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Abstract Ontologies can support a variety of purposes,

ranging from capturing the conceptual knowledge to the

organisation of digital content and information. However,

information systems are always subject to change and ontol-

ogy change management can pose challenges. In this sense,

the application and representation of ontology changes in

terms of higher-level change operations can describe more

meaningful semantics behind the applied change. In this

paper, we propose a four-phase process that covers the oper-

ationalization, representation and detection of higher-level

changes in ontology evolution life cycle. We present differ-

ent levels of change operators based on the granularity and

domain-specificity of changes. The first layer is based on

generic atomic level change operators, whereas the next two

layers are user-defined (generic/domain-specific) change pat-

terns. We introduce layered change logs for the explicit oper-

ational representation of ontology changes. We formalised

the change log using a graph-based approach. We introduce a

technique to identify composite changes that not only assists

in formulating ontology change log data in a more concise

manner, but also helps in realizing the semantics and intent

behind any applied change. Furthermore, we identify fre-

quent change sequences that are applied as a reference to

discover reusable, often domain-specific and usage-driven

change patterns. We describe the pattern identification algo-

rithms and evaluate their performance.
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1 Introduction

Ontologies become essential for knowledge sharing activ-

ities, especially in areas such as bio-informatics, semantic

web, educational technology systems, indexing and retrieval,

etc. Ontology-based content models help to take a step for-

ward from traditional content management systems (CMS) to

conceptual knowledge modelling, to meet the requirements

of the semantically aware content-based systems (CBS).

While some generic ontologies (like upper ontologies) evolve

at a slower pace, we have been working with non-public

ontologies [formalised using the Web Ontology Language

(OWL)] used to annotate content in large-scale information

systems. In this context, changes happen on a daily basis,

triggered by changes in software, its technical or domain

environment. Systematic change becomes here a necessity

to enable controlled, accountable and predictable ontology

evolution.

Ontology evolution is defined in different ways [13,16,

45]. A comprehensive definition is given as “the timely adap-

tation of an ontology to changed business requirements, to

trends in ontology instances and patterns of usage of the

ontology based application, as well as the consistent manage-

ment/propagation of these changes to dependent elements”

[45]. The change operators are the building blocks of ontol-

ogy evolution. Different layers of change operators have

been suggested in past [27,34,44]. However, the identified

change operators focus on generic and structural changes

lacking domain-specificity and abstraction. These solutions
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lack adequate support for different levels of granularity at

different levels of abstraction. Furthermore, for semantically

enhanced information systems, a coherent representation of

such ontology changes conveying the semantics of changes

is essential.

In this paper, we present a four-phase ontology change

management system that covers the operationalisation and

the identification of higher-level ontology change patterns

(Fig. 1). These phases include change operationalisation,

change representation, change semantic capturing and

change pattern discovery. Few sections of the presented

ontology change management system have already been pre-

sented in our previously published papers. The explicit dis-

tinction between already published and the new work is given

below in each section of the phases.

Phase 1: change operationalisation We present a lay-

ered change operator framework (discussed in Sect. 4) which

consists of three different levels of change operators, based

on granularity and domain-specificity. These layered change

operations capture the real changes in the selected domains.

The first two layers are generic change operators that can

be applied on any domain. The changes at a higher level of

granularity, which are frequent in a domain and are often

neglected by the lower-level compositional change operators

addressed in the literature, are captured as domain-specific

change operators at level three. The layered change operator

framework has been introduced in [22]. However, an under-

lying structural model has been added to complement the

behaviour model.

Phase 2: change representation The implementation of

the change operator framework is supported through lay-

ered change logs (discussed in Sect. 5). Representing ontol-

ogy changes as higher-level change operations describes the

semantics behind any of the applied change operation. Using

higher-level representation of ontology changes, the intent

of the applied changes can be explicitly expressed. While

the layered change log and a graph-based foundation has

been suggested in [24], we substantially expand this here.

We exploit the ontology change logs and the pattern recog-

nition techniques to identify the ontology change patterns.

To do so, we formalised the ontology change logs using a

graph-based approach (discussed in Sect. 5.3).

Phase 3: change semantic capturing The atomic change

operations can only represent the addition or deletion of any

particular knowledge in the ontology. We utilized the graph-

based representation of ontology changes to identify the com-

posite change patterns (discussed in Sect. 6), which cannot

be captured by simple queries on ontology change logs. The

composite change operations provide more semantic infor-

mation of how an ontology changed as well as specific rea-

sons and consequences of operations at a higher level.

Phase 4: change pattern discovery: The discovery of

domain-specific change patterns (discussed in Sect. 7) pro-

Fig. 1 Proposed four-phase ontology change management

vides an opportunity to define reusable change patterns that

can be implemented in existing knowledge management sys-

tems. One of the key benefits of change pattern discovery

approach is its integration with an ontology editing frame-

work for pattern-driven ontology evolution. While the graph-

based patterns discovery approach along with the algorithms

has been presented [23], we provide a detailed evaluation

here.

The paper is structured as follows. Related work is dis-

cussed in Sect. 2. In Sect. 3, we talk about ontology change

management in general. Sections 4–7 give detailed descrip-

tion of each phase of the proposed ontology change man-

agement system. Experimental results and an evaluation are

discussed in Sect. 8 and we end with some conclusion in

Sect. 9.

2 Related Work

The dynamic nature of knowledge in every conceptual

domain requires ontologies to change over time. The rea-

son for change in knowledge can be changes in the domain,

the specification, the conceptualization or any combination
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of them [33]. Some changes are about the introduction of

new concepts, removal of outdated concepts and changes in

the structures and the description of concepts. A change in an

ontology may originate from a domain knowledge expert, a

user of the ontology or a change in the application area [32].

Based on the different perspectives of the researchers,

there are different solutions provided to handle ontology

evolution [4,7,16,17,28,29,32,39,41,44,50]. The author in

[44] discusses the complexity of the ontology change man-

agement process and presents a six phase ontology evolu-

tion process. She discusses the representation of generic

changes and categorized them into elementary, composite

and complex. In contrast to our work, aspects such as gran-

ularity, domain-specificity and abstraction are not included.

In [7], the authors present a pattern-driven ontology evolu-

tion approach with defined participants and execution steps.

In [41], the authors present a pattern-driven approach for the

evolution of RDF knowledge bases. The approach is based

on a declarative definition of evolution patterns.

In [33], the authors provide a set of possible ontology

change operations based on the effect with respect to the pro-

tection of the instance-data availability. Their aim is ensuring

the validity of the instance level data rather than the schema

level or domain-specific operations. In [40], the impact of

ontology change to the validity of the instance availabil-

ity is discussed and changes are subdivided into two cat-

egories, i.e. structural and semantic changes. Though their

work addresses semantic changes, our work takes the seman-

tic changes further and proposes domain-specific change pat-

terns for semantic changes. In [46], the authors present a

declarative approach to represent the semantics of changes,

considered as a reconfiguration-design problem. Their work

is focused on the realization of the changes, whereas our work

is focused on identifying domain-specific change patterns.

Representation of ontology changes using higher-level

change operations was first proposed by Stojanovic [45] and

Klein [27]. Recently, some researchers have focused on rep-

resentation and detection of higher-level ontology changes

[14,35]. In [35], the author proposed a language that allows

formulating the intuition behind any applied change in an

RDF graph and provided the change detection algorithm

with respect to the proposed language. To detect compos-

ite changes, an algorithm compares two versions of the RDF

graph (given in the form of triples in RDF/S). The algorithm

first picks up a triple added to (or deleted from) the previ-

ous version of the knowledge base and looks for potential

changes in a look-up table. Based on the potential changes

identified, the algorithm searches for other added (or deleted)

triples to detect certain type of ontology change. In contrast

to their approach, we identify the composite changes from

a single ontology change log graph and do not use different

versions of an ontology for comparison. Thus, in order to

realize that a certain ontology element exists in the previous

version of the ontology, we search for an inclusion change

operation (that adds the element in the ontology) in all previ-

ous change log sessions. If we find one, there must not exist

a (later) exclusion change operation that cancels out the pre-

vious inclusion change until the start of the current session

is reached.

Evolutionary strategies were first proposed by Stojanovic

[44] where she considered them as solutions for keeping the

ontology consistent at each resolution point. The resolution

point refers to the places in ontology evolution where the

user may adopt more than one option to keep the ontology

consistent. For example, the instances of a deleted concept x

will be (1) deleted, (2) the unique instance will be deleted or

(3) are linked to the parent concepts of x .

A lot of research has been done on mining of process

models from event log data [1,5,8,36,47,48]. An early work

that relied on the activity logs for producing formal process

models corresponding to actual process execution is given

in [5]. Metrics such as event frequency and regularity were

taken into consideration to discover process models. Results

show its usefulness in activities such as process model dis-

covery, re-engineering, software process improvement, etc.

In [48], the focus is on detection of invisible tasks from event

logs. Their definition of invisible tasks is tasks that exist in

a process model, but not in its event log (such as initial-

ize, skip, switch, redo, etc.). In contrast to their work, we

are interested in the detection of composite changes such as

split, move, merge, etc. In [36], the author defined the Event

and Process Mining ontologies. These two ontologies can be

used to incorporate semantics in the log, related to the event

types and the process instances.

The mining of sequential patterns was first proposed by

Agrawal and Srikant [2]. Since then, many sequential pattern

mining algorithms, often based on specific domains [3,31,

37,43,51], have been suggested. In the domain of DNA or

protein sequences, BLAST [3] is one of the most well-known

algorithms. Given a query sequence (candidate sequence), it

searches for a match from the databases. In contrast, we focus

on mining of change sequences (patterns) from an ontology

change database. In [51], the author proposed the MCPaS

algorithm to answer the problems of mining complex patterns

with gap requirements. Similar to our approach, it allows

pattern generation and growing to be conducted step by step

using gap-constrained pattern search.

Several algorithms focus on graph-based pattern discov-

ery [20,21,30,49]. In [21], the author proposes an apriori-

based algorithm, called AGM, to discover frequent substruc-

tures. In [49], the authors propose the gSpan (graph-based

Substructure pattern mining) algorithm for mining frequent

closed graphs and adopted a depth-first search strategy. In

contrast to our work, their focus is on discovering frequent

graph substructures without candidate sequence generation.

