we observed 134% and 196% improvement over BF-SKIP and Gnutella

respectively for one concept queries and 176% and 122% and 178% improvement over BF-

SKIP and Gnutella respectively for two concept queries.

Fig. 4.3 depicts the search efficiency of the three algorithms in terms of recall per

message for varying sized networks where TTL is set to 3. For different network scales SAS

clearly achieves high efficiency compared to the other two algorithms.

Search and Maintenance Cost Fig. 4.4(a) illustrates the cost of searching in three

algorithms.As show in figure, our SAS protocol search cost is significantly lower than that of

Gnutella and BF-SKIP regardless of the network size. This is because when given a request,

SAS can efficiently locate the target cluster rapidly, so that the search space is reduced

and queries get more results with certain TTL. While a 70.23% average improvement of

search message cost was observed over BF-SKIP, a 99.44% improvement was observed over

Gnutella.

Fig. 4.4(b) depicts the message overhead for a network of size 1024 nodes with search
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TTL set to 3. Maintenance overhead of all three algorithms accounts for peer join/leave

cost. In addition to this both SAS and BF-SKIP include additional overhead of neighbor

discovery. The neighbor discovery cost of SAS takes into account the costs incurred in both

gossip and piggybacking of information in search messages. Figure reveals that SAS generates

the lowest search cost for neighbor discovery queries. Using the combination of search query

traffic and gossip messages for neighbor discovery eliminates the need for frequent generation

of neighbor discovery queries and thus results in reduced maintenance cost in SAS . The peer

join/leave costs are comparably similar in all three algorithms.

Clustering Quality The F Measure analysis is carried out for the two clustering

algorithms SAS and BF-SKIP. As shown in Fig. 4.5(a), F Measure values of SAS are much

better and consistent regardless of the network size compared to BF-SKIP showing the

superior clustering quality of SAS.

The Fig. 4.5(b) shows the percentage of clusters in its myClusters, an average peer

establishes at least one same-cluster link with. As can be seen in the figure, regardless

of the dynamics of the P2P system, peers gradually establish links with all its concepts in

myClusters initiating the cluster merging process. This testifies that the neighbor discovery

algorithm which is a combination of gossip and search-traffic based neighbor discovery is
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effective.

Fig. 4.5(c) illustrates the effect of making size of different types of links zero while other

parameters assume default values stated in table 6.1. The recall for the default setting as

stated in 6.1 is also shown. According to Fig. 4.5(c), it is clear that highest impact on recall

is from making MaxLinksSame = 0. This impact become more evident in higher TTLs.

This behavior is expected as many queries will not be reaching larger portion of relevant

peers in the network due to not maintaining same-cluster links. The least impact is made by

making MaxLinksRandom=0. The reason for this is due to establishment of family links and

specifically parent/child links, a peer can still navigate a query to the target cluster without

aid of random-cluster links.

Fig. 4.5(d) illustrates the effect of cache sizes on system performance. Results show that,

increasing the size of both semantic cache and recall increases as both the size of semantic

neighbor cache and random neighbor cache increases the recall. The reason behind this is

that larger cache sizes allow peers to establish links with more concept clusters increasing

the physical distance between any two concept cluster lower.

4.6 Summary

In this thesis we presented an ontology-based clustering and routing protocol that opti-

mizes search performance of the P2P network by ontology-aware topology construction. Our

scheme organizes the overlay structure based on semantic concepts and their taxonomical

links in the shared ontology. In addition to these taxonomical links, a peer also establishes

other types of links to ensure faster location of target clusters and proper dissemination

of a query to only relevant peers within a target cluster. While querying, SAS employs a

combination of search messages and gossip to discover semantically relevant neighbors.

In the future development of the system, we plan to address more effective dynamic clus-

ter construction techniques, and use of richer ontologies which include relationships beyond

simple classification hierarchies. We also intend to experiment with more complex queries

and alternate techniques for knowledge discovery.
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PART 5

SEMANTIC INDEXING IN UNSTRUCTURED P2P OVERLAYS

5.1 Introduction

Efficient searching for information is an important goal in unstructured peer-to-peer

(P2P) networks. While several P2P systems have been proposed for data sharing purposes,

many support only semantics-free keyword searches or coarser grained file name searches.

In this thesis, we present an ontology based semantic query routing algorithm that performs

efficient semantic search in unstructured P2P overlay networks. In our proposed system,

the queries are routed in the network by forwarding to peers with highly relevant content in

their local storages. To aid in this semantic query routing, we propose a scheme where each

peer in the network adheres to a global ontology and semantically tags its local document

collection with concepts in the ontology. Based on the semantic tags, peer level semantic

summaries are generated, exchanged with neighboring peers and propagated along search

paths which aid in efficient local query processing and overlay query routing. An extensive

set of simulations performed to evaluate the effectiveness of the system on P2P networks

show 380% and 717% improvement in average recall rate, and 410% and 725% improvement

in average precision over Ontology Index based Query Routing [20] and Random Walk [18],

respectively for dynamic networks at comparable message overheads. Thus, our approach

represents a breakthrough in practical terms.

Some of the notable works done in the area of semantic P2P searches include pSearch

[25], SemreX [93] and SemSearch [52]. Searching for resources in large distributed systems

like P2P networks is a challenging task. With the advent of semantic web, more and more

users associate their shared resources with semantic meta-information. This not only allows

a user to describe resources from a semantic viewpoint but also lets them specify more com-

plex queries addressing several semantic properties or relationships among semantic entities
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and resources. Majority of search algorithms proposed for P2P networks to date, however,

are simple keyword searches or title based searches. These are inadequate for formulating

semantic based queries and consequently, do not provide semantically relevant results.

Semantic web allows one to associate semantics with World Wide Web resources us-

ing a semantic meta-data model. Many current P2P systems incorporate semantic web

technologies in their systems with the purpose of providing better knowledge and query

representations as well as efficient content locating. A good semantic representation is cru-

cial for local query processing as well as informed query routing. Ontoligies are considered

to be the most powerful and expressive semantic knowledge representation model to date.

Ontologies are rich data structures that have been successfully used in research as well as

in practical applications to represent the knowledge as a set of concepts and relationships

between those concepts. Ontologies can be used to represent the semantic concepts, their

complex properties, and relationships among the shared documents in a P2P system. Even

though there are many well defined semantic technologies such as RDF and OWL freely

available to implement ontologies, many fail to represent quantified information or proba-

bilistic information regarding semantic concepts or relations. Also, they require non-user

friendly query languages to query.

In this thesis, we present a novel semantic search approach called Ontology based Se-

mantic Query Routing (OSQR) for an unstructured P2P environment. In this scheme, every

peer in the network shares a common ontology and each peer is represented by its own

semantic index which is generated based on semantic information extracted from its local

document collection and from its neighborhood. The objective of the search is to find more

relevant documents at shorter distances to the query originating peers with higher recall rates

at low message cost. In both local query processing and query routing, we exploit the ontol-

ogy to provide more semantically relevant results. The summary of our main contributions

and results in this thesis is as follows:

• We develop a novel distributed information retrieval search mechanism. A new concept

of peer semantic index is introduced for summary representation of a peer,s seman-
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tic knowledge. This peer semantic representation effectively combines two important

measures to quantify the semantic richness of a peer for a given query: semantic infor-

mation content of a peer and the total relevant documents reachable through a peer.

We incorporate a learning process to incrementally update the peer semantic vectors

so the semantic representations improve precision over time when more and more infor-

mation is acquired by peers about the distributed document collection in P2P system

through message exchanges.

• We introduce a novel peer selection algorithm that exploits concept strength in a

peer(and a document) and concept relationships in the ontology to provide more se-

mantically relevant results. Compared to a keyword based approach, with little se-

mantic content and laden with a large dimensionality of term vectors, our approach

requires limited dimensionality. We also introduce a novel path-based local knowl-

edge updating mechanism that successfully aggregates semantic information gathered

through query paths and incorporates into peer’s existing soft state.

• We carry out an extensive set of simulations to evaluate our search system. The exper-

imental results show that our OSQR search mechanism is significantly more efficient

than the state-of-the-art search mechanisms, Random Walk [79] and Ontology Index

based Query Routing [29], in terms of recall and precision at same message complexity.

For dynamic networks where the network topology and number of nodes changed over

time, OSQR achieved 380.29% and 410.13% improvement over Random Walk for recall

rate and precision, respectively, and 717.15% and 725.67% improvement over Ontol-

ogy Index Based Query Routing in recall and precision, respectively, at comparable

message cost.

Compared to existing approaches, our semantic representation model implements a

much simpler single dimensional Peer Semantic Index (PSI), that easily allows one to repre-

sent semantically quantified information. Also, unlike many previous methods which solely

considered simple statistical information such as total relevant documents per concept, our
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semantic representation accounts for relevance more accurately by evaluating the seman-

tic content of the document using the ontology, the concept frequency based on subsumed

concepts, and by setting a relevance threshold. Thus our knowledge representation is seman-

tically richer and can aid in better query routing and improving precision and recall.

5.2 Prelimineries

We make the following assumptions about our proposed search model:

5.2.1 Network Topology

We consider an unstructured P2P network with a set of peers {P1, P2, ..., PP}with av-

erage degree γ. Each peer in the network is able to communicate with its direct neighbors

(i.e. one hop neighborhood) only.

5.2.2 Global Semantic Ontology

A globally known reference ontology is agreed upon by all peers in the network. This

ontology O consists of a set of semantic concepts C = {c1, c2, ..., cm} with total m concepts

and relationships among them. For simplicity, we assume a semantic hierarchy where the

relationships among concepts are only IS-A(i.e. hypernym/hyponym) relations.

5.2.3 Data Distribution

There can exist multiple copies of the same documents distributed among peers. For

each document a peer has in its local storage, it constructs a concept weight vector that

depicts the semantic weight of each ontology concept present in that document.For a peer P

with a set of documents D(P ) = {dj, j = 1, 2, .., n} in its local storage, we use the following

Concepts Vs. Documents matrix CD(P ) to describe the concept weights of the documents
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in P for the concepts in the shared ontology:

CD(P ) =



















w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n

...
...

. . .
...

wm,1 wm,2 · · · wm,n



















where wi,j is the weight of concept si where i=1,2,..,m in document dj.

