
http://www.diva-portal.org

This is the published version of a paper presented at European Projects in Knowledge
Applications and Intelligent Systems, July 20-23, 2016, Lisbon, Portugal.

Citation for the original published paper:

Tarasov, V., Tan, H., Adlemo, A., Ismail, M., Mats, J. et al. (2015)
Ontology-based Software Test Case Generation (OSTAG)
In: R. J. Machado, J. Sequeira,H. Plácido da Silva, & J. Filipe (ed.), European Projects
in Knowledge Applications and Intelligent Systems - Volume 1: EPS Lisbon 2016 (pp.
135-159). SciTePress
https://doi.org/10.5220/0007901301350159

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-43426

Ontology-based Software Test Case Generation

(OSTAG)

Vladimir Tarasov1, He Tan1, Anders Adlemo1, Anders Andersson1,

Muhammad Ismail1, Mats E. Johansson2 and Daniel Olsson3

1School of Engineering, Jönköping University, Box 1026, 551 11 Jönköping, Sweden
2Saab AB, Avionics Systems, Stensholmsvägen 20, 561 85 Huskvarna, Sweden

3AddQ AB, Odinsgatan 11, 411 03 Göteborg, Sweden

{vladimir.tarasov, he.tan, anders.adlemo, anders.andersson,

muhammad.ismail}@ju.se, mats.e.johansson@saabgroup.com,

daniel.olsson@addq.se

Abstract. Testing is a paramount quality assurance activity in every software de-

velopment project, especially for embedded, safety critical systems. During the

test process, a lot of effort is put into the generation of test cases. The presen-

ted OSTAG project aimed at developing methods and techniques to automate the

software test case generation for black-box testing. The proposed approach was

based on the creation of a software requirements ontology and the application

of inference rules on the ontology to derive test cases. The ontology represents

knowledge of the requirements, the software system and the corresponding ap-

plication domain while the inference rules formalize knowledge from documents

and experienced testers in the domain of test planning and test case generation.

A software prototype of the approach was implemented and one of the industrial

project partners evaluated the results. An alternative method for generating test

cases, based on genetic algorithms, was also explored.

Keywords. Black-box Testing, Embedded Systems, Genetic Algorithms,

Inference Rules, Knowledge Modelling, Model-Based Testing, Ontology

Development, Ontology Quality Evaluation, Ontology Verbalisation, OWL,

Prolog, Protégé, Software Requirements Specification, Test Case Generation.

1 Introduction

The software market is increasing on a yearly basis and shows no sign of slowing down.

According to Gartner, the worldwide IT spending is predicted to grow 2.7% in 2017, to

reach a total of USD 3.5 trillion [1]. As software products and systems permeate every

aspect of our lives, we become more and more dependent on their correct functioning.

Consequently, quality concerns are becoming much more vital and critical as end-users

become increasingly dependent on products that include software. As is the case in all

product development, the quality of the software must be verified and validated through

painstaking test activities, such as test planning and design, ocular reviews of require-

ments documents and program code, program testing, system testing, acceptance tes-

ting, and so on. Despite these efforts, errors sometimes remain undetected in the code.

Tarasov V., Tan H., Adlemo A., Andersson A., Muhammad I., Johansson M. and Olsson D.

Ontology-based Software Test Case Generation (OSTAG).

DOI: 10.5220/0007901301350159

In European Projects in Knowledge Applications and Intelligent Systems (EPS Lisbon 2016 2015), pages 135-159

ISBN: 978-989-758-356-8

Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

135

In accordance to Capgemini World Quality Report 2017 [2], the budget allocation for

quality assurance and testing, as percentage of IT expenditures in the software indu-

stry, was 31% in 2016. Another recent figure, coming from a study performed by the

Cambridge University [3], estimated the yearly cost of software errors caused by poor

quality procedures to roughly USD 312 billion.

One way of slowing down this ongoing cost increase related to software testing acti-

vities is to automate as many as possible of these activities. As far as test management

and test script execution goes, this is a mature field where commercial products assist

software testers in their daily work, like TestingWhiz [4] or HPE Unified Functional

Testing [5]. Recent research results indicate that automatically generated tests achieve

similar code coverage as manually created tests, but in a fraction of the time (an average

improvement of roughly 90%) [6]. The starting point of the OSTAG project, presented

in this book chapter, has been to provide a method of semi-automatically preparing soft-

ware test cases, followed in the near future by a project developing a complete automa-

tion process. One problem when generating test cases is to come up with a ”reasonable

good” set of ”adequate” software test cases (terms that have not yet been unambiguously

defined by the research community), but results presented by Enoiu at al. indicate, that

”the use of an automated test generation tool does not result in better fault detection

compared to manual testing” [6]. For the past 10-15 years, the research community has

been proposing different techniques to alleviate the burden of manually creating test

cases through an automatic generation of test cases (e.g. [7]) that converts software re-

quirements into a formal model (e.g. using statecharts [8]). Another area of automatic

test case generation is through evolutionary testing that appears to be successful for au-

tomatic test case generation in white-box testing [9, 10]. The use of evolutionary testing

techniques has also been evaluated in the OSTAG project in the form of genetic algo-

rithms for the generation of software test cases, but for black-box testing, with the big

difference that no source code was required.

A software product is usually valued or appreciated through its functionality, so-

metimes ”externally” through the interaction with a human, or otherwise ”internally”

through the interaction with another software module. Whatever the case and apart from

this functionality validation, software also embodies and reflects the implicit knowledge

of the application domain in which it is supposed to function. At its core, the software

can be viewed as being a knowledge repository where the knowledge is largely related

to the application domain [11]. Consequently, it is essential to be able to make use of

the knowledge related to relevant aspects surrounding and influencing the software, e.g.

specific domain knowledge, past and new requirements, policies, and contexts in which

people or end-users use and interact with the software. Thus, using this knowledge to

support more intelligent software development processes requires a machine-facilitated

understanding of the knowledge. The management of relevant and essential knowledge

related to software engineering in general, and software testing in specific, is thus of

utmost importance. A mapping study by Ferreira de Souza et al. [12] initiated with an

evaluation of 562 publications related to a number of knowledge management initiati-

ves in the software testing domain. Their study did not disclose any previous research

making use of ontologies for software test case generation. They have, however, presen-

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

136

ted a reference domain ontology of their own, representing software testing knowledge
[13].

One way of handling software requirements knowledge used to generate test cases
(as described in this book chapter), is by modelling the knowledge relying on semantic
technologies. An example of such a semantic technology is a formal model known as an
ontology. A commonly cited definition by Studer et al. states that ”an ontology is a for-

mal explicit specification of a shared conceptualisation” [14], a definition that extends
the definition by Gruber [15] and Borst [16] that both stated that ”an ontology is an ex-

plicit specification of a conceptualisation”. The following explications of the terms in
the definition come from Studer et al. A conceptualisation refers to an abstract model of
some phenomenon in the world by having identified the relevant concepts of that phe-

nomenon. Explicit means that the type of concepts used, and the constraints on their use
are explicitly defined. For example, in medical domains, the concepts are diseases and
symptoms, the relations between them are causal and a constraint is that a disease can-

not cause itself. Formal refers to the fact that the ontology should be machine readable,
which excludes natural language. Shared reflects the notion that an ontology captures
consensual knowledge, that is, it is not private to some individual, but accepted by a
group. By explicitly modelling a shared conceptualisation, or domain knowledge, in a
machine-readable format, ontologies provide the possibility of representing, organizing
and reasoning over the knowledge of a domain of interest, and can serve as a basis for
different purposes. The software engineering community has recognized ontologies as
a promising way of addressing many current problems in different phases of the soft-

ware life-cycle process, such as requirements specifications, software design, software
implementation and integration, and software maintenance [17].

Until recently, the use of ontologies in software testing has been one of the least ex-

plored areas of software engineering [17, 18] and has thus not been discussed as much as
their use in other stages of the software life-cycle process. In [17], Happel and Seedorf
present possible ways of utilizing ontologies for the generation of test cases, and dis-

cuss the feasibility of reusing domain knowledge encoded in ontologies for testing. In
practice, however, few tangible results have been presented. Most of the research have
had a focus on the testing of web-based software and especially web services (e.g. [19–

21]). One mature area where ontologies have been successfully applied is requirements
engineering. Requirements engineering is concerned with the elicitation, specification
and validation of the requirements encountered in software systems [22]. The use of
ontologies in requirements engineering date back to the 1990s, e.g. [23–25]. There ex-

ists a clear synergy effect between the ontological modelling of domain knowledge and
the modelling of requirements performed by requirement engineers [26]. Recently, a
renewed interest in utilizing ontologies in requirements engineering has surged due to
the appearance of semantic web technologies [17, 26].