A chemical compound dataset is compared with results of the
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Fig. 2 Ontology-driven content-based systems (ODCBS)

FSG [30] algorithm. The performance study shows that the

gSpan outperforms the FSG algorithm and is capable of min-

ing large frequent subgraphs. The fast frequent subgraph min-

ing (FFSM) algorithm [20] is an algorithm for graph-based

pattern discovery. FFSM can be applied to protein structures

to derive structural patterns. Their approach facilitates fami-

lies of proteins demonstrating similar function to be analyzed

for structural similarity. Compared with gSpan [49] and FSG

[30] algorithms using various support thresholds, FFSM is

an order of magnitude faster. gSpan is more suitable for small

graphs (with no more than 200 edges).

We adopted ideas from sequential pattern discovery

approaches in other domains, such as sequence-independent

structure pattern [20] and gap-constraint [31] for setting cut-

offs in terms of node matching mechanism. Yet, discovery

of change patterns from ontology change logs is relatively

different from sequential pattern discovery in other contexts

(such as the biomedical domain). Recently, few researchers

have focused on detection of higher level generic ontology

changes [14,35]. In contrast to their work, our approach is

to discover the change patterns and is based on context-

aware, semantic matching of different graph sequences. This

requires the identification of equivalency between unordered

change sequences.

Our work regarding the formalization and storage of

the discovered change patterns is relatively similar to the

work of Henninger [19] and Kampffmeyer [26]. Similar

to our generic metadata change ontology, Henninger uses

ontology-based metamodels to formally present the soft-

ware patterns. The core properties of the metamodels include

hasProblem, hasSolution, hasContext, etc. To

represent the relationship among the patterns, the core meta-

model was extended using properties uses, requires,

alternatives, etc. In contrast to our work, the focus of

their ontology-based metamodel is to represent the relation-

ships between the software patterns, rather than providing

support of selecting the suitable pattern for a given task.

In [26], author proposed a Design Pattern Intent Ontology

(DIPO) for formalizing the patterns, based on their intent.

The aim of DIPO is to support the software developers in

choosing a design pattern, suitable for a particular task.

3 Ontology Change Management

We have been working with non-public ontologies used to

annotate the content in large-scale information systems. The

aim here is to facilitate accessibility of content for both

humans and machines by integrating semantics in the content

using ontologies. In this regard, a content change will ulti-

mately affect all the artefacts—the access files being updated,

the information system entities being improved. The lat-

ter causes knock-on effects on the access files and also the

ontology-driven content management model (Fig. 2).
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Fig. 3 Layered framework of

change operators and patterns

We distinguish two categories of changes—changes to the

content artefacts (content management infrastructure arte-

facts) and changes to the ontologies as the knowledge on top

of the artifact layer [15].

• Ontological Changes can include changes in the concept

hierarchy; some concepts may get modified, removed,

pulled up/down in the hierarchy, etc. More description

(in a form of object/data properties) can be added to the

available concepts. Ontological changes could reflect the

general changes in the domain, flaws in the earlier con-

ceptualization, addition of new concepts in the domain,

etc.

• Content Changes can affect any of the artifacts. Particular

interest here is the cascading impact. A content change

may have direct impact on access files. A change in access

file may have direct impact on the annotations that link

the files to the domain ontologies; and thus the underlying

domain ontology may also evolve accordingly.

In this paper, we focus on ontological changes only. We

propose a four-phase ontology change management system

(Fig. 1). These phases include, change operationalisation

(phase-1), change representation (phase-2), change seman-

tic capturing (phase-3) and change pattern discovery (phase-

4). In the following sections, we discuss each phase one after

the other.

4 Layered Change Operator (LCO) Framework

Based on an empirical observation of common changes in

different ontologies, we defined a layered framework of

change operators (Fig. 3). The first two layers are based on

generic and structural change operators. The next layer cov-

ers domain-specific changes. We consider level two and three

change operators as “change patterns”.

We define a change pattern as a frequently occurring com-

posed operation. The change pattern represents a frequently

occurring constrained composition of lower-level change

operations over the ontology elements. The main difference

Fig. 4 Structural model of pattern-based ontology evolution

between a pattern and a composite operation is the fre-

quency. It is the result of a mining process, whereas compos-

ite operations are language elements. These change patterns

can either be generic or domain-specific. A generic change

pattern can be applied to any domain ontology, whereas a

domain-specific change pattern can only be applied to a spe-

cific domain ontology. The structural model of pattern-based

ontology evolution is given in Fig. 4.

Level one change operators—atomic change operations:

These change operators are the elementary change oper-

ations used to perform a single add or delete operation

on a single targeted entity (i.e., addition or deletion of

any particular axiom in the ontology). “Add classDecla-

rationAxiom(Student)”, “Delete subClassOfAxiom(Student,

Person)”, etc., are the examples of level one change opera-

tions.

Level two change operators composite change patterns:

These are aggregated changes to represent composite tasks.

Many evolution tasks cannot be done by a single atomic

operation. These change operators are identified by grouping

atomic operations of level one to perform a composite task

on target entities.

Composite change operations comes into two layers. First

layer of composite change operations includes group of

those atomic change operations that in general are executed
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Fig. 5 Architecture of layered change operators (University Ontology)

together. For example, “Remove Concept Context” which

not only deletes a concept from the class hierarchy, but also

deletes all its roles. To delete a single concept “faculty” in a

university ontology, removing the concept from the concept

hierarchy is not sufficient. Before we remove the concept,

we have to remove all its roles, such as removing from the

domain and the range of properties like “isSupervisorOf” or

“hasPublication”, etc. In addition, we need to either delete

its orphaned subclasses or link them to the parent concept,

in order to keep the ontology consistent.

If an ontology engineer wants to merge two or more

concepts, the operation requires operators higher than the

integrate/remove concept context. In such a case, composite

change operations from level two can be used. “merge con-

cepts”, “move concepts” or “pull up property” are examples

of layer two composite change operations.

Level three change operators domain-specific change pat-

terns: The changes at a higher level of granularity, which

are frequent in a domain, can be represented as domain-

specific patterns—which are often neglected by the lower-

level compositional change operators. Domain-specific per-

spective links the structural changes to the aspects repre-

sented in domain ontologies. To execute a single domain-

specific change, operations at level one and two are used. In

case of the university administration domain, level three may

contain change patterns such as “manage faculty”, “add new

department”, “student registration”, etc. (Fig. 5). If a user

needs to register a new category of faculty using the “man-

age faculty” change pattern, say a “JuniorLecturer”, then he

creates a concept “JuniorLecturer” and attaches properties

like “hasPublication” and “supervise” from level two to the

newly created concept. Another ontology engineer may cre-

ate a new concept “JuniorLecturer” without including the

“supervise” property. This is due to the different viewpoints

and perspectives of the users.

More details about the change operator framework can be

found in [22].

5 Layered Change Log Representation

Ontology change logs can play a significant role in ontology

evolution. If there is a need to reverse a change, we use the

change log to undo/redo the changes applied in the past. This

is a common function in e.g. software versioning support. In

collaborative environments, change logs are also used to keep

the evolution process transparent and centrally manageable.

It captures all changes ever applied to any entity of ontology

using elementary changes. We propose a mechanism of rep-

resenting ontology changes expressively at different levels

of granularity (i.e. fine-grained changes such as the creation

of a single class and also coarse-grained changes such as

merging two sibling classes [38]). The higher-level change

representation is used for

• describing how an ontology is evolved from one version

to the other.

• In distributed environment where complex relationships

can exist between domain ontologies and other artefacts,

an ontology change may need to propagate to dependent

artefacts. In such cases, higher level change representa-

tion assists in understanding the ontology change and the

impact (consequence) of the applied changes.

• bridging between operational and analytical aspects of

the ontology evolution.

5.1 Layered Change Log Model

Capturing and representing the ontology changes at the ele-

mentary level in a change log do not suffice. As the intent of

the ontology change is missing from such change logs (and

mostly specified at higher level of granularity), the ontol-

ogy engineer is unable to understand why changes were per-

formed, whether it is an elementary level change or a part

of composite change and what the impact of such change is.

We attempt to mine valuable information from a change log,

making it easy for the ontology engineer (other) users and

machines to understand and interpret the ontology modifi-

cations. We propose a layered change log model, containing

two different levels of granularity, i.e. an atomic change log

(ACL) and a pattern change log (PCL), shown in Fig. 6. The

Fig. 6 Layered ontology change framework
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Fig. 7 Representation of an

atomic ontology change

Fig. 8 Operational setup of

ontology change logging

layered change log works with the layered change operator

framework presented in Sect. 4. The ACL records the applied

ontology changes at the atomic level. The PCL records the

applied ontology changes in terms of higher level (composite

and domain-specific) change patterns. These change patterns

can either be implicit if they are mined from the ACL using

data mining techniques or explicitly defined by the user as

higher level (level two and three) change operators. A PCL

supports capturing the objective of the ontology changes at

a higher level of abstraction and helps an comprehensive

understanding of ontology evolution. Higher level change

representation is more concise, intuitive and closer to the

intentions of the ontology editors and captures the semantics

of the change [35]. Storing ontology changes at two different

levels of abstraction also helps us in identifying recurring

change patterns from low level logs (discussed in Sect. 6

and 7).

Atomic change log An ACL consists of an ordered list of

atomic change operations, ACL =< ac1, ac2, ac3 · · · acn >

where n refers to the sequence of ontology changes in a

change log. Each ontology change contains two types of

data, i.e. Metadata (MD) and the Change data (CD) (Fig.

7). Metadata provides the common details of the change, i.e.

who performed the change, when the change was applied and

how to identify such change from the change log. Metadata

can be given as MD = (ids, idc, u, t) where ids , idc, u and t

represent session id, change id, user and timestamp, respec-

tively. The change data contain the central information about

the change request and can be given as CD = (op, e, p),

where op, e and p represent the change operation, element

and parameter set of a particular change.

