
Ontology Driven Data Integration in
Heterogeneous Networks∗

Isabel F. Cruz Huiyong Xiao

ADVIS Lab
Department of Computer Science

University of Illinois at Chicago, USA
{ifc | hxiao}@cs.uic.edu

Abstract
We propose a layered framework for the integration of syntacti-

cally, schematically, and semantically heterogeneous networked data
sources. Their heterogeneity stems from different models (e.g., rela-
tional, XML, or RDF), different schemas within the same model, and
different terms associated with the same meaning. We use a seman-
tic based approach that uses a global ontology to mediate among the
schemas of the data sources. In our framework, a query is expressed in
terms of one of the data sources or of the global ontology and is then
translated into subqueries on the other data sources using mappings
based on a common vocabulary. Metadata representation, global con-
ceptualization, declarative mediation, mapping support, and query
processing are addressed in detail in our discussion of a case study.

1 Introduction

Data integration refers to the ability to manipulate data transparently across
multiple data sources, such as networked data sources on the web. The con-
cept of data integration is part of the broader concept of interoperability

∗This research was supported in part by the National Science Foundation under Awards
ITR IIS-0326284, IIS-0513553, and IIS-0812258.

1

among systems, services, or programs [33]. However, because of their in-
creasing number, reference models and standards that have been developed
to enable interoperability stand paradoxically in the way of their intended
goals. To address this problem, common metamodels and mappings have
been proposed [44]. Metamodels support abstraction and generalization that
aid in identifying problems that can use the same solutions. Mappings pro-
vide bridges between those alternative solutions. A compelling parallel has
been made between models and metamodels: “What metadata and medi-
ation services enable for data, metamodels and mappings can provide for
models.” [44]. The migration of solutions to new problems depends heavily
on the ability to use metamodels and in particular on using a common lay-
ered metamodel to organize and map existing standards. An example of a
layered model is the ISO/OSI model for networking, where layers support
clearly defined functions and interfaces. It is in this structure that a solution
can be devised.

The Levels of Conceptual Interoperability Model (LCIM) has been de-
vised to measure the level of interoperability between systems: Level 6 (of
maximum interoperability) is labeled “Conceptual Interoperability.” The re-
maining levels (in decreasing order of interoperability that they support) are
respectively labelled “Dynamic Interoperability,” “Pragmatic Interoperabil-
ity,” “Semantic Interoperability,” “Syntactic Interoperability,” and “Techni-
cal Interoperability.” Tolk et al. recognize the need of using ontologies for
defining the meaning of data and of processes in a system and propose a
ontology-based approach for the different layers of LCIM [45].

In this paper, we follow an approach that follows closely the objectives,
if not the methods, of the above approaches. First, we focus on data op-
eration and therefore on interoperability. Second, we distinguish levels of
interoperability, with Semantic Interoperability being the highest level ob-
tained thus far. Third, our structure for interoperability is not only layered
but also follows closely the ISO/OSI model for networking. Fourth, we con-
sider several types of data heterogeneity and deal with all of them within the
same framework. Fifth, we deal with different data representation standards
and would be able to accommodate emerging standards. Finally, we use an
approach where ontologies play several roles. In particular, we use a meta-
model (conceptually an ontology) to bridge across the ontologies that model
the different interoperating data sources.

In the rest of the paper we focus on the particular problem of integrating
data sources that can be heterogeneous in syntax, schema, or semantics,

2

thus making data integration a difficult task [10]. More specifically, syntactic
heterogeneity is caused by the use of different data models (e.g., relational,
XML, or RDF). Within the same model, the structural differences between
two schemas lead to schematic heterogeneity. Semantic heterogeneity results
from different meanings or interpretations of data that may arise from various
contexts.

Figure 1: Five syntactically, schematically, and semantically heterogeneous
legacy databases for aircraft maintenance.

To demonstrate our approach we have adapted an example that considers
legacy databases for aircraft maintenance scheduling [38] to illustrate syn-
tactic, schematic, and semantic heterogeneities, which is shown in Figure
1. In this example, syntactic heterogeneity stems from data that is stored
in relational and XML databases. The example also illustrates schematic
heterogeneity in that the schemas of the relational databases differ substan-
tially. For example, aircraft models are either table names, attribute names,

3

or attribute values. Semantic heterogeneity is also apparent: “RDYF15S”
(table name in System D), “F15S” (attribute name in System C), and “F15”
(attribute value in System B) relate to the same kind of airplane.

In this paper, we achieve integration among syntactically, schematically,
and semantically heterogeneous network data using an approach that is based
on the layered model proposed by Melnik and Decker [31]. Their model,
which is inspired by the ISO/OSI layered networking model, consists of four
layers: the syntax, object, semantic, and application layers. This paper
expands on our preliminary work [16].

