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Abstract. Ontology and other logical languages are built around the
idea that axioms enable the inference of new facts about the available
data. In some circumstances, however, the data is meant to be complete
in certain ways, and deducing new facts may be undesirable. Previous
approaches to this issue have relied on syntactically specifying certain
axioms as constraints or adding in new constructs for constraints, and
providing a different or extended meaning for constraints that reduces or
eliminates their ability to infer new facts without requiring the data to be
complete. We propose to instead directly state that the extension of cer-
tain concepts and roles are complete by making them DBox predicates,
which eliminates the distinction between regular axioms and constraints
for these concepts and roles. This proposal eliminates the need for special
semantics and avoids problems of previous proposals.

1 Introduction

A complaint against ontology languages like the W3C OWL Web Ontology Lan-
guage is that axioms in such ontology languages sometimes have too many con-
sequences. For example,1 the axiom MarriedPerson ⊑ ∀hasSpouse.Person along
withMarriedPerson(Peter) and hasSpouse(Peter, Susan) produces the consequence
Person(Susan). Similarly, the axiom MarriedPerson ≡ Person ⊓ (= 1 hasSpouse)
along with MarriedPerson(Peter) implies that there is some spouse for Peter.
However, the data generation methodology may be such that all persons and/or
all spouse relationships should be explicitly given, and not inferred. For exam-
ple, the data for these concepts or roles may come from an ostensibly complete
database. If this is the case, then problems arise when using ontology axioms in
the usual way. In the first example Susan is inferred to be a person even if there
may be no explicit fact to this effect (and thus Susan is not a person) and in
the second example some (unknown) spouse is inferred for Peter, which is not
an explicit fact at all.

This particular complaint against standard ontology languages has spawned a
number of proposals attempting to overcome the problem. Some proposals [10,
15] change certain axioms into integrity constraints (roughly statements that
check the integrity of the data in the knowledge base (KB) instead of enabling
consequences) that are interpreted in minimal or modal ways. Other proposals [6]

1 Throughout this paper a standard concise syntax [1] for OWL and other ontology
languages and description logics will be used in examples to improve readability.



suggest that the ontology language be extended with autoepistemic constructs
that can be used to write integrity constraints.

We disagree with the general approach taken in all of these proposals. Our
belief is that the problem here is not a deficiency in ontology languages at all.
In particular, we do not find any problems with the ontology axioms above, nor
with their consequences. To the contrary, these axioms are unexceptional and
should infer consequences just like any other axiom. Instead we claim that the
complaints against the power of axioms in ontology languages have to do with
a mismatch between the general open-world assumption in ontology languages
and in many other logics, on one hand, and a desire to have complete and maybe
even explicit information about the extension of certain concepts and roles, on
the other.

So, for example, if we have complete data about some concepts or roles, e.g.,
a set of the distinct instances of Person or the distinct pairs in hasSpouse, then it
should be the case that inferences do not augment this data. But, again, this is
not a problem with the axioms, e.g., the ones above, which are simply a reflection
of the way we believe the domain is, but is instead a problem with our data,
which is incomplete when it was stated to be complete. A consequence that adds
more information to these concepts or roles then is contradicting this supposed
completeness, causing an inconsistency in the KB.

Our basic approach to modeling, then, is to build the ontology without con-
sidering anything like the desired completeness of data or integrity constraints.
Only then do we determine which concepts and roles are to have complete data.
So, for example, we might build the ontology of people and spouses

Person ⊑ ⊤

MarriedPerson ≡ Person ⊓ (= 1 hasSpouse)

MarriedPerson ⊑ ∀hasSpouse.Person

We might, then, perhaps because we are using an explicit data source of all
spousal relationships, require that the hasSpouse role be completely and explic-
itly provided.

Suppose that data in the hasSpouse role is provided as the four distinct entries

hasSpouse

Peter Susan

Susan Peter

Mary Paul

Paul Mary

(1)

Our ontology axioms will make inferences from this data, including Person(Susan)
and MarriedPerson(Peter) which is all as it should be. Suppose, however, that our
KB also includes MarriedPerson(Alex) Then our ontology axioms would, in effect,
add another entry to the hasSpouse role, one with first entry Alex. As we stated
that the given data for hasSpouse is complete, this would be an inconsistent
situation indicating that the constraint has been violated.