Pattern change log A PCL consists of an ordered list of

ontology change patterns, PCL =< pc1, pc2, pc3 · · · pcn >

where n refers to the sequence of ontology change patterns

in a PCL. These change patterns can either be level two

generic composite change patterns or level three domain-

specific change patterns (cf. Fig. 5). Similar to ACL, each

ontology change pattern pc consists of two types of data i.e.

Metadata (D) and Pattern data (P). The metadata provides

meta details about the change pattern and can be given as

D = (ids, idc, u, t, pu) where, ids , idc, u, t and pu repre-

sent the session id, change id, user, timestamp and intention

of the change pattern, respectively.

The pattern data (P) provide description about the

involved change operations. Here, P refers to the sequence

of the change operations available in a change pattern P =

(ac1, ac2, . . . acs), where s is the total number of change

operations in a pattern. For a complete representation of

applied ontology changes, the applied change patterns are

recorded as a sequence of atomic change operations in the

ACL (Fig. 8).

5.2 RDF Framework Format

We use RDF triple-based representation, i.e., subject–

predicate–object (spo), to conceptualize the ontology

changes in change logs. To do so, we constructed a generic

metadata ontology1 based on specification of OWL-DL 2.0.

The classes and properties available in the metadata ontol-

ogy assist the ontology engineer to construct the RDF triples,

1 Available at www.computing.dcu.ie/~mjaved/MO.owl
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Fig. 9 RDF triple-based specification of stored change pattern

“ResearchStudentRegistration”

representing an applied ontology change. Similar to the

approaches opted for [34] and [36], the idea here is to pro-

vide a metadata ontology that is generic, independent and

extendable to represent the changes of the domain ontolo-

gies. We used an RDF triple store to record the change log,

domain ontologies and metadata ontology. Thus, all ontol-

ogy changes, stored in the ontology change log, are in a form

of triples. Below, we give description of the metadata ontol-

ogy, using an example of stored change pattern, given in

Fig. 9.

The central class in the metadata ontology is Change.

Based on our proposed change operator framework (cf.

Sect. 4), the class Change is subdivided into AtomicChange,

CompositeChange and PatternChange. Each stored domain-

specific change pattern is an instance of (rdf:type) Pattern-

Change (line 1: Fig. 9). The descriptive data of a change pat-

tern are given using properties sessionId, changeId, Pattern-

Name, Timestamp, Purpose, etc. (lines 2–7). To express that

the change pattern is the combination of lower level change

operations (i.e. atomic, composite or combination of them),

the class PatternChange is associated with the class Atomic-

Change and the class CompositeChange using object prop-

erties containAtomicChange and containCompositeChange,

respectively (lines 8–10).

5.3 Graph-based Ontology Change Formalization

Ontology change logs provide operational as well as analyt-

ical support in the evolution process. As discussed in Sect.

5.2, the ontology change logs are stored in the form of RDF

triples. RDF triple format is used due to its fine-grained

level representation and interoperability (i.e., conversion

from triple format to others standard formats such as RDF,

XML, etc.). Fine-grained representation of ontology changes

help the ontology engineer to construct complex queries

and extract different types of knowledge from the log. Fur-

thermore, storing domain ontologies, metadata ontology

and change log in one single location help in navigating

through them simultaneously and identifying relationships

among them. However, as RDF triples represent the ontol-

ogy changes at fine-grained level (1 ontology change is repre-

sented by 8–10 triples), efficiently visualizing and navigating

through the change log alone is not realistic. Graphs can cover

this gap. Graphs provide the ability to visualize and navi-

gate through large network structures. They enable efficient

search and analysis and can also communicate information

visually. Moreover, the benefit of a graph-based representa-

tion is the availability of well-established algorithms/metrics

(for pattern discovery and detection) and its well-known char-

acteristics such as performance (for querying the ontology

change effectively).

A graph-based formalization is an operational represen-

tation for the ontology changes. To identify the higher level

change patterns from the ACL, we reformulate the triple-

based representation of atomic changes using a graph-based

approach. We use attributed graphs [11]. Graphs with node

and edge attribution are typed over an attribute type graph

(ATG). Attributed graphs (AG) ensure that all edges and

nodes of a graph are typed over the ATG and each node

is either a source or target, connected by an edge (Fig. 10).

The benefit of using ATGs and AGs is their similarity with

the object oriented programming languages, where one can

assign each element of the graph a type. Similar to the objects

of any class, having a number of class variables, one can

attach a number of attributes to a graph node in an AG. The

data types of such attributes can be defined in an ATG. Fur-

thermore, one can borrow other object oriented concepts,

such as inheritance relations, for any defined element in an

ATG.

Based on the idea of attributed graphs, a change log

graph G can be given as G = (NG , NA, EG , EN A, EE A)

where:

• NG = {ni
g|i = 1, . . . , p} is the set of graph nodes. Each

node represents a single ontology change log entry (i.e.,

representing a single atomic ontology change). The term

p refers to the total number of atomic change operations

present in the ACL. Here, we assume that the concurrent
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Fig. 10 Attribute type graph

(ATG) for an ontology change

ontology change operations (if any) are sequenced; i.e.,

each ontology change operations is executed one after

another.

• NA = {ni
a |i = 1, . . . , q} is the set of attribute nodes.

Attribute nodes are of two types: (1) attribute nodes which

symbolize the metadata (e.g. change Id, user, timestamp)

and (2) attribute nodes which symbolize the change data

(and its subtypes) (e.g. operation, element, target parame-

ter, auxiliary parameters)—cf. Fig. 7. The term q refers

to the total number of attributes attached to a single graph

node ng .

• EG = {ei
g|i = 1, . . . , p − 1} is the set of graph edges

which connects two graph nodes ng . The graph edges eg

represent the sequence of the ontology change operations

in which they have been applied on the domain ontology.

• EN A = {ei
na |i = 1, . . . , r} is the set of node attribute

edges which joins an attribute node na to a graph

node ng .

• EE A = {ei
ea)|i = 1, . . . , q−r} is the set of edge attribute

edges which joins an attribute node na to a node attribute

edge ena .

A single graph node of an attributed graph (AG) which

is typed over an ATG is given in Fig. 11. The types

defined on the (graph and attributed) nodes can be given

as t (Add)=Operation, t (class Assertion) = Element ,

t (John) = I ndividual and t (Ph D_Student) = Concept .

This node represents a single ontology change operation

where graph node ng is the central part of it. These graph

nodes are linked to each other using graph edges eg to rep-

resent a complete ontology change log graph.

Fig. 11 Attributed graph Node typed over ATG (Add classAssertion

(John, PhD_Student))

6 Detection of Composite Change Patterns

As we discussed in Sect. 5, representing a change at the

atomic level is not sufficient. Such representation of ontol-

ogy changes can only describe the addition or deletion of an

ontology element. The semantics of an applied change (or a

group of changes) are missing from such representation and

most of the time is present at higher level of granularity. We

can represent such semantics of the applied atomic changes

in the form of composite change patterns and can be repre-

sented in the PCL. For example, if a concept x is removed (as

a subclass) from a parent concept y and has been attached

(as a subclass) to another concept s, the semantics behind

123



128 M. Javed et al.

Fig. 12 Layered change log framework

such change (at atomic level) only refers to a change of the

class hierarchy for concept x , i.e. Move Concept (x, y,

s). In this case, instances of concept x that inherit properties

from concept y or any of its parents need to be revalidated.

However, if we identify this knowledge that concept s is actu-

ally a superclass of concept y, the semantics behind such

a change will refer to a “pull up concept” change—Pull

up Concept (x, y, s). In this case, instances of concept

x that inherit properties of concept y only need to be revali-

dated. This example signifies the importance of capturing the

semantics of any change at a higher level. We operational-

ize the change semantic captured using composite change

detection algorithms. The algorithms lead us to the detection

of composite changes from ACLs and their (semantically)

enhanced representation in the PCL. It is common to find

some overlapping change patterns. Such overlapping of the

change patterns can be either complete or partial (Fig. 12).

6.1 Composite Change

A composite change is a sequence containing a group of

elementary (level one) change operations that are applied

on a domain ontology, where the change operations can be

of inclusion or exclusion type. The inclusion type change

operations add new data to the domain ontology, whereas

the exclusion type change operations remove data from the

domain ontology. Thus, a composite change c can be given

as < δ1, δ2, φ >, where:

• δ1 is a sequence of atomic level exclusion change opera-

tions.

• δ2 is a sequence of atomic level inclusion change opera-

tions.

• φ refers to the conditions to be satisfied.

As composite change operations are applied at the entity

level, an exclusion change operation (δ1) deletes certain

axioms from the target ontology entity. The inclusion change

operation (δ2) adds some new axioms regarding the target

ontology entity. Further, to consider a group of (add/delete)

change operations as a composite change, the change opera-

tions must satisfy certain conditions. The term φ refers to the

conditions on the existence of any knowledge in the ontol-

ogy. Such conditions can be either existential conditions (φe)

or correlations (φc) among the ontology change parameters.

The existential conditions (φe) of any change operation can

be given in terms of pre and post conditions. For example, in

case of change operation Add concept (Researcher),

the individual Researcher must not exist in the current

version of ontology (O1) and must exist (as a concept) in the

next version of ontology (O2).

• Pre-Cond: Researcher /∈ O1

• Post-Cond: Researcher ∈ O2

• Post-Cond: (Researcher rdf:type owl:Class) ∈ O2

Similarly, in case of Add subclassOf (Researcher ,

Person), concepts Researcher and Person must exist

in the current version of ontology (O1) and Researcher

should be a child of (rdfs:subClassOf) Person in subse-

quent version of ontology (O2).