We follow a hybrid approach, which is embodied in the semantic layer. In
particular, we associate an ontology with each networked data source, called
henceforth local ontology, and create a global ontology to mediate across the
data sources. The global ontology relies on a common vocabulary shared by
all data sources [47]. Considering the fundamental role of RDF as an ontology
language, we express all the data models in our approach using RDF1 and
RDF Schema. 2 Queries are propagated across the semantic layers of the data
sources and are expressed using a RDF query language. We use the RDF
Query Language, RQL [25], but any other language for RDF could have
been used, including SPARQL. 3 The queries are expressed using mappings
established between pairs of ontologies, one called the source ontology and
the other one the target ontology.

The rest of the paper is organized as follows. In Section 2 we describe the
different ways under which ontologies can be used and the different roles they
play in data integration. Our layered approach is presented in Section 3. In
this section, we describe the different layers and the overall architecture of
a system that integrates data from the networked sources. To demonstrate
our layered approach, in Section 4 we expand the legacy example we have
just introduced in light of the different kinds of roles that ontologies play.
Section 5 describes in detail query processing across different data sources
and lists the kinds of assumptions we have made. We discuss related work
in Section 6 and finally draw some conclusions in Section 7.

1http://www.w3.org/RDF/.
2http://www.w3.org/TR/rdf-schema/.
3http://www.w3.org/TR/rdf-sparql-query/.

4

2 Ontologies in Data Integration

We call semantic data integration the process of using a conceptual repre-
sentation of the data and of their relationships to eliminate heterogeneities.
At the heart of this process is the concept of ontology, which is defined as an
explicit specification of a shared conceptualization [21, 22].

Ontologies are developed by people or organizations to facilitate knowl-
edge sharing and reuse [23]. For example, they can embody the semantics for
particular domains, in which case they are called domain ontologies. Ontolo-
gies are semantically richer than traditional database schemas. In what fol-
lows we describe data integration architectures in terms of database schemas.
Later we describe how ontologies can be used instead of database schemas.

We distinguish two data integration architectures: one that is central [2,
5, 12, 18, 32, 46] and the other one that is peer-to-peer [4, 8, 9, 19, 24, 34]. A
central data integration system has a global schema, which provides the user
with a uniform interface to access information stored in the data sources by
means of queries posed in terms of the global schema [28]. In contrast, in
a peer-to-peer data integration system, any peer (a data source) can accept
user queries to access information in other peers.

To enable data integration in a central data integration system, mappings
need to be created between the global schema and the data source schemas.
In a peer-to-peer data integration system mappings are established between
peers. The two main approaches to building such mappings are Global-as-
View (GaV) and Local-as-View (LaV) [28, 46]. In the GaV approach, every
entity in the global schema is associated with a view over the data sources.
Therefore querying strategies are simple because the mappings are explicitly
defined. However, every time that there is a change to the data sources, it
could change the views. In contrast, the LaV approach allows for changes to
the data sources that do not affect the global schema, since the local schemas
are defined as views over the global schema. However, query processing is
more complex.

Now that we have introduced the main concepts behind data integration,
we describe the different forms in which ontologies can intervene [47]:

Single ontology approach. All source schemas are directly related to a
shared global ontology, which provides a uniform interface to the user.
However, this approach requires that all sources have similar charac-
teristics, for example the same level of granularity. An example of a

5

system that uses this approach is SIMS [5].

Multiple ontology approach. Each data source is described by its own
local ontology. Instead of using a global ontology, local ontologies are
mapped to one another. For this purpose, an additional representation
formalism is necessary for defining the inter-ontology mappings. The
OBSERVER system is an example of this approach [32].

Hybrid ontology approach. A combination of the two preceding approaches
is used. First, a local ontology is built for each source schema, which
is mapped to a global ontology. New sources can be easily added with
no need for modifying existing mappings. Our layered framework is an
example of this approach.

The single and hybrid approaches are appropriate for building central
data integration systems, the former being more appropriate for GaV systems
and the latter for LaV systems. A peer-to-peer system, where a global ontol-
ogy exists in a “super-peer” can also use the hybrid ontology approach [19].
However, the multiple ontology approach is better suited to “pure” peer-to-
peer data integration systems, where there are no super-peers.

We identify the following five roles of ontologies in a data integration
process [17]:

Metadata representation. Each source schema can be explicitly repre-
sented by a local ontology. All ontologies use the same representation
language and are therefore syntactically homogeneous.

Global conceptualization. The global ontology provides a conceptual view
over the schematically heterogeneous source schemas.

Support for high-level queries. The global ontology provides a high-level
view of the sources. Therefore, a query can be formulated without
specific knowledge of the different data sources. The query is then
rewritten into queries over the sources, based on the semantic map-
pings between the global and local ontologies.

Declarative mediation. A hybrid peer-to-peer system uses the global on-
tology as a mediator for query rewriting across peers.

6

User Interface

Application Layer

User Interface

Application Layer

Semantic Layer

Language

Domain Models

Conceptual Models

Semantic Layer

Language

Domain Models

Conceptual Models

Object Layer

Syntax Layer

Object Layer

Syntax Layer

(Objects / Relations
between objects)

(Objects / Relations
between objects)

(Serialization, Storage) (Serialization, Storage)

Local Source Remote Source

Figure 2: The layered model.

