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Abstract. Testing is a paramount quality assurance activity in every software de-

velopment project, especially for embedded, safety critical systems. During the

test process, a lot of effort is put into the generation of test cases. The presen-

ted OSTAG project aimed at developing methods and techniques to automate the

software test case generation for black-box testing. The proposed approach was

based on the creation of a software requirements ontology and the application

of inference rules on the ontology to derive test cases. The ontology represents

knowledge of the requirements, the software system and the corresponding ap-

plication domain while the inference rules formalize knowledge from documents

and experienced testers in the domain of test planning and test case generation.

A software prototype of the approach was implemented and one of the industrial

project partners evaluated the results. An alternative method for generating test

cases, based on genetic algorithms, was also explored.

Keywords. Black-box Testing, Embedded Systems, Genetic Algorithms,
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Development, Ontology Quality Evaluation, Ontology Verbalisation, OWL,
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1 Introduction

The software market is increasing on a yearly basis and shows no sign of slowing down.

According to Gartner, the worldwide IT spending is predicted to grow 2.7% in 2017, to

reach a total of USD 3.5 trillion [1]. As software products and systems permeate every

aspect of our lives, we become more and more dependent on their correct functioning.

Consequently, quality concerns are becoming much more vital and critical as end-users

become increasingly dependent on products that include software. As is the case in all

product development, the quality of the software must be verified and validated through

painstaking test activities, such as test planning and design, ocular reviews of require-

ments documents and program code, program testing, system testing, acceptance tes-

ting, and so on. Despite these efforts, errors sometimes remain undetected in the code.
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In accordance to Capgemini World Quality Report 2017 [2], the budget allocation for

quality assurance and testing, as percentage of IT expenditures in the software indu-

stry, was 31% in 2016. Another recent figure, coming from a study performed by the

Cambridge University [3], estimated the yearly cost of software errors caused by poor

quality procedures to roughly USD 312 billion.

One way of slowing down this ongoing cost increase related to software testing acti-

vities is to automate as many as possible of these activities. As far as test management

and test script execution goes, this is a mature field where commercial products assist

software testers in their daily work, like TestingWhiz [4] or HPE Unified Functional

Testing [5]. Recent research results indicate that automatically generated tests achieve

similar code coverage as manually created tests, but in a fraction of the time (an average

improvement of roughly 90%) [6]. The starting point of the OSTAG project, presented

in this book chapter, has been to provide a method of semi-automatically preparing soft-

ware test cases, followed in the near future by a project developing a complete automa-

tion process. One problem when generating test cases is to come up with a ”reasonable

good” set of ”adequate” software test cases (terms that have not yet been unambiguously

defined by the research community), but results presented by Enoiu at al. indicate, that

”the use of an automated test generation tool does not result in better fault detection

compared to manual testing” [6]. For the past 10-15 years, the research community has

been proposing different techniques to alleviate the burden of manually creating test

cases through an automatic generation of test cases (e.g. [7]) that converts software re-

quirements into a formal model (e.g. using statecharts [8]). Another area of automatic

test case generation is through evolutionary testing that appears to be successful for au-

tomatic test case generation in white-box testing [9, 10]. The use of evolutionary testing

techniques has also been evaluated in the OSTAG project in the form of genetic algo-

rithms for the generation of software test cases, but for black-box testing, with the big

difference that no source code was required.

A software product is usually valued or appreciated through its functionality, so-

metimes ”externally” through the interaction with a human, or otherwise ”internally”

through the interaction with another software module. Whatever the case and apart from

this functionality validation, software also embodies and reflects the implicit knowledge

of the application domain in which it is supposed to function. At its core, the software

can be viewed as being a knowledge repository where the knowledge is largely related

to the application domain [11]. Consequently, it is essential to be able to make use of

the knowledge related to relevant aspects surrounding and influencing the software, e.g.

specific domain knowledge, past and new requirements, policies, and contexts in which

people or end-users use and interact with the software. Thus, using this knowledge to

support more intelligent software development processes requires a machine-facilitated

understanding of the knowledge. The management of relevant and essential knowledge

related to software engineering in general, and software testing in specific, is thus of

utmost importance. A mapping study by Ferreira de Souza et al. [12] initiated with an

evaluation of 562 publications related to a number of knowledge management initiati-

ves in the software testing domain. Their study did not disclose any previous research

making use of ontologies for software test case generation. They have, however, presen-

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

136



ted a reference domain ontology of their own, representing software testing knowledge 
[13].

One way of handling software requirements knowledge used to generate test cases 
(as described in this book chapter), is by modelling the knowledge relying on semantic 
technologies. An example of such a semantic technology is a formal model known as an 
ontology. A commonly cited definition by Studer et al. states that ”an ontology is a for-

mal explicit specification of a shared conceptualisation” [14], a definition that extends 
the definition by Gruber [15] and Borst [16] that both stated that ”an ontology is an ex-

plicit specification of a  conceptualisation”. The following explications of the terms in 
the definition come from Studer et al. A conceptualisation refers to an abstract model of 
some phenomenon in the world by having identified the relevant concepts of that phe-

nomenon. Explicit means that the type of concepts used, and the constraints on their use 
are explicitly defined. For example, in medical domains, the concepts are diseases and 
symptoms, the relations between them are causal and a constraint is that a disease can-

not cause itself. Formal refers to the fact that the ontology should be machine readable, 
which excludes natural language. Shared reflects the notion that an ontology captures 
consensual knowledge, that is, it is not private to some individual, but accepted by a 
group. By explicitly modelling a shared conceptualisation, or domain knowledge, in a 
machine-readable format, ontologies provide the possibility of representing, organizing 
and reasoning over the knowledge of a domain of interest, and can serve as a basis for 
different purposes. The software engineering community has recognized ontologies as 
a promising way of addressing many current problems in different phases of the soft-

ware life-cycle process, such as requirements specifications, software design, software 
implementation and integration, and software maintenance [17].