• Pre-Cond: Researcher, Person ∈ O1

• Post-Cond: (Researcher rdfs:subClassOf Person)

∈ O2

The correlations (φc) refer to the relationships among the

parameters of the available atomic change operations in a

composite change. Such relationships are not explicitly given

in the ACL. For example, in case of composite change oper-

ation Pull up concept (Researcher, Student),

where the concept Researcher is being pulled up in the

concept hierarchy and becomes a sibling class to its previous

parent concept Student, the change is actually a group of

two atomic change operations, i.e.,

• Delete subclass Of (Researcher,

Student). (δ1)

• Add subclassOf(Researcher, Person). (δ2)

the correlations can be given as

• Student subclassOf Person. (φc)

We utilized the given definition of a composite change in

defining the graph transformation rules and conditions. In

other words, we can say that a source ontology subgraph has

been transformed into target ontology subgraph based on the

given conditions, i.e., existential and correlation conditions.

6.2 Graph-based Specification of a Ontology Change

We specify the ontology changes of composite types using

a graph transformation approach where a source ontology

subgraph is transformed into a target ontology subgraph,

while preserving the defined conditions. We opt for the dou-

ble pushout (DPO) [10] approach that allows us to specify

the graph transformation rules and gluing conditions in a
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Fig. 13 Double-pushout approach for graph transformation

Fig. 14 DPO approach—an example

form of pairs of graph morphisms (L
l

←− K
r
−→ R)—Fig. 13.

First, we describe the DPO approach.

Referenced vs. Ontology subgraphs The DPO approach is

termed as “double pushout” as the complete transformation

of input ontology subgraph G into target ontology subgraph

H is translated into two types of changes, i.e., exclusion and

inclusion change operations. The DPO approach uses a graph

mapping approach where subgraphs L , K and R represent the

referenced subgraphs and subgraphs G, D and H represent

the ontology subgraphs. Thus, we can say that the ontology

subgraphs G, D and H are mapped to referenced subgraphs

L , K and R, respectively (Fig. 14).

The graph L is the referenced input subgraph represent-

ing items (i.e., nodes or edges) that must be present in the

ontology input subgraph G for the application of the com-

posite change. In other words, graph G represents the initial

state of the ontology. The graph R is the referenced out-

put subgraph representing the items that must be present in

the resulting target ontology subgraph H , after the appli-

cation of the composite change, i.e., representing the final

state of the ontology; whereas, the referenced graph K rep-

resents the “gluing graph” (L ∩ R), also known as interface

graph, representing the graph items that must be read dur-

ing the transformation but are not consumed, i.e., represent-

ing the intermediate state after the application of exclusion

type atomic change operations. Note, the graph transforma-

tion here represents the transformation of an input ontology

subgraph into a target ontology subgraph—not the transfor-

mation of a “change log” subgraph. Each node in a DPO

graph represents an ontology entity (i.e. class, property or

individual). In Fig. 14, the nodes and the edges represent

the ontology classes and the subclassOf axioms, respectively.

The change log graphs are mentioned here in the form of pro-

ductions and co-productions (discussed below), representing

the set of atomic change operations.

The graph transformation rules, also known as produc-

tions (p), represent the change operations being applied on

the subgraphs during the two pushouts. The rules define the

correspondence between the source and the target subgraph

determining what is to be deleted, preserved or constructed.

For example, in Fig. 13, first production, represented as l,

refers to the exclusion change operations of pushout 1 that

delete certain items (nodes or edges) from the reference input

subgraph L . The second production, represented as r, refers

to the inclusion change operations of pushout 2 that adds cer-

tain items (nodes or edges) into the reference gluing graph K .

The productions representing the changes being applied on

the input ontology subgraph G are known as co-productions

and are given as g and h in Fig. 14.

Match (m). To apply production l to the ontology graph,

first we need to identify the occurrence of subgraph L in the

ontology graph, called a “match”. For example, m1 : L −→

G for a production l is a graph homomorphism, i.e., each

node/edge of graph L is mapped to a node/edge in graph G

in such a way that graphical structure and labels are preserved

[6]. The context gluing graph D is obtained by deleting all

items (nodes and edges) from the subgraph G which have

a match (image) in the subgraph L but not in subgraph K

(pushout-1). Intuitively, we can say that if a match m1 finds

an occurrence of subgraph L in a given ontology subgraph

G, then G
l,m1
�⇒ D represent the derivation (co-production) g

where l is applied to G leading to a derived graph D. Infor-

mally, the subgraph D is achieved by replacing the occur-

rence of L in G by K . Similarly, in pushout-2, the subgraph

H is obtained by inserting distinct items (nodes and edges) of

subgraph R thats do not have any match (image) in subgraph

K (h = D
r,m2
�⇒ H ).

Gluing conditions The possible conflicts in the graph

matching step are resolved by applying certain matching con-

straints, known as “gluing conditions”. A gluing condition

consists of two parts, i.e., a dangling condition and an identi-

fication condition. The dangling condition (Cd ) ensures that

the graph D, obtained by applying the production l, contains

no “dangling” edge, i.e., an edge without a source or a target

node. For example, if a node v is deleted from graph G, all

the edges that contain node v as a source or target node, will

also be deleted. The identification condition (Ci ) ensures that

every item of graph G that has to be deleted by the applica-

tion of production l, must have only one distinct match in the

graph L , i.e., 1:1 matching. Thus, we can say that the items

from the left hand side graph L may only be identified in
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Fig. 15 Split concept (x , (x1, x2))—triple push out (TPO) approach

resultant graph R if they also belong to the gluing graph (i.e.,

preserved items) [18].

6.3 Triple Pushout (TPO) Approach

We take pushouts 1 and 2 of DPO approach as “structural

pushouts”, as they refer to completeness and correctness of

the structure of a graph. The dangling condition for edges in

pushout 1 of DPO approach does ensure that the graph D is

a genuine graph by deleting the dangling edges. However,

the semantics behind the applied composite change may be

lost, e.g. in the case of split concept change. Let x be an

ontology concept that is split into two concepts x1 and x2

(Fig. 15). In pushout 1 of split concept change, concept x is

deleted from the concept hierarchy. To satisfy the dangling

condition, the roles (edges) of the concept x are also being

deleted. In pushout 2, two new concepts x1 and x2 are added

replacing concept x in the concept hierarchy. As concepts

x1 and x2 inherit relationships from the split concept x , the

deleted roles (edges) are not the consumed entities in this

graph transformation. Thus, the relationships must be added

back to the newly added concepts x1 and x2.

To do so, we extended the DPO approach by adding an

additional production that formulates the pushout 3 (semantic

pushout) allowing a user to preserve the deleted dangling

edges of pushout 1; hence, named “triple pushout approach”.

In pushout 3, the user can select different evolution strategies

[25] to resolve the above mentioned issues. Thus, a derivation

i from subgraph H to I resulting from an application of

production s (pushout 3) at a match m3 can be given as i =

H
s,m3
�⇒ I (Fig. 15). Now, we explain the TPO approach

in detail using the “split concept” composite change case

scenario.

“Split concept” Change Scenario The composite change

“split concept” refers to splitting a concept into two (or

more) sibling concepts. For example in Fig. 15, the concept

x (x ∈ G) has been split into two sibling concepts x1 and

x2 (x1, x2 ∈ I ). The composite change adds two new con-

cepts in the ontology (inclusion operations) and deletes the

concept that has been split (exclusion operation). The nodes

and edges, given in Fig. 15, represent the following ontology

elements: square node −→ concept (c), oval node −→ prop-

erty (t), diamond node −→ individual (i), edge [src(e) = c &

tar(e) = c] −→ is-a relationship, edge [src(e) = t & tar(e) =

c] −→ range of a property, edge [src(e) = c & tar(e) = t] −→

domain of a property and edge [src(e) = i & tar(e) = c] −→

instanceOf relationship.

Table 1 gives the formal definition of the split concept

composite change example given in Fig. 15, in terms of ontol-

ogy and TPO graph changes and conditions. Now we discuss

each pushout and the involved change operations one after

the other.

pushout 1 First, we identify the occurrence of the reference

subgraph L in ontology graph (i.e., m1 : L −→ G). Once the

match is found, production l is being applied to the matched

ontology subgraph G (through co-production g) resulting in

a gluing graph D (i.e., g = G
l,m1
�⇒ D). The co-production

g represents the deletion of concept x from the ontology

concept hierarchy. Thus, in Fig. 15, node x and edge a1 are

deleted from the input ontology subgraph G. Furthermore, to

satisfy the dangling conditions, edges b1, b2 and b3 are also

deleted.
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Table 1 Formal definition of composite change operation: Split Con-

cept (x , (x1, x2))

Split concept (x, (x1, x2))

Intuition: Splitting a class x into two sibling classes x1 and x2

Exclusion changes (δ1) Pushout-1 (type)

x rdf:type OWL:Class delete node x (m2)

x rdfs:subClassOf z delete edge a1 (m2)

u1 rdfs:domain z delete edge b1 (Cd )

u2 rdfs:range z delete edge b2 (Cd )

i1 rdf:type z delete edge b3 (Cd )

Inclusion changes (δ2) Pushout-2 (type)

x1 rdf:type OWL:Class add node x1 (m3)

x1 rdfs:subClassOf z add edge a3 (m3)

x2 rdf:type OWL:Class add node x2 (m3)

x2 rdfs:subClassOf z add edge a4 (m3)

Inclusion changes (δ2) Pushout-3 (type)

u1 rdfs:domain x1, x2 add edges w1, w2 (C ′
d )

u2 rdfs:range x1, x2 add edges w3, w4 (C ′
d )

i1 rdf:type x1, x2 add edges w5, w6 (C ′
d )

Ontology conditions (φ) Graph conditions (Ci )

x1, x2 /∈ O − x1, x2 ∈ O ′
x1, x2 /∈ G − x1, x2 ∈ H

x ∈ O − x /∈ O ′ x ∈ G − x /∈ H

z ∈ (O , O ′) z ∈ D

(x rdfs:subClassOf z) ∈ O src(a1) = x & tar(a1) = z in G

(x1 rdfs:subClassOf z) ∈ O ′ src(a3) = x1 & tar(a3) = z in H

(x2 rdfs:subClassOf z) ∈ O ′ src(a4) = x2 & tar(a4) = z in H

pushout 2 Similar to pushout 1, first we identify the match

of the reference gluing graph K in the ontology gluing sub-

graph D (i.e., m2 : K −→ D). Once a match is confirmed,

production r is applied to the ontology subgraph D (through

co-production h) resulting into an intermediate graph H (i.e.,

h = D
r,m2
�⇒ H ). The co-production h represents the addition

of two concepts x1 and x2 in the ontology concept hierarchy.