Mapping support. A common thesaurus or vocabulary, which can be for-
malized as an ontology, can be used to facilitate the automation of the
mapping process.

In the following sections, we further elaborate on these five roles using
our case study to exemplify them.

3 A Layered Data Interoperability Model

3.1 Overview

In this section, we present the layered approach for data interoperability
proposed by Melnik and Decker [31], which we show in Figure 2. Of the
four proposed layers, we concentrate on the semantic layer and identify three
sublayers that are contained in it.

Application Layer. The application layer is used to express queries. For
example, a visual user interface may be provided in this layer for users
to submit their queries. Ideally, query results are integrated and shown
to the users, so as to give the appearance that the distributed databases
interoperate seamlessly.

7

Semantic Layer. This layer consists of three cooperating sublayers that
accomplish different tasks:

• Languages. The main purpose of this sublayer is to accept the
user queries and to interpret them so that they can be understood
by the other interoperating systems. The language can be highly
specialized or be a general purpose language.

• Domain Models. They include the ontologies for a particular
application domain and can be different from one another even
for the same domain [29]. Examples of domains include trans-
portation, manufacturing, e-business, digital libraries, and aircraft
maintenance.

• Conceptual Models. They model concepts, relationships and con-
straints using constructs such as generalization, aggregation, or
cardinality constraints. RDF Schema and UML Foundation/Core
are two examples.

Object Layer. The purpose of the object layer is to give an object-oriented
view of the data to the application. This layer enables manipulations
of objects and binary relationships between them. Every object in a
data schema is mapped to a particular class. The object layer also
forwards all the information that it receives from the syntax layer to
the semantic layer.

Syntax Layer. The main purpose of the syntax layer is to provide a way
of specifying both the semantic and object layer information using a
common representation. XML has been used to represent RDF and
RDF Schema. This layer is also responsible for data serialization and
for mapping the queries from the object layer to the XML represen-
tation of the data schemas. The information that is extracted by the
queries is returned to the object layer.

3.2 Architecture

Based on the layered approach discussed above, we concentrate now on the
semantic layer. The semantic layer accepts user queries from the application
layer and processes them. We use a hybrid ontology approach and RDF
Schema both for the conceptual model of the data sources and for the domain

8

model, as expressed by means of a global ontology. Given our choice of RDF
and RDF Schema, a query language for RDF is appropriate. We chose RQL
(RDF Query Language) [25] for the language sublayer.

The application layer can either support RQL or an application specific
user interface. As for the implementation of the object layer and of the
syntax layer, we use RSSDB (RDF Schema Specific Database), which is an
RDF Store that uses schema knowledge to automatically generate an Object-
Relational (SQL3) representation of RDF metadata and to load resource
descriptions [1].

Figure 2 shows the architecture that is used to build applications based
on our layered approach. The whole process can be further divided into three
sub-processes as follows:

Constructing local ontologies. A component called Schema Integrator is
used to transform source schemas and source data automatically into a
single conceptual schema, expressed using a local ontology. We consider
relational, XML, and RDF databases.

Mapping. We use a global ontology (using RDF Schema) to serve as the
mediator between different local ontologies, each of which is mapped
to the global ontology. We utilize a common vocabulary (which also
uses RDF Schema) to facilitate this mapping process. This process is
usually semi-automatic in that it may require input from users.

Query processing. When the user submits a query to the local ontology,
the query will be executed directly over the local RSSDB. This process
is called local query processing. Queries are transformed from one local
ontology to all the other local ontologies by a query rewriting algorithm.
This process, which is based on the mappings between the global ontol-
ogy and the local ontologies, is called remote query processing ; it can
be performed automatically under some simplifying assumptions. The
answers to both local query processing and remote query processing
are assembled and returned to the user.

4 Case Study

In this section, we describe in detail the process for semantic data integration
as illustrated by the case study already introduced in Section 1 and displayed

9

System E (Remote)

Integrated Local Schema
(Local and Remote Results

are returned to the user)

Integrated Local Schema
(Results are integrated and

returned to System B)Schema
Integrator

Query
Execution RSSDB

Schema
Integrator

Query
Execution

Common
Vocabulary

RSSDB

Relational
DB

XML Files

RDF Files

Relational
DB

XML Files

RDF Files

System B (Local)

Ontology and Mapping Maintenance

Global Ontology

MappingMapping

Query Submission

Result Display

Figure 3: Architecture of the semantic layer.

in Figure 1. We also discuss the various ontology roles of Section 2 in the
context of the case study.

4.1 Construction of Local Ontologies

The construction of a local ontology includes two phases. In the first phase, we
integrate all source schemas into a single local ontology, which is represented
in RDF Schema and stored in RSSDB. In the second phase, we transform
data from the original relational or XML databases into RDF files, which are
then also stored in RSSDB. When integrating RDF databases, this step is
not needed.