The weight wi,j of concept ci in document dj in peer P is calculated as follows: First, the

concept frequencies of all concepts for each document in P s local storage are calculated by

a process of text mining followed by word sense disambiguation. The concept frequencies of

each document are added bottom up the semantic hierarchy to account for the contribution

from each concept to its ancestor concepts in the hierarchy due to the IS-A relationships.

Then the concept frequencies of each concept are normalized to a [0-1] range by applying

maximum frequency normalization by dividing them by the maximum concept frequency for

that concept known so far by the peer.

5.2.4 Semantic Query

A query consists of the conjunction of one to n concepts in the ontology. The document

locating problem therefore is to find as many documents in the P2P network that satisfy

the query and that exceed a pre-specified relevance threshold. Existing techniques [51, 86]

proposed by the research community can be employed to convert keyword queries to concept

queries.
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5.2.5 Semantic Similarity Calculation

We used the following well-known similarity measure Sim to calculate the similarity

between two concepts c1 and c2 in the hierarchy [87]:

Sim(c1, c2) =







eαl. e
βh−e−βh

eβh+e−βh ifc1 6= c2

1 otherwise
(5.1)

Where l is the shortest path distance between c1 and c2 in taxonomy and h is the depth of

the least common subsumer of c1 and c2, α and β are parameters scaling the contribution

of shortest path length l and depth h, respectively where the optimal values were defined as

0.2 and 0.6, respectively [87].

5.3 OSQR Search Protocol

5.3.1 Local Knowledge

A peer P ’s local knowledge consists of its Concepts Vs.Documents matrix CD(P ), its

semantic routing index PSI(P ) , PSI(N) for each neighborN and finally a vector containing

maximum concept frequency known per concept for its local concept set (i.e. set of concepts

existing in its local document collection) MaxV ector(P ). This MaxV ector(P ) is used for

document re-normalizing purposes.

Peer Semantic Index (PSI) : A Peer Semantic Index (PSI) is the semantic knowl-

edge representation of a peer. It shows the goodness of a peer P for semantic concepts

contained in its local data storage C(P ). We formally represent the peer semantic index of

a peer P as a set PSI(P ) as follows:

PSI(P ) = {(si, ci) | si ∈ ℜ, ci ∈ C(P )} (5.2)

where si is the total number of relevant document reachable through P for concept ci.



85

Max Vector : The MaxV ector(P ) in holds the maximum concept frequencies of

each concept over all documents distributed in the P2P network known so far by P and

therefore represented as a set {wi | ci ∈ C}. The main objective of this data structure is for

P to acquire knowledge of richness of documents distributed in the network in terms of their

information content, thereby minimizing reporting local documents with low information

content compared to those that exist in the network, in response to a query. This essentially

improve the precision of the search mechanism.

5.3.2 Ontology based Semantic Search

Peer Selection OSQR is in nature a controlled flooding algorithm where query is

intended to find documents that contain all of the concepts specified in a query exceeding

a given relevance threshold. A search process is initiated when a peer originates a query by

deploying multiple search walkers which is a system specified parameter. Each walker can

follow its own path in the network. Upon receipt of a query, a peer searches for matching

documents in its local storage by ranking its documents based on a relevance score. The

documents that exceed a given threshold of relevance are selected as matching documents

for the query. The query is also further propagated to more promising neighbors. A walker

propagates TTL hops only. Once all the walkers for the query terminate, the results are

returned to the query originator along the reverse path of the query back to the query

originator.

In OSQR, a peer forwards queries to the most promising set of neighbors. The most

promising neighbors are selected based on the neighbor PSIs a peer maintains of its imme-

diate neighborhood. Peer P calculates a relevance score for each neighbor N for the given

query Q based on the PSI of that neighbor. For a neighbor N with PSI(N) at P , the

relevance score of N for query Q = {ci | ci ∈ C} can be formally defined as follows:

Relevance(N,Q) = MIN(si) where < si, ci >∈ PSI(N) at P andsi ∈ Q (5.3)

The relevance of neighbor N for a query is computed as the minimum of semantic weights
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for queried concepts. This is because the query is a conjunction of concepts and minimum

is the conservative outcome (i.e. relevant documents) from N . Once the relevance score of

each neighbor is calculated, the neighbors are ranked in descending order of their relevance

scores and top k neighbors are selected to deploy the query. The query originator peer selects

a predefined number of most promising neighbors to send the query while the other peers

receiving the query merely process and forward it to only one promising peer if the message

TTL has not exceeded.

The search algorithm is given in Algorithm 5.1.

Local Search Once a query is received at a peer, it evaluates the query against its

local storage. For a document to be considered relevant for the query, it must contain all the

concepts in query and furthermore, should have a relevance exceeding a predefined relevance

threshold. For a document di in peer P’s local storage, the relevance score of di for query Q,

RelevanceScore(di, Q), is computed as the minimum of its normalized concept weights for

those queried concepts:

Relevance Score(di, Q) = MINi(wij) where cj ∈ Q (5.4)

5.4 Construction and Maintenance of Peer Semantic Index

5.4.1 PSI Construction

At the configuration stage when a peer joins the network for the first time, it initializes

each of its semantic weights si per each concept ci in its PSI with total relevant documents in

its local storage for that concept. Once connected to the network and after the construction

of its own PSI, each peer P exchanges its PSI with each of its direct neighbor N (i.e. one hop

neighborhood). These collected PSIs from a peer’s neighbors essentially serve as the local

knowledge the peer has about its neighborhood that is exploited by the peer in forwarding

queries to most promising neighbors. These neighbor PSIs received are further used to update

peer’s own PSI, so that each semantic weight si per concept ci reflects the total reachable
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Algorithm 5.1 OSQR Query Routing

Input:

P = Peer executing query routing procedure
Q = Query Message ( Qc = Queried Concept Set, Pv = Visited Peers list, TTL, MaxV ectorsub
= subset of MaxVector of query sender for its most recently updated x concepts, RQ = Rele-
vantDocs for Qc per peer in Pv, Rc = relevant docs per concept in CAns per peer in Pv)
k = Walker count
x = concept count in MaxV ector(P )
CAns = concepts including Q.Qc and their ancestor concepts in ontology
Candidates(Q) = Neighborhood(P) Q.Pv

NeighborSematics= PSI(Pi) | Pi ∈ Neighborhood(P )

1: Selected(Q)← φ

2: Q.TTL← Q.TTL− 1
3: Q.Pv.add(P)
4: RelevantDocs(P ) = Perform local search(Q.Qc)
5: Q.RQ.add(P,RelevantDocs(P))
6: if Q.TTL ≥ 0 then

7: ▽ Update local knowledge at P

8: Perform MaxVector Updating, Data Renormalization and PSI Update using Q
9: ▽ Append local information to message

10: Q.MaxV ectorsub ← most recently updated x concepts in MaxVector(P)
11: for each Concept c ∈ CAns do

12: Q.Rc.add(P, c, Relevant documents for c in P)
13: end for

14: ▽ Calculate relevance strength of neighbors for query

15: for each Peer N ∈ CandidateNeighborhood(Q) do
16: Score← CalculateScoreusingequation5.3
17: end for

18: ▽ Send query to top k neighbors

19: Sorted ← Sort neighbors in descending order of relevance
20: Selected(Q) ← get Top k Peers( Sorted)
21: Forward Q to Selected(Q)
22: else

23: ▽ Generate response message R ← generate response message
24: ▽ Append local information to message

25: R.MaxV ectorsub ← most recently updated x concepts in MaxVector(P)
26: ▽ Send response message

27: Send R to Q.sender
28: end if
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relevant documents per concept through P. The weight si associated with a concept ci in a

PSI in peer P is calculated as follows:

si = Ni,P + Avg

(

∑

r

Ni.Pr∈QueryPath(N)

α(P, Pr)

)

(5.5)

Where, Ni,P is the total number of relevant documents for concept ci in P’s local storage,

Pr a peer reachable to P through neighbor N from a query path (or query response path)

QueryPath(N) .Ni,Pr
, is the total relevant documents for concept ci in peer r P’s local storage

and a distance based weighing factor. ( , ) r P P ensures that the farther away a peer r P is

from P, higher the distance based weight applied in i s calculation. We use the hop distance

in number of hops from P to r P as the current α(P, Pr). Thus Avg
(

∑

r

Ni.Pr∈QueryPath(N)

α(P,Pr)

)

represents the average number of relevant documents reachable for i c per hop from P through

neighbor N . This is the aggregate reachability of documents for concept ci from P through a

neighbor N .The QueryPath(N) is the best possible path known by P so far that goes through

P from a neighbor N and gives highest number of relevant documents per hop distance for

the considered concept. An existing si value is replaced by a newly calculated si , only if

this new value exceeds the current si.

For example, consider that for a concept ci , current si value in a peer P is 5, and 2 comes

from its local document collection( i.e. Ni,P ). Assume P receives a query along the path

PA → PB → PC → P through a neighbor PC . Also assume that for concept ci, PA contains 9

documents in its local storage (i.e. Ni,PA
, =9), PB contains 8 documents in its local storage,

and PC contains 5 documents in its local storage and this information is included in query

received at P. Now P calculates a new si = 2+Avg(9/3+8/2+5/1) = 2+4 = 6. Therefore

previous si will be replaced by 6 in P’s PSI. As mentioned before, for a document to be

considered relevant for a given concept ci, it should contain a concept frequency exceeding

a certain concept frequency threshold for ci. This concept frequency CFThreshi,P , for

concept ci at peer P is calculated as follows:

CFThreshi,P = RelThresh×MaxV ectori(P ) where ci ∈ C(P ) (5.6)
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Where RelThresh is the system specified relevance threshold for a document which is

a value in [0-1] range. MaxVector(P) i is the maximum concept frequency known by P for

concept ci. This is the maximum concept frequency for concept ci that P discovers from

its local documents and through messages it received from its neighbors in the past. This

threshold calculation ensures P is represented by only those documents having large enough

semantic weights for the given concept. For example, let the known maximum number of

occurrences of concept ci in a single document be 40, If the threshold is set to 0.7, those

documents that have 40× 0.7 = 28 or more occurrences of ci will be considered relevant.

5.4.2 PSI Maintenance

Each time a peer sends or forwards a query or a query response to one of its neighbors,

it piggybacks its total relevant documents for most recently updated concepts in its PSI

and MaxV ector(P )i values for intelligently selected set of concepts to its message recipient.