Until recently, the use of ontologies in software testing has been one of the least ex-

plored areas of software engineering [17, 18] and has thus not been discussed as much as 
their use in other stages of the software life-cycle process. In [17], Happel and Seedorf 
present possible ways of utilizing ontologies for the generation of test cases, and dis-

cuss the feasibility of reusing domain knowledge encoded in ontologies for testing. In 
practice, however, few tangible results have been presented. Most of the research have 
had a focus on the testing of web-based software and especially web services (e.g. [19–

21]). One mature area where ontologies have been successfully applied is requirements 
engineering. Requirements engineering is concerned with the elicitation, specification 
and validation of the requirements encountered in software systems [22]. The use of 
ontologies in requirements engineering date back to the 1990s, e.g. [23–25]. There ex-

ists a clear synergy effect between the ontological modelling of domain knowledge and 
the modelling of requirements performed by requirement engineers [26]. Recently, a 
renewed interest in utilizing ontologies in requirements engineering has surged due to 
the appearance of semantic web technologies [17, 26].

In the OSTAG project, two case studies were provided by two of the participating 
project companies, Saab Avionics and AddQ. The first case s tudy (provided by Saab 
Avionics) originated from the avionics domain. In the avionics industry, many of the 
systems are required to be highly safety-critical. For these systems, the software deve-

lopment process must comply with several industry standards, like DO-178B [27]. The 
requirements of the entire system, or units making up the system, must be analysed,
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specified and validated before initiating the design and implementation phases. In the

research project presented in this book chapter, an ontology was developed representing

the requirements of a software component pertaining to an embedded system located in

a fighter airplane. The requirements used by Saab are written in natural language and

joined in documents, such as software requirements specification (SRS) documents and

interface requirements specification (IRS) documents, followed by a manual validation

performed by domain experts within the avionic industry. The requirements ontology,

created in the project, represented the software requirements, the software, the hardware

and the communication components belonging to the embedded system. An ontology

by itself is a static representation of a knowledge domain, such as software require-

ments. Once the ontology has been created, it must be used to create the software test

cases. One way of doing this is by using inference rules that represent the expertise of

an expert software tester. The inference rules were coded in Prolog and made use of the

ontology entities to generate the test cases. The Prolog inference engine controlled the

process of selecting and invoking the inference rules.

The second case study (provided by AddQ) originated from the car manufacturing

domain and, more specifically, the representation of an embedded module complying

with the Automotive Open System Architecture (AUTOSAR 4.0) standard [28]. In ge-

neral, the AUTOSAR standard serves as a platform upon which vehicle applications are

implemented to minimize the barriers between different functional domains. It introdu-

ces a standardized layer between the application software and the electronic control unit

hardware, thus making the software largely independent of the chosen microcontroller

and original equipment manufacturer (OEM). The result is a simplified development

process that enables high flexibility and an easy reuse of the application software. AU-

TOSAR is used by most of the car manufacturers, like BMW, Volkswagen, Toyota and

Volvo. The AUTOSAR application that was modeled in the second case study consisted

of a communication manager module (ComM) that acts as a resource manager which

encapsulates the control of the underlying communication services.

Until this moment in time (2017), within the OSTAG project, we have implemented

the method of ontology-based software test case generation for the first case study (the

avionics case), and we have also run some evaluations. The results indicate that it is

feasible to create software test cases relying on a requirements ontology, and that the

quality of the generated test cases is equally good as the manually produced test cases.

Details of the implementation of the first case study, together with some results and

the evaluations of these, are presented in section 3, 4 and 5, respectively. Currently, we

continue our research with a focus on the AUTOSAR case study. The requirements from

the avionics case are on a functional level (unit testing). They are rather well defined

and documented in text with a clear structure. Hence, it is relatively straightforward to

generate an ontological model from these requirements. The AUTOSAR requirements,

on the other hand, are on a high level. The requirements are documented in long and

complex texts. Preliminary results indicate that additional tools are required to be able

to produce the requirements ontology. At the end of this book chapter, we comment

on the additional challenges related to the AUTOSAR case study and propose possible

solutions to respond to these challenges.
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The rest of the book chapter is structured as follows. Section 2 introduces the re-

aders to related work in the ontology, inference rules, and genetic algorithms areas. 
Section 3 discloses the details of the avionics case study and the generated ontology re-

presenting the software requirements and the software components. After having a good 
knowledge of the ontology, section 4 outlines the details of how to produce the software 
test cases. The section includes a presentation of the translation of the ontology from 
an OWL representation to an executable Prolog equivalent, presents the application of 
the inference rules (also represented in Prolog) on the ontologies to create the software 
test cases, and ends with an outline of genetic algorithms, their use in software testing 
and some preliminary results originating from the OSTAG project. No implementation 
of a model is complete without a proper evaluation of it. Thus, some initial evaluation 
results are presented and discussed in section 5. It should be noted that the evaluati-

ons and the results from these are coming from the first case study only, i.e. related to 
the avionics domain. In section 6, some general conclusions of the OSTAG project are 
presented and, to sum up, in section 7, several promising future research directions are 
outlined.

2 Related Work

The reason for conducting tests on software products/systems is mainly to be able to put 
some level of trust on the quality and requirement fulfilment of said products/systems. 
To be able to run tests on a product/system, test case(s) must be designed and the corre-

sponding test script(s) developed. When it comes to the focus of software test activities, 
as far as the test code is concerned, two main areas can be identified; code coverage 
testing (which could be looked upon as testing the output of a software design pro-

cess) and requirement coverage testing (which could be looked upon as testing the 
input to a software design process). All the presented model-driven test case genera-

tion approaches referred to earlier have had a focus on code coverage. However, in 
some application domains the verification of the coverage of the requirements, that is 
that all requirements stated in a requirements specification document, have to be con-

sidered and tested in a traceable manner, and the requirements coverage is sometimes 
equally or even more important than code coverage. An example of this are the testing 
activities performed by one of the industrial partners, Saab Avionics, where both code 
coverage testing and requirement coverage testing are of equal importance. Code co-

verage testing can be looked upon as the verification of the functional correctness of a 
software product/system (i.e. is the functionality correctly implemented) while require-

ment coverage testing can be looked upon as the validation of the functional correctness 
of a software product/system (i.e. is the correct functionality implemented). Thus, the 
OSTAG project is one of few research projects where requirement coverage has been 
contemplated from a test case generation point of view.