Thus, in Fig. 15, the nodes x1 and x2 are added to the gluing

graph D and are linked to available node z through edges a3

and a4.

pushout 3 To ensure that the roles (cf. Fig. 16) of the

deleted concept have been transferred to the newly added

concepts, the effect of the dangling condition must be

reversed. We call it inverse dangling condition (C ′
d ). Thus, all

the edges that had been removed from the graph in pushout 1

(due to dangling condition) must be added back to the newly

added concepts in pushout 3.

In pushout 3, the user can select different evolution strate-

gies for inheriting the roles of the deleted concept by the

newly added concept. For example, in case of the split change

operation, the user can either (1) distribute the roles among

Fig. 16 Role of a concept ResearchStudent

the newly added concepts, (2) add the roles to both concepts

or add the roles to one of the added concept (i = H
s,m3
�⇒ I ).

As in our running example, we chose option 2, the nodes u1,

u2 and i1 are linked to the nodes x1 and x2.

6.4 Detection of Composite Changes

We operationalize the composite change detection in terms of

graph matching. The TPO approach can be applied directly,

if one preserves the different versions of the ontology. As

we log the applied change operations, rather than the dif-

ferent versions of the ontology, we input the productions

to the composite change detection algorithm, rather than

the ontology and referenced ontology subgraphs. Thus, the

input to the composite change detection algorithm is the

change log graph (representing the applied atomic changes on

the domain ontology) and the referenced composite change

graph (representing the sequence of atomic changes to be

identified) along with the specified conditions. Below, we

describe some frequently used terms:

Session (s) The ontology change log graph is a collection

of sessions S, where each session s consists of the change log

entries, from the time the domain ontology is loaded into the

ontology editor, till the time it is closed. Thus, whenever an

ontology is loaded into the editor, a new session starts and all

the applied changes are recorded into the following session.

Graph node vs. TPO node One should differentiate

between a graph node of a change log graph and a node given

in a TPO diagram. In this paper, the term “graph node” rep-

resents a single ontology change log entry (i.e., representing

a single atomic change) in a change log graph, where each

graph node comprises a number of attributes such as tar-

get/auxiliary parameters, operation, element, session id, etc.

(cf. Fig. 11). The term “TPO node”, represents an ontology

entity (i.e., concept, property, individual, etc.) in the TPO

Fig. 15.

Role The term “role” refers to the usage of an ontology

entity in a specific ontology version. For example, in Fig. 16,
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Table 2 List of composite

change patterns and their

definitions

Composite change Description

Split concept (x , (x1, x2)) Split a concept x into two newly created sibling concepts x1 and x2

Merge concept ((x1, x2), x)

concept x

Merge two existing concepts x1 and x2 into one newly created

and cumulate all roles of x1 and x2 into x

Pull up concept (x , x1) Pull concept x up in its class hierarchy

and attach it to all parents of its previous parent x1

Pull up concept (x) Pull concept x up in its class hierarchy

and attach it to all parents of all its previous parents

Pull down concept (x , x1) Pull concept x down in its class hierarchy

and attach it as a child to its previous sibling concept x1

Pull down concept (x) Pull concept x down in its class hierarchy

and attach it as a child to all its previous sibling concepts

Move concept (x , x1) Detach concept x from its previous superclass

and attach it as a subclass to a concept x1

(which previously was not a direct/indirect superclass of concept x)

Group concepts (x , (x1, x2)) Create a common parent concept x for sibling concepts x1 and x2

and transfer the common properties to it

Add generalisation concept

(x , x1)

Add a new concept x between x1 and all its super classes

Add specialization concept

(x , x1)

Add a new concept x between x1 and all its subclasses

Pull up property (p, x1, x2) Pull a property p up in the class hierarchy

and attach it to the superclass x2 of its previous domain/range concept x1

Pull down property (p, x1, x2) Pull a property p down in the class hierarchy

and attach it to the subclass x2 of its previous domain/range concept x1

the concept ResearchStudent has five roles i.e, subclass of

concept Student, range of object property isSupervisorOf and

the type of individuals Joe, Karl and John.

6.4.1 Algorithms for Composite Change Detection

There is no agreed standard set of composite change oper-

ations that one could be based on. It is obvious (and also

mentioned in previous research [44,27]) that one can com-

bine different atomic level change operations to construct

new composite changes. Thus, providing an exhaustive list

of composite change operations is not feasible. In our cur-

rent work, we select the composite change patterns and

their definitions from Stojanovic [44] and they are given in

Table 2.

The basic idea of the composite change detection algo-

rithm is to iterate over each session of the change log graph

and find the location from where an applied composite

change may start. Pass the identified location’s session node

ng and the reference graph Gr to a function that extracts

the complete sequence of nodes (starting from ng) that maps

completely to Gr . In the mapping step, ensure that the corre-

lations among the parameters of the identified change oper-

ations are satisfied.

6.4.2 Description of Algorithm

The complexity of the presented algorithm is linear O(n).

The composite change detection algorithm is given in List-

ings 1.1 and 1.2, where Listing 1.1 describes the main algo-

rithm and Listing 1.2 presents algorithm for one of the func-

tion (method). Below, we describe the algorithm in form of

steps (and sub-steps):

Listing 1.1:

Step A: The algorithm takes the change log graph G and

reference graph Gr as an input and group the graph nodes

into a set of sessions (lines 1–2).

Step B: Once we have the session set S, the algorithm

iterates over each session s (lines 3–18).

Step B.1: Within each iteration over session s, first we

get the range of the session by extracting the node ids

of the first and the last node of the session. The parame-

ter current I d (representing the id of the currently vis-

ited graph node) is initialized with the first node id (lines

4–6).

Step B.2: We iterate over the graph nodes of session, until

the id of the currently visited node is less than the id of the

last node of the session (lines 7–17).

Step B.2.1: In each iteration, we extract the first node nr

from the reference graph G −r and identify a matching node

to nr from the log session s (lines 8–9).

Step B.2.2: If no matching node is identified from the ses-

sion, the algorithm goes back to step 3 to select the next

session from the session set (lines 10–11).

Step B.2.3: If a matching node is identified from the ses-

sion, the algorithm passes the matched node ng , reference

composite change graph Gr and the session s to a method,
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i.e., matchPattern(), that identifies the complete composite

change sequence (line 13).

Step B.2.4: The method matchPattern() returns a list of

change operations (representing a detected composite change

operation) that is passed as an output of the algorithm or

returns a null value (representing that composite change was

not identified at particular location of the session) (lines 13–

16).

Listing 1.2:

Step A: First, we save the passed graph node ng in an

extendable list (line 1).

Step B: We iterate over the session s, as long as the

complete composite change reference graph is not identified

(lines 2–12).

Step B2.1: In each iteration, we select the subsequent

nodes of the reference graph Gr and the session s (lines 3–4).

Step B2.2: We match the selected nodes. If the nodes are

matched and the correlations are satisfied, the selected node

ng is added into the list and the next subsequent node of the

session s is selected as a current node (lines 5–7).

Step B2.3: If the nodes do not match (in above step B2.2),

the next subsequent node of the session s is selected as a cur-

rent node (lines 5–7) and the algorithm goes back to Listing

1.1 (from where this method was called) with a null value

returned.

7 Change Patterns Discovery

Graph-based formalisation (discussed in Sect. 5.3) allows us

to identify and classify frequent changes that occur in domain

ontologies over a period of time. Initially, we analyzed the

change log graph manually and observed that combinations

of change operations occur repeatedly during the evolution of

ontologies. We identified these as frequent recurring change

patterns that can be reused.

7.1 Analysis of Change Log Graph

While patterns are sometimes used in their exact form, users

often use different orderings of change operations to per-

form the same (semantically equivalent) changes at different

times. To capture semantically equivalent, but operationally

different patterns, more flexibility is needed. We introduce

a metric, called sequence gap or generally n-distance, that

captures a node gap between two adjacent graph nodes in a

sequence [23]. It refers to the distance between two adjacent

graph nodes in a change log graph. This helps us to define

a more flexible pattern notion. We merge different types of

patterns into two basic subdivisions, i.e.

• Ordered Change Patterns (OP)

• Unordered Change Patterns (UP)

The instances of the ordered change patterns comprise

change operations in exact same sequential order from a

change log graph. Thus, such complete (OCP) or partial

(OPP) patterns may have only a positive node distance value,

starting from zero to a user given threshold (x). The instances

of unordered change patterns comprise change operations

which may or may not be in the exact same sequential order

in a change log graph. These complete (UCP) or partial (UPP)

patterns may have a node distance that ranges from a negative

node distance value (−x) to a positive node distance value

(x). Completeness means that all pattern nodes are used in

the concrete graph; partiality refers to a subset of nodes. For

the remainder, we focus on complete change patterns, but

we discuss the relevance of partial change patterns in our

conclusions.

Metrics: We consider identifying recurring sequenced

change operations from a change log as a problem of recog-

nition of frequent patterns in a graph. First we describe the

key metrics.

Definition 1 Pattern Support: The pattern support of a pat-

tern p is the number of occurrences of such a pattern in

123



134 M. Javed et al.

the change log graph G. Pattern support is denoted by

sup(p). The minimum number of occurrences required for

a sequence s in change log graph G to qualify as a change

pattern p is the minimum pattern support, denoted by min_

sup(p).

Definition 2 Pattern Length: The pattern length of a pat-

tern p is the number of change operations in it, denoted by

len(p). The minimum length required for a sequence s in a

change log graph G to qualify as a member of a candidate

pattern set is the minimum pattern length, denoted by min_

len(p).

Definition 3 Candidate Change Pattern Sequence: For a

given ACL =< ac1, ac2, ac3 · · · acn >, a candidate pattern

sequence cs is a sequence < acp1, acp2, acp3 · · · acpk >

with

• acpi ∈ AC L for i = 1, 2 · · · k and

• if pos(acpi ) < pos(acpj ) in cs, then pos(acpi ) ≤

pos(acpj ) in AC L . . . for all i = 1 · · · k − 1 and

j = 2 · · · k.