As a result, the following three updating mechanisms (i.e. (i)MaxVector learning (ii) data

renormalization and (iii)PSI Updating) occur in a peer for improving the semantics of a

peer’s document collection during query forwarding (forward update) as well as in return

message sending (backward update). The ultimate goal of these updating mechanisms is to

achieve highly precision in query execution. Over time, peers’ MaxVector values will reach

their global equivalents with high accuracy resulting in the its normalized data collection

being highly precise thus leading to high precision in local query evaluation.

(i) MaxVector learning We incorporate a learning process with MaxVector of a

peer P. MaxVector(P) in P ideally should represent the maximum concept frequencies of

each concept over all documents distributed in the P2P network. Since acquiring such global

information is not feasible in a completely decentralized network, each peer P initializes its

MaxVector(P) with local maxima of concept weights per each concept ci calculated from its

local document collection. These are later replaced by new concept weights whenever new

concept weights that exceed peers current maxima are discovered by that peer during the
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query process.

MaxVector learning is achieved with the aid of normal query traffic. Whenever a peer

receives query or a query response from one of its neighbors, it uses the neighbor’s subset

of MaxVector appended to the message to update its own MaxVector. Then it forwards the

query (response) to the next message recipient by replacing the subset of MaxVector in the

received message by its most recently updated set of concepts in its own MaxVector. For a

message sending peer P, the subset of its MaxVector in message is a set of key-value pairs

that takes the form < ci,MaxV ectori(P ) >. Updating MaxVector(P) at a given peer P

requires some computation, as the peer and its neighbor N have different local concept sets.

However, these concepts may still be related by hypernym/hyponym relations in the semantic

ontology. Due to these hypernym/hyponym relations, for each< ci,MaxV ectori(N) > key-

values pair received from a neighbor N ,MaxVector(P) values for concept ci and its ancestor

concepts existing in P’s MaxVector need to be updated. Over time, these MaxVector(P)

values will propagate over the network through query messages and query responses, and

thus each will eventually approach its global maximum equivalent. Algorithm 5.2 states the

MaxV ectori(P ) updating process in a given peer.

Algorithm 5.2 MaxVector Updating

Input:

P = Peer executing the update
N = Neighbor who provided information for updating P’s MaxVector
MaxVector(N) = ¡concept, Max(wij)¿key-value pair for last updated n concepts of neighbor
MaxVector(P) = ¡concept,Max(wij)¿key-value pair for concepts of this peer’s local concept set
C(P) = Local concept set of P based on its local documents

1: for each Concept c ∈MaxV ector(N) do
2: AncestorConcepts.add( ancestor concepts of c in P’s local document collection)
3: end for

4: for each Concept c ∈ AncestorConcepts do

5: if MaxVector(P).wi ¡ MaxVector(N).wi then

6: MaxVector(P).wi ← MaxVector(N).wi

7: end if

8: end for

Note however, that the number of updates made to a MaxVector(P) at a peer P should
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ideally diminish over time as maximum concept weights for those concepts maintained locally

reach their global maxima equivalent from previous updates. Therefore, subsequent messages

exchanged between peers should not carry maximum concept weights for unnecessarily large

number of concepts selected blindly. Hence, to reduce the time required for updates, each

peer intelligently selects a subset of its MaxVector values to be piggybacked to its neighbor

in the following manner:

Assume a scenario where a peer P has two neighbors A and B. P receives a query

from A which in turn it sends to B. Upon receipt of the corresponding query response

from B, P forwards it to A. Each peer in the system keeps track of its set of most recently

updated n concepts in its Maxvector and piggybacks some entries in query messages it

sends to its neighbors. Therefore when P receives a set of < ci,MaxV ectori(A) > key-

values pairs from A through a query, it updates only those concepts in its MaxVector that

has a significantly lower maximum concept frequency than that is stated in the received

< ci,MaxV ectori(A) >key-values pairs (set to 50% in experiments). For example, assume

an oversimplified scenario, where A sends P in the query message, {(c1, 150), (c2, 90)} as the

set of < ci,MaxV ectori(A) ¿ key-values pairs for the most recently updated two concepts

in its MaxVector(A), P has {(c1, 30), (c2, 80)(c3, 50)} in its MaxVector(P), and in ontology

structure, c3 happens to be an ancestor concept of c2. Given that the update threshold

is 50%, P will therefore update its MaxVector to {(c1, 150), (c2, 80), (c3, 150)} as concepts

c1 and c3 have lower than 150 × 0.50 = 75 maximum concept frequency recorded in P’s

MaxVector. Conept c2 however already has greater than 90× 0.50 = 45 maximum concept

frequency recorded in P’s MaxVector and therefore will not be updated. P also temporarily

keeps a copy of this received< ci,MaxV ectori(A) > key-value pairs from the query sending

neighbor until it receives a query response from B. Upon receipt of query response from B,

P updates its own MaxVector(P) with < ci,MaxV ectori(B) >key-values pairs embedded

in the query response and then compares its just updated MaxVector(P) with temporarily

stored< ci,MaxV ectori(A) > key-value pairs sent from query sending neighbor A to select

only those concepts in its local concept set that have a drastic increase over maximum
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concept frequency stated in relevant concept in received < ci,MaxV ectori(A) > key-value

pairs (again set to 50% in experiments) to be piggybacked in the query response forwarded

to its neighbor A.

(ii) Data Renormalization The updating of MaxV ectori(P ) values for certain con-

cepts of a peer P in turn triggers re-computing of normalized concept weight vectors for its

local documents where these concepts exist. Therefore over time, the normalized weights

in DC(P) of P reach the more accurate globally normalized values. This helps in retriev-

ing more accurate results at local query processing reducing the opportunity to incorrectly

identify irrelevant documents as relevant to a query. To reduce the computation cost, this

process can be done for only those concepts updated in P’s MaxVector and only when a

significant change in MaxVector values for those concepts are detected.

(iii) PSI Updating Updating of a peer P’s own PSI is triggered by two events (a)

receipt of a set of < ci,MaxV ectori(B) > key-values pairs of and (b) receipt of < ci, Ni,B >

key-values pairs per hop distance. The ci values in < ci, Ni,B > include not only queried

concepts, but also the ancestor concepts of those queried concepts in the ontology. Thus,

the updating of PSI using (b) allows a peer to gather goodness of neighbors for concepts

in the ontology prior to querying for the same and thus this greatly reduces the initial

random choice of neighbors in query forwarding. While (a) affects the former part (i.e.

Ni,P , the locally relevant documents per concept) of (1) , (b) effects the latter part of

(1)(i.e. Avg
(

∑

r

Ni.Pr∈QueryPath(N)

α(P,Pr)

)

,the aggregate relevant documents reachable per concept

through the best known query path so far).Each time a peer receives a query or a query

response, it utilizes the information embedded in the message to update its PSI. Before

sending, each peer appends its ID , the total number of relevant documents for queried

concepts and their ancestor concepts in its local storage to the message. Therefore, while a

< ci,MaxV ectori(B) > key-values pairs propagate only one hop distance, < ci, Ni,B > key-

values of each peer in query path are embedded in the forwarded message propagated along

query (or query response) path. These are utilized for PSI updating by each message receiver
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peer. In (a), receipt of < ci,MaxV ectori(B) > key-values pairs will result in receiver peer P

updating its necessary entries in its MaxVector. This in turn leads to data re-normalization

in P which in turn leads to recalculating of its PSI, as the total local relevant documents for

those concepts whose MaxV ectori(P ) values have been just updated may have changed. In

(b), the query path information is available to a receiver to calculate the latter part of (1):

Avg
(

∑

r

Ni.Pr∈QueryPath(N)

α(P,Pr)

)

and recalculate (1). An si value recalculated this way replaces

current si value in PSI only if this newly calculated value exceeds current value. Also, when

a new set of PSIi(A) values are received from a neighbor A, the appropriate entries in PSI

maintained for neighbor A in P’s soft state are replaced by these most recent values.

When a peer leaves the network, it informs its direct neighborhood that it is leaving

the network by sending a message. This results in the neighbors removing the leaving peers

PSI from their soft state and updating their MaxVector accordingly. When a peer joins

the network, it goes through the same initialization process given in step 1 to construct its

PSI and exchange the PSIs among neighbors. When changes in peer contents occur, the

peer updates its PSI and notifies its neighbors who will, as a result, update the current PSI

maintained for neighbor by the new information provided in the notification.

5.5 Design of Experiments

In this section we present our experimental design parameters such as query generation,

document generation,shared ontology, and state-of-the-art algorithms used for comparison

purposes.

5.5.1 Semantic Ontology

We used the Reuters21578 text classification [90] corpus of newswire documents as the

basis of our semantic ontology. The Reuters ontology text classification contained four core

concepts into which the documents were categorized: Organization, Exchange, Person and

Country. We used hypernym/hyponym relations of Wordnet ontology to further extend

this classification by adding descendent sub trees of each of these core concepts and also
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to create the core ontology by adding all ancestor concepts of these core concepts in all

ancestor concept paths toward the root concept entity in Wordnet ontology. The ontology

built this way contains a total of 11,813 concepts. A partial view of the used Reuters semantic

hierarchy is given in Fig. 5.1.
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Figure (5.1) Extended Reuters21578 Core Semantic Hierarchy

5.5.2 Data Generation

We used the actual documents from the Reuters21578 dataset in our simulation ex-

periments. There were 21,578 newswire documents in dataset and after text processing and

words-sense disambiguation, a total of 15,191 documents that produced non-zero length con-

cept frequency vectors were selected. For each of these documents, a concept frequency vector

was generated by analyzing the document. Then these concept frequencies per document
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were updated by recursively adding the descendants’ concept frequencies. The documents

were replicated according to a Zipf distribution into multiple copies for allocating to peers.

5.5.3 Network Generation

We implement our system on top of Peersim [91] simulator which is a discrete-event time-

stepped simulator for P2P systems. The simulation was carried out over networks generated

with Gnutella scheme following the power law topology. The network size was varied from

100 to 100000 nodes Average peer degree was set to 10. The common ontology used is the

extended Reuters21578 semantic hierarchy [90]. The document distribution among peers

follows a Zipf (α=1.0) distribution and each peer contained 100 documents on an average

in its local storage. In total we selected 15,191 documents distributed in the P2P network.