When the underlying schema is relational, we analyze the attributes of
each table and the dependency relationships between every pair of tables
through their foreign keys. In particular, if two tables are connected using
a foreign key, we create a schema tree for each table. The root of each
tree represents one table with type rdfs:Class and its children represent the
attributes of the table with type rdf:Property. Therefore, the arcs connecting
the root and its children are rdfs:domain arcs. Then we connect two trees

10

RDYTIME NUMBER AIRBASE MTSTAFFNAME

(b) Local ontology of SYSTEM E

AIRCRAFT

Legend

Class

Property

rdfs:domain

rdfs:range

Class

MODEL AVAILTIME QTY AIRBASE

STAFF_NUM

(a) Local ontology of SYSTEM B

TITLE TEAM_LEADER

RDYACFT

STAFF

STAFF_ID

Figure 4: Local ontology for legacy source schemas.

using an rdfs:range edge from the node corresponding to the foreign key to
the root of the other tree. Hence, we obtain the local ontology that can
be used by the system for data interoperation. An example is shown for
System B where STAFF ID is a foreign key, and the local ontology is shown
in Figure 4(a).

In the case of System D, where there is no foreign key between two tables,
we also create a schema for each table. We then build a new root with type
rdfs:Class and two new nodes of type rdf:Property, one for each table as
children of this new root. Then we connect each of these nodes to one of the
nodes representing the tables using an arc of type rdfs:range.

If a system uses XML files, we analyze the DTD file corresponding to each
XML file and find all the element and attribute tags and their hierarchy,
which we use to construct the local ontology for the system. Figure 4(b)
shows the schema tree for System E. In this way, each of the participating
systems have their local schemas expressed as a single RDF Schema local
ontology and data stored using RSSDB. Figure 5 gives a fragment of the
underlying RDF Schema representation of the local ontology of System E.

Based on the local ontology, we consider two cases when transforming the
data from a source schema into a local ontology.

Relational database. We use the left outer join operation to unite the data
from multiple tables that are connected through foreign keys. The ta-
ble containing the foreign key acts as the left part of the left outer

11

Figure 5: RDF Schema for the local ontology of system E.

join operation. Figure 6 gives the example of a SQL query that ex-
presses this transformation in System B. In the case where there is no
foreign key relationship, we use a Cartesian product to realize the data
transformation.

Figure 6: SQL query for data transformation in System B.

XML data. The data model uses XML Schema or a DTD. In both situ-
ations we use XSLT expressions to transform data from an XML file
into an RDF file. After the data is saved into an RDF file, we can use
RQL (or any of the APIs for RSSDB), to access the data.

12

MEASUREFLYING-OBJECT

AIRCRAFT

COMBAT-AIRCRAFT

STAFF

MAINTENANCE

"F15"

NAME

TIME NUMBER AIRBASE

LOCATION

TITLE

Legend

Class

Property

rdfs:domain

rdfs:subPropertyOf

Property

Instance

rdf:type

Class

rdfs:subClassOf

Figure 7: The global ontology and its RDF Schema description.

4.2 Mapping Process

The global ontology is used for mediating among distributed schemas [29].
For this purpose, we set up the relationships between the global ontology
and the local ontologies based on a common vocabulary. Figure 7 shows a
fragment of the global ontology for the domain of aircraft maintenance and
its partial RDF Schema representation. We focus on the class and properties
that are contained in the box. We use rdfs:isDefinedBy, which is an RDF
property, to make the connection between a class or a property and the
associated vocabulary.

An important component of our approach is that all local ontologies share
the common dictionary with the global ontology (see Figure 8). This dictio-
nary stores the common vocabulary of all the concepts and the relationships
between the global ontology and each local ontology. When presented with
a new local ontology that needs to be mapped to the global ontology, the

13

AIRCRAFT READYTIME NUMBER ADDRESS MACHINIST

VOCABULARY

VOCABULARY
_READYTIME

VOCABULARY
_AIRCRAFT

VOCABULARY
_NUMBER

SYNONYMS

VOCABULARY
_ADDRESS

VOCABULARY
_MACHINIST

Legend

Class

Property

rdfs:domain

rdfs:range

Class

Figure 8: The common vocabulary.

system checks every concept name against the dictionary to obtain an ap-
propriate matching for that concept and chooses the optimal one according
to a score function. The construction of a dictionary and the determination
of an appropriate matching is an important area of research [37]. In this
paper, we consider that the dictionary has a simplified structure, in that it
only supports one-to-one total mappings.

The components that participate in the mapping process (namely the
local ontologies, the common vocabulary, and the global ontology) are all
represented using RDF Schema. The mapping between the global ontol-
ogy and a local ontology is realized according to the common vocabulary.
Figure 9 shows the local ontologies of the five legacy systems of Figure 1,
the relationships among the local ontologies, the global ontology, and the
common vocabulary.