In the OSTAG project, two case studies were provided by two of the participating
project companies, Saab Avionics and AddQ. The first case s tudy (provided by Saab
Avionics) originated from the avionics domain. In the avionics industry, many of the
systems are required to be highly safety-critical. For these systems, the software deve-

lopment process must comply with several industry standards, like DO-178B [27]. The
requirements of the entire system, or units making up the system, must be analysed,

Ontology-based Software Test Case Generation (OSTAG)

137

specified and validated before initiating the design and implementation phases. In the

research project presented in this book chapter, an ontology was developed representing

the requirements of a software component pertaining to an embedded system located in

a fighter airplane. The requirements used by Saab are written in natural language and

joined in documents, such as software requirements specification (SRS) documents and

interface requirements specification (IRS) documents, followed by a manual validation

performed by domain experts within the avionic industry. The requirements ontology,

created in the project, represented the software requirements, the software, the hardware

and the communication components belonging to the embedded system. An ontology

by itself is a static representation of a knowledge domain, such as software require-

ments. Once the ontology has been created, it must be used to create the software test

cases. One way of doing this is by using inference rules that represent the expertise of

an expert software tester. The inference rules were coded in Prolog and made use of the

ontology entities to generate the test cases. The Prolog inference engine controlled the

process of selecting and invoking the inference rules.

The second case study (provided by AddQ) originated from the car manufacturing

domain and, more specifically, the representation of an embedded module complying

with the Automotive Open System Architecture (AUTOSAR 4.0) standard [28]. In ge-

neral, the AUTOSAR standard serves as a platform upon which vehicle applications are

implemented to minimize the barriers between different functional domains. It introdu-

ces a standardized layer between the application software and the electronic control unit

hardware, thus making the software largely independent of the chosen microcontroller

and original equipment manufacturer (OEM). The result is a simplified development

process that enables high flexibility and an easy reuse of the application software. AU-

TOSAR is used by most of the car manufacturers, like BMW, Volkswagen, Toyota and

Volvo. The AUTOSAR application that was modeled in the second case study consisted

of a communication manager module (ComM) that acts as a resource manager which

encapsulates the control of the underlying communication services.

Until this moment in time (2017), within the OSTAG project, we have implemented

the method of ontology-based software test case generation for the first case study (the

avionics case), and we have also run some evaluations. The results indicate that it is

feasible to create software test cases relying on a requirements ontology, and that the

quality of the generated test cases is equally good as the manually produced test cases.

Details of the implementation of the first case study, together with some results and

the evaluations of these, are presented in section 3, 4 and 5, respectively. Currently, we

continue our research with a focus on the AUTOSAR case study. The requirements from

the avionics case are on a functional level (unit testing). They are rather well defined

and documented in text with a clear structure. Hence, it is relatively straightforward to

generate an ontological model from these requirements. The AUTOSAR requirements,

on the other hand, are on a high level. The requirements are documented in long and

complex texts. Preliminary results indicate that additional tools are required to be able

to produce the requirements ontology. At the end of this book chapter, we comment

on the additional challenges related to the AUTOSAR case study and propose possible

solutions to respond to these challenges.

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

138

The rest of the book chapter is structured as follows. Section 2 introduces the re-

aders to related work in the ontology, inference rules, and genetic algorithms areas.
Section 3 discloses the details of the avionics case study and the generated ontology re-

presenting the software requirements and the software components. After having a good
knowledge of the ontology, section 4 outlines the details of how to produce the software
test cases. The section includes a presentation of the translation of the ontology from
an OWL representation to an executable Prolog equivalent, presents the application of
the inference rules (also represented in Prolog) on the ontologies to create the software
test cases, and ends with an outline of genetic algorithms, their use in software testing
and some preliminary results originating from the OSTAG project. No implementation
of a model is complete without a proper evaluation of it. Thus, some initial evaluation
results are presented and discussed in section 5. It should be noted that the evaluati-

ons and the results from these are coming from the first case study only, i.e. related to
the avionics domain. In section 6, some general conclusions of the OSTAG project are
presented and, to sum up, in section 7, several promising future research directions are
outlined.

2 Related Work

The reason for conducting tests on software products/systems is mainly to be able to put
some level of trust on the quality and requirement fulfilment of said products/systems.
To be able to run tests on a product/system, test case(s) must be designed and the corre-

sponding test script(s) developed. When it comes to the focus of software test activities,
as far as the test code is concerned, two main areas can be identified; code coverage
testing (which could be looked upon as testing the output of a software design pro-

cess) and requirement coverage testing (which could be looked upon as testing the
input to a software design process). All the presented model-driven test case genera-

tion approaches referred to earlier have had a focus on code coverage. However, in
some application domains the verification of the coverage of the requirements, that is
that all requirements stated in a requirements specification document, have to be con-

sidered and tested in a traceable manner, and the requirements coverage is sometimes
equally or even more important than code coverage. An example of this are the testing
activities performed by one of the industrial partners, Saab Avionics, where both code
coverage testing and requirement coverage testing are of equal importance. Code co-

verage testing can be looked upon as the verification of the functional correctness of a
software product/system (i.e. is the functionality correctly implemented) while require-

ment coverage testing can be looked upon as the validation of the functional correctness
of a software product/system (i.e. is the correct functionality implemented). Thus, the
OSTAG project is one of few research projects where requirement coverage has been
contemplated from a test case generation point of view.

In many occasions, the design and implementation of test cases is a purely manual
activity. If this task could be automated it would help test designers who are developing
the test cases. Model-Based Testing (MBT) is a method to create functional test cases
[29–31]. With MBT it is possible to generate test cases from models that describe the
test object or system under test. Some benefits of MBT are:

Ontology-based Software Test Case Generation (OSTAG)

139

– it provides the opportunity to automate the process for test specification,

– it creates an acceleration in the specification of test scripts,

– it makes the time and resource consuming task of test specification less dependent

on the amount and expertise of testers,

– with the use of a model, small changes in the documentation are translated into new

test scripts in only a few seconds.

One specific modelling language that has emerged as the prime modelling tool is the

Unified Modelling Language (UML). Many projects have been presented that have had

a focus on the automatic generation of test cases based on the usage of UML [32]. Other

model-based test case generation projects have relied on Function Block Diagrams [33]

or (Finite) State Machines [34, 35]. Two specific research approaches, with the goal of

automatically producing test cases and that both bear resemblances to the OSTAG pro-

ject, is the TextAnalyzer tool by Sneed [36, 37] and the SOLIMVA methodology by de

Santiago et al. [38–40]. MBT is an approach based on creating test cases derived from a

behaviour model of the test object, the (test) model. This model describes the expected

behaviour of the test object. Test cases are then, where possible, automatically genera-

ted from the test object. The challenge with this approach lies in the creation of a formal

behaviour model in which the operation of (part of) the application is represented. How

this model should be created, and exactly what details that should go into the model,

is not self-evident. Furthermore, if the development of the model is not performed by

experts, potential errors could be introduced, errors that could propagate to the genera-

ted test cases. Instead of the extra step of having to create a test model to generate the

test cases, in the OSTAG-project the test cases were created based on the requirements

captured in the requirements ontology.

A lot of research efforts have been put into the application of ontologies in re-

quirements engineering (e.g. [41–43]). Much of the research deals with inconsistency

and incompleteness problems in requirement specifications. For example, in [41], an

ontology is proposed to support the cooperation between requirements engineers. The

ontology provides a formal representation of the engineering design knowledge that

can be shared among engineers, such that the ambiguity, inconsistency, incompleteness

and redundancy can be reduced when engineers concurrently develop requirements for

sub-systems of a complex artifact. In other related work, such as described in [24, 42],

ontologies are proposed to provide a framework for the requirements modelling to sup-

port the requirements engineering process. Such a framework can help mitigating the

difficulties encountered in requirements engineering, such as negotiating a common

understanding of concepts, dealing with ambiguity, and clarifying desires, needs and

constraints. Another direction in the application of ontologies in requirements engi-

neering is to represent requirements in a formal ontology language, to support consis-

tency checking, question answering, or inferring propositions (e.g. [23, 44]). Most of

the work within this direction focus on the analysis of consistency, completeness and

correctness of requirements through reasoning over requirements ontologies. The work

presented in this book chapter is also concerned with the representation of requirements

in an ontology, but the ontology is mainly employed to support advanced methods in

the subsequent stages of the software development process and, more specifically, the

generation of test cases.