This treatment of complete concepts and roles is just the DBox treatment [14,
7]. Our approach has all the benefits of DBoxes, including easy query answering
when all concepts and roles are DBox concepts and roles, and exact answers
to queries controlled by DBox concepts and roles, i.e., if we query for married
people and their spouses above we get precisely every spousal relationship. These
exact answers can be used in applications without worrying that there might be
missing information, i.e., as might happen when there is a married person whose
spouse is not known. Applications can treat such query answers in the same way
that they can treat query answers in databases.

2 Autoepistemic and Minimal Model Approaches

Autoepistemic extensions to description logics or ontology languages, such as the
work by Donini et al on description logics of minimal knowledge and negation
as failure (MKNF-DL) [6], can be used to express constraints, either directly, or
as rules [12]. Negation as failure by itself has been used to express constraints
in OWL Flight [5, 4].

The MKNF-DL axiom

KMarriedPerson ⊑ ∃AhasSpouse (2)

expresses the constraint that every known married person has a known spouse
so that a KB containing only

KMarriedPerson ⊑ ∃AhasSpouse (2.1)

MarriedPerson(Joe)

is unsatisfiable because Joe does not have a known spouse. Knowledge in MKNF-
DL requires knowing what, not just knowing that, so

KMarriedPerson ⊑ ∃AhasSpouse (2.2)

MarriedPerson(Joe) (∃hasSpouse)(Joe)

is also unsatisfiable because, although Joe does have some spouse, the identity
of that spouse is not known. Only information about the identity of Joe’s spouse
is adequate to satisfy the constraint, as in

KMarriedPerson ⊑ ∃AhasSpouse (2.3)

MarriedPerson(Joe) hasSpouse(Joe, Susan)

Adding autoepistemic constructs into description logics augments their ex-
pressive power considerably. Although the result is decidable, we are unaware of
any high-performance systems that implement reasoning in MKNF-DL.

The constraint axioms in the MKNF-DL approach involve autoepistemic op-
erators in negative contexts, such as KMarriedPerson above, indicating that lack
of knowledge can allow a constraint to be satisfied. Constraint axioms thus do
not necessarily imply their non-constraint version, so one often needs to provide
two versions of constraint axioms, such as by adding

MarriedPerson ⊑ =1 hasSpouse



Without such an axiom, as in KB 2.1, it will not be the case that all married-
Persons have a spouse, only the known ones.

For similar reasons, the MKNF-DL approach does not require that existential
individuals be considered in constraints. For example, in

KMarriedPerson ⊑ ∃AhasSpouse (2.4)

(∃hasChild.MarriedPerson)(Mary)

the constraint is satisfied even though nothing is known about Mary’s married
child. We feel that constraints should be active on all participating individuals,
independently of whether they are known, and consider that the example above
points out a major problem with MKNF-DL and similar modal approaches.

Also similarly, the MKNF-DL approach does not require that disjunctive
information be considered by constraints. So

Student ≡ UGStudent ⊔ GStudent

KUGStudent ⊑ ∃Amajor (3)

KGStudent ⊑ ∃Afaculty

Student(Mary)

is satisfiable even though Mary must be either an undergraduate, in which case
the constraint about majors is not satisfied, or a graduate, in which the constraint
about faculties is not satisfied. We feel that constraints should take into account
such disjunctive information and consider that this example points out another
major problem with this kind of approach.

Motik et al [10] have proposed a very different approach to integrity con-
straints. Instead of extending the language itself, they divide up axioms into
three categories. As is usual, facts are segregated into the ABox (A). Other ax-
ioms, however, are divided between regular axioms (the standard TBox or S)
and constraints (C). Next, minimal Herbrand models are defined. In this ap-
proach a minimal Herbrand model is a Herbrand model where the extension of
all predicates, even equivalence (the predicate standing in for equality), is min-
imized. A constraint is then satisfied by a standard TBox and an ABox if all
minimal Herbrand models of the standard TBox plus the ABox are also models
of the constraint. Because each minimal model of the standard TBox plus the
ABox is a model of the standard TBox, it is obvious that in this approach any
constraint entailed by the standard TBox is satisfied in the KB.

In the KB

C : MarriedPerson ⊑ ∃hasSpouse (2.1m)

A : MarriedPerson(Joe)

the first axiom is considered as a constraint and the second as a fact in the ABox.
The constraint is not satisfied in this KB because in the (only) minimal model
of A Joe has no spouse.