In many occasions, the design and implementation of test cases is a purely manual 
activity. If this task could be automated it would help test designers who are developing 
the test cases. Model-Based Testing (MBT) is a method to create functional test cases 
[29–31]. With MBT it is possible to generate test cases from models that describe the 
test object or system under test. Some benefits of MBT are:
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– it provides the opportunity to automate the process for test specification,

– it creates an acceleration in the specification of test scripts,

– it makes the time and resource consuming task of test specification less dependent

on the amount and expertise of testers,

– with the use of a model, small changes in the documentation are translated into new

test scripts in only a few seconds.

One specific modelling language that has emerged as the prime modelling tool is the

Unified Modelling Language (UML). Many projects have been presented that have had

a focus on the automatic generation of test cases based on the usage of UML [32]. Other

model-based test case generation projects have relied on Function Block Diagrams [33]

or (Finite) State Machines [34, 35]. Two specific research approaches, with the goal of

automatically producing test cases and that both bear resemblances to the OSTAG pro-

ject, is the TextAnalyzer tool by Sneed [36, 37] and the SOLIMVA methodology by de

Santiago et al. [38–40]. MBT is an approach based on creating test cases derived from a

behaviour model of the test object, the (test) model. This model describes the expected

behaviour of the test object. Test cases are then, where possible, automatically genera-

ted from the test object. The challenge with this approach lies in the creation of a formal

behaviour model in which the operation of (part of) the application is represented. How

this model should be created, and exactly what details that should go into the model,

is not self-evident. Furthermore, if the development of the model is not performed by

experts, potential errors could be introduced, errors that could propagate to the genera-

ted test cases. Instead of the extra step of having to create a test model to generate the

test cases, in the OSTAG-project the test cases were created based on the requirements

captured in the requirements ontology.

A lot of research efforts have been put into the application of ontologies in re-

quirements engineering (e.g. [41–43]). Much of the research deals with inconsistency

and incompleteness problems in requirement specifications. For example, in [41], an

ontology is proposed to support the cooperation between requirements engineers. The

ontology provides a formal representation of the engineering design knowledge that

can be shared among engineers, such that the ambiguity, inconsistency, incompleteness

and redundancy can be reduced when engineers concurrently develop requirements for

sub-systems of a complex artifact. In other related work, such as described in [24, 42],

ontologies are proposed to provide a framework for the requirements modelling to sup-

port the requirements engineering process. Such a framework can help mitigating the

difficulties encountered in requirements engineering, such as negotiating a common

understanding of concepts, dealing with ambiguity, and clarifying desires, needs and

constraints. Another direction in the application of ontologies in requirements engi-

neering is to represent requirements in a formal ontology language, to support consis-

tency checking, question answering, or inferring propositions (e.g. [23, 44]). Most of

the work within this direction focus on the analysis of consistency, completeness and

correctness of requirements through reasoning over requirements ontologies. The work

presented in this book chapter is also concerned with the representation of requirements

in an ontology, but the ontology is mainly employed to support advanced methods in

the subsequent stages of the software development process and, more specifically, the

generation of test cases.
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The Prolog language has been used as a reasoner for OWL ontologies in many dif-

ferent projects. For example, in [45], the authors describe an approach of reasoning 
over temporal ontologies that translates OWL statements to clauses in Prolog and then 
makes use of the built-in inference mechanism. In [46], an OWL ontology and OWLRu-

leML rules were translated into Prolog clauses, which were then used to infer new facts 
through the use of the Prolog inference engine. The work presented in this book chapter 
has also used Prolog as a reasoner. The difference is that the ontology was translated 
from OWL functional-style syntax to Prolog syntax, thus providing a more natural way 
of writing rules querying the ontology.

Another way of producing test cases that was evaluated in the OSTAG project, apart 
from using ontologies and inference rules, was evolutionary testing. The field of evo-

lutionary computing goes back to the 1960’s, when evolutionary programming [47], 
evolution strategies [48] and genetic algorithms [49] surged, later to be joined by ge-

netic programming and other similar techniques. The idea behind these efforts was to 
come up with algorithms inspired by the biological evolution and apply these on com-

putational problem areas. The special area of software testing and the application of 
evolutionary techniques and genetic algorithms to automatize testing started in the early 
90’s. Since then, several articles have been presented, e.g. [50–55]. It should be noted, 
however, that all of the results presented in these articles have been based on the fact 
that they had access to the source code. Furthermore, what was created using evoluti-

onary techniques and genetic algorithms was test data and not complete test cases or 
test scripts. Hence, there is a difference in complexity between automatically creating 
qualitative test data and complete, useful and correct test cases (where the test data is 
only one of several components). The idea behind the work in the OSTAG project has 
thus been to create complete test cases, including predefined prerequisites, necessary 
input data, correct test procedures, and useful output data. The complete test cases are 
created based on the information encountered in the developed ontology, an ontology 
whose main object is that of modeling the requirements defined i n t he requirements 
document. Some initial results from this challenging work are presented further on in 
this book chapter.

3 Ontology Development

In this section, the requirements ontology that was developed based on information from 
the avionics case study [56] is presented. The resulting ontology represents the require-

ments of a telecommunication software component pertaining to an embedded system 
used in an avionics system placed in a fighter a ir-plane. T he s oftware c omponent in 
the embedded system is fully developed in compliance with the DO-178B standard. As 
defined in DO-178B, the requirements of the software component have been prepared, 
reviewed and validated. The results indicate that the ontology can successfully support 
the generation of test cases. But before going into any more details of the development 
process that was applied during the creation of the ontology, we describe some ontology 
methods that influenced our development process to a greater or lesser degree. Over the 
years, many methods have been presented for building ontologies. For example, Onto-

logy 101 [57] proposes a very simple but practical guide for building an ontology using
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Fig. 1. The ontology development process.