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

140

The Prolog language has been used as a reasoner for OWL ontologies in many dif-

ferent projects. For example, in [45], the authors describe an approach of reasoning
over temporal ontologies that translates OWL statements to clauses in Prolog and then
makes use of the built-in inference mechanism. In [46], an OWL ontology and OWLRu-

leML rules were translated into Prolog clauses, which were then used to infer new facts
through the use of the Prolog inference engine. The work presented in this book chapter
has also used Prolog as a reasoner. The difference is that the ontology was translated
from OWL functional-style syntax to Prolog syntax, thus providing a more natural way
of writing rules querying the ontology.

Another way of producing test cases that was evaluated in the OSTAG project, apart
from using ontologies and inference rules, was evolutionary testing. The field of evo-

lutionary computing goes back to the 1960’s, when evolutionary programming [47],
evolution strategies [48] and genetic algorithms [49] surged, later to be joined by ge-

netic programming and other similar techniques. The idea behind these efforts was to
come up with algorithms inspired by the biological evolution and apply these on com-

putational problem areas. The special area of software testing and the application of
evolutionary techniques and genetic algorithms to automatize testing started in the early
90’s. Since then, several articles have been presented, e.g. [50–55]. It should be noted,
however, that all of the results presented in these articles have been based on the fact
that they had access to the source code. Furthermore, what was created using evoluti-

onary techniques and genetic algorithms was test data and not complete test cases or
test scripts. Hence, there is a difference in complexity between automatically creating
qualitative test data and complete, useful and correct test cases (where the test data is
only one of several components). The idea behind the work in the OSTAG project has
thus been to create complete test cases, including predefined prerequisites, necessary
input data, correct test procedures, and useful output data. The complete test cases are
created based on the information encountered in the developed ontology, an ontology
whose main object is that of modeling the requirements defined i n t he requirements
document. Some initial results from this challenging work are presented further on in
this book chapter.

3 Ontology Development

In this section, the requirements ontology that was developed based on information from
the avionics case study [56] is presented. The resulting ontology represents the require-

ments of a telecommunication software component pertaining to an embedded system
used in an avionics system placed in a fighter a ir-plane. T he s oftware c omponent in
the embedded system is fully developed in compliance with the DO-178B standard. As
defined in DO-178B, the requirements of the software component have been prepared,
reviewed and validated. The results indicate that the ontology can successfully support
the generation of test cases. But before going into any more details of the development
process that was applied during the creation of the ontology, we describe some ontology
methods that influenced our development process to a greater or lesser degree. Over the
years, many methods have been presented for building ontologies. For example, Onto-

logy 101 [57] proposes a very simple but practical guide for building an ontology using

Ontology-based Software Test Case Generation (OSTAG)

141

Fig. 1. The ontology development process.

The developed ontology includes three specific pieces of knowledge:

– a meta model of the software requirements,

– the domain knowledge of the application, e.g. general knowledge of the hardware

and software, electronic communication standards, etc.,

– all the requirement specifications defined in the SRS document.

The current version of the ontology contains 42 classes, 34 object properties, 13 da-

tatype properties, and 147 instances in total. Figure 2 presents the meta model of the

software requirements. As indicated in the figure, each requirement is concerned with

certain functionalities of the software component. For example, a requirement may be

concerned with data transfer. Each requirement consists of at least requirement parame-

ters, which are inputs of a requirement, requirement conditions, and results, which are

usually outputs of a requirement, and exception messages. Some requirements require

the system to take actions. Furthermore, there exists a traceability between different

requirements, e.g. traceability between an interface requirement and a system require-

an ontology editing environment, such as Protégé [58]. METHONTOLOGY [59] con-

tributes with a general framework for ontology development, which defines the main
activities that people need to carry out when building an ontology, and outlines three
different processes: management, technical, and supporting. The OTK Methodology
[60] focuses on an application-driven ontology development. There are also other met-

hods of ontology engineering, e.g. [61] that introduces eXtreme Design (XD) stemming
from eXtreme Programming, the latter being a software development method. All of the
mentioned methods focus on a collaborative, incremental, and iterative process of on-

tology development. Unfortunately, no one, single ontology development method was
sufficient for our ontology development process.

The ontology development process followed in this project is illustrated in Figure 1.
During the development of the ontology, the developers worked as a pair and followed
an iterative and incremental process. In each iteration, the developers basically followed
the steps suggested in Ontology 101, and considered the activities described in the sup-

porting process in METHONTOLOGY. Lightweight competence questions (CQs) were
used as a guidance to build the ontology. These CQs are simple and quickly prepared. In
each iteration the developers had an opportunity to meet with the industry experts and
discuss the issues they had encountered during the acquisition and specification steps.
The developers also received feedback from the users of the ontology, and modified the
ontology when needed. The development tool used was Protégé. HermiT reasoner [62]
was used to check the consistency of the ontology. Finally, the ontology was written in
OWL [63].

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

142

Fig. 2. The meta model of the software requirements in the ontology.

Fig. 3. Ontology fragment for the domain knowledge.

4 Test Case Generation

In this section, two different approaches of producing test cases will be outlined. The

first approach is based on the usage of inference rules together with the requirements

ontology. The second approach is based on the use of genetic algorithms to produce test

cases but without the need of any source code or any executable version of the software.

4.1 Using Inference Rules to Derive Test Cases from the Ontology

In this subsection are presented the inference rules and how they have been applied to

the requirements ontology to create test cases [64]. But before going into any details,

ment. Figure 3 illustrates an ontology fragment of the domain knowledge of the tele-

communication software component. Figure 4 shows the ontology fragment of one par-

ticular functional requirement specification, in this example, the SRSRS4YY-435. The
functional requirement defines that if the parity is out of its valid range, the initialisation
service shall deactivate the Universal Asynchronous Receiver/Transmitter (UART), and
return the result ”parityCfgError”. The ontology fragments for all of the remaining in-

dividual requirements of the software component, pertaining to the embedded system,
are similar to the 435 requirement. In figures 2 t o 4 , t he o range b oxes r epresent the
concepts of the ontology; the white boxes represent the instances; and the green boxes
provide the data values of the datatype property for the instances.

Ontology-based Software Test Case Generation (OSTAG)

143

Fig. 4. Ontology fragment for a requirement specification, SRSRS4YY-435.

we first present a short background to the problem area of test case generation. To

the best of our knowledge, there exist only a limited number of projects that rely on

ontologies for software testing activities, for example [65, 66]. As defined earlier in

this book chapter, an ontology represents a formal model of the knowledge captured

for a specific domain. It should be stressed, however, that the creation of an ontology

is only the first step in the automatic creation of software test cases. One must also

contemplate the generation of the test cases, having some specific test objectives in

mind. The creation of test cases can be realized in several ways, but in the OSTAG

project we chose to make use of inference rules.

First of all, the ontology was translated into a syntax that was supported by the

inference rules, i.e. Prolog syntax, as Prolog was chosen for coding the inference rules.

We chose Prolog [67] as the language for the implementation as Prolog has means of

representing the rules in a natural way and has means of accessing the entities in the

ontology. Prolog also has a built-in inference engine that was used to execute the coded

rules, to generate the test cases.

An OWL functional-style syntax was chosen as the starting point for the ontology

conversion as this syntax was the most similar to the Prolog syntax. An ontology do-

cument in the functional-style syntax is a sequence of OWL constructs, each located

on a separate line, as well as a number of prefix definitions [68]. A Python script was

written for the OWL-to-Prolog translation, which processed the ontology document,

line by line. Each OWL statement was tokenized and converted according to the Prolog

syntax rules. The list of tokens was subsequently converted into the corresponding Pro-

log statement. The following OWL statements were translated: Declaration, ClassAs-

sertion, SubClassOf, ObjectPropertyAssertion, DataPropertyAssertion, objectProperty-

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

144

Table 1. Example of the conversion of several OWL statements.