The minimal model approach differs considerably from the MKNF-DL ap-
proach. For example in



S : MarriedPerson ⊑ ∃hasSpouse

C : MarriedPerson ⊑ ∃hasSpouse (2.2m)

A : MarriedPerson(Joe)

the constraint is satisfied, even though there is no known spouse for Joe, because
in each minimal model, Joe has a spouse. We consider this ability to utilize
“unknown”, or existential, fillers to fulfill constraints as a problem with this
approach.

The particular problem with existentials in the previous example can be
alleviated by introducing an extra predicate (O) that is asserted true of every
identifier in the KB, as in

S : MarriedPerson ⊑ ∃hasSpouse

C : MarriedPerson ⊑ ∃hasSpouse ⊓ O (2.2’m)

A : MarriedPerson(Joe) O(Joe)

Here Joe’s spouse is not in O so the constraint is not satisfied. One can think of
O as holding the requirement of having a name.

However, other problems with this minimal model approach cannot be over-
come. If a filler can be one of two possibilities (both named) then a constraint
requiring a filler will be satisfied, even though the identity of the filler is not
known. For example, in

S : JoeClass ⊑ ∃hasSpouse.{Mary, Susan}

C : MarriedPerson ⊑ ∃hasSpouse (2.5m)

A : MarriedPerson(Joe) JoeClass(Joe)

the constraint is satisfied even though Joe’s spouse is not known. We consider
this to be a major problem with this approach, as we view the goal of integrity
constraints to be checking data, not checking possibilities.

Another problem with the minimal models approach is that all concepts and
roles are minimized. This means that the presence of axioms that cause one
concept or role to grow when something else shrinks disturbs the minimization
in unusual ways. For example, the constraint in

C : RParent ⊑ > 2 hasChild (4)

A : RParent(Joe) hasChild(Joe,Mary) hasChild(Joe, Susan)

is satisfied, as expected, because the minimal model minimizes away the possible
equality between Mary and Susan. However, extending the KB by adding a
definition, as in

S : DParent ≡ > 2 hasChild

C : RParent ⊑ > 2 hasChild (4.1)

A : RParent(Joe) hasChild(Joe,Mary) hasChild(Joe, Susan)

can make the constraint not be satisfied. The reason for this unexpected result
is that DParent grows when equality shrinks. This results in a minimal model
where Mary and Susan are the same and Joe is not in DParent. In this minimal



model Joe has only one child and this violates the constraint. We view this as
a very serious problem with the approach, particularly as facts and queries in
the approach have to use atomic concepts and roles, and thus may require the
introduction of extra predicates.

A major reason for the difference between the MKNF-DL approach and the
minimal model approach has to do with the modal (or non-modal) nature of
the approaches. The modal parts of constraints in MKNF-DL consider what is
known to be true in all models, so KUGStudent picks out named individuals
who are known to be graduate students in all models. In the minimal model
approach constraints are directly evaluated in each minimal model, so there is
no consideration of the situation in other models.

A third approach [15] to integrity constraints combines axiom segregation
and equality minimization, somewhat as in the minimal model approach, with a
portion of the autoepistemic nature of the MKNF-DL approach. In this hybrid
approach, there is a two-way division in extended KBs between K, the regular
KB (T and A of the previous approach), and S, the constraints, both of which
can contain both axioms and facts. The minimal equality models of a KB are
defined as the regular models of the KB that are minimal with respect to equal-
ity between individuals names, with all else remaining fixed. Constraints are
interpreted in a modal setting where atomic concepts and roles are interpreted,
roughly, as names (pairs of names) belonging to the concept (role) in all minimal
models of the KB.

One might think that only minimizing equality avoids the problems in the
previous approach with respect to additional predicates. Unfortunately, this is
not the case. For example, the extended KB

C : RParent ⊑ > 2 hasChild (4h)

T : RParent(Joe) hasChild(Joe,Mary) hasChild(Joe, Susan)

is valid, as expected, but the extended extended KB

C : RParent ⊑ > 2 hasChild

T : DParent ≡ > 2 hasChild (4.1h)

RParent(Joe) hasChild(Joe,Mary) hasChild(Joe, Susan)

is not. Here the presence of DParent prevents minimizing away the possible equal-
ity between Mary and Susan, because making Mary and Susan the same causes
a change in the extension of DParent. As is the case for the previous approach,
we view this fragility of minimization as a very serious problem.