The queries were the network (α=1.2). The default TTL was set to 7 to limit the number

of hops of walkers. Percentage increment threshold for MaxVector update is set to 50%

to ensure that recalculation of document-wide concept frequency vectors is infrequent. To

simulate the dynamic behavior of the network under peer churn, we inserted online nodes to

the network while removing active nodes at varying frequencies. On an average, 80 nodes

each are added and removed from the network during each simulation run.

5.5.4 Query Generation

We generated 100 random queries as conjunctive queries from the concepts in the ontol-

ogy. The root concept Entity was excluded from the candidate set of concepts to generate a

query. The number of concepts in a query was varied from 1 to 2. Only meaningful queries

were generated. A query is defined to be meaningful if no two concepts in the query are

involved in an ancestor-descendent relationship.

5.5.5 Comparison Algorithms

We compare the performance of our algorithm with the state-of-the-art algorithm On-

tology based Index for Unstructured Networks [20] and Random Walk [18] based search.
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They work as follows:

1) Ontology Index Based Query Routing (OIQR): Authors of [29] introduce constant

size ontology-based indexing approach for unstructured P2P networks.A matching function

which uses the number of documents accessible via a link to rank and select neighbors for

query forwarding. OIQR assumes a global ontology. For a fair comparison, to obtain best-

case performance of OIQR, we assumed that the predefined index size is equal to the total

number of concepts in the ontology. We set its terminating condition to be TTL.

2) Random-Walk-based Query Routing (RWQR): Random walk [79] is a popular blind

search mechanism where a querying peer deploys k search walkers by sending query to k

random neighbors. The peer selection mechanism does not require a peer to maintain any

local knowledge about its neighborhood in this method.

5.5.6 Performace Metrics

For our evaluation we rely on five key measures:

• Recall :Recall is the ratio of the number of relevant results obtained against the total

number of relevant results in the entire P2P network.

• Precision:Precision is the fraction of documents retrieved that are relevant to a search

query.

• F-Score:This is the harmonic mean of precision and recall. This provides an overall

measurement of system efficiency by considering both recall and precision. We use F1

score as F measure:

F1Score = 2.
P recision×Recall

Precision+Recall
(5.7)

• Message Cost :This is the average number of messages generated per search query.

• Hits Per Query :This is the average number of distinct relevant documents discovered

per search query.
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5.6 Results and Analysis

In this section, we discuss the results we obtained for P2P environment. Figures 5.2

through 5.5 summarize the results. We measured performance of the search algorithms for

various network sizes, and results were consistent regardless of the network size. Therefore,

we present the results for network of 1000 nodes only. Our simulations show that our OSQR

algorithm improves recall and precision significantly over Random Walk (RWQR) as well

as Ontology Index based search (OIQR) counterparts at a comparable message cost while

keeping PSI update cost low.

5.6.1 Recall

We measured the recall of OSQR, RWQR and OIQR for different number of walkers

while fixing the TTL to 7. The experimental results are shown in Fig. 5.2 for deploying 1,

2 and 3 search walkers per query. One of the major goals of search is to achieve high recall

rates with fewest search walkers. While our OSQR algorithm achieved 34.70%, 45.39%,

and 53.49% recall rates on average for 1, 2 and 3 walkers, respectively,OIQR achieved only

7.22%, 12.31% and 16.26% recall and RWQR achieved only 4.25%, 8.13% and 12.12% for the

respective number of walkers. Thus, OSQR shows an outstanding 380.29% improvement over

OIQR and 717.15% improvement over RWQR even when walkers per query is as low as 1. The

reason for better performance of OSQR comes from the fact that our semantic representation,

PSI, is superior to their counterparts as it incorporates the twin notions of semantic richness

(i.e., information content) of a peer and total qualified documents reachable through a peer

per ontology concept. Therefore, in query routing, these semantic structures are better

exploited by incorporating ontology knowledge to route queries to more promising peers.

OIQR and RWQR, on the other hand, do not incorporate information content measures in

query routing or query evaluation. Mere existence of query concepts in a given document is

considered sufficient criterion for document relevance in OIQR.
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Figure (5.2) Average recall rate comparison between OSQR, RWQR and OIQR

5.6.2 Precision

Fig. 5.3 shows experimental results for precision for 1, 2, and 3 search walkers for

OSQR, OIQR and RWQR algorithms. OSQR achieves a precision of 53.98%, 65.21% and

72.32% for 1, 2, and 3 search walkers, respectively. For the same number of walkers corre-

spondingly, OIQR achieved only 10.58%, 16.00%, 19.59% precision and RWQR only, 6.54%,

10.96%, 14.70% precision. Thus, an average of 410.13% and 725.67% improvement in pre-

cision is observed in OSQR over OIQR and RWQR, respectively, for a single walker. The

mechanisms of re-normalizing local document collections and updating PSIs contribute to

this improvement in precision of OSQR over their counterparts. Re-normalizing the dataset

essentially gears the normalized concept weight vectors of documents toward their globally

normalized steady state values, reducing the possibility of incorrectly identifying documents

irrelevant to a query as relevant in local query processing. Updating PSIs with information

discovered from the network makes the semantic representations more accurate and precise

over time leading to better judgment of peer selection in query routing. Fig.5.4 and Fig. 5.5

shows the recall and precision comparisons respectively for the three algorithms for different

network sizes. The results demonstrate that OSQR clearly outperforms both OIQR and
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RWQR in the P2P network at scale.
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Figure (5.3) Average precision comparison between OSQR, RWQR and OIQR.

5.6.3 F-Measure

Fig. 5.6 depicts the F-Measure values which is considered a combined metric of retrieval

performance for the three search algorithms for 1, 2, and 3 search walkers. F-Measure for

OSQR is clearly superior to the other two comparison algorithms. OSQR achieves 0.42, 0.54,

and 0.61 for F-Measure for 1, 2, and 3 walkers, respectively, whereas OIQR only achieves

0.09, 0.14 and 0.18 and RWQR 0.05, 0.09, and 0.13 for the respective number of walkers.

5.6.4 Search Cost

As mentioned before, our goal is to achieve better recall with fewer walkers deployed per

query in order to minimize the cost of search. As experimental results show, OSQR achieves

this goal successfully. The search cost was measured in terms of the average number of

messages generated for a given query. Fig. 5.7 shows the experimental results for search

cost. As shown in figure, the search cost of OSQR is twice that of OIQR and RWQR.

This is because, in OSQR, a search response returns in the reverse query path back to the

query originator compared to OIQR and RWQR, where search response message is directly
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Figure (5.4) Average recall rate comparison between OSQR, OIQR and RWQR for varying
network sizes

sent to query originator from the query response generator. Since each walker in OSQR

travels TTL hops, the number of message exchanges per query is 2× k × TTL for k-walker

query. Note that this measure captures search traffic only. OIQR has a separate index

updating mechanism which results in non-search based message traffic generation that is not

represented in Fig. 5. Our OSQR algorithm, on the other hand, effectively utilizes search

messages and their responses for PSI updating purposes without generating extra messages

not intended for search purposes.

5.6.5 Hits per Query

Fig. 5.8 depicts the hits generated per search query for the three algorithms. It was

observed that OSQR performs better compared to the other two algorithms. While OSQR

generated 0.82 hits per single search walker, OIQR generated 0.15 hits and RWQR generated

0.12 hits only for one walker.
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Figure (5.5) Average precision comparison between OSQR, OIQR and RWQR for varying
network sizes

5.6.6 Time Complexity

Receipt of a query or a query response message results in a peer updating its MaxVector,

which triggers re-normalizing its document collection. This in turn triggers recalculation of

its PSIs for the affected concepts. Therefore, in the worst case, all | C | concepts need to

be updated. Therefore, for a given peer P, the time complexity of the algorithm whenever

an renormalization is triggered is O(| C |) × O(| D(P ) |) × O(| PSI(P ) |) where | C | is

the total number of concepts in the network, | D(P ) | the total number of documents in

peer P and | PSI(P ) | the size of PSI of P or its local concept set. Fig. 5.5 shows how

the updating cost of a PSI undergoes initial transitions and quickly diminishes over time.

Simulation cycles here represent the time, while number of updates per cycle represents the

PSI update cost. Each peer in the network issues 1 query per simulation cycle. The total

number of PSI updates keeps increasing till 7th cycle. This is because peers start gaining

knowledge from the network when queries start to be issued thus resulting in more updates

per-cycle. In our simulation engine, a walker travels only 1 hop per cycle and, thus, 7 cycles

are needed for a walker to travel TTL hops. Due to this intensity of new knowledge gained
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Figure (5.6) F-Measure comparison between OSQR, RWQR and OIQR.

from this forward updating, PSI update cost increases drastically. We noticed that, after

7th cycle, the total number of updates per cycle starts to diminish and fewer updates will

be necessary when peers gain decreasingly fewer knowledge. At the end of the simulation,

we observed that number of updates wear off to zero. Therefore, our algorithm effectively

limits the computation time required to perform PSI updates while keeping the accuracy of

PSI sufficiently high.

5.6.7 Space Complexity

Each peer P stores a MaxVector, PSI, neighbor PSIs, andthe local document concept

weigh vectors CD(P). Given that the size of the local concept set is | C(P ) |, MaxVector,

PSI and each document concept weight vector in CD(P) takes O( | C(P ) |) space each, while

each neighbor N’s PSI at P takes O(C(N) )space.

5.7 Summary

In this thesis, we propose a novel semantic query routing algorithm called OSQR for un-

structured P2P networks. We effectively exploit semantic properties and their relationships
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Figure (5.7) Search cost comparison between OSQR, OIQR and RWQR.

in a semantic hierarchy to achieve more informed query propagation as well as local search

and best path for each concept to provide more relevant results. OSQR allows peers in the

network to maintain limited soft state per neighbor. It is a simple and easy to implement

algorithm. Experimental results show that OSQR outperforms Random Walk and Ontology

Index based Query Routing, in terms of recall, precision and hits per query for comparable

message costs. We plan to extend this work by developing a search algorithm that exploits a

more complex ontology structure with relations other than hypernym/hyponym to perform

query routing and query processing.
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PART 6

BSI: BLOOM FILTER-BASED SEMANTIC INDEXING FOR

UNSTRUCTURED P2P NETWORKS

6.1 Introduction

P2P systems have become a popular means of sharing large amounts of data among

users over recent years. They are considered an attractive solution for applications requiring

high scalability, robustness and autonomy. Efficient resource discovery in basic unstructured

P2P systems, however, suffers from high costs mainly due to lack of global knowledge. To

make matters worse, with the advent of semantic web, more and more users associate their

shared resources with semantic meta-information. This mandates that the P2P networks

provide methods that allow a user not only to describe resources from a semantic viewpoint

but also allow users to run more complex queries addressing several semantic properties or

relationships among semantic entities and resources. Majority of search algorithms proposed

for P2P networks to date, however, are simple keyword searches or title based searches. These

are inadequate for formulating semantic based queries and consequently, do not provide

semantically relevant results.