OWL functional-style syntax Prolog syntax

Declaration(Class(Requirement)) declaration(class(requirement)).

Declaration(ObjectProperty(OSTAG:requir-

ementForService))

declaration(objectProperty(requirem-

entForService)).

DataPropertyAssertion(:hasParameter-ValueList

:ParityType ”[oddParity, noneParity,

evenParity]”ˆˆxsd:string)

dataPropertyAssertion(hasParamete-

rValueList, parityType, [oddParity,

noneParity, evenParity]).

ObjectPropertyAssertion(OSTAG:requirement-

ForService :SRSRS4YY-435

:InitializationService)

objectPropertyAssertion(require-

mentForService, srsrs4yy 435,

initializationService).

ObjectPropertyDomain(OSTAG:require-

mentForService OSTAG:Requirement)

objectPropertyDomain(requirementFo-

rService, requirement).

AnnotationAssertion(rdfs:label

OSTAG:FIFO ”FIFO”)

annotationAssertion(rdfs(label), fifo,

’FIFO’).

Annotation(owl:versionInfo ”3.0”ˆˆxsd:decimal) annotation(owl(versionInfo), 3.0).

Range, objectPropertyDomain, Annotation, AnnotationAssertion. Table 1 shows se-

veral examples of the translation from OWL to Prolog.

After the translation of the requirements ontology from an OWL-syntax to a Prolog

equivalent, the inference rules were applied to the ontology, to produce the test cases.

To do this, the testers’ expertise on how they use requirements to create test cases, was

represented. Only a few general guidelines for testing can be found in literature, such

as boundary value testing. Also, most expertise is specific to particular types of soft-

ware systems and/or particular domains. Hence, experienced testers at Saab Avionics

were interviewed and existing test cases were studied, together with their correspon-

ding requirements, in order to capture the expertise. This kind of knowledge expressed

inherent strategies for test case creation and was represented as if-then rules.

In the OSTAG project, 16 requirements were examined with 20 corresponding test

cases. Each requirement described some functionality of a service (function) from a

driver for a hardware unit. All requirements were grouped according to services. The

requirements covering six services were analysed. During the analysis of an original test

case, a test case that had been manually created by a software tester, it was compared

with the corresponding requirement to fully understand how the different parts of the

original test case had been constructed. In the subsequent discussions with the industry

software testers that participated in the study, any inconsistencies or remaining doubts

were resolved. The activities resulted in a set of inference rules formulated in plain En-

glish. Each original test case consisted of four parts: prerequisite conditions, test inputs,

test procedure, and expected test results. Consequently, inference rules were formulated

for each of the test case parts. An example of a inference rule for the prerequisites part

of the requirements SRSRS4YY-435 is shown below:

IF the requirement requires deactivation of a UART controller and

the controller has queues

THEN add the prerequisites of filling the queues with data

Ontology-based Software Test Case Generation (OSTAG)

145

The condition (if-part) of each inference rule was formulated in terms of the indi-

vidual representing the requirement and the related ontology entities representing con-

nected hardware parts, input/output parameters for the service and the like. The action

(then-part) part of the rules embodied instructions on how a test case part should be

generated. An example of a Prolog rule that implements the previous inference rule is

given below:

1 tc_prerequisites(Requirement, Prerequisites) :-

2 objectPropertyAssertion(requiresAction, Requirement,

DeactivateUART),

3 objectPropertyAssertion(actsOn, DeactivateUART,

UartController),

4 classAssertion(uart_controller, UartController),

5 setof(Queue,

objectPropertyAssertion(hasQueue, UartController,

Queue),

QueueList),

6 queue_prereq(QueueList, QueueList, Prerequisites).

Line 1 in the example is the head of the rule consisting of the name, input argument

and output argument. Lines 2-5 encode the condition of the rule as well as act as queries

to retrieve the relevant entities from the ontology. Line 6 constructs the prerequisites

part of the test case.

Each test case was generated sequentially, from the prerequisites part through to the

results part. The generated parts were collected into one structure by the following rule:

test_case(Requirement,

tc(description(TCid, ReqID, Service), Prerequisites, Inputs,

Procedure, Results)) :-

req_id(Requirement, ReqID),

objectPropertyAssertion(requirementForService, Requirement,

Service),

tc_prerequisites(Requirement, Prerequisites),

tc_inputs(Requirement, Inputs),

tc_procedure(Requirement, Procedure),

tc_results(Requirement, Results),

new_tcid(TCid).

Finally, the test case structure was translated into plain text in English. The final

result can be found in the right column in Table 3.

4.2 Using Genetic Algorithms to Evolve Test Cases

In the OSTAG project, the use of genetic algorithms in the generation of test cases

has been investigated. Over the years and in numerous projects, evolutionary testing

techniques have been used to create test cases, as described earlier in the book chapter.

Genetic algorithms can be used to find an optimal set of test cases that covers all code

in a program or all paths in an execution path diagram, something that requires access

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

146

to the program code. This is also known as white-box testing. In black-box testing, on
the other hand, where no program code is available but only an executable version of
the software under testing, evolutionary techniques have been used to find erroneous
configurations and input data.

In the OSTAG project, no source code or executable version of the software were
available. Instead of code or path coverage, we introduced the concept of ontology co-

verage as a measure by which test cases and test case sets could be evaluated. Since
the ontology is assumed to include all software requirements, a set of test cases that
completely covers the ontology would therefore, among other things, guarantee that
all requirements are tested. This approach is, to the best of our knowledge, something
completely new which has not been previously investigated.

When using genetic algorithms, a population of individuals is evaluated and develo-

ped in the direction of some optimum. Each individual is assigned a so called fitness va-

lue, which makes it meaningful to talk about better or worse members of the population.
New individuals can be created by mutations, small variations of existing individuals,
or by different cross-over operations, where selected individuals, parents, give rise to
new individuals, children, inheriting some of their parents’ properties. The fitness of an
individual often plays an important role, both when selecting individuals to mutate or to
become parents, and when deciding if a new-born individual shall replace an old one.

In our project, each individual in the following description represents a set of test
cases. Usually, a test case contains several parts. There are prerequisites, with the in-

tention to put the machine in a certain state, input data, and a description of the test
procedure. These three parts can be looked upon as being different kinds of input data.
Hence, a set of test cases is just a sequence of inputs. However, a complete test case
must also contain some expected output. But what could be judged as being expected
outputs from a certain sequence of prerequisites, input data and test procedures, must
be validated based on some software documentation and can, for obvious reasons, not
be generated using random methods.

A mutation of an individual is a change of a single input in the sequence, cross-over
means that new sequences are built taking parts of two existing sequences. A mutation
that alter the length of a sequence is also introduced. The fitness value i s calculated
from the length of the sequence, something that we want to minimize, and the ontology
coverage, which should be maximized. To give these two goals appropriate weights, the
fitness of a sequence x is given by the fitness function

f(x) = A · Co(x) − L(x),

where A is a (large) constant, Co is the ontology coverage computed as (number of
covered ontology instances)/(total number of instances in the ontology), and L(x) the
number of inputs in the sequence.

The idea of using genetic algorithms to produce test cases have so far only been
tested on model examples. A typical result from a simulation is shown in figure 5. Each
individual is defined by a number sequence and initiates with an initial population con-

sisting of 100 random generated sequences. As is shown in the figure, the best of these
randomly generated sequences has a length of about 520 while covering approximately
70% of the ontology. As the ontology coverage has a higher priority than the sequence

Ontology-based Software Test Case Generation (OSTAG)

147

Fig. 5. Results from a genetic algorithm trial. In each generation, three new individuals (number

sequences) are generated and evaluated. For each generation, the length of the best individual

(nTC=number of test cases) and its coverage is shown.

length in this example, the genetic algorithm initially produces sequences with higher

coverage at the expense of greater sequence lengths. However, as the algorithm pro-

ceeds and the coverage asymptotically approaches 100%, for each new generation the

algorithm finds shorter sequences with equal or slightly better ontology coverage.