Similarly to the global ontology, each local ontology has its properties
mapped to the properties in the common vocabulary through rdfs:isDefinedBy.
When the local ontology becomes related to the common vocabulary, the
RDF representation of the local ontology also needs to be updated by in-
serting rdfs:isDefinedBy into any rdfs:Class or rdfs:Property being mapped.
We use System E as an example (refer to Figure 4 for the previous RDF
description of its local ontology). Figure 10 shows a fragment of the new
RDF representation.

4.3 Discussion

The case study illustrates the following three roles played by ontologies in
data integration:

Metadata representation. To uniformly represent the metadata, which

14

Legend

Class

Property

rdfs:domain

rdfs:range

Property

rdfs:isDefinedBy

Class

RDYF15S

T_1

AIRCRAFT MAINTSCHEDSYSTEM C

AIRCRAFT READYTIME NUMBER ADDRESS MACHINIST

ACTYPE RDYWHEN NUM STATE MECHANIC

Global
Ontology

SYSTEM A

BASENAME

MODEL AVAILTIME QTY AIRBASE

STAFF_NUM

SYSTEM B

TITLE

TEAM_LEADER

STAFF_ID

F16S SYSTEM C

WHEN QUANTITY

SYSTEM D

RDYTIME NUMBER AIRBASE MTSTAFFNAME
SYSTEM E

VOCABULARY

ACMAINT

RDYACFT

NAME TIME NUMBER AIRBASE TITLE

Common
Vocabulary

MAINTENANCE

SYSTEM D

AIRCRAFT

STAFF

MECH_GROUPAIRCFT F15SRDYTIME

T_2

T1

T2
RDYF15S

a

Figure 9: Mapping between the global ontology and the local ontologies.

Figure 10: RDF Schema for the mapping information of System E.

15

are source schemas in our case, a local ontology is constructed by means
of a straightforward schema transformation process. Although a uni-
form syntax has been achieved, this process may seem too simplistic to
encode rich and interpretable semantics. For example, names that do
not correspond to words in a dictionary, such as ACTYPE in System
A, may cause difficulties in the mapping process if not replaced by an
English word or phrase, for example Aircraft Type. It remains an open
issue how to generate an ontology that represents the metadata of a
data source in a conceptual but semantically lossless way [30, 43].

Global conceptualization. In our architecture, the global ontology, which
is mapped to the local ontologies using an LAV approach, provides the
user with a conceptual high-level view of all the source schemas. We
recall that our architecture uses an hybrid ontology approach where
we associate an ontology with each networked data source and create
a single ontology, the global ontology, whose properties are mapped to
the properties in the common vocabulary.

Mapping support. The support provided by the common vocabulary for
the mapping process corresponds to one of the roles played by ontolo-
gies, as the vocabulary can be represented using an ontology, and play
the role of a meta-ontology. It describes the semantic relations between
the vocabularies of the global ontology and of the local ontologies, thus
serving as the basis for the mappings.

5 Query Processing across Data Sources

In our layered approach, as in any data integration system, query processing
plays a critical role. Query processing is performed by rewriting a query
posed on one data source to all the other sources that are connected to it
using established mappings.

5.1 RQL

RQL is a typed functional language and relies on a formal model for directed
labeled graphs [25]. In Figure 11, we show the example of an RQL query on
the local ontology of System B.

16

Select a1, a2, a3, a4, a5
From {a} MODEL {a1}, {b} AVAILTIME {a2}, {c} QTY {a3}, {d} STAFF_ID {e}, {f} TITLE
{a4}, {g} AIRBASE {a5}
Where a=b and b=c and c=d and e=f and d=g and a1= 15 ”

rdfs:domain
rdfs: range
rdf:type
correspondence between RQL and resources

MODEL

AVAILTIME
QTY

AIRBASE

STAFF_NUM

TITLE TEAM_LEADER

RDYACFT STAFFSTAFF_ID

F15

0800 12 CA, Anaheim
F15_team

aircraft1
STAFF_ID

staff1

AVA ILTIM
E

MODEL

Q
T

Y
AIR BASE

T
IT

L
E

6

Johnson

STA FF_NUM

TEAM_LEADER

R
D

F
 S

c
h

e
m

a
 o

f
S

y
s

te
m

 B
R

D
F

 r
e

so
u

rc
e

 d
e

s
c

ri
p

ti
o

n
o

f
S

y
s

te
m

 B
R

Q
L

Figure 11: A typical RQL query on System B.

In the local query processing phase the system executes the RQL query on
the local ontology and on the resources that are stored in the local RSSDB;
the answer to the query, shown in Figure 12, is expressed in RDF and re-
turned to the user (a visual user interface can display the results in other
formats). In the remote query processing phase, the query gets rewritten on
the schemas of the other networked data sources.

5.2 Query Rewriting Algorithm

Our algorithm makes the following simplifying assumptions about the schemas,
mappings, and queries: (1) We assume that the local ontology is either a hier-
archy or can be converted into a hierarchy without losing important schematic
or semantic information (see Figure 4). (2) We assume that the mappings
between the global ontology and local ontologies are total mappings, that is,
all the concepts (classes or properties) occurring in the query are mapped.

17

Figure 12: Query results of executing an RQL query on local System B.