This combination approach also suffers from variants of many of the problems
of the MKNF-DB approach, including both extended KBs

C : Child ⊑ ⊥ (5.1)

T : (∃hasSpouse.Spouse)(Joe)

and

C : Child ⊑ ⊥ (5.2)

T : (∀hasSpouse.Child)(Joe) (∃hasSpouse.{Mary, Susan})(Joe)



being valid. However, the situation is even worse here, as one might argue that
the MKNF-DB construct analogous to the constraint, Child ⊑ ⊥, should not
be considered to be a constraint, but such arguments cannot be made when
constraints are explicitly given.

Local closed world semantics has a relationship to integrity constraints, as
can be seen from the fact that all of the above approaches employ some form of
minimization. A proposal to add local closed world semantics to OWL [13] uses
grounded circumscription to avoid undecidability problems with circumscription.
Grounded circumscription is just regular circumscription, except that minimized
concepts (roles) can only contain named individuals (pairs of named individuals).

Grounded circumscription can capture some common aspects of integrity con-
straints. The basic idea is to evaluate the constraints after grounded circumscrip-
tion has been applied. The advantage of circumscription over other minimization
methods is that only certain predicates are minimized, while other are fixed or
allowed to vary. In this way it might be possible to alleviate (but probably not
completely overcome) the problems of simpler minimization methods.

A major problem with this approach, however, is the difficulty of performing
even grounded circumscription. When circumscribing, one has to guess which
named individuals (pairs of named individuals) are in each minimized concept
(role), and only then determine whether the guess is acceptable. Then the min-
imal acceptable guesses become the actual minimizations. When the KB is even
of only a moderate size, this can take an extremely long time.

3 Constraints with Complete Information

Our proposal does not depend on any of these modal or minimal model tech-
niques to prevent constraints from enabling inferences. Instead, as stated earlier,
we specify that certain concepts and roles have complete information. Then for
these concepts and roles no information can be added, turning axioms into con-
straints for them. In effect, axioms can only check that information is already in
the complete concept or role, precisely as is wanted for integrity constraints.

If an axiom plus some data produces a consequence that adds information
to a complete concept or role, then an inconsistency results. What happens
after an inconsistency is detected is outside the scope of the logic. Generally,
some modification would be needed to the assertions in the KB, which might
involve removing an assertion that enabled the attempt to add the offending
information. The modification might, on the other hand, actually be to change
the information in the complete concept or role, but this would occur as a step
outside of the logic.

3.1 OWL and SROIQ(D)

As much of our proposal is related to the W3C OWL Web Ontology Language
[11] and related ontology languages, we introduce OWL, via SROIQ(D) [9], the
description logic underlying OWL.



Let C be a set of concept names, D be a set of datatype names, R be a set of
abstract role names, T be a set of concrete role names, I be a set of individual
names, and V be a set of data values, with C∩D = φ, R∩T = φ, and I∩V = φ.

SROIQ(D) concepts (C), datatypes (D), and abstract roles (R) are con-
structed via

C ::= ⊤ | A | {a} | ¬C | C1 ⊓ C2 | C1 ⊔ C2 | ∃R.C | ∀R.D | ∃R.Self |

>nR.C | 6nR.C | ∃T.D | ∀T.D | >nT.D | 6nT.D

D ::= B | {v} | ¬D | D1 ⊓D2 | B ≤ v | B < v | B > v | B ≥ v

R ::= ⊤ | P | P−

where A ∈ C, B ∈ D, P ∈ R, T ∈ T, a ∈ I, v ∈ V, and n is a non-negative
integer.

A general concept inclusion axiom (GCI) is C1 ⊑ C2, for C1, C2 both con-
cepts. A role inclusion axiom (RIA) is R1 ◦ . . . ◦ Rn ⊑ R, for R, Ri all roles or
T1 ⊑ T , for T, T1 ∈ T.

A role assertion is Sym(R), Tra(R), Ref (R), Irr(R), or Dis(R1, R2), for
R,R1, R2 any role except ⊤; or Dis(T1, T2), for T1, T2 ∈ T. An individual as-
sertion is C(a), R(a1, a2), (¬R)(a1, a2), T (a, v), a1 = a2, or a1 6= a2, for C a
concept, R a role, T ∈ T, a, a1, a2 ∈ I, and v ∈ V.

A SROIQ(D) KB is a pair 〈T ,A〉. T (the TBox) is a finite set of GCIs and
RIAs and role assertions such that the RIAs in T form a regular role hierarchy
(see [9]), the role assertions in T are simple in T , and each role in an >RC.

or ∃R.Self or Irr(R) or Dis(R1, R2) is simple in T (see [9]). A (the ABox) is a
finite set of individual assertions such that each role, R, in a (¬R)(a, b) is simple
in T . The names and values of the KB form its signature, S.