Index engineering is at the heart of P2P search methods. P2P indices can be broadly

categorized to local, central and distributed indices. In a local index, a peer only keeps

references to its own data. In a central index scheme such as one employed by Napster [35],

a single server peer maintains data about all the other peers in the network in its index. Most

widely used scheme is the distributed index scheme where peers maintain pointers towards

targets in the network.

Current P2P indexing schemes face three main problems. First, overwhelming major-

ity of indexing schemes proposed to date are simple keyword based indices. They do not

associate semantics(i.e. meaning) to keywords in index resulting in poor search accuracy.
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Second, the handful of semantic based indexing schemes [67], [29] are either computationally

intensive [29] or index size varies largely with the dimensionality of the content [29]. Third,

maintaining query based indices (as opposed to simple keyword based indices)in a space

efficient manner is challenging in P2P networks. Maintaining minimum routing state per

peer is a crucial component in P2P searching. However, maintaining small size query based

routing indices while not compromising the quality of information they hold is a challenging

problem and has not been addressed sufficiently by the current body of work.

Maintaining query based indices in P2P networks are attractive for two reasons: First,

such an index allows a peer to maintain more information about its neighborhood by allowing

it to assign a relevance strength to a neighbor per query. Second, as indicate by many web

search logs [?] majority of searches are multi-term(keyword or concept) queries that could

benefit from query based indices to achieve better performance. Many of the proposed work,

however, are optimized for single keyword queries. Handling multi-keyword queries is rather

inefficient using single keyword indices. On the other hand, maintaining muti-term query

based indices for better performance is simply impractical due to the resulting exponential

size of indices. Little to no explicit measures have been taken to ensure high quality of

indices regardless of the query length while maintaining small index sizes.

To address the aforementioned issues, in this chapter we propose BSI, a semantics

based indexing framework, which aims to improve the quality and efficiency of search in

P2P networks by using a shared ontology as a reference for building index. Our indexing

framework is designed for unstructured P2P systems where network imposes no structure

on the overlay network or data placement. Our work addresses several important issues

raised by current indexing schemes: First, our semantic based index framework takes into

account the meaning of words thereby allowing peers to evaluate multi-concept queries. A

reference ontology concepts serve as the index terms and relevance strengths for different

queries (concept combinations)are maintained in the index. Each relevance strength is a

combined measure of information content and the number of relevant documents reachable

through a given peer and its neighborhood. Second, we maintain attractive small size index
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while maintaining the quality of index using Bloom filters. The size of the routing index is

limited by the number of concepts in the ontology and can be easily compressed to accom-

modate space restrictions by utilizing hierarchical ancestor-descendant relations in semantic

ontology. Finally, we explicitly capture the notion of multi-concept query based indexing in

our index structure by allowing peers to maintain relevance strength for different queries for

each neighbor. To maintain large volume of multi-concept queries and their corresponding

relevance strength at a peer in a space efficient manner we introduce a novel Bloom filter

based data structure called Two-level Semantic Bloom Filters(TSBF). TSBF is an extension

to the traditional Bloom filter which incorporates the notions of ontology based meta data

and relevance strengths of queries. TSBF allows us to limit the size of a routing index while

maintaining large amount of summarized information regarding peers’ strengths for possible

queries to make a informed decision in routing multi-concept queries. Furthermore, We de-

vise a low-overhead mechanism to allow peers to dynamically estimate the relevance strength

of a neighbor for multi-term queries with high accuracy using TSBFs. We also propose a

index compression mechanism to observe dynamic storage limitations of peers with mini-

mal loss of information by exploiting the hierarchical relationships in the reference ontology

structure. Finally, based on the proposed indexing scheme, we design a novel query rout-

ing algorithm that exploits semantic based information with different granularity to route

queries to semantically relevant peers.

In BSI, we do not employ computationally expensive methods like LSI. Rather, we use

concepts in a reference ontology to build peer local and routing indices to aid in the query

routing process. The process of constructing peer indices is much simpler and consumes

less memory and time in constructing them. Among many popular semantic indexing mech-

anisms OSQR [89], OLI [27], Ontsum [67] The related work most comparable to ours is

OSQR [89], a semantic search protocol that maintains total relevant documents reachable

through a neighbor for each concept from a reference ontology in its routing index as routing

state. The authors propose a mechanism to calculate a conservative estimate of strength of a

peer for a multi-concept query based on the number of documents reachable from that peer
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for each individual query concepts. The disadvantage of OSQR however is that its search

cost is considerably high due its knowledge dissemination mechanism which utilize search

messages for piggybacking data.

Overall, many existing work for semantic P2P search lacks the ability to efficiently

answer multi-term queries with greater accuracy mainly due to lack of quality and quantity

of routing state. BSI gracefully handles muti-term queries by exploiting both the concepts in

query as well as structural relations of the query concepts in ontology to intelligently route

a query to the most promising peer. Our solution is scalable as the index structures can

easily be compressed to accommodate dynamic storage restrictions. Performance evaluation

demonstrates that our proposed approach can improve the search efficiency of unstructured

P2P systems while keeping the communication cost at a significantly lower level compared

with state-of-art unstructured P2P systems.

The rest of the chapter is organized as follows: We present the related work in section

?? . The preliminary concepts used in the chapter are presented in section 6.2. The P2P

system architecture including routing index construction and maintenance and query routing

are given in section 6.3. In Section 6.4, we evaluate the proposed algorithms via simulation.

Finally we conclude and summarize our work in section 6.5.

6.2 Preliminaries

6.2.1 Network Topology

We consider an unstructured P2P network with a large set of peers {P1, P2, ..., PP}. Each

peer in the network can only communicate with its direct neighbors in one hop distance. A

peer is assumed to have on the average γ number of neighboring peers. Peers may leave

and join the network at any time. Each peer has a local text document database that can

be accessed through a local index. The peer uses its local index to evaluate all the content

queries and returns pointers to the documents having the queried content.
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6.2.2 Semantic Ontology

We assume the presence of a global reference semantic ontology which is known and

agreed upon by every peer in the network. The ontology is a set of m semantic concepts

C = {c1, c2, ..., cm} which are related to each other via IS −A relationship (i.e., hypernym/

hyponym). We denote all the leaf concepts in the ontology by Cl. The root concept of the

ontology is denoted by Cr.

6.2.3 Data Distribution

As stated earlier, each peer has a set of text documents. Each document is represented

as a vector of concepts from Cl using a Vector Space Model, a standard technique for rep-

resenting document contents in the area of information retrieval. Each document vector

consists of a vector of concept relevancy scores. To construct a document vector, the doc-

ument is subjected to a process of text mining followed by word sense disambiguation to

identify those concepts that exist in the document along with their concept frequencies(i.e.

number of occurrences of a concept in the document).Then the concept frequencies of each

concept are normalized to a [0-1] range by applying maximum frequency normalization by

dividing them by the maximum concept frequency for that concept encountered by the peer

in its local document collection.

6.2.4 Semantic Query

A query consists of the conjunction or disjunction of one or more concepts from the

leaf concepts (Cl) of the ontology. Existing techniques [86], [51] proposed by the research

community can be employed to convert keyword queries to concept queries. A query returns

a set of k documents having its relevancy above some user defined threshold value. The

relevancy of a document for a given query is computed using concept vector similarity with

respect to the query concepts. We use the well known cosine similarity measure to calculate
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the similarity between a query Q and document vector D:

Similarity(D,Q) =
D.Q

‖D‖ . ‖Q‖
(6.1)

A document is said to qualify as an answer for a given query if the cosine similarity between

its document vector and query exceeds a predefined relevance threshold.

6.2.5 Bloom Filters

A Bloom Filter (BF) is a data structure suitable for performing set membership queries

very efficiently. A Standard Bloom Filter representing a set S = {s1, s2, ..., sn} of n elements

is generated by an array of m bits and uses k independent hash functions h1,h2,...,hk. They

are space efficient data structures which provide constant time lookups and no false negatives.

The downsides of BFs are that they can result in false positives and do not allow item

deletion. However, based on the application requirement the false positive rate can be

significantly lowered. Therefore care must be taken in choosing k and m so that the false

positive rate is acceptable. It has been shown that (1− e
−kn
m )k.

There are many variants of standard BF such as Spectral BF, counting BF, compressed

BF, etc. In our work we utilize both standard Bloom filters and Spectral Bloom Filters

(SBF). SBFs is an extension of the traditional BF for multi-sets allowing filtering of elements

whose multiplicities are below a threshold. SBFs allow querying on item multiplicities as

well as deletion. SBFs maintain a counter per bit in the bit array to keep track of the number

of times the bit is set. Simply taking the minimum count over all bits set for a given element

will produce the multiplicity of that element in the represented multi-set.

6.3 System Design

Three key issues in current indexing strategies are (i) their inability to associate semantic

of represented content , (ii)low efficiency in routing multi-term queries and (ii)large index

sizes. In order to overcome the shortcomings of existing indexing strategies and semantic
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Figure (6.1) Ontology with seven concepts and IS-A relations between them.
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Figure (6.2) (a) A traditional Bloom filter with three hash functions. (b) A Spectral Bloom
filter with three hash functions.

query evaluation techniques, we put forward BSI(Bloom filter-based Semantic Indexing). We

begin with the design of the Two-level semantic Bloom Filter (TSBF), a space efficient data

structure that represents probabilistic information regarding contents a peer share with the

network. We then describe our routing index structure used for efficient query routing.

6.3.1 Two-level Semantic Bloom Filter (TSBF)

Bloom filters serve as appropriate index structures for resource discovery due to their

scalability, and low cost storage and distribution. However, they do not support semantic

based multi-term queries as they have no means of representing probabilistic information

regarding ontological data. To this end, we introduce a novel Bloom filter based data struc-

ture (TSBF) that aim at supporting efficient conjunctive (and disjunctive) semantic query

routing in unstructured P2P networks.