5 Evaluation of the Approach

The requirements ontology developed in the OSTAG project is a type of application

domain ontology. Any type of application domain model has to be evaluated, to de-

monstrate its appropriateness for what it was contemplated, and this is also true for the

developed requirements ontology. The challenge in ontology evaluation is to determine

the quality features that are to be evaluated as well as the evaluation method. Many dif-

ferent ontology evaluation criteria, or features as we call them in this book chapter, have

been discussed in literature, e.g. consistency, completeness, conciseness, expandability

and sensitiveness [69], structural measures, functional measures and usability-profiling

measures [70], and accuracy, adaptability, clarity, completeness, computational effi-

ciency, conciseness, consistency and organisational fitness [71]. Which quality features

to evaluate depend on various factors, such as the type of ontology, the focus of an

evaluation and the person who is performing the evaluation. Not many tools exist for

the handling of different key features but Lantow have presented an on-line platform,

OntoMetrics, for the calculation of ontology quality metrics (or features) [72]. For an

application domain ontology it is enough to evaluate the features important to the appli-

cation or domain. In this project we have focused on three specific features, the usabi-

lity, applicability and the correctness of an ontology. These three features were found to

be the most important to use with the requirements ontology for the test case generation

in our project.

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

148

– We define ontology usability as a set of attributes that describe the effort needed by

a human to make use of an ontology. The evaluation of the usability is performed

by typical potential users of the ontology, normally application domain experts.

– We define ontology applicability as the quality of the ontology being correct or

appropriate for a particular application domain or purpose. The evaluation of the

applicability of the ontology is carried out by a developer of a software component

that uses the ontology to implement its functionality.

– We define ontology correctness as the degree to which the information asserted in

the ontology conforms to the information that should be represented in the onto-

logy. It is about getting accurate information and also accurately documenting the

information gathered in an ontology. The evaluation of the correctness is performed

by application domain experts.

The three evaluation features are described in continuation. The evaluations of the

features were performed on one of the two case studies, provided by the industrial part-

ner coming from the avionics domain. Similar evaluations as the ones presented in the

following subsections are planned for the second case study, focusing on AUTOSAR.

Apart from evaluating the inherent quality of the generated requirements ontology

itself, the quality of the output when making use of the aforementioned ontology, i.e.

the generated test cases, should also be evaluated. To illustrate this evaluation and the

results from it, one example of a generated test case is presented in the last subsection.

5.1 Evaluation of the Ontology Usability

The evaluation of the usability of a product or system is something that goes back in

time. In 1986, Brooke developed a questionnaire, the System Usability Scale (SUS) [73].

During the years since then, it has been demonstrated that the SUS is applicable over

a wide range of systems and types of technology and that it produces similar results as

more extensive attitude scales that are intended to provide deeper insights into a users

attitude to the usability of a systems. The SUS also has a good ability to discriminate

and identify systems with good and poor usability [74]. In the OSTAG project we used

a version of the SUS introduced by Casellas [75]. The scale, including its ten questions

and the result, is presented in Table 2. The texts in the ten questions have only been

slightly modified to adjust to the domain of ontologies.

The evaluation of the usability of an ontology is especially important when the on-

tology is going to be used by application domain experts who are normally not ontology

experts. The ontology was evaluated by two persons, one being an application domain

expert (in software testing) and the other being an ontology expert, in order to compare

their different views on the usability of the ontology. An evaluation of only two persons

will only provide an indication of the usability of the ontology. However, Tullis and

Stetson [76] has shown that it is possible to get reliable results with a sample of only 8-

12 users. The results from a more extensive evaluation of the usability of the ontology,

including four domain experts and one ontology expert, will be published during 2017.

The statements at the odd numbered positions in Table 2 are all in positive form and

the even numbered positions are all in negative form, as defined by the SUS. The reason

for this alternation is to avoid response biases, especially as the questionnaire invites

Ontology-based Software Test Case Generation (OSTAG)

149

Table 2. Ontology usability evaluation. (AE:Application Domain Expert, OE:Ontology Expert,

score: 1=strongly disagree, 2=disagree, 3=no preference, 4=agree, 5=strongly agree).

Statements to evaluate the usability of the requirement ontology AE OE

1 I think that I could contribute to this ontology 3 5

2 I found the ontology unnecessarily complex 3 2

3 I find the ontology easy to understand 4 4

4 I think that I would need further theoretical support to be able to understand this

ontology

2 1

5 I found that various concepts in this system were well integrated 4 5

6 I thought there was too much inconsistency in this ontology 2 2

7 I would imagine that most domain experts would understand this ontology very

quickly

4 2

8 I find the ontology very cumbersome to understand 2 2

9 I am confident I understand the conceptualisation of the ontology 4 5

10 I needed to ask a lot of questions before I could understand the conceptualisation of

the ontology

2 1

rapid responses by being short; by alternating positive and negative statements, the goal

is to have respondents read each statement and make an effort to reflect whether they

agree or disagree with it. The intrinsic details related to the calculation of the scoring

can be found in [73]. When applying the scoring procedure on the result presented in

the table, the SUS scores indicate that the usability result for the application domain

expert was 70 while the ontology expert had a result of 82.5. This indicates that the

usability of the ontology from the application domain expert’s point of view was in the

57 percentile rank while the usability of the ontology from the ontology expert’s point

of view was in the 92 percentile rank.

5.2 Evaluation of the Ontology Applicability

According to our definition of applicability, the ontology should exhibit the quality of

correctness or appropriateness when used for a particular application domain or pur-

pose. To evaluate the applicability of the requirements ontology, it has been used for

automatic generation of software test cases based on the requirements in the SRS docu-

ment. The generation of test cases was done by applying inference rules to the ontology

as described in section 4.1. The OWL statements from the requirements ontology were

accessed by the inference rules. During the first experiment 66 distinct entities from the

ontology were used for the test case construction. The test cases were generated as plain

text in English. Our experiment showed an almost one-to-one correspondence between

the texts in the generated test cases and the document texts provided by Saab Avionics

(see subsection 5.4 for more details).

The evaluation showed that the developed requirements ontology can fulfil its pur-

pose, that is, to support different stages of a software development process. The onto-

logy has been used for the automation of a part of the testing process and allowed for

the successful generation of test cases. The ontology allowed for a straightforward way

of formulating inference rules. It was fairly easy to integrate the ontology in the OWL

functional syntax in the Prolog program containing the inference rules. The OWL ex-

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

150

pressions were directly employed in the inference rules (after small syntactic changes
in the translation phase) thanks to the availability of instances in the ontology. Explo-

ring the ontology paths allowed for the capture of strategies for the test case generation.
The minor deficiencies in the ontology that were discovered during the development of
inference rules were addressed in subsequent iterations.

5.3 Evaluation of the Ontology Correctness

For the evaluation of the correctness of the ontology, two different tools were used by
five evaluators, f our i ndustry d omain experts a nd o ne o ntology expert. T he fi rst tool
that was used was Protégé, to be able to access the information represented in the on-

tology and compare it with the information written in the SRS document. The second
tool that was used was a web-based application developed within the project, a tool
that transformed, or verbalised, the information represented in the ontology into a na-

tural language text, very much like the original text found in the SRS document. The
general purpose of verbalisation tools is to make ontologies more readable for applica-

tion domain experts [77, 78]. The research focus in the ontology verbalisation domain
has been on expressing the axioms in an ontology in natural language (e.g. [79, 80]),
or generating a summarized report of an ontology (e.g. [81]). The requirements in the
SRS document coming from the avionics case study were well-structured. The verbali-

sation tool made use of a simple pattern-based algorithm. While simultaneously using
Protégé and the verbalisation tool, the experts were asked to validate the correctness of
the ontology, comparing it with the texts found in the SRS document. Each of the five
experts were assigned 9 or 10 requirements each that they were asked to validate. When
evaluating the results, it was striking that, in general, the evaluators used less time but
managed to verify more requirements when using the verbalisation tool than if only
relying on Protégé. But, as one of the industry domain experts put it, ”Note that ’human
understandable’ issues that are ’machine impossible’ will go undetected [if relying so-

lely on verbalisation, authors’ comments]. In Protégé, it was possible to see when a
requirement was misinterpreted. Here it is back to textual representations [when using
verbalisation, authors’ comments] that may hide the misunderstanding. Easier to read
though, but changing format is sometimes good”. More details on the evaluation results
will be presented in a publication during 2017.