The semantics of SROIQ(D) are as for SROIQ [9] and as for the W3C
OWL 2 Web Ontology Language [11]. Here we present only the general notions
of their semantics. Much of our proposal works for any ontology language or
description logic or even any fragment of first-order logic, so we will provide a a
general semantic framework that is suitable for any of these languages.

Semantics are based on interpretations, I, that map, ·I , constants (individual
names and data values) into elements of a domain, ∆I , concept and datatype
names into subsets of the domain, and abstract and concrete role names into sets
of pairs over the domain. Data values and datatype names have fixed mapping.
This mapping is extended to all syntactic constructs in the language, mapping
closed formulae (axioms and assertions) into either true or false (satisfying or not
satisfying them, respectively). An interpretation is a model of a KB consisting
of a finite set of closed formulae (axioms and assertions), written I |= KB, iff it
satisfies all the formulae the KB.

3.2 DBoxes

Given a SROIQ(D) (or other description logic) KB, a DBox [14], DB, is a finite
set of atomic individual assertions of the form A(a) or P (a1, a2) or T (a, v) for
A ∈ C, P ∈ R, T ∈ T, a, a1, a2 ∈ I, and v ∈ V. The signature of a DBox
DB, called S(DB), contains all the concept, abstract or concrete role names



occurring in DB. A SROIQ(D) (or other description logic) KB plus DBox is a
triple 〈T ,A,DB〉 where T and A are as before and DB is a DBox. The active
domain of a DBox DB, IDB ⊆ I, is the set of all individuals appearing in the
DBox. An interpretation, I, of 〈T ,A,DB〉 is just an interpretation of 〈T ,A〉 plus

– for each individual name a ∈ IDB: a
I = a, (i.e., the standard name assump-

tion for DBox individuals);

– for each pair of distinct individual names a1 ∈ IDB and a2 ∈ I: aI
1
6= aI

2
,

(i.e., the unique name conditions for DBox individuals);

– for each concept name A ∈ S(DB), x ∈ AI iff ∃A(a) ∈ DB : aI = x;

– for each abstract role name, P ∈ S(DB),
〈x, y〉 ∈ P I iff ∃P (a1, a2) ∈ DB : aI

1
= x ∧ aI

2
= y; and

– for each concrete role name, T ∈ S(DB),
〈x, y〉 ∈ T I iff ∃T (a, v) ∈ DB : aI = x ∧ vI = y.

The essence of a DBox is that the extension of each concept or role that shows
up in the DBox is completely determined by the DBox, much as it would be
by a database table. This requires the standard name assumption in the DBox.
To emphasize the relationship between database tables and DBox concept and
roles, we will often write the assertions for the concept or role in tabular form,
as in the case of the hasSpouse role in the KB (1) above.

It can been shown (see [8]) that it is harmless to drop the standard name
assumption for DBox individuals, in presence of the unique name conditions for
DBox individuals: the spurious models in the weaker KB are indistinguishable
from the good ones. It is also possible to fully encode a KB with a DBox into an
equivalent KB in an expressive description logic such as SROIQ(D) or OWL
(see [7]). The unique name conditions for DBox individuals can be easily written
as a finite set of individual inequality assertions. To rewrite a DBox concept, C,
with C(i1), . . . , C(in) in the DBox, simply add the DBox assertions for C to
the ABox and add C ⊑ {i1, . . . , in} to the TBox. To rewrite a DBox abstract or
concrete role, R, with R(i1, v1), . . . , R(in, vn) in the DBox, simply add the DBox
assertions for R to the ABox, add ∃R ⊑ {i1, . . . , in} to the TBox, and, for each
ij , 1 ≤ j ≤ n, add (∀R.{vj1 , . . . , vjmk

})(ij) to the ABox, where {vj1 , . . . , vjmk
} is

the set of R-fillers for ij in the DBox. As a consequence of this easy polynomial
embedding, we can conclude that reasoning with DBoxes in such expressive
ontology languages is not harder than classical reasoning without DBoxes, and
it can be implemented without changing anything with respect to the classical
case.

3.3 Completely Specified Concepts and Roles

We introduce in this section the definition of concepts and roles completely spec-
ified from DBox predicates, a notion strictly related to determinacy and implicit
definability [2, 8].