(3) We consider only one-to-one mappings, that is, a concept in one schema
maps to a single concept in the other schema. (4) To keep the current
discussion simple, we assume that the variables in the query only refer to
“pure” classes or properties, that is, no functions such as subClassOf, sub-
PropertyOf, domain, and range are applied to them; we consider queries
with syntax {class1}property{class2} as shown in Figure 11. (5) We consider
only schema or ontology mappings, not value mappings (which is our focus
elsewhere [15]).

The rewriting algorithm uses the established mapping information be-
tween any pair of local ontologies, having the global ontology as mediator.
Before the algorithm starts, we initialize the source ontology and the target
ontology as schema trees using the following rules. For every pair of concepts
(classes or properties), say S and O, if S rdfs:domain O, or S rdfs:subClassOf
O, or S rdfs:subPropertyOf O, we make S a child of O; if S rdfs:range O or
S rdf:type O, we incorporate S and O into a single node. In addition, we
establish mappings between the source ontology and the target ontology ac-
cording to their respective mappings to the global ontology. Figure 13 shows
the schema trees of System B and System E and their mappings (refer also
to Figure 9). In System B, for instance, the properties MODEL, AVAIL-
TIME, and QTY are made children of the class RDYACFT. The property
STAFF ID and the class STAFF are incorporated into a single node.

In the following illustration of the query rewriting algorithm, Q is the
source query and Q′ is the target (rewritten) query, and we use the RDF
terms subject, object, and statement [25]. As an example, we consider query
Q on the local ontology of System B, which is shown in Figure 11. Q′ is the
target query on the local ontology of System E. The following steps will be

18

RDYTIME NUMBER AIRBASE MTSTAFFNAME

(b) Schema Tree of SYSTEM E

MODEL AVAILTIME QTY AIRBASE

STAFF_NUM

(a) Schema Tree of SYSTEM B

TITLE

TEAM_LEADER

STAFF_ID

RDYACFT

AIRCRAFT

Figure 13: Local ontologies of System B and System E and their mappings.

executed:

Step 1. Get all the statements in the from clause that correspond to the
objects in the select clause. In our example, we obtain (MODEL,
AVAILTIME, QTY, AIRBASE, TITLE). Each of these state-
ments corresponds to a class or property in the source ontology.

Step 2. Use the mapping information between the source ontology and the
target ontology to find all the concepts (classes or properties) that
correspond to the statements found in Step 1 and make these concepts
statements in Q′, as follows:

select <object1>, ..., <objectn>
from {<subject1>} <statement1> {<object1>}, ...,

{<subjectn>} <statementn> {<objectn>}

In our particular example of Figure 13 we have:

select o′1, o′2, o′3, o′4, o′5
from {s′1}NAME{o′1}, {s′2}RDYTIME{o′2}, {s′3}NUMBER{o′3},

{s′4}AIRBASE{o′4}, {s′5}MTSTAFF{o′5}

Step 3. Consider each pair of nodes, Ei and Ej, corresponding to each pair
of consecutive statements in Q′, in the following cases:

1) If Ei and Ej are siblings (have the same parent), meaning that
this pair of statements share a common subject, then we append the
condition <subjecti>=<subjectj> to the where clause of Q′ using and.

19

Ei Ej

E0'

E1'
Ek'

En'

E1''
Ek''

En''

(a) (b)

Ej

Ei

E1'
Ek'

En'

Figure 14: Relationships between Ei and Ej.

For example, in System E (see Figure 13), NAME and RDYTIME
are siblings, therefore, s′1 = s′2 is to be appended to the where clause.

2) If Ei and Ej share a common ancestor E ′
0 that is not their parent,

as shown in Figure 14(a), then we append all the intermediate nodes
(statementk), between E ′

0 and Ei and between E ′
0 and Ej, to the from

clause in the form {<subjectk>} statementk{<objectk>}. In addition,
we append new conditions to the where clause in the following way:

• <object′1> = <subject′2>, ..., <object′k> = <subject′k+1>, ...,
<object′n−1> = <subject′n>, and <object′n> = <subjecti>, which
correspond to the path E ′

0, E ′
1, ..., E ′

n, Ei.

• <object′′1> = <subject′′2>, ..., <object′′k> = <subject′′k+1>, ...,
<object′′n−1> = <subject′′n>, and <object′′n> = <subjectj>, which
correspond to the path E ′

0, E ′′
1 , ..., E ′′

n, Ej.

• <subject′1> = <subject′′1>, as E ′
1 and E ′′

1 share a common subject.

3) If Ei is an ancestor of Ej as shown in Figure 14(b), then we ap-
pend all the intermediate nodes (statementk) between Ei and Ej to the
from clause in the form {<subjectk>}statementk{<objectk>}. In ad-
dition, we append <objecti> = <subject′1>, <object′1> = <subject′2>
..., <object′k> = <subject′k+1>, ..., <object′n−1> = <subject′n>, and
<object′n> = <subjecti> to the where clause.