The developed ontology includes three specific pieces of knowledge:

– a meta model of the software requirements,

– the domain knowledge of the application, e.g. general knowledge of the hardware

and software, electronic communication standards, etc.,

– all the requirement specifications defined in the SRS document.

The current version of the ontology contains 42 classes, 34 object properties, 13 da-

tatype properties, and 147 instances in total. Figure 2 presents the meta model of the

software requirements. As indicated in the figure, each requirement is concerned with

certain functionalities of the software component. For example, a requirement may be

concerned with data transfer. Each requirement consists of at least requirement parame-

ters, which are inputs of a requirement, requirement conditions, and results, which are

usually outputs of a requirement, and exception messages. Some requirements require

the system to take actions. Furthermore, there exists a traceability between different

requirements, e.g. traceability between an interface requirement and a system require-

an ontology editing environment, such as Protégé [58]. METHONTOLOGY [59] con-

tributes with a general framework for ontology development, which defines the main 
activities that people need to carry out when building an ontology, and outlines three 
different processes: management, technical, and supporting. The OTK Methodology 
[60] focuses on an application-driven ontology development. There are also other met-

hods of ontology engineering, e.g. [61] that introduces eXtreme Design (XD) stemming 
from eXtreme Programming, the latter being a software development method. All of the 
mentioned methods focus on a collaborative, incremental, and iterative process of on-

tology development. Unfortunately, no one, single ontology development method was 
sufficient for our ontology development process.

The ontology development process followed in this project is illustrated in Figure 1. 
During the development of the ontology, the developers worked as a pair and followed 
an iterative and incremental process. In each iteration, the developers basically followed 
the steps suggested in Ontology 101, and considered the activities described in the sup-

porting process in METHONTOLOGY. Lightweight competence questions (CQs) were 
used as a guidance to build the ontology. These CQs are simple and quickly prepared. In 
each iteration the developers had an opportunity to meet with the industry experts and 
discuss the issues they had encountered during the acquisition and specification steps. 
The developers also received feedback from the users of the ontology, and modified the 
ontology when needed. The development tool used was Protégé. HermiT reasoner [62] 
was used to check the consistency of the ontology. Finally, the ontology was written in 
OWL [63].
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Fig. 2. The meta model of the software requirements in the ontology.

Fig. 3. Ontology fragment for the domain knowledge.

4 Test Case Generation

In this section, two different approaches of producing test cases will be outlined. The

first approach is based on the usage of inference rules together with the requirements

ontology. The second approach is based on the use of genetic algorithms to produce test

cases but without the need of any source code or any executable version of the software.

4.1 Using Inference Rules to Derive Test Cases from the Ontology

In this subsection are presented the inference rules and how they have been applied to

the requirements ontology to create test cases [64]. But before going into any details,

ment. Figure 3 illustrates an ontology fragment of the domain knowledge of the tele-

communication software component. Figure 4 shows the ontology fragment of one par-

ticular functional requirement specification, in this example, the SRSRS4YY-435. The 
functional requirement defines that if the parity is out of its valid range, the initialisation 
service shall deactivate the Universal Asynchronous Receiver/Transmitter (UART), and 
return the result ”parityCfgError”. The ontology fragments for all of the remaining in-

dividual requirements of the software component, pertaining to the embedded system, 
are similar to the 435 requirement. In figures 2  t o 4 , t he o range b oxes r epresent the 
concepts of the ontology; the white boxes represent the instances; and the green boxes 
provide the data values of the datatype property for the instances.

Ontology-based Software Test Case Generation (OSTAG)

143



Fig. 4. Ontology fragment for a requirement specification, SRSRS4YY-435.

we first present a short background to the problem area of test case generation. To

the best of our knowledge, there exist only a limited number of projects that rely on

ontologies for software testing activities, for example [65, 66]. As defined earlier in

this book chapter, an ontology represents a formal model of the knowledge captured

for a specific domain. It should be stressed, however, that the creation of an ontology

is only the first step in the automatic creation of software test cases. One must also

contemplate the generation of the test cases, having some specific test objectives in

mind. The creation of test cases can be realized in several ways, but in the OSTAG

project we chose to make use of inference rules.

First of all, the ontology was translated into a syntax that was supported by the

inference rules, i.e. Prolog syntax, as Prolog was chosen for coding the inference rules.

We chose Prolog [67] as the language for the implementation as Prolog has means of

representing the rules in a natural way and has means of accessing the entities in the

ontology. Prolog also has a built-in inference engine that was used to execute the coded

rules, to generate the test cases.

An OWL functional-style syntax was chosen as the starting point for the ontology

conversion as this syntax was the most similar to the Prolog syntax. An ontology do-

cument in the functional-style syntax is a sequence of OWL constructs, each located

on a separate line, as well as a number of prefix definitions [68]. A Python script was

written for the OWL-to-Prolog translation, which processed the ontology document,

line by line. Each OWL statement was tokenized and converted according to the Prolog

syntax rules. The list of tokens was subsequently converted into the corresponding Pro-

log statement. The following OWL statements were translated: Declaration, ClassAs-

sertion, SubClassOf, ObjectPropertyAssertion, DataPropertyAssertion, objectProperty-
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Table 1. Example of the conversion of several OWL statements.

OWL functional-style syntax Prolog syntax

Declaration(Class(Requirement)) declaration(class(requirement)).

Declaration(ObjectProperty(OSTAG:requir-

ementForService))

declaration(objectProperty(requirem-

entForService)).

DataPropertyAssertion(:hasParameter-ValueList

:ParityType ”[oddParity, noneParity,

evenParity]”ˆˆxsd:string)

dataPropertyAssertion(hasParamete-

rValueList, parityType, [oddParity,

noneParity, evenParity]).