TSBF is an extension of the traditional Bloom Filter to encode probabilistic information

regarding richness of a peer for different queries based on its local documents with the same
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false positive probability as the traditional Bloom filters. In particular, it encodes goodness

of a peer for different multi-concept queries in terms of its distance to documents, the size of

the document collection and information content of these documents. Posed with the query

”Is Query Q a member of TSBFP?” the TSBFP of peer P returns a relevance strength of

P for Q based on information encoded in it. In our work, we define this relevance strength

of a peer to be the total number of local documents in P for Q.

To implement this functionality TSBF is designed as a two-level Bloom filter where

level 1 (TSBF1,P ) represents the set of qualified documents in P and level 2 represents the

set of queries answerable by P. In particular, for level 1 there exist multiple bit arrays each

representing the local documents of P rich in C (TSBF1,P (C)). These bit arrays are similar

to those employed in traditional Bloom filters and is supported by a sufficiently large body

of research work [83,94,95] that allows us to estimate number of documents reachable for a

multi-concept query solely based on these bit arrays.

Similar to level 1, level 2(TSBF2,P ) also contains multiple bit arrays each representing

different multi-concept queries that whose concepts have C as the least common ancestor in

the ontology hierarchy for which P has at least one qualified document in its local document

collection (TSBF2,P (C)). To enable associating the number of relevant documents reachable

through P for each query Q we implement each bit array in level 2 as Spectral Bloom

Filters(SBFs). SBFs maintains a counter per each bit in a bit array thereby allowing deriving

the number of times an element is added to bit array. In a level 2 bit array elements are

queries and a given query Q is added as many times as the number of qualified documents

exist in P for Q.

Intuitively, while level 1 contain a bit array per ontology concept, level 2 only needs to

maintain a bit array per non-leaf ontology concept. Posed with a query Q, TSBF2,P returns

the actual number of documents in P qualifies as answers for Q whereas the TSBF1,P provides

an estimate of the same. While both provide two alternative ways for estimating the number

of documents in P for Q, TSBF2,P is proffered over the other as it provides exact information

regarding P’s strength for a given query. When Q does not exist as a member in TSBF2,P
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then TSBF1,P is used to derive an estimate.

In our implementation, we size the set of bit arrays in both levels in a TSBF the same

, but their sizes can be adjusted independently. Similar to traditional Bloom filters, TSBF

uses a fixed number of hash functions h1,h2,...,hk. Figure 6.3 shows a TSBF of a peer P for

the ontology given in Figure 6.1. In the figure, the TSBF is a set of 10 bit arrays, 3 of which

is for level 2, each representing possible queries per nn-leaf concept in the ontology while

the other 7 is for level 1, where each bit array represents documents reachable for the given

concept.

Figure (6.3) The TSBF for a peer P with documents d1d2, d3, d4, d5, d6. for ontology in Figure
6.1.

Such a TSBF of a peer serves two purposes: it allows fast query processing within the

peer and also serve as the foundation for constructing peer’s routing index. Use of Spectral

Bloom filters in place of traditional Bloom filters allows associating a frequency of occurrence

to each individual document/concept combination which adds to the information quality of

Routing indices.

TSBF Construction The TSBF of a peer P, TSBFP , is constructed at start-up

when peer joins the network for the fist time. Initially all the bits of level 1 bit arrays are

initilized to false while the all the bits in level 2 are intialized with a counter value zero. To

populate level 1 bit arrays peer can analyze its document vectors to identify those qualifying
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documents per ontology concept and insert into the bit array responsible for the concept to

populate them. In other words, P insert all its local documents that can answer concept C

in its TSBF1,P (C) bit array.

Following the same process for populating level 2 bit arrays, however, leads to practical

issues. We could ideally generate all possible concept combinations (queries)that exceeds

a predefined cosine similarity threshold per local document of P and insert them in the

appropriate bit arrays in level 2. Note that, same concept combination can be answered

successfully by multiple documents thus allowing the combination to be inserted into the

relevant bit array that many times. For instance, a concept combination answerable by a

document d in P is inserted into TSBF2,P (C) where C is the least common ancestor of

concepts in combination based on the reference ontology. This method of level 2 TSBF

population is certainly a viable option for those peers with sufficiently large amount of

storage at hand as the number of concept combination that can be answerable by a peers

document collection could be quite large. Such a technique is often unfavorable, however, as

this might lead to high false positive rates due to insertion of large number of elements to bit

arrays. Moreover, there is no need to generate and insert queries of all possible lengths to a

TSBF. As a query length analysis [?] on various search engines conducted in 2011 indicate,

an average length of a query contains 3.08 terms and more than 92% queries contain only

5 terms or less. Moreover, there may be concept combinations that end user is simply not

interested in as queries and the number of such concept combinations could be unnecessarily

large. Therefore we propose that a peers dynamically build TSBF level 2 based on the

queries it receives by adding only those queries that it can answer using its documents or

through neighborhood. This will significantly lower the useless concept combinations in a

TSBF level 2 thus controlling the false positive rate from going up. A peer also has the

capability of aggressively building its TSBF level 2 by periodically gossiping with neighbors

to exchange their query histories to discover new concept combinations that should be in its

TSBF.
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6.3.2 Routing Index

The routing index of a peer summarizes information of its neighborhood useful for

intelligent query routing. One of the key requirements of the routing index of a peer is

to represent all possible queries answerable by a neighbor along with the corresponding

relevance strengths of the neighbor per each individual query in a compact manner. The

routing index structure achieves this by summarizing TSBF’s of neighbors at the peer. The

routing index of a peer P consist of a set of 〈key, value〉 pairs where key is a neighbor N and

value is a TSBFP→N , a summarized TSBF that represents the set of documents reachable

through N and the set of queries answerable through the N based on the set of peers in the

network N can reach. TSBFP→N generally represents an aggregation of a set of TSBFP ′

structures each belonging to a peer P ′ reachable through P.

Routing Index Creation and Updation The drastic reduction in the overheads

of routing table construction and maintenance in BSI is achieved through use of TSBFs. At

startup, peers exchange their TSBFs with each other. Therefore the entry for neighbor N,

TSBFP→N , at P’s routing index is initially a replica of TSBFN at N representing the set

of documents and queries in N’s local storage. This is later updated by information carried

by N to P from different query routes to represent documents and queries reachable through

N. Particularly, presented with piggybacked information carried in a query path, an update

at P aggregates TSBFPi
of each peer Pi visited by the query received through N, by taking

the union equivalent of them subjecting bit counts to exponential decay depending on the

hop distance of Pi to P. The exponential decay of counts in bits during forwarding of search

messages, exponentially reduces the impact of a peer’s TSBF on another peer’s routing index

with the distance between the two.

Equation 6.2 gives the exponential decay based union for combining TSBFs of set of

peers Nj for a concept c. x here represents the level of the TSBF(i.e. x ∈ {1, 2}) and α

is the decay factor. We simply used the distance between peer Nj to P as α. Here the

corresponding bits of respective bit arrays are aggregated using a function F. F is simply



116

bitwise OR between bit i of corresponding bit arrays in all TSBFs in the query path for level 1

TSBFs and is sum for the same for level 2 TSBFs bit arrays. To avoid information becoming

stale, periodic updates are triggered by peers updating Routing index for each neighbor

based on the messages it received. Even though the updates are triggered periodically, the

updates occur only if a peer sees a substantial difference in the values in the bits in bit arrays

it is interested in.

TSBFx,expUnion.(c)biti = F k
j=1

(

TSBFx,Nj
(c).biti

α

)

(6.2)

The above design achieves our primary objective of efficiently maintaining probabilistic

information about the content stored in the neighborhood. Algorithm 6.1 summarizes the

routing index creation and updation procedure.

Routing Index Compression To observe dynamically changing space restrictions,

a peer can simply compress routing index at will by exploiting ontology IS-A structure.

The main intuition here is that, due to IS-A relations, the ancestor concepts in an ontology

hierarchy is fully qualified to represent a descendant concept. Therefore the TSBFP→N of a

neighbor N in P’s routing index can be compressed even further by combining the bit arrays

for two or more concepts sharing a IS-A relation by applying union equivalent of represented

sets to corresponding bit arrays. for example, corresponding level bit arrays of B and D in

ontology in Figure 6.1 can be combined to generate one bit array represented at D this way.

This union equivalent operation for a set of such TSBFs for a neighbor N at P represent-

ing a combining set of concepts sharing IS-A relations is given in Equation 6.3. The level x is

1 or 2 and Ca is the ancestor concept of all descendant concepts cj being aggregated. Similar

to 6.2, F refers to bitwise or and summation of counts for level 1 and level 2 respectively.

TSBFx,union.(ca.biti = F k
j=1(TSBFx,P→N .(cj)biti) (6.3)

When the need arises to compress a routing index, the priority first goes to combining
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Algorithm 6.1 Routing Index Construction and Maintenance

Input:

Msg = Message
N = Neighbor sending Msg

TSBFList = The list of TSBFs in Msg; list index+1 denote distance between P and peer to
which TSBF at index belong
P = Message receiver peer executing algorithm
C = set of concepts in reference ontology

Output: ‘
selected = the top k

1: ▽ Create index entry for N for alive-ping message

2: if Msg.TY PE = ALIV E then

3: TSBFN ← TSBFList.get(0)
4: for each Concept c ∈ C do

5: for i = 0 to TSBFN (c).length− 1 do

6: index.TSBF1,P→N .(c).biti ← TSBF1,N (c).biti
7: index.TSBF2,P→N .(c).biti ← TSBF2,N (c).biti
8: end for

9: end for

10: end if

11: ▽ Remove index entry for N for leave-ping message

12: if Msg.TY PE = LEAV E then

13: index.remove(N)
14: end if

15: ▽ Update index entry of N for information received through a search related message

16: if Msg.Type = QUERY orHIT orMISS then

17: ▽ Determine concepts for which Routing index should be updated

18: Query q ←Msg.query

19: lca(q)← least commonancestor concept of q

20: Cupdate ← empty set representing concepts for which index.TSBFP (N) should be updated
21: Cupdate.add(lca(q))
22: Cupdate.addAll(q)
23: ▽ Update Routing index entry for N

24: for each Concept c ∈ Cupdate do

25: ▽ Calculate a new TSBF entry for N based on TSBFList

26: TSBF1,N ′(c)← calculate using Equation 6.2
27: TSBF2,N ′(c)← calculate using Equation 6.2
28: if TSBF1,N ′(c).biti > index.TSBF1,P→N (c).biti then
29: index.TSBF1,P→N (c).biti ← TSBF1,N ′(C).biti
30: end if

31: if TSBF2,N ′(c).biti > index.TSBF2,P→N (c).biti then
32: index.TSBF2,P→N (c).biti ← TSBF2,path(C).biti
33: end if

34: end for

35: end if
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bit arrays for different concepts at level 2 (i.e. TSBF2,P ) as compressing this does not result

in minimal loss of information. The reason for this is, TSBF2,P represent exact information

regarding frequency of concept combinations. The second priority is given to combining level

1 TSBF1,P bit arrays. Since this is used for estimation purposes, combining multiple bit

arrays for different concept into one will degrade the estimation accuracy. Similarly, when

choosing which bit arrays to combine in a given level, the higher probability is given for those

bit arrays representing higher level concepts closer to the root as the information represented

by the ontology generalizes towards ontology root.