Definition (Completely Specified Concept or Role). Let I and J be any
two models of a KB plus DBox 〈T ,A,DB〉. A concept (resp. role) C (resp. R) is
completely specified (or determined) by the DBox predicates S(DB) in the KB



if and only if whenever I and J agree on the interpretation given to each concept
and role in S(DB) then CI = CJ (resp. RI = RJ).

This definition states that a concept C (resp., a role R) is completely specified
by the DBox predicates in a KB if and only if all models of the KB that interpret
the symbols in SDB the same way also keep the interpretation for C (resp., R)
fixed. In other words, once a DBox is fixed (and therefore the interpretation of
all the DBox predicates is always the same in any interpretation) then also the
interpretation of the completely specified predicates (concepts and/or roles) is
fixed. It is as if the concept or role augments the original DBox with its own
extension.

It is obvious that a DBox concept or role is completely specified by the DBox
predicates, given the close correspondence between the definition of DBoxes and
complete specification. It is also possible to completely specify a concept or role
in other ways. For example, a concept or role might be defined to be equivalent
to a DBox concept or role. Other, more complex, definitions can also completely
specify a concept or role in terms of DBox concepts or roles. For example, from
KBs of the following form it is possible to derive that GStudent is a completely
specified concept, given that the concepts Student and UGStudent are DBox
concepts:

T : Student ⊑ UGStudent ⊔ GStudent

UGStudent ⊑ ¬GStudent ⊓ Student (6)

GStudent ⊑ Student

S(DB) : {Student,UGStudent}

Since the above KB induces a partition of the concept Student between the
concept UGStudent and the concept GStudent, whenever two of these concepts
are completely specified (e.g., they are DBox concepts) then also the third is
necessarily completely specified.

It is possible to determine whether a concept or role is completely specified by
a set of DBox predicates in a KB using only standard description logic inferences
[14, 8].

3.4 Constraints

As our proposal is quite different from the previous proposals for integrity con-
straints, we will provide examples covering the major use cases for integrity
constraints and several variants of their variants.

The entire extension of completely specified concepts and roles is known by
name. This makes it quite obvious that completely specified concepts and roles
naturally enforce constraints concerning knowing the identity and type of role
fillers. For example, if hasSpouse is a completely specified role, then any fillers
of hasSpouse will be known by name. If this is the case, the axiom

MarriedPerson ⊑ =1 hasSpouse (7)



will be true in a KB only if each married person has precisely one known spouse.
So, the KB

T : MarriedPerson ⊑ =1 hasSpouse.Person

A : MarriedPerson(Joe)

MarriedPerson(Jack) (8)

DB : hasSpouse

Jack Elizabeth

Jack Liz

is unsatisfiable because Joe has no spouse (because he is distinct from Jack)
and Jack has both Elizabeth and Liz as spouses (and they are distinct from
each other). The situation would be completely different if hasSpouse was not
a DBox role, in which case Joe would have been inferred to have some spouse,
and Elizabeth and Liz would have been inferred to be the same.

Let’s see now an example of an entailed constraint. Consider the KB

T : MarriedPerson ⊑ > 1 hasSpouse.Person (9)

DB : hasSpouse

Jack Elizabeth

From the above, we can entail the statement

MarriedPerson ⊑ =1 hasSpouse.Person

which couldn’t be derived if hasSpouse were not a completely specified role.
All entries in completely specified concepts and roles have to have a name,

i.e., not be some unknown filler, eliminating one problem with minimal models
approaches (KB 2.2m). Nor is it possible for disjunctive information to be ade-
quate, eliminating another problem with minimal models approaches. (KB 2.5m).
Here our approach has the desirable behavior of autoepistemic approaches, re-
quiring known certain fillers. Similarly, there is no issue with whether unknown
objects are considered by constraints, which causes problems for autoepistemic
approaches (KB 2.4). Here our approach has the desirable behavior of autoepis-
temic approaches, with constraints effectively taking into account all possible
interpretations, because there is only one.