ObjectPropertyAssertion(OSTAG:requirement-

ForService :SRSRS4YY-435

:InitializationService)

objectPropertyAssertion(require-

mentForService, srsrs4yy 435,

initializationService).

ObjectPropertyDomain(OSTAG:require-

mentForService OSTAG:Requirement)

objectPropertyDomain(requirementFo-

rService, requirement).

AnnotationAssertion(rdfs:label

OSTAG:FIFO ”FIFO”)

annotationAssertion(rdfs(label), fifo,

’FIFO’).

Annotation(owl:versionInfo ”3.0”ˆˆxsd:decimal) annotation(owl(versionInfo), 3.0).

Range, objectPropertyDomain, Annotation, AnnotationAssertion. Table 1 shows se-

veral examples of the translation from OWL to Prolog.

After the translation of the requirements ontology from an OWL-syntax to a Prolog

equivalent, the inference rules were applied to the ontology, to produce the test cases.

To do this, the testers’ expertise on how they use requirements to create test cases, was

represented. Only a few general guidelines for testing can be found in literature, such

as boundary value testing. Also, most expertise is specific to particular types of soft-

ware systems and/or particular domains. Hence, experienced testers at Saab Avionics

were interviewed and existing test cases were studied, together with their correspon-

ding requirements, in order to capture the expertise. This kind of knowledge expressed

inherent strategies for test case creation and was represented as if-then rules.

In the OSTAG project, 16 requirements were examined with 20 corresponding test

cases. Each requirement described some functionality of a service (function) from a

driver for a hardware unit. All requirements were grouped according to services. The

requirements covering six services were analysed. During the analysis of an original test

case, a test case that had been manually created by a software tester, it was compared

with the corresponding requirement to fully understand how the different parts of the

original test case had been constructed. In the subsequent discussions with the industry

software testers that participated in the study, any inconsistencies or remaining doubts

were resolved. The activities resulted in a set of inference rules formulated in plain En-

glish. Each original test case consisted of four parts: prerequisite conditions, test inputs,

test procedure, and expected test results. Consequently, inference rules were formulated

for each of the test case parts. An example of a inference rule for the prerequisites part

of the requirements SRSRS4YY-435 is shown below:

IF the requirement requires deactivation of a UART controller and

the controller has queues

THEN add the prerequisites of filling the queues with data
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The condition (if-part) of each inference rule was formulated in terms of the indi-

vidual representing the requirement and the related ontology entities representing con-

nected hardware parts, input/output parameters for the service and the like. The action

(then-part) part of the rules embodied instructions on how a test case part should be

generated. An example of a Prolog rule that implements the previous inference rule is

given below:

1 tc_prerequisites(Requirement, Prerequisites) :-

2 objectPropertyAssertion(requiresAction, Requirement,

DeactivateUART),

3 objectPropertyAssertion(actsOn, DeactivateUART,

UartController),

4 classAssertion(uart_controller, UartController),

5 setof(Queue,

objectPropertyAssertion(hasQueue, UartController,

Queue),

QueueList),

6 queue_prereq(QueueList, QueueList, Prerequisites).

Line 1 in the example is the head of the rule consisting of the name, input argument

and output argument. Lines 2-5 encode the condition of the rule as well as act as queries

to retrieve the relevant entities from the ontology. Line 6 constructs the prerequisites

part of the test case.

Each test case was generated sequentially, from the prerequisites part through to the

results part. The generated parts were collected into one structure by the following rule:

test_case(Requirement,

tc(description(TCid, ReqID, Service), Prerequisites, Inputs,

Procedure, Results)) :-

req_id(Requirement, ReqID),

objectPropertyAssertion(requirementForService, Requirement,

Service),

tc_prerequisites(Requirement, Prerequisites),

tc_inputs(Requirement, Inputs),

tc_procedure(Requirement, Procedure),

tc_results(Requirement, Results),

new_tcid(TCid).

Finally, the test case structure was translated into plain text in English. The final

result can be found in the right column in Table 3.

4.2 Using Genetic Algorithms to Evolve Test Cases

In the OSTAG project, the use of genetic algorithms in the generation of test cases

has been investigated. Over the years and in numerous projects, evolutionary testing

techniques have been used to create test cases, as described earlier in the book chapter.

Genetic algorithms can be used to find an optimal set of test cases that covers all code

in a program or all paths in an execution path diagram, something that requires access
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to the program code. This is also known as white-box testing. In black-box testing, on 
the other hand, where no program code is available but only an executable version of 
the software under testing, evolutionary techniques have been used to find erroneous 
configurations and input data.

In the OSTAG project, no source code or executable version of the software were 
available. Instead of code or path coverage, we introduced the concept of ontology co-

verage as a measure by which test cases and test case sets could be evaluated. Since 
the ontology is assumed to include all software requirements, a set of test cases that 
completely covers the ontology would therefore, among other things, guarantee that 
all requirements are tested. This approach is, to the best of our knowledge, something 
completely new which has not been previously investigated.

When using genetic algorithms, a population of individuals is evaluated and develo-

ped in the direction of some optimum. Each individual is assigned a so called fitness va-

lue, which makes it meaningful to talk about better or worse members of the population. 
New individuals can be created by mutations, small variations of existing individuals, 
or by different cross-over operations, where selected individuals, parents, give rise to 
new individuals, children, inheriting some of their parents’ properties. The fitness of an 
individual often plays an important role, both when selecting individuals to mutate or to 
become parents, and when deciding if a new-born individual shall replace an old one.

In our project, each individual in the following description represents a set of test 
cases. Usually, a test case contains several parts. There are prerequisites, with the in-

tention to put the machine in a certain state, input data, and a description of the test 
procedure. These three parts can be looked upon as being different kinds of input data. 
Hence, a set of test cases is just a sequence of inputs. However, a complete test case 
must also contain some expected output. But what could be judged as being expected 
outputs from a certain sequence of prerequisites, input data and test procedures, must 
be validated based on some software documentation and can, for obvious reasons, not 
be generated using random methods.