Combining multiple bit arrays into one, however, results in slightly increased false pos-

itive rate and can be controlled by either not having excessively large number of items in

bit arrays or by allowing bit arrays to grow as needed to maintain the desired false positive

rate.

6.3.3 Query Routing

he query routing algorithm is summarized in Algorithm 6.2. The objective of search in

BSI is to retrieve many relevant documents as possible for a given query. The search messages

in BSI are TTL bounded and therefore a query can travel maximum TTL hops before it is

discarded. Every query receiver peer performs a local search and append results of retrieved

documents to the query and then forwards the query to the most promising neighbor if the

TTL has not expired. Upon TTL expiration, the peer returns a response message to the

query originator along with the retrieved results. The neighbor selection process at a peer

P for a query q is performed as follows: Upon receipt of q, P checks TSBFP→N associated

with each of its neighbor N. The lookup returns the frequency of documents (exceeding a

relevance threshold) in each neighbor N containing query as a concept combination. This

denotes the relative probability of success of N for the query compared to its neighbors. To

calculate this TSBF P first lookup in level 2, TSBFP→N(c), where c is the least common

ancestor of concepts in query. If query exist as an element, TSBFP→N returns the asso-

ciated document frequency. The fact that TSBF2,P→N(c) does not contain q as a concept
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combination does not necessarily mean that combination is not reachable through N. It may

be a situation arising from P not exploiting all reachable peers in its TTL hop radius or

P has not encountered q in its query history. In such a case P calculates an estimate of

the reachable documents for a multi-concept queries based on TSBF2,P→N from its routing

index. This estimation procedure is described below.

Estimating set intersection based cardinality from Bloom filters We need a

reliable mechanism to find the number of documents reachable through a neighbor for a

given query solely based on the set of Bloom filters each representing documents reachable

through the neighbor for each query concept. Research community has proposed many works

to estimate the cardinatily(i.e. number of elements) of an original set solely based on its

Bloom filter bit array [83,94,95]. For our work we used the work presented by authors of [83].

Given a set S and its Bloom Filter BFS with m bits out of which t are true bits, and k

hash functions [83] defines the cardinality of a a set as follows:

|S| =
ln
(

1− t
m

)

k × ln
(

1− 1
m

) (6.4)

Here, the m denotes the length of the Bloom filter and t the number of true bits in the

Bloom filter.|S| denotes the cardinality of the set represented by the Bloom filter bit array.

For cardinality estimation of union of multiple sets S⋃ = S1

⋃

S2

⋃

...
⋃

Sn (needed

for OR query routing) authors simply propose to take the bitwise OR of the representative

Bloom filter bit arrays and apply equation 6.4 to the resulting Bloom filter.

Estimating cardinatily of intersection of sets based on bloom filters is not so straightfor-

ward. We used the set inclusion-exclusion principle in combinatorics to derive the cardinality

of intersection of sets based on the cardinalities of the unions of sets. We employed the equa-

tion 6.5 to calculate the intersection of sets S⋂ = S1
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Each set Si in our work represent the set of documents reachable for each concept ci

for a given query through a given peer P. The equation 6.5 only requires cardinalities of

individual sets and unions of sets to compute the cardinality of intersection. Therefore upon

a receipt of a query a peer can simply use above mentioned Bloom filter based cardinality

estimation techniques to calculate each term in right hand side of 6.5 thus computing the

cardinality of intersection for a neighbor for a given query.

6.4 Experiments

In this section we present a simulation-based evaluation of BSI and compare its perfor-

mance with other mechanisms for query routing in unstructured peer to peer systems.

6.4.1 Simulation Methodology

The parameters for the the simulation TSBF used in BSI are listed in table 6.1. The

simulations use a default 1024 peer unstructured network, unless noted otherwise1. To sim-

ulate the dynamic behavior of the network under peer churn, we inserted online nodes to the

network while removing active nodes at varying frequencies. During a single simulation run,

the network size was maintained at roughly the original starting size by ensuring the number

of nodes that join the network dynamically was the same as that leaving the network. On

an average, 80 nodes each are added and removed from the network during each simulation

run.

We mainly compare our work against OSQR [89] and Random Walk [79]. OSQR is

a concept based indexing mechanism which tries to improve the performance for multi-

concept queries with a concept based routing index. The OSQR routing index of a peer

maintains the total reachable documents per neighbor per concept in a reference ontology

as the relevance strengths of the neighbor for each ontology concept. The authors propose

taking the minimum of the number of documents reachable for each query concepts for a

1The routing tables in BSI make the simulations very memory intensive and do not scale to large sizes
easily. For the sake of uniformity, we simulate a network of 1024 nodes for all search protocols.
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Algorithm 6.2 Query Routing

Input:

Q = Query Message
P = Message receiver peer
index = The routing index of P
Candidates(Q) = Neighborhood(P )−Q.V isitedPeers

k = the walker count

Output: ‘
R = Retrieved documents
Selected(Q) = the selected peers for query forwarding

1: Selected(Q)← φ

2: Q.TTL← Q.TTL− 1
3: R← LocalSearch(o)
4: ▽ Found target Object

5: if Q.TTL ≤ 0 then

6: if R 6= φ then

7: Return a HIT with R and terminate search
8: else

9: Return a MISS with R and terminate search
10: end if

11: else

12: Clca ← least commonancestor concept of Q

13: for each Neighbor N ∈ Candidates(Q) do
14: ▽ Look up score in index.TSBF2,P→N

15: if index.TSBF2,P→N .(Clca) contains Q then

16: ScoreN ←minimum count of all bits hashed by Q in index.TSBF2,P→N .(Clca)
17: ▽ Estimate score from index.TSBF1,P→N

18: else

19: QueryBFListN ← φ

20: for each Concept c in Q do

21: QueryBFListN .add(index.TSBF1,P→N .(c))
22: end for

23: ScoreN ← calculate using Equation 6.5 with QueryBFListN as input
24: end if

25: Sort Candidates(Q) based on scores
26: Selected(Q)← Neighbor in Candidates(Q) with highest score
27: end for

28: Return Selected(Q) and R

29: end if
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given neighbor as its relevance strength to the query. For the simulation, the maximum

number of entries in OSQR index was set to 128 and size of maxVector (a data structure

used by peers for global knowledge acquisition) was set to 10. Random walk on the other

hand is a popular blind search mechanism where a querying peer deploys a search walkers

by sending query to a random neighbor. The neighbor selection mechanism does not require

a peer to maintain any local knowledge about its neighborhood. The query format as well

as local search remains the same as our proposed BSI algorithm.

We experimented with two versions of BSI based on the design of the TSBF data

structure:

1. BSI(TSBF-level1+level2):

This is the original BSI algorithm where the TSBF structure contains two levels: level1

contains a list of bit arrays each representing the set of documents accessible per

ontology concept and level2 contains a list of bit arrays each representing a set of

queries and the associated document frequencies per ontology concept of a peer.

2. BSI(TSBF-level1)

This represents a reduced level BSI algorithm where TSBFs solely consists of level1

only. Thus the peers rely on the reachable documents estimation process in query

routing.

6.4.2 Results

The primary performance results can summarized as follows. For a low routing overhead,

the query recall improves by up to five orders of magnitude over OSQR proving the efficiency

of the algorithm in locating as many relevant documents as possible in a low search cost 6.4.2.

Simulations over different query lengths and different filter sizes demonstrate the scalability

of BSI for multi-term query routing in sections 6.4.2 and 6.4.2 respectively. On average we

observed up to four fold performance improvement in terms of recall over OSQR for various

query lengths and different filter sizes. Finally, a study of the impact of search cost on overall
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search efficiency in section 6.4.2 demonstrates that the performance improvement in recall

is achieved at an attractive two-fold improvement in search traffic over OSQR.

Table (6.1) Simulation Parameters

Parameter Range and Default value
Network size 28-211 Default:210

Peer degree distribution power law
Total distributed documents 5000

Average number of concepts per document 20
Document distribution among peers zipf (α=1.0)
Query distribution among peers zipf (α=1.2)

Mean peer documents 100
Reference Ontology Concepts 128

TTL 1-11 Default:7
Relevance threshold 0.7
TSBF filter length 250bits

No. of hash functions 7

Recall Recall is a standard performance measurement in information retrieval that

denotes the fraction of relevant documents found by an average query compared to the

entire set of relevant documents distributed in the network. While many query routing

mechanisms can achieve high recalls at sufficiently high hop limits only superior query routing

algorithms can achieve high recalls with low hop limits. Varying the hop limit allows us to

demonstrate the effectiveness of our algorithm in finding larger number of documents at low

TTL values thus with lower search cost. Fig. 6.4(a) plots the average recall per query for

BSI, OSQR and Random Walk. We observed that original BSI (i.e. (TSBF-level1+level2))

algorithm achieved an average of 383.71% increase in recall over OSQR while BSI(TSBF-

level1) gained a 322.60% increase in recall over OSQR. The performace improvement of

BSI(TSBF-level1+level2) over Random walk was observed to be an ourstanding 1238.81%.

The increase in recall is more evident in higher TTL values. From the figure we can also

infer that the original BSI with both levels present in the TSBF structure performs better

than BSI with the TSBF with only level1. An average increase of 45.16% improvement
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was observed in BSI (TSBF level1+level2) over BSI (TSBF-level1). This is expected, as

having both levels in a TSBF obviously provide more information regarding query relevance

strength of a peer to make a intelligent query routing decision compared to a TSBF level 1

which only provide an estimate of the same. As Fig. 6.4(b) suggests, both versions of BSI

clearly outperforms OSQR and Random Walk in terms of recall regardless of the network

size thus proving the scalability of our algorithm.