Definition 4 Change Pattern Sequence: A candidate change

pattern sequence cs is a discovered change pattern p if

• len(cs) ≥ min_len(p).

i.e., the length of the candidate pattern sequence cs is

equal to or greater than the threshold value set by the

minimum pattern length.

• sup(cs) ≥ min_sup(p).

i.e., the support for the candidate pattern sequence cs in

a change log graph G is above the threshold value of

minimum pattern support.

Definition 5 Definition 5 - Ordered Change Pattern: Let a

change pattern p =< s1, s2 · · · sd > be a set consisting of

a candidate change pattern sequence cs (cs = s1) and the

change pattern support sequences (s2, s3 · · · sd) for cs. The

change pattern p is an ordered change pattern (O P) with

• si =< aci1, aci2 · · · acin > ∈ p for i = 1 · · · d

• if pos(aci x ) < pos(aciy) in si then pos(aci x ) ≤ pos(aciy)

in AC L for all x = 1 · · · n − 1, y = 2 · · · n.

Definition 6 Unordered Change Pattern: Let u and v be the

minimum and maximum positions in an identified change

pattern sequence si , respectively. The change pattern p

(p =< s1, s2 · · · sd >) is an unordered change pattern (U P)

with

• si = < aci1, aci2 · · · acin > ∈ p for i = 1 · · · d

• if u = min_pos(aci1, aci2 · · · acin) in si and v =

max_pos(aci1, aci2 · · · acin) in si , then u ≤ pos(aci )

≤ v in AC L .

7.2 Change Patterns Discovery Algorithms

The identification of domain-specific change patterns is oper-

ationalised in the form of discovery algorithms. The section

is divided into two parts, i.e. algorithms for searching ordered

complete change patterns (OCP) and algorithms for search-

ing unordered complete change patterns (UCP). The inputs to

the pattern discovery algorithms comprise the graph G rep-

resenting change log triples, the minimum pattern support

min_sup, the minimum pattern length min_len and the max-

imum node-distance x. Before we describe each algorithm,

we introduce some concepts.

• Target entity, primary/auxiliary context of change: The

target entity is the ontology entity to which the change

is applied; primary/auxiliary context refers to entities

which are directly/indirectly affected by such a change.

• Candidate node (cn): A candidate node cn is a graph

node selected at the start of the node iteration process

(discussed later). Each graph node will act as a candidate

node cn in one iteration each of the algorithm.

• Candidate sequence (cs): The candidate sequence cs is

the context-aware set of graph nodes starting from a par-

ticular candidate node cn.

• Discovered node (dn): The discovered node dn is a

graph node that matches the candidate node cn (in a

particular iteration) in terms of its operation, element

and type of context. DN refers to the set of discovered

nodes.

• Discovered sequence (ds): ds is the context-aware set

of graph nodes starting from a discovered node dn that

matches candidate sequence cs (in an iteration). DS refers

to the set of discovered node sequences.

7.2.1 OCP Discovery Algorithm

To discover ordered complete change patterns (OCP), the

identified sequences are of the same length and contain

change operations in the exact same chronological order.

The basic idea of the algorithm is to iterate over the graph

nodes, generate the candidate sequence starting from a par-

ticular graph node and search the similar sequences within

the graph G. The OCP algorithm is defined in Listings 2.1–

2.2 % and explained below. The algorithm iterates over each

graph node and selects it as a candidate node (cnk), where

k refers to the identification key of the node. Once the can-

didate node is selected, an iterative process of expansion of

candidate node cnk to its adjacent nodes cnk++ starts and

continues until more expansion is not possible (i.e. adjacent

node do not share the same target entity). If the target entity

of the adjacent node is matched with the target entity of the

candidate node, it is taken as the next node of the candidate

sequence cs. If the target entity does not match, an iterative
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process will start to find the next node whose target entity

matches the target entity of the candidate node. The iter-

ation continues based on the user threshold x , i.e. the

allowed gap between two adjacent graph nodes of a pattern

(n-distance).

Once the candidate sequence is constructed and is above

the threshold value for the minimum pattern length, the next

step is to search for the matching nodes (i.e. discovered nodes

dn) of the same type as the candidate node cnk . If the num-

ber of discovered nodes is above the threshold value (min-

imum pattern support), the next step is to expand the dis-

covered nodes and match them to parallel candidate nodes.

Each discovered node is expanded one after another. Similar

to the expansion of candidate nodes, the identification of the

next node of a discovered sequence ds is an iterative process

(depending on x).

The expansion of a discovered node dn stops if either more

expansions of that node are not possible or the expansion has

reached the size of the candidate sequence (i.e. the length of

ds is equal to the length of cs). At the end of the expansion of a

discovered sequence, if the length of an expanded discovered

sequence is less than the threshold value of the minimum

pattern length, it must be discarded from the set of discovered

sequences.

Once the expansion of discovered nodes is finished, in

order to identify the change patterns of greater size, the next

step is to find the maximum length of the sequences (max)

such that the value of max is greater than or equal to thresh-

old value of the minimum pattern length and the number of

identified sequences is greater than or equal to the threshold

value of minimum pattern support. Sequences whose length

is less than the value max are discarded from the set of discov-

ered sequences. Those discovered sequences whose length is

greater than max are truncated to size max .

As a last step, the candidate sequence along with the dis-

covered sequences is saved as a domain-specific change pat-

tern in the result list S and the algorithm goes back to step 1

and selects the next graph node as a candidate node.

7.2.2 UCP Discovery Algorithm

A collection of change operations is not always executed in

same chronological order, even if the result is the same. As

then the change operations in a sequence can be reordered,

the aim is to discover unordered complete change patterns

by modifying the node search space in each iteration. The

pseudocode of the UCP algorithm is given in Listings 3.1–

3.2.

Like OCP, UCP iterates over each graph node and selects

it as a candidate node (cnk). An iteration is used to construct

a candidate sequence cs by expanding candidate node cnk

to its subsequent context-matching nodes cnk++. The next

step identifies the discovered nodes dn and adds them as first

member of the discovered sequence set DS. There are two

differences in the expansion of discovered sequences in UCP
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and OCP. Firstly, the search space in which the mapping

graph node will searched and, secondly, the introduction of

an unidentified-nodes list (ul) which records the unidentified

nodes of a candidate sequence.

Before the expansion process on any discovered node

starts, the search space (i.e. range of graph nodes in which

node will be searched) has to be set. It is described using

two integer variables start_range (rs) and end_range (re),

where rs and re represent the node ids of the start and end

graph nodes of search space. The search space can be given

as rs = min(id) − x − 1 and re = max(id) + x + 1.

Values min(id) and max(id) are the minimum and maxi-

mum id values of the graph nodes in the discovered sequence

ds in a particular iteration. New values of rs and re are cal-

culated at the start of each iteration of the discovered node

expansion process. For example, given the gap constraint

(x = 1) and a discovered sequence ds that contains two

graph nodes ds = {n9, n11} in a particular iteration, the search

space (in which the next discovered node will be searched) is

n7 − n13. As the algorithm scans the whole graph only once

(i.e. in step 7 of algorithm 4.3 to get the discovered node set)

and narrows the search space later, the search space defining

technique improves the performance of the algorithm.

The unidentified nodes list (ul) records all candidate nodes

that are not matched in the ds expansion process. If a new

node is added to a discovered sequence, the sequence will

be converted into ascending form (based on their id val-

ues) and the search space is reset. If there is no match

and ds is not expanded, the respective candidate node is

added to ul. Once the discovered sequence ds is expanded,

an iteration is applied on ul to search the unidentified

nodes in the updated search space. If an unidentified can-

didate node is matched to a discovered node in the updated

search space, the node is added to the discovered sequence

and removed from the unidentified node list. Based on the

modified discovered sequence, the values of rs and re are

recalculated.

At the end of the expansion of a discovered sequence, if

the length of an expanded discovered sequence is less than

the minimum pattern length threshold, it must be discarded

from the set of discovered sequences. Then, all discovered

sequences whose length is less than the length of a candidate

sequence are discarded. As a last step, the candidate sequence

along with discovered sequences is saved as a change pattern

in result list S and the algorithm goes back to step 1 and

selects the next graph node as a candidate.

8 Experimental Results and Evaluation

The main concern in evaluating the layered change operator

and log framework is its practical validity and the adequacy.
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Table 3 List of change

operations and their type
No. Type Change

1 Atomic Add class (Lecturer), Add subClassOf (Lecturer, Faculty)

2 Atomic Add individual (John), Add classAssertion (John, UGStudent)

3 Composite Split class (ResearchStudent, (MSByResearchStudent,

PhDResearchStudent)), Strategy: Split the Roles

4 Composite Merge classes ((MSByResearchStudent, PhDResearchStudent),

ResearchStudent), Strategy: Aggregate all roles

5 Composite Copy class (ResearchStudent, ResearchIntern, Researcher)

6 Composite Split class (ResearchStudent, (MSByResearchStudent,

PhDResearchStudent)), Strategy: Attach to both classes

7 Domain-specific PhD Student Registration (Tylor Kane, 58106382,

tylor@computing.dcu.ie, Joe Morris, Computing, CNGL, Irish)

8 Domain-specific Add New University Event (AICS 2012, ResearchEvent, 17 Sep 2012, 19

Sep 2012, 23rd Irish Conference on Artificial Intelligence and Cognitive

Science, Ray Walshe, aisc2012@comuting.dcu.ie, +353-1 700 597)

How useful the proposed solution is and how effectively

it solves the problems faced in the real world. In terms of

change pattern identification algorithms, the effectiveness of

the algorithms in terms of correctness and completeness are

the key factors. Empirical case studies and lab-based exper-

iments, in a controlled environment, can be used to evaluate

any system and to accept or reject the effectiveness of meth-

ods, techniques or tools [9]. We selected an empirical case

study and controlled experiments as our evaluation strate-

gies. In Section 8.1, the user-based evaluation of the pro-

posed change operator framework is given. In Section 8.2, the

results and evaluation of our controlled experiments, being

done to identify the composite change patterns from an ACL,

are given. The change pattern discovery algorithms have been

evaluated based on the experiments in a few domain ontolo-

gies. Results are given in Section 8.3.