A mutation of an individual is a change of a single input in the sequence, cross-over 
means that new sequences are built taking parts of two existing sequences. A mutation 
that alter the length of a sequence is also introduced. The fitness value i s calculated 
from the length of the sequence, something that we want to minimize, and the ontology 
coverage, which should be maximized. To give these two goals appropriate weights, the 
fitness of a sequence x is given by the fitness function

f(x) = A · Co(x) − L(x),

where A is a (large) constant, Co is the ontology coverage computed as (number of 
covered ontology instances)/(total number of instances in the ontology), and L(x) the 
number of inputs in the sequence.

The idea of using genetic algorithms to produce test cases have so far only been 
tested on model examples. A typical result from a simulation is shown in figure 5. Each 
individual is defined by a number sequence and initiates with an initial population con-

sisting of 100 random generated sequences. As is shown in the figure, the best of these 
randomly generated sequences has a length of about 520 while covering approximately 
70% of the ontology. As the ontology coverage has a higher priority than the sequence
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Fig. 5. Results from a genetic algorithm trial. In each generation, three new individuals (number

sequences) are generated and evaluated. For each generation, the length of the best individual

(nTC=number of test cases) and its coverage is shown.

length in this example, the genetic algorithm initially produces sequences with higher

coverage at the expense of greater sequence lengths. However, as the algorithm pro-

ceeds and the coverage asymptotically approaches 100%, for each new generation the

algorithm finds shorter sequences with equal or slightly better ontology coverage.

5 Evaluation of the Approach

The requirements ontology developed in the OSTAG project is a type of application

domain ontology. Any type of application domain model has to be evaluated, to de-

monstrate its appropriateness for what it was contemplated, and this is also true for the

developed requirements ontology. The challenge in ontology evaluation is to determine

the quality features that are to be evaluated as well as the evaluation method. Many dif-

ferent ontology evaluation criteria, or features as we call them in this book chapter, have

been discussed in literature, e.g. consistency, completeness, conciseness, expandability

and sensitiveness [69], structural measures, functional measures and usability-profiling

measures [70], and accuracy, adaptability, clarity, completeness, computational effi-

ciency, conciseness, consistency and organisational fitness [71]. Which quality features

to evaluate depend on various factors, such as the type of ontology, the focus of an

evaluation and the person who is performing the evaluation. Not many tools exist for

the handling of different key features but Lantow have presented an on-line platform,

OntoMetrics, for the calculation of ontology quality metrics (or features) [72]. For an

application domain ontology it is enough to evaluate the features important to the appli-

cation or domain. In this project we have focused on three specific features, the usabi-

lity, applicability and the correctness of an ontology. These three features were found to

be the most important to use with the requirements ontology for the test case generation

in our project.
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– We define ontology usability as a set of attributes that describe the effort needed by

a human to make use of an ontology. The evaluation of the usability is performed

by typical potential users of the ontology, normally application domain experts.

– We define ontology applicability as the quality of the ontology being correct or

appropriate for a particular application domain or purpose. The evaluation of the

applicability of the ontology is carried out by a developer of a software component

that uses the ontology to implement its functionality.

– We define ontology correctness as the degree to which the information asserted in

the ontology conforms to the information that should be represented in the onto-

logy. It is about getting accurate information and also accurately documenting the

information gathered in an ontology. The evaluation of the correctness is performed

by application domain experts.

The three evaluation features are described in continuation. The evaluations of the

features were performed on one of the two case studies, provided by the industrial part-

ner coming from the avionics domain. Similar evaluations as the ones presented in the

following subsections are planned for the second case study, focusing on AUTOSAR.

Apart from evaluating the inherent quality of the generated requirements ontology

itself, the quality of the output when making use of the aforementioned ontology, i.e.

the generated test cases, should also be evaluated. To illustrate this evaluation and the

results from it, one example of a generated test case is presented in the last subsection.

5.1 Evaluation of the Ontology Usability

The evaluation of the usability of a product or system is something that goes back in

time. In 1986, Brooke developed a questionnaire, the System Usability Scale (SUS) [73].

During the years since then, it has been demonstrated that the SUS is applicable over

a wide range of systems and types of technology and that it produces similar results as

more extensive attitude scales that are intended to provide deeper insights into a users

attitude to the usability of a systems. The SUS also has a good ability to discriminate

and identify systems with good and poor usability [74]. In the OSTAG project we used

a version of the SUS introduced by Casellas [75]. The scale, including its ten questions

and the result, is presented in Table 2. The texts in the ten questions have only been

slightly modified to adjust to the domain of ontologies.

The evaluation of the usability of an ontology is especially important when the on-

tology is going to be used by application domain experts who are normally not ontology

experts. The ontology was evaluated by two persons, one being an application domain

expert (in software testing) and the other being an ontology expert, in order to compare

their different views on the usability of the ontology. An evaluation of only two persons

will only provide an indication of the usability of the ontology. However, Tullis and

Stetson [76] has shown that it is possible to get reliable results with a sample of only 8-

12 users. The results from a more extensive evaluation of the usability of the ontology,

including four domain experts and one ontology expert, will be published during 2017.

The statements at the odd numbered positions in Table 2 are all in positive form and

the even numbered positions are all in negative form, as defined by the SUS. The reason

for this alternation is to avoid response biases, especially as the questionnaire invites
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Table 2. Ontology usability evaluation. (AE:Application Domain Expert, OE:Ontology Expert,

score: 1=strongly disagree, 2=disagree, 3=no preference, 4=agree, 5=strongly agree).