In our example, we only have the first case. Therefore, after Step 3 we
get Q′ as follows:

select o′1, o′2, o′3, o′4, o′5
from {s′1}NAME{o′1}, {s′2}RDYTIME{o′2}, {s′3}NUMBER{o′3},

{s′4}AIRBASE{o′4}, {s′5}MTSTAFF{o′5}
where s′1 = s′2 and s′2 = s′3 and s′3 = s′4 and s′4 = s′5

20

Step 4. For each query condition oi =<string-value> in Q, we append the
condition o′i =<string-value> to the where clause of Q′, where oi in Q
is mapped to o′i in Q′. In our example, we obtain the following Q′:

select o′1, o′2, o′3, o′4, o′5
from {s′1}NAME{o1}, {s′2}RDYTIME{o2}, {s′3}NUMBER{o3},

{s′4}AIRBASE{o′4}, {s′5}MTSTAFF{o′5}
where s′1 = s′2 and s′2 = s′3 and s′3 = s′4 and s′4 = s′5 and o′1 =“F15”

Step 5. Finally, Q′ is executed on RSSDB in System E. For our running ex-
ample, we obtain the answer that is shown in Figure 15, where rdf:Seq
is a tuple. This answer, which is returned by the remote query process-
ing phase associated with System E, will be assembled by unioning all
the tuples with the local query processing results that were shown in
Figure 12.

Figure 15: Query results of executing Q′ on System E.

5.3 Discussion

In our layered approach, the semantic layer enables the use of the above
described algorithm for query rewriting in two ways—central and peer-to-
peer—which correspond to two of the ontology roles described in Section 2:

Support for high-level queries. This role dependents on the Global Con-
ceptualization role, which was discussed in Section 4. Given that the
global ontology acts as a single query interface to the data sources, the

21

user is then able to formulate queries by referring to the global ontology,
which serves as a “super-peer”. Both central and peer-to-peer queries
are supported, based on the mappings between the global ontology and
the local ontologies. Queries on the global ontology are automatically
rewritten to a local query over each local ontology. A query on a peer
is automatically rewritten to a query on another peer.

Declarative mediation. As shown in the above example illustrating the
query rewriting algorithm, the rewriting of Q over System B to Q′ over
System E makes use of the global ontology as a mediator. In particular,
the mapping information between System B and System E is derived
by composing the mappings from System B to the global ontology and
those from the global ontology to System E. It is possible that the
composition of two mappings involves some semantic reasoning that
may be supported by the global ontology. For example, suppose that
System B has a concept Transportation mapped to Concept Vehicle in
the global ontology, and that Aircraft (a child of Vehicle) is mapped
to a concept Plane in System E. Then, the concept Transportation can
be made a parent of Plane.

6 Related Work

The subject of interoperability and the related subject of data integration
have been long-standing in database research. In the nineties, several system
architectures and systems have been proposed, including TSIMMIS [13] and
InfoHarness [39].

In the field of data integration there are a number of noteworthy pro-
posals. For example, the MOMIS (Mediator Environment for Multiple In-
formation Sources) system consists of a set of tools for the integration of
information in heterogeneous sources ranging from traditional databases to
XML databases [6, 7]. The integration process relies heavily on a common
thesaurus derived from the WordNet lexical database. The inter-schema
knowledge is expressed using the thesaurus in the form of relationships such
as synonymy and hyponymy. One tool is the SI-Designer (Source Integrator
Designer) [6], a designer support tool for E-commerce applications, which
uses a semi-automatic (requiring some user intervention) approach for the
integration of heterogeneous data sources. Another tool is the MIKS (Medi-

22

ator agent for Integration of Knowledge Sources) system [7], an agent based
middleware system that integrates data belonging to heterogeneous sources
into a global virtual view and offers support for the execution of queries over
the global virtual schema [11].

The Clio project creates mappings between two data representations semi-
automatically for the purpose of managing and facilitating heterogeneous
data transformation and integration [36]. Given the two schemas and the
set of correspondences between them, Clio can generate queries (e.g., SQL,
XSLT, XQuery) that drive the translation of data conforming to the source
schema to data conforming to the target schema. However, with the ex-
ception of mapping queries, Clio does not provide a mechanism for users to
associate semantic information with the data—the only semantics are those
“embedded” in the queries.

There are a number of approaches addressing the problem of data inte-
gration among XML sources. In what follows we look at some of the main
features found in existing approaches and describe those approaches.

6.1 Semantic Integration

High-level mediator Amann et al. propose an ontology-based approach
to the integration of heterogeneous XML Web resources in the C-Web
project [2, 3]. The proposed approach is very similar to our approach
except for the following differences. For example, they use the local-
as-view (LaV) approach with a hypothetical global ontology that may
be incomplete.

Direct translation Klein proposes a procedure to transform XML data di-
rectly into RDF data by annotating the XML documents using external
RDFS specifications [26].