8.1 Layered Change Operator Framework

Different levels of change patterns emerge by clustering the

empirically observed frequent changes in the domain ontol-

ogy. These change patterns are useful for the ontology engi-

neers to modify domain ontologies more easily and more

correctly.

8.1.1 Evaluation

We involved few ontology engineers for evaluating the frame-

work in terms of its change operational cost. The change

operational cost has been evaluated in two ways, i.e., in

terms of the number of steps to be performed and the time

required performing the specified steps. To do so, we selected

eight different ontology change operations, two from the

atomic level (level one), four from the composite level (level
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Fig. 17 Protege vs. OnE: number of steps performed

two) and two from the domain-specific level (level three)—

Table 3.

Operational cost in terms of number of steps We evaluated

the framework on the basis of the number of steps required to

perform the specific changes given in Table 3. To do so, we

make use of our Ontology Editor (OnE) and widely used Pro-

tégé framework. Results are given in Fig. 17 in the form of bar

chart. It is evident that in case of atomic level change opera-

tions, both frameworks require the same number of steps to be

performed. However, usage of evolution strategies [25] and

pattern-driven data entry forms (for performing higher-level

change operations) significantly reduces the evolution effort

in terms of the number of required steps. For example, in case

of composite change operation Merge classes (change

4), user need to take eight (8) steps (in OnE) in comparison to

fifteen (15) changes in Protégé. The biggest difference was

seen in case of the Split class composite change where

the selected strategy was to join the roles to both the newly

added classes (change 6). The result is fairly understandable

as in case of Protégé, users need to attach each role one after

the other and hence increase the number of required steps.

The more roles to be attached, the more the steps it requires.
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Table 4 Comparison between OnE and Protégé (min:sec)

No. Protégé OnE

Min Max Avg Min Max Avg

1 0:03 0:12 0:06 0:04 0:10 0:06

2 0:11 0:34 0:21 0:07 0:24 0:17

3 0:55 3:21 1:53 0:22 2:08 0:57

4 0:35 1:18 1:05 0:11 0:39 0:20

5 0:37 1:55 1:09 0:07 0:21 0:12

6 1:03 1:42 1:26 0:09 0:39 0:19

7 0:51 2:34 1:40 0:17 1:40 0:57

8 1:26 2:59 2:00 0:31 1:52 1:08

On the other hand, in case of OnE, users only need to select

the appropriate evolution strategy and all roles will automat-

ically be attached to the newly added split classes. Hence,

increase or decrease of roles does not have any effect on the

number of required steps.

Operational cost in terms of time We evaluated the frame-

work based on the time required to perform the different

level of change operations. We compared the time taken by

the ontology engineers (minimum, maximum and average)

for performing the changes in both ontology editing frame-

works. The performance comparison is given in Table 4.

Learning affects on the performance of different users have

been considered and factored in our controlled experiment.

We observed that on average the time occupied by the two

ontology editing frameworks to perform an ontology change

using atomic change operators is in a similar range. How-

ever, the usage of higher level change operators and the evo-

lution strategies had a reasonable impact on the required

time (change nos. 3–6). For example, in case of perform-

ing Merge classes (change 4) in Protégé, user need to

attach each role one after the other. As we mentioned ear-

lier, the more roles, the more time it is going to take. On

the other hand, selecting evolution strategy “Aggregate all

roles” reduced the time required for attaching all the roles.

Similarly, in case of split class (change 6), by select-

ing evolution strategy “Attach to both classes” the user did

not need to attach roles to the split classes one after the other.

8.1.2 Practical Benefits

The ontology change patterns can be used as data entry

forms in an existing ontology editing toolkit. These (generic/

domain-specific) change patterns (along with the different

defined evolution strategies) are useful for the ontology engi-

neers to modify domain ontologies more easily and more

correctly. The consistency issues during ontology evolution

can be resolved using evolution strategies at each layer of

change operator framework. As discussed above, the usage of

Fig. 18 Example of an identified composite change

pattern-driven data entry forms (for performing higher-level

change operations) significantly reduces the evolution effort

in terms of time and manual effort. Furthermore, the change

pattern data entry forms also make the evolution process intu-

itive and simple for a non-expert.

8.2 Composite Change Detection Algorithms

Detection of composite changes not only helps in understand-

ing the evolution of domain ontologies, but also reduces the

effort required in terms of time and consistency management.

Based on the identified composite changes, more appropri-

ate (composite level) strategies can be employed to keep the

validity and consistency.

In this section, first we illustrate a few examples of the

identified composite changes. Second, we evaluate the com-

posite change pattern detection algorithms based on the con-

trolled experiments and their comparison with a manual

approach. At the end, we describe the learnt lessons (method-

ology) from the controlled experiments and their results.

8.2.1 Illustration of Results

Two examples from the identified composite changes are

given in Figs. 18 and 19.

The example given in Fig. 18 represents an identified

split change, where, “Distribute the roles” was the selected

evolution strategy. In a previous version of the ontology

V1, concept Student was classified into MSStudent, PhD-

Student and UGStudent. Thus, all the master’s students

(OWL:Individual), whether taught or research-based, were

direct instances of concept MSStudent. In subsequent ver-

sion of ontology V2, in order to distinguish between research-

based and course-based students of master’s degree, the con-

cept MSStudent is splitted into two sibling concepts (i.e.,

MSByResearchStudent and MSTaughtStudent). Based on the

selected evolution strategy, the direct instances of the deleted

concept MSStudent are distributed among the newly added

concepts.

The example given in Fig. 19 represents an identified pull

up property change on concept PhDStudent; where con-

cepts MSByResearchStudent and PhDStudent were direct
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Fig. 19 Identified composite change: “Pull Up Property”

subclasses of concept student. In a previous version of the

ontology V1, the concepts MSByResearchStudent and PhD-

Student are grouped under the concept ResearchStudent. In

this regard, the next step was to pull up the properties to the

common superclass ResearchStudent in the subsequent ver-

sion V2. We identified the composite changes such as “Pull

up property (ResearchTrack)”, “Pull up property (isSupervi-

sorOf)”, etc.

As we mentioned earlier, the semantics of any change must

be captured at a higher level. Knowing that domain/range of

a property p has been changed from one concept to another,

let us say from x to z, certainly exhibits that the individuals of

concept x and of any other concept in its subclass hierarchy,

who instantiate property p, are not valid anymore. However,

knowing that the domain/range of a property p has been gen-

eralised from x to z (vz. the concept x is a subclass of concept

z), assures that the validity of any of the individual is not vio-

lated. Similarly, in case of specialization of domain/range of

a property p from a parent concept a to its (direct) child con-

cept b assures that the only those individuals of concept a

who instantiate property p, are not valid anymore. All other

individuals of concept a and others in the subclass concept

hierarchy of a (vz. the concept hierarchy starts from concept

a) are still valid.

8.2.2 Evaluation

We evaluate the algorithms based on their completeness and

correctness. In terms of completeness, the algorithms writ-

ten to identify the composite change patterns should capture

all types of available composite changes from the change

log. In terms of correctness, there should not exist any false

identified composite change in the result list. It is obvious

that an automated solution to identify change patterns from

the change log will be faster than the manual identifica-

tion of change pattern; thus, reduction in time consumption

has not been considered as an evaluation criterion, but as a

benefit.

We measured the completeness and correctness of our

composite change pattern detection algorithms by compar-

ing their results with the manual approach. In this regard,

Table 5 Comparison between manual and automated composite

change pattern detection

Manual Automated

Change log size 120 atomic changes

Identified change patterns 10 11

Candidate change patterns 1 1

Complete change patterns 9 10

False change patterns 0 0

Missed change patterns 1 0

Time taken 55 min < 1 s

we gathered a small group of ontology engineers together

and gave them a brief description about the domain (i.e.,

university administration), the composite changes and their

definitions. We performed the evaluation in two steps:

• Step 1: We distributed among them the first five sessions

of the ontology change log and asked them to identify

the discussed composite changes from these change log

sessions (Completeness). To perform the evaluation on

a small scale, we selected only six types of composite

change patterns (i.e., split concept, add specialize con-

cept, group concepts, add interior concept, pull up prop-

erty and pull down property) and a small size of ACL

(i.e., 120 atomic ontology changes).

• Step 2: At the end of step 1, we gave them the results of

our controlled experiments (i.e., results of the automated

approach) and asked them to testify whether the detected

composite changes are valid (Correctness).

Table 5 gives the details of the comparison between manual

and automated detection of composite change patterns. Here

in the table, the term “candidate” change pattern refers to

the identified change patterns that as a whole or part of them

can be acknowledged as a composite change pattern. The

candidate change patterns identified through the manual or

automated approach need to be reviewed again by an expert

ontology engineer, before confirming them as correctly iden-

tified composite change patterns.

The ontology engineers were able to identify ten compos-

ite changes in comparison to the automated approach where

the number of detected composite changes was 11. It has

been observed the ontology engineers were able to iden-

tify almost all the composite changes, but the main differ-

ence lies in two cases, i.e., the time taken to identify these

changes (from such a small change log) and the missing

of composite change patterns having a positive n-distance

(cf. Sect. 7.1) .

• Ontology engineers took almost 1 h to go through 120

atomic ontology changes and to identify correct change
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patterns. This result shows that identifying composite

change patterns manually, on a small scale change log,

is possible but yet at a very high cost of time consump-

tion (as the ontology engineers took almost 30 s to go

through and relate a single atomic ontology change with

other changes). In real world case scenario, the ontology

change logs are of larger size and an automated solution

is a necessity there. As the size of change log increases,

the time required to identify composite change pattern

manually will increase intensively and using some auto-

mated approach is inevitable.

• The manual approach missed the identification of an

“add specialise concept” composite change pattern, dur-

ing to the availability of few extra change operations in

between the change operations of the composite change.