Statements to evaluate the usability of the requirement ontology AE OE

1 I think that I could contribute to this ontology 3 5

2 I found the ontology unnecessarily complex 3 2

3 I find the ontology easy to understand 4 4

4 I think that I would need further theoretical support to be able to understand this

ontology

2 1

5 I found that various concepts in this system were well integrated 4 5

6 I thought there was too much inconsistency in this ontology 2 2

7 I would imagine that most domain experts would understand this ontology very

quickly

4 2

8 I find the ontology very cumbersome to understand 2 2

9 I am confident I understand the conceptualisation of the ontology 4 5

10 I needed to ask a lot of questions before I could understand the conceptualisation of

the ontology

2 1

rapid responses by being short; by alternating positive and negative statements, the goal

is to have respondents read each statement and make an effort to reflect whether they

agree or disagree with it. The intrinsic details related to the calculation of the scoring

can be found in [73]. When applying the scoring procedure on the result presented in

the table, the SUS scores indicate that the usability result for the application domain

expert was 70 while the ontology expert had a result of 82.5. This indicates that the

usability of the ontology from the application domain expert’s point of view was in the

57 percentile rank while the usability of the ontology from the ontology expert’s point

of view was in the 92 percentile rank.

5.2 Evaluation of the Ontology Applicability

According to our definition of applicability, the ontology should exhibit the quality of

correctness or appropriateness when used for a particular application domain or pur-

pose. To evaluate the applicability of the requirements ontology, it has been used for

automatic generation of software test cases based on the requirements in the SRS docu-

ment. The generation of test cases was done by applying inference rules to the ontology

as described in section 4.1. The OWL statements from the requirements ontology were

accessed by the inference rules. During the first experiment 66 distinct entities from the

ontology were used for the test case construction. The test cases were generated as plain

text in English. Our experiment showed an almost one-to-one correspondence between

the texts in the generated test cases and the document texts provided by Saab Avionics

(see subsection 5.4 for more details).

The evaluation showed that the developed requirements ontology can fulfil its pur-

pose, that is, to support different stages of a software development process. The onto-

logy has been used for the automation of a part of the testing process and allowed for

the successful generation of test cases. The ontology allowed for a straightforward way

of formulating inference rules. It was fairly easy to integrate the ontology in the OWL

functional syntax in the Prolog program containing the inference rules. The OWL ex-
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pressions were directly employed in the inference rules (after small syntactic changes 
in the translation phase) thanks to the availability of instances in the ontology. Explo-

ring the ontology paths allowed for the capture of strategies for the test case generation. 
The minor deficiencies in the ontology that were discovered during the development of 
inference rules were addressed in subsequent iterations.

5.3 Evaluation of the Ontology Correctness

For the evaluation of the correctness of the ontology, two different tools were used by 
five evaluators, f our i ndustry d omain experts a nd o ne o ntology expert. T he fi rst tool 
that was used was Protégé, to be able to access the information represented in the on-

tology and compare it with the information written in the SRS document. The second 
tool that was used was a web-based application developed within the project, a tool 
that transformed, or verbalised, the information represented in the ontology into a na-

tural language text, very much like the original text found in the SRS document. The 
general purpose of verbalisation tools is to make ontologies more readable for applica-

tion domain experts [77, 78]. The research focus in the ontology verbalisation domain 
has been on expressing the axioms in an ontology in natural language (e.g. [79, 80]), 
or generating a summarized report of an ontology (e.g. [81]). The requirements in the 
SRS document coming from the avionics case study were well-structured. The verbali-

sation tool made use of a simple pattern-based algorithm. While simultaneously using 
Protégé and the verbalisation tool, the experts were asked to validate the correctness of 
the ontology, comparing it with the texts found in the SRS document. Each of the five 
experts were assigned 9 or 10 requirements each that they were asked to validate. When 
evaluating the results, it was striking that, in general, the evaluators used less time but 
managed to verify more requirements when using the verbalisation tool than if only 
relying on Protégé. But, as one of the industry domain experts put it, ”Note that ’human 
understandable’ issues that are ’machine impossible’ will go undetected [if relying so-

lely on verbalisation, authors’ comments]. In Protégé, it was possible to see when a 
requirement was misinterpreted. Here it is back to textual representations [when using 
verbalisation, authors’ comments] that may hide the misunderstanding. Easier to read 
though, but changing format is sometimes good”. More details on the evaluation results 
will be presented in a publication during 2017.

5.4 Evaluation of the Generated Test Cases

To generate the test cases, a total of 40 inference rules were used. Together, they gene-

rated 18 test cases for 15 requirements. The corresponding test cases were reproduced 
in plain English, approximating the format described in the software test description 
(STD) document (provided by Saab Avionics). To illustrate the similarity between the 
two representations, one specific requirement, the SRSRS4YY-435 that was outlined in 
a previous section, has been chosen. The results from this evaluation can be observed 
in Table 3 where the text in the left column is a slightly modified excerpt from the STD 
document while the text in the right column is the generated output, after applying some 
of the inference rules to the requirements ontology. SRSRS4YY-435 is a requirement 
that is evaluated in one single test case (while other requirements sometimes need to
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Table 3. Test case from the STD (left column) and the corresponding generated test case by

applying inference rules to the ontology (right column).

. . .

Test Inputs

1. According to table below.

2. <uartId> := <uartId> from the

rs4yy init call

3. <uartId> := <uartId> from the

rs4yy init call

4. <parity> := rs4yy noneParity

. . .

Test Inputs:

1. <parity> := min value - 1

<parity> := max value + 1

<parity> := 681881

2. <uartID> := <uartID> from the

initializationService call

3. <uartID> := <uartID> from the

initializationService call

4. <parity> := noneParity

Test Procedure

1. Call rs4yy init

2. Call rs4yy write

3. Call rs4yy read

4. Recovery: Call rs4yy init

Test Procedure:

1. Call initializationService

2. Call writeService

3. Call readService

4. Recovery: Call initializationService

Expected Test Results

1. <result> ==

rs4yy parityCfgError

2. <result> == rs4yy notInitialised

3. <result> == rs4yy notInitialised,

<length> == 0

4. <result> == rs4yy ok

. . .

Expected Test Results:

1. <result> ==

parityConfigurationError

2. <result> == rs4yyNotInitialised

3. <result> == rs4yyNotInitialised,

<length> == 0

4. <result> == rs4yyOk

. . .

be tested in more than one test case), in this occasion test case STDRS4YY-133. As

can be observed in the table, there is an almost one-to-one correspondence between the

texts in the two columns, something that was positively commented on by the people at

Saab Avionics. Even more so, on some occasions the generated test case texts indicated

a discrepancy to the corresponding test case texts found in the STD document. These

discrepancies were presented to and evaluated by personnel from Saab Avionics and on

occasions, the observed discrepancies indicated a detected error in the STD document.