In the previous example, it was not necessary that the spouse be known to
be a person, because Person was not a completely specified concept. If however,
all people are known, then Person would be a completely specified concept, and
spouses of married people would need to be known as people. It may be the
case, however, that not all people are known, only those that are spouses. In this
situation, MarriedPerson would be a completely specified concept,

T : MarriedPerson ⊑ =1 hasSpouse.Person

MarriedPerson ⊑ =1 hasSpouse.MarriedPerson

Sym(hasSpouse) (10)

DB : hasSpouse
Jack Elizabeth

Elizabeth Jack

MarriedPerson

Jack

Elizabeth



Here any married person has to have precisely one spouse that is also a married
person, as well as precisely one spouse that is a person. The extension of the
concepts spouse and MarriedPerson provide precisely one known spouse that is
known to be a married person as well as precisely one spouse overall for both
Jack and Elizabeth, satisfying the constraint portions of these axioms. Because
Jack and Elizabeth are each other’s only spouse, they are both are inferred to
belong to Person as well.

The situation where only a portion of a concept or role is completely specified
and thus causes constraint-like behavior, is quite natural. For example, neither
all people nor their SSN’s may be known, but all taxpayers and their SSN’s are.
The following KB captures this situation:

T : Person ⊑ (6 1 hasSSN) ⊓ (∀hasSSN.integer)

TaxPayer ⊑ (Person) ⊓ (= 1 hasSSNTP.integer)

hasSSNTP ⊑ hasSSN (11)

A : Person(Jill)

Person(Susan)

hasSSN(Jill, 987654321)

DB : TaxPayer
Jack

. . .

hasSSNTP

Jack 123456789

. . . . . .

Here it does not matter that Susan’s SSN is not known, but Jack’s must be, and
so must that of all the other taxpayers.

Because there is no minimization involved in our approach, there is no prob-
lem with extra axioms modifying the satisfaction of constraints. As occurs in the
minimal models approaches (KB 4 and variants). In

T : MDPerson ≡ Person ⊓> 2 hasDependent.Child

FDPerson ≡ Person ⊓6 2 hasDependent

A : MDPerson(Joe)

FDPerson(Jack)

DB : hasDependent
Joe Mary

Joe Susan

Jack Bill

Jack John

Jack Thomas

Child

Mary

Susan

Bill

John

Thomas

(12)

Mary and Susan are distinct, and no axioms can affect this situation, so Joe has
two suitable dependents and the constraint axiom for MDPerson is satisfied on
Joe regardless of anything else in the KB. Similarly, Bill, John, and Thomas are
distinct so the constraint axiom for FDPerson is violated on Jack.

No disjunctive information can infect completely specified concepts or roles.
In KB (3) about students, it is most likely that all of UGStudent, GStudent,



major, and faculty are desired to be completely specified. If no other information
is added, as in

T : Student ≡ UGStudent ⊔ GStudent

UGStudent ⊑ ∃major

GStudent ⊑ ∃faculty (13)

A : Student(Mary)

DB : UGStudent GStudent major faculty

then the KB is inconsistent, as Mary is neither an undergraduate nor a graduate,
violating the first axiom.

The KB cannot be consistent without having Mary’s situation as an un-
dergraduate or graduate be provided, and then the required information about
either her major or faculty, as in

T : Student ≡ UGStudent ⊔ GStudent

UGStudent ⊑ ∃major

GStudent ⊑ ∃faculty (14)

A : Student(Mary)

DB : UGStudent
Mary

GStudent major

Mary Psychology

faculty

Our approach can naturally handle disjunctive information that interacts
with completely specified concepts and roles. For example, if KB (13) is modified
so that major and faculty are completely specified (admittedly not a very normal
setup) as follows:

T : Student ≡ UGStudent ⊔ GStudent

UGStudent ⊑ ∃major

GStudent ⊑ ∃faculty (15)

A : Student(Mary)

DB : major faculty

then the KB is still inconsistent. Mary does not have to be either known to be
an undergraduate or known to be a graduate, but because of the disjunctive
definition of Student she does have to be either an undergraduate, in which case
she has no major, or a graduate, in which case she has no faculty. Both cases
lead to an inconsistency.

4 RDF(S) and DBoxes

Our development of constraints using DBoxes and completely specified concepts
and roles has used OWL (or SROIQ(D)) as the ontology language. We used
OWL for two reasons. First, previous work on constraints in ontology languages
has concentrated on OWL or other expressive ontology languages, so using OWL
here allows us to make better comparisons with previous work. Second, DBoxes



can be rewritten as other OWL constructs, showing that DBoxes do add not any
expressive power to OWL.