1 3 5 7 9 11

0

0.2

0.4

0.6

0.8

1

TTL

R
ec
a
ll

BSI (TSBF-level1)

BSI (TSBF level1+level2)

OSQR

Random Walk

(a) Recall vs. TTL

28 29 210 211

0

0.2

0.4

0.6

0.8

1

Network size

R
ec
a
ll

BSI (TSBF-level1)

BSI (TSBF level1+level2)

OSQR

Random Walk

(b) Recall vs. Network Size

Figure (6.4) Recall

Effect of Query Length One of the key design objectives of BSI is to achieve high

recalls for queries with more than single concept. Fig. 6.5 plots the effect of query length

on recall. We observed a significant improvement in recall in BSI over OSQR for both BSI

versions: BSI(TSBF-level1+level2), and BSI(TSBF-level1). On average for all query sizes

we observed that recall improves four orders of magnitude (315.79%) and by three orders

of magnitude (223.88%) compared to OSQR in BSI(TSBF-level1+level2) and BSI(TSBF-

level1) respectively. Recall improves ten orders of magnitude (903.62%) and by three or-

ders of magnitude (682.01%) compared to Random Walk in BSI(TSBF-level1+level2) and

BSI(TSBF-level1) respectively. The superiority of BSI was more evident for queries with

higher number of concepts. The reason for this behavior can be explained using the peer

knowledge summarization and the neighbor selection mechanisms of all three algorithms.
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Random walk does not use any intelligence in neighbor selection mechanism. Peers ran-

domly select one if their neighbors to forwrd queries. BSI and OSQR estimate the number

of documents reachable thorough a peer for a query as its relevance score in neighbor se-

lection process. An OSQR peer only maintains the number of reachable documents per

ontology concept for each neighbor in its routing index and a peer estimates the number

of documents reachable from a given neighbor by taking the minimum of the number of

documents reachable for each queried concept for that neighbor. Taking the minimum as

the relevance score, however, is an optimistic estimate. This actually represents an upper

bound of the number of actual relevant documents reachable through a neighbor.

To take a more accurate decision, the decision taking peer must ideally have the set of

documents reachable through the neighbor for each queried concept and should perform a

intersection of all sets of documents relevant to the query to obtain the set of documents

actually reachable through that neighbor for the query. The size of this resulting set will ac-

curately represent the number of documents reachable through the neighbor for that query.

However, maintaining such detailed information is too costly in P2P networks. BSI compen-

sates this information loss by maintaining bloom filters representing the queries (along with

number of documents reachable as associated bit counts) and documents reachable thorugh

a neighbor, thereby providing a more compact and high quality information summarization

leading to more accurate estimations of number of documents reachable for queries.

Effect of Filter Size Having established the scalability of our general approach, we

now turn our attention to the effect of Bloom filter size in recall and storage cost.

Table (6.2) Storage Overhead

Algorithm Filter Size(bits)
100 300 500

OSQR 10752.01 10752.01 10752.01
BSI (TSBF level1+level2) 4875.00 14625.00 24375.00
BSI (TSBF-level1) 4800.00 14400.00 24000.00
BSI (TSBF-level2) 56.25 168.75 281.25
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Using TSBFs for local knowledge maintenance results in substantial increase in recall

at low storage cost. As shown in Fig. 6.6 recall substantially increases with filter size in all

BSI versions. This is the expected behavior as larger filter sizes can keep large volume of

information at a tolerable false positive rate resulting in better query routing decision leading

to high recall rates. On average we observed a 300.47% and 216.37% average improvement in

recall over OSQR and a 1038.60% and 799.50% average improvement in recall over Random

Walk for BSI (TSBF level1+level2) and BSI (TSBF-level1) respectively.

Table. 6.2 shows the associated storage costs for various filter sizes. This storage cost

accounts for a peer’s TSBF and its routing index. Storage costs are shown for original

BSI(TSBF with level 1 and level 2 present) and for two modified BSI versions where a

TSBF contain only level1 or level 2 respectively. While maintaining a large filter size allows

us to decrease the false positive rate we observed that it substantially increases the TSBF

size. However, while storing a TSBF in a peer’s routing index per neighbor can contribute

to increase in index sizes, this storage requirement is not a burden to an average internet

computing device. Moreover, as long as the false positive rate of the TSBF is at an acceptable

level for the application, there is no need to unnecessarily increase the filter size. We found

through experimentation that the optimal filter size for our trace was approximately 250

bits. However, those peers that have storage limitations and cannot afford to reserve a filter

size below this size have the option of either compressing their routing indices as illustrated
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in Section ?? or to eliminate one of the levels of TSBFs stored in routing indices to observe

their storage restrictions.

Search Overhead Using TSBFs for knowledge transfer and acquisition process re-

sults in significant lowering of data transmission. OSQR consumes a significant amount of

bandwidth in data transfer. OSQR on average consumed 13.94KB of bandwidth per query in

data transfer. This was in contrast to the 4.13KB and 3.88KB consumed by a query in BSI

(TSBF level1+level2)and BSI (TSBF-level1) respectively. This corresponded to a 70.35%,

and 95.46% improvement over OSQR in traffic cost for BSI (TSBF level1+level2)and BSI

(TSBF-level1)respectively. Random Walk search message consumed only 1.02KB banwidth

as a message does not carry additional information for knowledge dissemination. The high

search cost of OSQR is attributed to the fact that it transmits routing heavy weight routing

indices of visited peers of a query as well as the global statistics of maximum information

content encountered so far for the large document base distributed in the P2P network per

ontology concept by each visited peer. Queries in BSI on the other hand transfers much

more space efficient TSBFs only relevant to the queried ontology concepts thus significantly

reducing the bandwidth consumption.

To get an accurate picture of overall search efficiency of a search algorithm we need a

combined measure of both recall and search cost. Therefore we define the search efficiency to

be the ratio between recall and search cost. In Fig. 6.8 we plot the search efficiency of BSI,

OSQR and Random Walk against network size. From the results it is clear that efficiency of

BSI (both versions) is much higher compared OSQR and Random Walk, and BSI is capable

of producing high recall at much lower message cost.

In conclusion from the experimental results we can draw the conclusion that with respect

to recall rate and search cost, that our search protocol is superior than the OSQR.
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6.5 Conclusion and Future Work

Routing in unstructured P2P networks is a challenging problem. Unfortunately the

prerequisites for efficient multi-term query routing such as large size multi-keyword based

indexing is too costly in peer-to-peer networks. In this work, we have explored the approach

of compact representation of large concept-combination based indices through the use of

Bloom filters to achieve minimal loss of information. Our Bloom filter based routing index

quantifies the strength of a peer’s neighborhood for individual queries and then use this

information for forwarding queries. The simple yet powerful design of BSI makes it easy im-

plement and allows easy adapting to dynamic P2P conditions. Simulation based comparison

with state-of-the art query routing mechanisms, under a wide variety of scenarios establish

the performance advantages of BSI. While providing a set of mechanisms for query routing,

BSI imposes little restriction on the possible policies that can be implemented. The BSI

search framework presents interesting possibilities of implementing high level semantics of

trust, reliability, etc. using routing and forwarding policies. These are interesting issues that

merit further exploration.
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PART 7

CONCLUSIONS AND FUTURE DIRECTIONS

In this chapter, we summarize the research presented in this dissertation, discuss our

major contributions and their significance, and point out directions for future work.

7.1 Summary

In the last few years, the research community has provided a plethora of powerful tools

in the area of distributed communications. The interest in P2P computing produced a variety

of systems and schemes that facilitate the two important primitives in large decentralized

environments: Content sharing and open communication.

The work discussed in this dissertation provides an integrated framework for full-text

federated search of large and distributed document collections using unstructured P2P

networks as the search layer. Our dissertation focuses exclusively on providing adaptive,

bandwidth-efficient protocols for data search, retrieval and knowledge management in un-

structured overlays with a special focus on combining the power of semantic computing

and P2P networks to provide semantic search capabilities in P2P networks. Comprehensive

evaluations measure the performance of the suit of query routing replication and topology

optimization algorithms and compare it with existing common alternatives. Experimental

results provide strong empirical evidence for the effectiveness of the approaches proposed in

this dissertation for full-text federated search in P2P networks.

7.2 Contributions

This dissertation made three main contributions, at the architectural, algorithmic and

implementation level. We proposed a suit of indexing architectures (SPUN, OSQR)that

clearly allows peers to efficiently summarize the knowledge about their neighborhoods is
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a simple yet power manner. While the SPUN indexing architecture [96] allows a peer to

predict the probability of success of a neighbor based on their past interactions, the indexing

scheme proposed in OSQR [89] allows to condense multi-dimensional data to a constant

and small size single dimension using an automatic semantic annotation of resources. The

OSI index structure on the other hand present a space-efficient concept-set based indexing

mechanism that allow peers to represent large volume of concept-set combinations along

with their relevance strengths in a compact manner, thereby improving the search quality of

multi-concept queries. Our indexing schemes allows us to reuse existing algorithms, to tailor

the index structure to different application requirements, and to evaluate new and existing

algorithms in the same code base. We introduced R-SPUN, a new replication algorithm

designed to improve efficiency of rare object search. We also introduce SAS, a novel semantic

clustering algorithm that reorganizes the original network topology to mimic a reference

ontology structure, thereby allowing peers to exploit ontology relationships to perform inter-

cluster and intra-cluster routing. SAS provides provable guarantees on search performance

in a stable system. We performed extensive experiments on Peersim simulator by simulating

the unstructured overay environment based on Gnutella performance measurement studies

and using Reuters news-wire data set. Our experimental evaluation shows that our indexing,

replication and clustering algorithms outperform existing state-of-the-art counterparts, and

that it maintains its excellent search performance with low maintenance costs in a dynamic

P2P system.

7.3 Future Work

The work presented in this dissertation represents just the first steps towards building

a fully functional P2P database systems. We plan to address the issues of data management

and query routing in presence of semantic heterogeneity where peers describe their resources

using local ontologies. We will also look into the possibility of merging the powers of cloud

computing and P2P. This mixed model could be applied to several different applications,

including backup, storage, content distribution and search allowing exploiting (free) user
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resources whenever possible, reducing the bill to be payed to cloud provider.
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