5.4 Evaluation of the Generated Test Cases

To generate the test cases, a total of 40 inference rules were used. Together, they gene-

rated 18 test cases for 15 requirements. The corresponding test cases were reproduced
in plain English, approximating the format described in the software test description
(STD) document (provided by Saab Avionics). To illustrate the similarity between the
two representations, one specific requirement, the SRSRS4YY-435 that was outlined in
a previous section, has been chosen. The results from this evaluation can be observed
in Table 3 where the text in the left column is a slightly modified excerpt from the STD
document while the text in the right column is the generated output, after applying some
of the inference rules to the requirements ontology. SRSRS4YY-435 is a requirement
that is evaluated in one single test case (while other requirements sometimes need to

Ontology-based Software Test Case Generation (OSTAG)

151

Table 3. Test case from the STD (left column) and the corresponding generated test case by

applying inference rules to the ontology (right column).

. . .

Test Inputs

1. According to table below.

2. <uartId> := <uartId> from the

rs4yy init call

3. <uartId> := <uartId> from the

rs4yy init call

4. <parity> := rs4yy noneParity

. . .

Test Inputs:

1. <parity> := min value - 1

<parity> := max value + 1

<parity> := 681881

2. <uartID> := <uartID> from the

initializationService call

3. <uartID> := <uartID> from the

initializationService call

4. <parity> := noneParity

Test Procedure

1. Call rs4yy init

2. Call rs4yy write

3. Call rs4yy read

4. Recovery: Call rs4yy init

Test Procedure:

1. Call initializationService

2. Call writeService

3. Call readService

4. Recovery: Call initializationService

Expected Test Results

1. <result> ==

rs4yy parityCfgError

2. <result> == rs4yy notInitialised

3. <result> == rs4yy notInitialised,

<length> == 0

4. <result> == rs4yy ok

. . .

Expected Test Results:

1. <result> ==

parityConfigurationError

2. <result> == rs4yyNotInitialised

3. <result> == rs4yyNotInitialised,

<length> == 0

4. <result> == rs4yyOk

. . .

be tested in more than one test case), in this occasion test case STDRS4YY-133. As

can be observed in the table, there is an almost one-to-one correspondence between the

texts in the two columns, something that was positively commented on by the people at

Saab Avionics. Even more so, on some occasions the generated test case texts indicated

a discrepancy to the corresponding test case texts found in the STD document. These

discrepancies were presented to and evaluated by personnel from Saab Avionics and on

occasions, the observed discrepancies indicated a detected error in the STD document.

Hence, this evaluation of the correctness of the generated test cases helped improving

the overall quality of the STD document.

6 Conclusions

In this book chapter we have presented a method to convert software requirements to

a formal model in the form of a (requirements) ontology. Once the ontology has been

produced, inference rules can be applied to it to produce software test cases. The first ex-

periments indicated that, by using 40 inference rules, 18 test cases for 15 requirements

could be generated as plain text in English. The examination of the results showed an

almost one-to-one correspondence between the texts in the generated test cases and

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

152

the manually produced texts provided by Saab Avionics. As the conducted experiments
were limited in size, additional experiments with an increased number of inference rules
are required to demonstrate the full potential of the process.

The test case generation process has demonstrated that the quality of the generated
test cases improved. Minor errors that had gone undetected by the human test case de-

signers were identified and corrected. This result highlights the benefits of automating
the test case generation process. In the near future, additional types of quality metrics
are going to be evaluated, such as the time savings from automating the test case ge-

neration process through real-life time studies, and the coverage of the requirements
in the ontology to demonstrate that all requirements in the requirements specification
document have been considered and tested.

7 Future Work

The ontologies have so far been developed manually in the OSTAG project, just as a
proof of concept of the initial ideas. However, manual ontology development is not an
easy or trivial task. It is a time-consuming, expensive, error-prone and labor-intensive
activity. During the execution of the OSTAG project, ontology and domain experts ma-

nually processed all the information and participated throughout the manual ontology
development process, therefore making it a fairly expensive process. Hence, it is es-

sential to be able to (semi-)automatically create ontologies in order to save time and
resources. Ontology learning is the research field that deals with the (semi-)automatic
construction of ontologies. In the near future, we will investigate how ontologies can
be (semi-)automatically developed from an SRS document. Different approaches and
tools will be evaluated for this purpose, such as natural language processing and ma-

chine learning techniques.

Preliminary studies have showed that different levels of requirements are written in
different ways, e.g. low-level requirements are structured while high-level requirements
are not. The avionics case study relies on low-level requirements while the AUTOSAR
case study relies on high-level requirements. The high-level requirements in the AUTO-

SAR standard are documented in a less structured, more complex text format as compa-

red to the avionics case study. The created ontology development process is not capable
of processing these different types of requirement in an optimal way. Hence, we will
focus our investigation on how to extract and annotate the meaning of an AUTOSAR
requirement in the best way, and how to represent the meaning of an AUTOSAR re-

quirement to efficiently support the test case generation methods. A preliminary study
[82] has indicated that exploiting standard ontological resources for natural language
processing, such as FrameNet [83], could be a solution of the first task. A lightweight
ontology, or embedding rich meta-data within requirements documents, could be a so-

lution of the second task. Yet another approach could be to limit the complexity and
the expressiveness that can be found in several requirements, such as in AUTOSAR, by
relying on requirement boilerplates (on a syntactic level) or requirement patterns (on
a semantic level) when writing the requirements [84–86]. The third important task is
how to acquire and represent test case generation strategies in a more general way.
One approach to tackle this problem is to introduce several layers of inference rules

Ontology-based Software Test Case Generation (OSTAG)

153

to make the knowledge more modular and to gather the case specific knowledge in one

layer. Another approach is to use algorithms instead of a set of inference rules. An algo-

rithm would allow for representation of more general strategies for test case generation.

Further studies will have to be carried out to implement and evaluate the suggested

approaches.

Within the research field of ontology development is situated the crucial activity

of building high quality ontologies. The challenge is the difficulty of defining quality,

and currently there exists no common definition of ontology quality, something that

was elaborated on in a previous section. Different quality characteristics can be defined,

depending on the scope and purpose of an ontology. In this paper we proposed usability,

applicability and correctness as three key quality features of a requirements ontology

in relation to the verification and validation of the ontology. The ontology correctness

was evaluated using Protégé and a verbalisation tool. To extend the usefulness of the

verbalisation tool, we plan to generalize the verbalisation process in such a way that

the tool can be used to evaluate other types of ontologies. To provide good tools for

ontology quality evaluation or automate the process is something that is important for

the effectiveness and efficiency of ontology development. The focus of our future work

is on the investigation of practical methods and tools for the evaluation of additional

quality features, apart from the three features presented previously.

With regard to the use of genetic algorithms, we have come to the following conclu-

sion; the goal is to cover the ontology, meaning among other things that all requirements

are covered. A genetic algorithm produces test cases using random methods, and each

randomly created test case must be evaluated. The evaluation of a test case includes

an investigation of every ontology instance to see whether this instance is covered or

not by the test case. This investigation can often require an amount of work compara-

ble to the work required to manually construct a test case for each of the instances. In

such cases, the use of genetic algorithms brings about no substantial value. However,

for large programs, where the same input data can cover a large number of instances

in non-predictable and non-obvious ways, or when the same input data that tests one

instance can serve as prerequisites for testing other instances, genetic algorithms might

help reducing the number of test cases required to cover the ontology.

Acknowledgments. The research reported in this book chapter has been carried out

in the project ”Ontology-based Software Test Case Generation”, and was financed by

grant KKS-20140170 from the Knowledge Foundation in Sweden.

References

1. Gartner worldwide IT spending forecast 2017, 1st quarter 2017 (2017) http://

www.gartner.com/newsroom/id/3568917. Accessed July 7th, 2017.

2. CapGemini, Sogeti: World Quality Report 2016-17 (2016) 80 pages.

3. Judge Business School, Cambridge University: Cambridge university study states software

bugs cost economy $312 billion per year (2013) http://markets.financialcontent.com/stocks/

news/read/23147130/Cambridge U-niversity Study States Software Bugs Cost Economy

$312 Billion Per Year. Accessed: July 7th, 2017.

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

154

4. homepage, T.: (http://www.testing-whiz.com) Accessed: July 7th, 2017.

5. homepage, H.U.: (https://saas.hpe.com/en-us/software/uft) Accessed: July 7th, 2017.