Hence, this evaluation of the correctness of the generated test cases helped improving

the overall quality of the STD document.

6 Conclusions

In this book chapter we have presented a method to convert software requirements to

a formal model in the form of a (requirements) ontology. Once the ontology has been

produced, inference rules can be applied to it to produce software test cases. The first ex-

periments indicated that, by using 40 inference rules, 18 test cases for 15 requirements

could be generated as plain text in English. The examination of the results showed an

almost one-to-one correspondence between the texts in the generated test cases and
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the manually produced texts provided by Saab Avionics. As the conducted experiments 
were limited in size, additional experiments with an increased number of inference rules 
are required to demonstrate the full potential of the process.

The test case generation process has demonstrated that the quality of the generated 
test cases improved. Minor errors that had gone undetected by the human test case de-

signers were identified and corrected. This result highlights the benefits of automating 
the test case generation process. In the near future, additional types of quality metrics 
are going to be evaluated, such as the time savings from automating the test case ge-

neration process through real-life time studies, and the coverage of the requirements 
in the ontology to demonstrate that all requirements in the requirements specification 
document have been considered and tested.

7 Future Work

The ontologies have so far been developed manually in the OSTAG project, just as a 
proof of concept of the initial ideas. However, manual ontology development is not an 
easy or trivial task. It is a time-consuming, expensive, error-prone and labor-intensive 
activity. During the execution of the OSTAG project, ontology and domain experts ma-

nually processed all the information and participated throughout the manual ontology 
development process, therefore making it a fairly expensive process. Hence, it is es-

sential to be able to (semi-)automatically create ontologies in order to save time and 
resources. Ontology learning is the research field that deals with the (semi-)automatic 
construction of ontologies. In the near future, we will investigate how ontologies can 
be (semi-)automatically developed from an SRS document. Different approaches and 
tools will be evaluated for this purpose, such as natural language processing and ma-

chine learning techniques.

Preliminary studies have showed that different levels of requirements are written in 
different ways, e.g. low-level requirements are structured while high-level requirements 
are not. The avionics case study relies on low-level requirements while the AUTOSAR 
case study relies on high-level requirements. The high-level requirements in the AUTO-

SAR standard are documented in a less structured, more complex text format as compa-

red to the avionics case study. The created ontology development process is not capable 
of processing these different types of requirement in an optimal way. Hence, we will 
focus our investigation on how to extract and annotate the meaning of an AUTOSAR 
requirement in the best way, and how to represent the meaning of an AUTOSAR re-

quirement to efficiently support the test case generation methods. A preliminary study 
[82] has indicated that exploiting standard ontological resources for natural language 
processing, such as FrameNet [83], could be a solution of the first task. A lightweight 
ontology, or embedding rich meta-data within requirements documents, could be a so-

lution of the second task. Yet another approach could be to limit the complexity and 
the expressiveness that can be found in several requirements, such as in AUTOSAR, by 
relying on requirement boilerplates (on a syntactic level) or requirement patterns (on 
a semantic level) when writing the requirements [84–86]. The third important task is 
how to acquire and represent test case generation strategies in a more general way. 
One approach to tackle this problem is to introduce several layers of inference rules
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to make the knowledge more modular and to gather the case specific knowledge in one

layer. Another approach is to use algorithms instead of a set of inference rules. An algo-

rithm would allow for representation of more general strategies for test case generation.

Further studies will have to be carried out to implement and evaluate the suggested

approaches.

Within the research field of ontology development is situated the crucial activity

of building high quality ontologies. The challenge is the difficulty of defining quality,

and currently there exists no common definition of ontology quality, something that

was elaborated on in a previous section. Different quality characteristics can be defined,

depending on the scope and purpose of an ontology. In this paper we proposed usability,

applicability and correctness as three key quality features of a requirements ontology

in relation to the verification and validation of the ontology. The ontology correctness

was evaluated using Protégé and a verbalisation tool. To extend the usefulness of the

verbalisation tool, we plan to generalize the verbalisation process in such a way that

the tool can be used to evaluate other types of ontologies. To provide good tools for

ontology quality evaluation or automate the process is something that is important for

the effectiveness and efficiency of ontology development. The focus of our future work

is on the investigation of practical methods and tools for the evaluation of additional

quality features, apart from the three features presented previously.

With regard to the use of genetic algorithms, we have come to the following conclu-

sion; the goal is to cover the ontology, meaning among other things that all requirements

are covered. A genetic algorithm produces test cases using random methods, and each

randomly created test case must be evaluated. The evaluation of a test case includes

an investigation of every ontology instance to see whether this instance is covered or

not by the test case. This investigation can often require an amount of work compara-

ble to the work required to manually construct a test case for each of the instances. In

such cases, the use of genetic algorithms brings about no substantial value. However,

for large programs, where the same input data can cover a large number of instances

in non-predictable and non-obvious ways, or when the same input data that tests one

instance can serve as prerequisites for testing other instances, genetic algorithms might

help reducing the number of test cases required to cover the ontology.
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N.F., Tu, S.W.: The evolution of Protégé: an environment for knowledge-based systems

development. International Journal of Human-computer studies 58 (2003) 89–123
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84. Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Zojer, H., Panis, C.: DODT: increasing

requirements formalism using domain ontologies for improved embedded systems develop-

ment. In: Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2011 IEEE

14th International Symposium on, IEEE (2011) 271–274

85. Arora, C., Sabetzadeh, M., Briand, L.C., Zimmer, F.: Requirement boilerplates: transition

from manually-enforced to automatically-verifiable natural language patterns. In: Require-

ments Patterns (RePa), 2014 IEEE 4th International Workshop on, IEEE (2014) 1–8
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