It is possible to use RDF or RDFS [3] as the ontology language for DBoxes.
The basic idea is that for any URI D declared to be a DBox predicate in
S(DB), the set of the URIs Ci stated explicitly in the graph as having D as
their rdf:type – namely the set of all Ci appearing in triples of the form
(Ci rdf:type D) – has to be considered as the complete set of instances of
D. DBoxes extend the expressive power of RDF and RDFS because in DBoxes
is it possible to infer that facts are false, e.g., any non-stated fact for a DBox
concept or role. This addition of expressive power makes reasoning in RDF(S)
plus DBoxes harder than reasoning in just RDF(S); as a matter of fact, we can
prove the following theorem.

Theorem (Complexity of RDF(S) with DBoxes). SPARQL query answer-
ing with basic graph patterns (BGPs) under the RDF simple entailment regime,
and the RDFS entailment regime, augmented with DBoxes is coNP-hard for data
complexity.

The proof is based on a reduction to the 3-colorability problem, a reduction
similar to the one employed in [7].

The use of DBoxes permits RDFS to represent the full meaning of database
information that is imported into RDFS, adding an important aspect to RDFS.
Even with the expressive weakness of RDFS, it is possible to make the kind
of inferences that have been argued to be problematic, for example by using
role domains or ranges to infer concept membership. The use of DBoxes turn
role domain and range axioms into constraints, allowing the elimination of these
inferences in cases where they might be problematic.

5 Conclusion

There is no perfect approach to integrity constraints in an ontology setting. One
would like to have the situation in databases, where the behavior of integrity
constraints is precisely a check against data, while still retaining the open nature
of ontology languages. This is not possible because the open nature of ontology
languages means that axioms make inferences and do not simply check the data.
One would also like to be able to check integrity constraints quickly, but this is
also not possible. In an open setting checking an integrity constraint is at least
as costly as determining the consistency of the KB.

Previous approaches to integrity constraints involving autoepistemic con-
structs use the autoepistemic constructs to determine what is known (in effect,
closing off the current knowledge) and utilize this closed version to ensure that
the integrity constraints do not add new information. However, autoepistemic
approaches make the constraints operate on too few individuals, e.g., only on
known instances of a concept, which limits their ability to truly check that the
constraints hold.

Approaches involving minimal models have different problems. Instead of
having the constraints active on too few individuals, the constraints are too easy



to satisfy. Without the use of a special predicate, existential, or unknown, fillers
are acceptable in constraints. Even with the solution to the previous problem,
disjunctive information is adequate to satisfy a constraint. Further, the mini-
mization needed in the approach is sensitive to the presence of extra concepts in
the KB, and axioms that should be irrelevant can change whether a constraint
is satisfied or not.

Approaches that involve both minimization (for example of just equality)
and modal notions fall prey to versions of the two different approaches. Modal
evaluation of constraints means that the constraints often are active on too few
individuals. Even minimization of just equality is sensitive to irrelevant axioms.

Our approach to constraints is to completely specify certain concepts and
roles, making them into the analogue of database tables. On these concepts and
roles, axioms act just like integrity constraints. Although this approach may
appear to be without computation cost, the extensive use of nominals in the
translation of DBoxes to regular ontology languages can easily stress current
ontology reasoners. As well, because DBoxes are closed, adding new information
to a DBox concept or role is a modification of the KB, not just an addition.

We hope that future work on ontology reasoners will provide optimizations
for both extensive use of nominals and modifications to the KB. Both of these
situations occur commonly, and are not specific to DBoxes.

On the other hand, querying DBox concepts and roles is easy, as it is just
database querying. Further, answers returned by such queries are complete (as
opposed to the situation with other concepts and roles, where the information
returned might not be complete) and can be used in applications just like answers
to database queries can.

Even with the computational issue, we believe that the DBox approach is
the correct approach to providing integrity constraints for ontology languages.
The DBox approach provides precisely the same effect for integrity constraints
as is the case in databases, which provide the model for integrity constraints. It
thus avoids the problems with the other approaches, and thus appears to us to
be preferable.
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14. Inanç Seylan, Enrico Franconi, and Jos de Bruijn. Effective query rewriting with
ontologies over DBoxes. In Craig Boutilier, editor, Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelligence (IJCAI 2009), pages 923–929,
July 2009.

15. Jiao Tao, Evren Sirin, Jie Bao, and Deborah L. McGuinness. Integrity constraints
in OWL. In Proceedings of the Twenty-Fourth National Conference on Artificial
Intelligence, Atlanta, Georgia, July 2010. American Association for Artificial In-
telligence.