6. Enoiu, E., Sundmark, D., Čaušević, A., Pettersson, P.: A comparative study of manual and

automated testing for industrial control software. In: Software Testing, Verification and Va-

lidation (ICST), 2017 IEEE International Conference on, IEEE (2017) 412–417

7. de Santiago Júnior, V.A., Vijaykumar, N.L., Guimarães, D., Amaral, A.S., Ferreira, É.:

An environment for automated test case generation from statechart-based and finite state

machine-based behavioral models. In: Software Testing Verification and Validation Works-

hop, 2008. ICSTW’08. IEEE International Conference on, IEEE (2008) 63–72

8. Harel, D.: Statecharts: a visual formalism for complex systems. Science of computer pro-

gramming 8 (1987) 231–274

9. MacMinn, P.: Search-based software test data generation: a survey. Software Testing, Veri-

fication and Reliability 14 (2004) 105–156

10. Harman, M.: The current state and future of search-based software engineering. 2007 Future

of Software Engineering (2007) 342–357

11. Armour, P.G.: Software: hard data. Communications of the ACM 49 (2006) 15–17

12. de Souza, É.F., de Almeida Falbo, R., Vijaykumar, N.L.: Knowledge management initiatives

in software testing: a mapping study. Information and Software Technology 57 (2015) 378–

391

13. Souza, É.F.d., Falbo, R.d.A., Vijaykumar, N.L.: ROoST: Reference Ontology on Software

Testing. Applied Ontology 12 (2017) 59–90

14. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods.

Data & Knowledge Engineering 25 (1998) 161–197

15. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing.

International Journal of Human-Computer Studies 43 (1995) 907–928

16. Borst, W.N.: Construction of Engineering Ontologies for Knowledge Sharing and Reuse.

CTIT Ph.D.-thesis series No. 97-14. Universiteit Twente, Enschede (1997)

17. Happel, H.J., Seedorf, S.: Applications of ontologies in software engineering. In: Procee-

dings of Workshop on Semantic Web Enabled Software Engineering (SWESE) on the ISWC,

Citeseer (2006) 5–9

18. Ruy, F.B., de Almeida Falbo, R., Barcellos, M.P., Costa, S.D., Guizzardi, G.: SEON: a

software engineering ontology network. In: Knowledge Engineering and Knowledge Ma-

nagement: 20th International Conference, EKAW 2016, Bologna, Italy, November 19-23,

2016, Proceedings 20, Springer (2016) 527–542

19. Wang, Y., Bai, X., Li, J., Huang, R.: Ontology-based test case generation for testing Web

services. In: Proceedings of Eighth International Symposium on Autonomous Decentralized

Systems (ISADS’07), IEEE (2007) 43–50

20. Nguyen, C.D., Perini, A., Tonella, P.: Ontology-based test generation for multiagent systems.

In: Proceedings of 7th International Joint Conference on Autonomous Agents and Multiagent

Systems. Volume 3. (2008) 1315–1320

21. Sneed, H.M., Verhoef, C.: Natural language requirement specification for Web service tes-

ting. In: Web Systems Evolution (WSE), 2013 15th IEEE International Symposium on, IEEE

(2013) 5–14

22. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceedings of

Conference on the Future of Software Engineering, ACM (2000) 35–46

23. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos: representing knowledge about

information systems. ACM Transactions on Information Systems (TOIS) 8 (1990) 325–362

24. Greenspan, S., Mylopoulos, J., Borgida, A.: On formal requirements modeling languages:

RML revisited. In: Proceedings of 16th international conference on Software engineering,

IEEE Computer Society Press (1994) 135–147

Ontology-based Software Test Case Generation (OSTAG)

155

25. Uschold, M., Gruninger, M.: Ontologies: principles, methods and applications. The Know-

ledge Engineering Review 11 (1996) 93–136

26. Dobson, G., Sawyer, P.: Revisiting ontology-based requirements engineering in the age of

the semantic Web. In: Proceedings of International Seminar on Dependable Requirements

Engineering of Computerised Systems at NPPs. (2006) 27–29

27. RTCA: Software Considerations in Airborne Systems and Equipment Certification. (1992)

28. : AUTOSAR homepage (2017) https://www.autosar.org/. Accessed July 7th, 2017.

29. Mussa, M., Ouchani, S., Al Sammane, W., Hamou-Lhadj, A.: A survey of model-driven tes-

ting techniques. In: Proceedings of 8th International Symposium on 9th International Con-

ference on Quality Software (QSIC ’09). (2009) 167–172 24-25 August 2009, Jeju, South

Korea.

30. Nguyen, C.D., Marchetto, A., Tonella, P.: Combining model-based and combinatorial tes-

ting for effective test case generation. In: Proceedings of 2012 International Symposium on

Software Testing and Analysis, ACM (2012) 100–110

31. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W., Harman, M.,

Harrold, M.J., McMinn, P.: An orchestrated survey on automated software test case genera-

tion. Journal of Systems and Software 86 (2013) 1978–2001

32. Kaur, A., Vig, V.: Systematic review of automatic test case generation by UML diagrams.

International Journal of Engineering Research & Technology (IJERT) 1 (2012) 17 pages.

33. Enoiu, E.P., Čaušević, A., Ostrand, T.J., Weyuker, E.J., Sundmark, D., Pettersson, P.: Auto-

mated test generation using model-checking: an industrial evaluation. International Journal

on Software Tools for Technology Transfer 18 (2016) 335–353

34. Holt, N.E., Briand, L.C., Torkar, R.: Empirical evaluations on the cost-effectiveness of state-

based testing: an industrial case study. Information and Software Technology 56 (2014)

890–910

35. Pinheiro, A.C., Simão, A., Ambrosio, A.M.: FSM-based test case generation methods app-

lied to test the communication software on board the itasat university satellite: A case study.

Journal of Aerospace Technology and Management 6 (2014) 447–461

36. Sneed, H.M.: Testing against natural language requirements. In: Quality Software, 2007.

QSIC’07. Seventh International Conference on, IEEE (2007) 380–387

37. Demuth, B., Sneed, H.M.: Ein Modell für natursprachliche Anforderungsdokumente.

Informatik-Spektrum 39 (2016) 362–372 in German.

38. de Santiago Júnior, V.A.: SOLIMVA: A methodology for generating model-based test cases

from natural language requirements and detecting incompleteness in software specificati-

ons, 264 p. PhD thesis, Thesis (Doctorate at Post Graduation Course in Applied Compu-

ting)National Institute for Space Research, São José dos Campos, SP, Brazil (2011)

39. de Santiago Júnior, V.A., Vijaykumar, N.L.: Generating model-based test cases from natural

language requirements for space application software. Software Quality Journal 20 (2012)

77–143

40. De Souza, É.F., de Santiago Júnior, V.A., Vijaykumar, N.L.: H-Switch Cover: a new test

criterion to generate test case from finite state machines. Software Quality Journal 25 (2017)

373–405

41. Lin, J., Fox, M.S., Bilgic, T.: A requirement ontology for engineering design. Concurrent

Engineering 4 (1996) 279–291

42. Mayank, V., Kositsyna, N., Austin, M.: Requirements engineering and the semantic Web,

part II. representaion, management, and validation of requirements and system-level archi-

tectures. Technical report, University of Maryland (2004)

43. Siegemund, K., Thomas, E.J., Zhao, Y., Pan, J., Assmann, U.: Towards ontology-driven

requirements engineering. In: Proceedings of Workshop semantic web enabled software

engineering at 10th international semantic web conference (ISWC), Bonn. (2011) 14 pages.

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

156

44. Moroi, T., Yoshiura, N., Suzuki, S.: Conversion of software specifications in natural langua-

ges into ontologies for reasoning. In: Proceedings of 8th International Workshop on Semantic

Web Enabled Software Engineering (SWESE’2012). (2012) 15 pages.

45. Papadakis, N., Stravoskoufos, K., Baratis, E., Petrakis, E.G., Plexousakis, D.: PROTON:

a Prolog reasoner for temporal ontologies in OWL. Expert Systems with Applications 38

(2011) 14660–14667

46. Laera, L., Tamma, V.A., Bench-Capon, T., Semeraro, G.: SweetProlog: A system to integrate

ontologies and rules. In: Proceedings of 3rd RuleML workshop Rules and Rule Markup

Languages for the Semantic Web. Volume 3323 of LNCS., Springer (2004) 188–193

47. Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial intelligence through simulated evolution.