This shows that the manual identification of a composite

change pattern, where all the atomic change operations

are in a sequence with zero n-distance between them, is

relatively easier in comparison to the identification of a

composite change pattern, where atomic change opera-

tions have some positive node distance between them.

8.3 Change Pattern Discovery Algorithms

When ontologies are large and in a continuous process of

change, our pattern discovery algorithms can automatically

detect change patterns. Such patterns are based on opera-

tions that have been used frequently. This reduces the effort

required in terms of time consumption and consistency man-

agement.

Earlier, we presented pattern-based ontology change oper-

ators in section 4 and motivated the benefits of pattern-based

change management where patterns are usually domain-

specific compositions of change operators. Our work here

can be utilized to determine these patterns and make them

available for reuse.

• The key concern is the identification of frequent change

patterns from change logs. In the first place, these are

frequent operator combinations and can result in generic

patterns. However, our observation is that many of these

are domain-specific, as the example below will illustrate.

• This can be extended to identify semantically equivalent

changes in the form of a pattern. For instance, a reordering

of semantically equivalent operations needs to be recog-

nised by the algorithms.

8.3.1 Illustration of Results

Two examples from discovered change pattern sequences,

one from each level, i.e. ABox-based change patterns and

TBox-based change patterns, are given in Tables 6 and 7.

Table 6 ABox-based change pattern (extracted from University Ontol-

ogy)

Change operations

(<TargetEntity_i> <rdf:type> <owl:individual)>

(<TargetEntity_i> <rdf:type> <Univ:PhD_Student>)

(<TargetEntity_i> <Univ:isStudentOf> <Univ:Dept_i>)

(<TargetEntity_i> <Univ:StudentID> <xsd:int>)

(<TargetEntity_i> <Univ:EmailID> <xsd:string>)

(<TargetEntity_i> <Univ:hasSupervisor> <Univ:Faculty_i>)

(<TargetEntity_i> <Univ:MemberOf> <Univ:ResGroup_i>)

Table 7 TBox-based change pattern (extracted from Software Ontol-

ogy)

Change operations

(<TargetEntity_c1> <rdf:type> <owl:class>)

(<TargetEntity_c1> <rdfs:subClassOf> <Software:Activity>)

(<TargetEntity_c2> <rdf:type> <owl:class>)

(<TargetEntity_c2> <rdfs:subClassOf> <Software:Procedure>)

(<Software:hasProcedure> <rdfs:domain> <TargetEntity_c1>)

(<Software:hasProcedure> <rdfs:range> <TargetEntity_c2>)

The example in Table 6 is the ABox-based change pattern

from the university ontology, representing the registration

procedure of a new PhD student to the department. First, the

student has been registered as a PhD student of a particu-

lar department. Then, a student id, email id and a supervisor

(which is a faculty member of the university) are assigned

to the student. At the end, the student is added as a member

of a particular research group of the university. We captured

such change patterns and stored them in the ontology evo-

lution framework for their reuse. Hence, whenever a new

PhD student has to be registered, a stored change pattern can

be applied as a single transaction (ensuring cross-ontology

integrity constraints to be met).

The example in Table 7 is a TBox-based change pattern

from a software application ontology, representing the intro-

duction of a new software activity. First, a new concept (Tar-

getEntity_c1) has been added as a subclass of concept Soft-

ware:Activity. Later, to perform this activity, a new procedure

has been added as a subclass of concept Software:Procedure

in the help infrastructure section of the ontology. Finally,

the activity and the procedure to perform such an activ-

ity are linked to each other using an object property Soft-

ware:hasProcedure.

8.3.2 Evaluation

We conducted a performance study on our case study

datasets (Table 8). We utilized our algorithms to discover
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Table 8 Comparison b/w OCP and UCP Algorithm with Mini-

mum Pattern Support (min_sup) = 5 and Minimum Pattern Length

(min_len) = 5

Node dist. a: OCP Algorithm b: UCP Algorithm

Patterns

found

Time

(ms)

Patterns

found

Time

(ms)

0 0 469 4 1359

1 3 609 7 2282

2 5 8756 6 3906

3 5 985 8 4968

4 5 1110 8 6078

5 5 1203 9 7141

the domain-specific change patterns in ontology change log

graphs. Given a fixed user input value for minimum pattern

length and minimum pattern support, we executed the algo-

rithms, varied the node-distance value and evaluated their

results.

OCP is efficient in terms of time consumption due to the

permissibility of only positive node distances (x), i.e. the

iteration process for the search of the next adjacent sequence

node only operates in forward direction of the change log

graph. However, in the case of UCP, for the search of the

next adjacent sequence node, the algorithm also operates in

backward direction. This is due to the possibility of change

operations in an unordered form compared to the referenced

candidate change sequence. Another reason for the efficiency

of OCP is the immediate termination of node search iterations

once the next adjacent sequence node is not identified in the

search space. However, in case of UCP, if the next adjacent

node is not identified, it is saved in the unidentified node list

and the iteration moves forward to search for the next adja-

cent node until the whole change sequence ends. Unordered

change operations make the UCP algorithm more complex

in comparison to OCP as UCP needs to (1) keep record of all

change operations of the sequence (even if they are not iden-

tified), (2) recalculate the search space in each iteration, (3)

search the next sequence node not only in the search space of

the graph but also in the unidentified list of change nodes and

(4) converting a sequence to ascending form in each iteration.

UCP is more efficient in terms of numbers of discovered pat-

terns. It discovers more change patterns compared to OCP

(9:5). Similarly, in terms of the size of maximal patterns,

UCP discovers patterns of greater size than OCP.

8.3.3 Analysis of Discovered Change Patterns

In this section, we examine the practical benefits of the dis-

covered change patterns and lessons learnt in existing real

world scenario. Possible applications of our pattern discovery

algorithms range from supporting the change tracking tools,

identification of user’s behavioural dependency and classifi-

cation of users [12], change request recommendations, analy-

sis of change patterns and discovery of causal dependencies.

1. Tool Support for Change Tracking:One of the key bene-

fits of our change patterns discovery approach is its inte-

gration with an existing ontology change tracking toolkit

(such as Protégé, Neon, etc.). Users can choose a suitable

change patterns from the discovered change pattern list

and store them in their user profile. Later, whenever users

load that particular ontology, they get the list of stored

change patterns in their profile and can apply these in the

form of transactions.

2. Change Request Recommendation: The identified change

patterns can also be used for change request recommen-

dations. For example, whenever a user adds a new PhD

student in the university ontology, based on the identi-

fied PhD Student Registration change pattern, it can be

recommended to the user to add student id, email id of

the student and assign a supervisor to him (using object

property hasSupervisor). Similarly in software applica-

tion domain, whenever a user deletes a certain activity

from the domain, the deletion of the relevant help files

can also be recommended to the user.

A limitation of our algorithms is that they cannot be

applied on the change parameters which are represented as

a complex expressions. Our algorithm considers all parame-

ters as atomic classes, properties or individuals based on the

OWL 2 working draft specification.

9 Conclusion

In this paper, we discussed our approach for ontology evo-

lution as a pattern-based compositional framework. The

approach focuses on a four-phase ontology change manage-

ment system that performs and records changes at a higher

level of granularity. We presented a layered change log model

that works in line with the given layered change operator

framework. While ontology engineers typically deal with

generic changes at level one and level two, other users (such

as domain experts, content managers) can focus on domain-

specific changes at level three. Such a layered change opera-

tor framework enables us to deal with structural and semantic

changes at two separate levels without losing their interde-

pendence. Plus, it enables us to define a set of domain-specific

changes which can be stored in a pattern catalogue, using

a pattern template, as a consistent once-off specification of

domain-specific change patterns. The empirical study indi-

cates that the solution is valid and adequate to efficiently

handle ontology evolution. We found that a significant por-

tion of ontology change and evolution is represented in our

framework.
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Identification of higher-level change operations gives an

ontology engineer clues about semantics / reasons behind

any of the applied change, based on the actual change activ-

ity data from change log. We operationalized the identifi-

cation of higher-level changes using graph-based matching

and pattern discovery approaches. We noticed that learning

about semantics behind any of the applied change helped

us in keeping the ontology consistent in a more appropriate

manner. To do so, higher level evolutionary strategies are

essential.

Constructing and storing the domain knowledge using

a frame-based approach were introduced in the Protégé-

Frames editor. It allows a user to construct customizable

domain-specific data entry forms and entering the instance-

level data. As the concept hierarchy as well as the descrip-

tion about any concept will evolve through time, such data-

entry forms will get obsolete unless customized through time.

Discovery of the domain-specific change patterns from the

change log can assist in this regard. It not only allows defin-

ing new “usage-driven” domain-specific change patterns, but

can also aid in customization and editing of already available

“user-defined” data entry forms. As good patterns always

arise from practical experience [42], such change patterns,

created in a collaborative environment, provide guidelines to

ontology change management and can be used in any change

recommendation system.

More research work needs to be done to address the lim-

itations regarding the reusability of the (defined) change

patterns. A highly reused change pattern indicates that it

is generally accepted within the domain. The reusability

of the discovered domain-specific change patterns can be

enhanced through domain transfer. During our empirical

study, we observed similarities of patterns across domains

which are similar to each other. For example, in the university

domain, one can identify classes such as students, faculties

and employees; a production company may have employees,

customers, owners or shareholders. The change patterns pro-

vided at higher level can be applied to any subject domain

ontology that is composed of a similar conceptual structure.

The domain-specific change patterns may require a small

customization to meet the domain’s own requirements. Sim-

ilarity between two domain ontologies can be acknowledged

by analyzing conceptual and syntactical structures within the

domain ontologies.

Good documentation is vital for effective reuse of any

framework. To address the limitations regarding documenta-

tion, our future work includes a specification of the (user-

defined/usage-driven) domain-specific change patterns to

support the notion of pattern-based ontology evolution. More

specifically, we are interested in the once-off specification of

the domain-specific change patterns that assist the ontology

engineer to choose the appropriate change pattern in a given

ontology evolution context. This can be achieved by utiliz-

ing a pattern template that enables a consistent change pattern

specification for change patterns comprising descriptive and

change data information.
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