(1966)

48. Rechenberg, I.: Evolutionsstrategie: Optimierung Technischer Systeme nach Prinzipien der

Biologischen Evolution. Frommann-Holzbog, Stuttgart, 1973. Step-Size Adaptation Ba-

sed on Non-Local Use of Selection Information. In Parallel Problem Solving from Nature

(PPSN3) (1994)

49. Holland, J.H.: Outline for a logical theory of adaptive systems. Journal of the ACM (JACM)

9 (1962) 297–314

50. DeMillo, R.A., Offutt, A.J.: Experimental results from an automatic test case generator.

ACM Transactions on Software Engineering and Methodology (TOSEM) 2 (1993) 109–127

51. Pargas, R.P., Harrold, M.J., Peck, R.R.: Test-data generation using genetic algorithms. Soft-

ware Testing Verification and Reliability 9 (1999) 263–282

52. Wegener, J., Baresel, A., Sthamer, H.: Evolutionary test environment for automatic structural

testing. Information and Software Technology 43 (2001) 841–854

53. Sthamer, H., Wegener, J., Baresel, A.: Using evolutionary testing to improve efficiency and

quality in software testing. In: Proceedings of 2nd Asia-Pacific Conference on Software

Testing Analysis & Review. (2002)

54. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE

Transactions on Software Engineering 37 (2011) 649–678

55. Mahajan, M., Kumar, S., Porwal, R.: Applying genetic algorithm to increase the efficiency

of a data flow-based test data generation approach. ACM SIGSOFT Software Engineering

Notes 37 (2012) 1–5

56. Tan, H., Muhammad, I., Tarasov, V., Adlemo, A., Johansson, M.: Development and evalu-

ation of a software requirements ontology. In: Proceedings of 7th International Workshop

on Software Knowledge-SKY 2016, in conjunction with the 8th International Joint Con-

ference on Knowledge Discovery, Knowledge Engineering and Knowledge Management-

IC3K 2016, SCITEPRESS (2016) 11–18

57. Noy, N.F., McGuinness, D.L.: Ontology development 101: a guide to creating your first

ontology. Technical report, Stanford Knowledge Systems Laboratory (2001) KSL-01-05.

58. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy,

N.F., Tu, S.W.: The evolution of Protégé: an environment for knowledge-based systems

development. International Journal of Human-computer studies 58 (2003) 89–123

59. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: METHONTOLOGY: from ontologi-

cal art towards ontological engineering. In: Proceedings of AAAI97 Spring Symposium,

American Asociation for Artificial Intelligence (1997)

60. Fensel, D., Van Harmelen, F., Klein, M., Akkermans, H., Broekstra, J., Fluit, C., van der

Meer, J., Schnurr, H.P., Studer, R., Hughes, J.: On-To-Knowledge: ontology-based tools for

knowledge management. In: Proceedings of eBusiness and eWork. (2000) 18–20

61. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E.: eXtreme design with content ontology

design patterns. In: Proceedings of 2009 International Conference on Ontology Patterns-

Volume 516, CEUR-WS.org (2009) 83–97

Ontology-based Software Test Case Generation (OSTAG)

157

62. Shearer, R., Motik, B., Horrocks, I.: HermiT: a highly-efficient OWL reasoner. In: Procee-

dings of 5th Int. Workshop on OWL: Experiences and Directions. Volume 432. (2008) 91

pages.

63. Bechhofer, S.: OWL: Web ontology language. In: Encyclopedia of Database Systems. Sprin-

ger (2009) 2008–2009

64. Tarasov, V., Tan, H., Ismail, M., Adlemo, A., Johansson, M.: Application of inference rules

to a software requirements ontology to generate software test cases. In: OWL: Experiences

and Directions–Reasoner Evaluation: 13th International Workshop, OWLED 2016, and 5th

International Workshop, ORE 2016, Bologna, Italy, November 20, 2016, Revised Selected

Papers. Volume 10161., Springer (2017) 82

65. Nasser, V.H., Du, W., MacIsaac, D.T.: Knowledge-based software test generation. In: Pro-

ceedings of 21st International Conference on Software Engineering and Knowledge Engi-

neering, Boston, U.S.A. (2009) 312–317

66. Freitas, A., Vieira, R.: An ontology for guiding performance testing. In: Proceedings of 2014

IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent

Agent Technologies (IAT). (2014) 400–407

67. Bratko, I.: Prolog Programming for Artificial Intelligence. 4th edn. Pearson Education

(2011)

68. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language: Structural

Specification and Functional-Style Syntax. W3C. 2nd edn. (2012)

69. Gómez-Pérez, A.: Ontology evaluation. In: Handbook on Ontologies. Springer (2004)

251–273

70. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology evaluation

and validation. In: Proceedings of European Semantic Web Conference, Springer (2006)

140–154

71. Vrandečić, D.: Ontology evaluation. In: Handbook on Ontologies. Springer (2009) 293–313

72. Lantow, B.: OntoMetrics: putting metrics into use for ontology evaluation. In: Proceedings of

8th International Joint Joint Conference on Knowledge Discovery, Knowledge Engineering

and Knowledge Management-IC3K 2016, Volume 2, KEOD, SCITEPRESS (2016) 186–191

73. Brooke, J.: SUS-a quick and dirty usability scale. Usability Evaluation in Industry 189

(1996) 4–7

74. Brooke, J.: SUS: a retrospective. Journal of Usability Studies 8 (2013) 29–40

75. Casellas, N.: Ontology evaluation through usability measures. In: Proceedings of OTM

Confederated International Conferences ”On the Move to Meaningful Internet Systems”,

Springer (2009) 594–603

76. Tullis, T.S., Stetson, J.N.: A comparison of questionnaires for assessing website usability.

In: Proceedings of Usability Professional Association Conference, Citeseer (2004) 1–12

77. Jarrar, M., Keet, M., Dongilli, P.: Multilingual verbalization of ORM conceptual models and

axiomatized ontologies. Technical report, Vrije Unversiteit Brüssel (2014) 13 pages.

78. Keet, C.M., Chirema, T.: A model for verbalising relations with roles in multiple languages.

In: Knowledge Engineering and Knowledge Management: 20th International Conference,

EKAW 2016, Bologna, Italy, November 19-23, 2016, Proceedings 20, Springer (2016) 384–

399

79. Kaljurand, K., Fuchs, N.E.: Verbalizing OWL in Attempto controlled English. In: Procee-

dings of OWLED’07. Volume 258. (2007) 10 pages.

80. Kop, C.: How to summarize an OWL domain ontology. In: Proceedings of Fourth Internati-

onal Conference on Digital Society (ICDS’10), IEEE (2010) 106–111

81. Liang, S.F., Stevens, R., Scott, D., Rector, A.: Automatic verbalisation of SNOMED classes

using OntoVerbal. In: Proceedings of Conference on Artificial Intelligence in Medicine in

Europe, Springer (2011) 338–342

EPS Lisbon 2016 2015 - European Projects in Knowledge Applications and Intelligent Systems

158

82. Zimmermann, O.: Modelling complex software requirements with ontologies. Master’s

thesis, Universität Rostock (2017)

83. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet project. In: Proceedings

of 36th Annual Meeting of the Association for Computational Linguistics and 17th Interna-

tional Conference on Computational Linguistics-Volume 1, Association for Computational

Linguistics (1998) 86–90

84. Farfeleder, S., Moser, T., Krall, A., Stålhane, T., Zojer, H., Panis, C.: DODT: increasing

requirements formalism using domain ontologies for improved embedded systems develop-

ment. In: Design and Diagnostics of Electronic Circuits & Systems (DDECS), 2011 IEEE

14th International Symposium on, IEEE (2011) 271–274

85. Arora, C., Sabetzadeh, M., Briand, L.C., Zimmer, F.: Requirement boilerplates: transition

from manually-enforced to automatically-verifiable natural language patterns. In: Require-

ments Patterns (RePa), 2014 IEEE 4th International Workshop on, IEEE (2014) 1–8

86. Böschen, M., Bogusch, R., Fraga, A., Rudat, C.: Bridging the gap between natural language

requirements and formal specifications. In: Joint Proceedings of REFSQ-2016 Workshops,

Doctoral Symposium, Research Method Track, and Poster Track (REFSQ-JP 2016). CEUR

Workshop Proceedings, CEUR-WS (2016) 1–11

Ontology-based Software Test Case Generation (OSTAG)

159