Encoding semantics The Yin/Yang Web [35] proposed by Patel-Schneider
and Siméon address the problem of incorporating the XML and RDF
paradigms. They develop an integrated model for XML and RDF by
integrating the semantics and inferencing rules of RDF into XML, so
that XML querying can benefit from their RDF reasoner. But the
Yin/Yang Web does not solve the essential problem of query answering
across heterogeneous sources, that is, sources with different syntax or
data models. Lakshmanan and Sadri also propose an infrastructure for

23

interoperating over XML data sources by semantically marking up the
information contents of data sources using application-specific common
vocabularies [27]. However, the proposed approach relies on the avail-
ability of an application-specific standard ontology that serves as the
global schema. This global schema contains information necessary for
interoperability, such as key and cardinality information for predicates.

6.2 Query Languages

CXQuery [14] is an XML query language proposed by Chen and Revesz,
which borrows features from both SQL and other XML query languages. It
overcomes the limitations of the XQuery language by allowing the user to
define views, specify explicitly the schema of the answers, and query multiple
XML documents. However, CXQuery does not solve the issue of structural
heterogeneities among XML sources. The user has to be familiar with the
document structure of each XML source to formulate queries. Heuser et al.
present the CXPath language based on XPath for querying XML sources at
the conceptual level [12]. CXPath is used to write queries over a conceptual
schema that abstracts the semantic content of several XML sources. However,
they do not consider query rewriting from the XML sources to the global
schema.

6.3 Query Rewriting

Query rewriting or query translation is the key issue for both mediator-
based integration systems and peer-to-peer systems. As an example of the
first case, the Clio approach [36] addresses the issue of schema mapping and
data transformation between nested schemas and/or relational databases.
It focuses on how to take advantage of schema semantics to generate the
consistent translations from source to target by considering the constraints
and structure of the target schema. The approach uses queries to express
the mapping so as to transform the data into the target schema. The Piazza
system [24] is a peer-to-peer system for interoperating between XML and
RDF. The system achieves its interoperability in a low-level (syntactic) way
using the interoperability of XML and the XML serialization of RDF.

24

7 Conclusions and Future Work

The work on data integration that we presented in this paper fits in the
overall perspective of metamodels and mappings that address the problem of
interoperability in the presence of multiple standards [44]. In particular, we
presented an approach to the syntactic, schematic, and semantic integration
of data sources using a layered model. Our layered model consists of four
layers, of which the main component is the semantic layer. This layer uses a
hybrid ontology-based approach to the integration problem that enables both
central and peer-to-peer query processing. Our contribution involves the
representation of metadata, global conceptualization, declarative mediation,
mapping support, and query processing.

Future work will focus on the following topics:

• We will lift some of the restrictions we imposed on the query rewriting
algorithm. An interesting extension, which will further use the concep-
tual modeling capabilities of RDF Schema, will consider the mapping
of concepts related by subclassing.

• We will further explore the creation of joint local schemas to make it
more general.

• We will consider the case where the answers to the queries may be
expressed in the native schema of the legacy databases. For example,
by using RDF, the nesting structure associated with XML is lost in
the mapping from XML data to RDF data. We will look at which
properties can be encoded using RDF Schema, and how they can be
encoded. For example, RDF can be extended to encode the XML
nesting structure using the property rdfx:contained [48].

• We will consider the problem of building vocabularies and of automat-
ically matching ontologies that represent different vocabularies so as
to align similar terms [40]. There have been significant advances in
automatic ontology matching and in the evaluation of algorithms that
implement those matchings [20], including of algorithms that consider
the structure of the ontology graph (e.g., [41, 42]).

25

References

[1] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and
K. Tolle. The ICS-FORTH RDFSuite: Managing Voluminous RDF
Description Bases. In International Workshop on the Semantic Web
(SemWeb), Hongkong, China, 2001.

[2] B. Amann, C. Beeri, I. Fundulaki, and M. Scholl. Ontology-Based Inte-
gration of XML Web Resources. In International Semantic Web Con-
ference (ISWC), pages 117–131, 2002.

[3] B. Amann, I. Fundulaki, M. Scholl, C. Beeri, and A.-M. Vercoustre.
Mapping XML Fragments to Community Web Ontologies. In Interna-
tional Workshop on the Web and Databases (WebDB), pages 97–102,
2001.

[4] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa, R. J. Miller, and
J. Mylopoulos. The Hyperion Project: From Data Integration to Data
Coordination. SIGMOD Record, 32(3):53–38, 2003.

[5] Y. Arens, C. A. Knoblock, and C. Hsu. Query Processing in the SIMS
Information Mediator. In A. Tate, editor, Advanced Planning Technol-
ogy. The AAAI Press, Menlo Park, CA, 1996.

[6] I. Benetti, D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini.
SI-Designer: an Integration Framework for E-commerce. In IJCAI
Workshop on E-Business and the Intelligent Web, Seattle, WA, 2001.

[7] D. Beneventano, S. Bergamaschi, G. Gelati, F. Guerra, and M. Vincini.
MIKS: An Agent Framework Supporting Information Access and In-
tegration. In S. Bergamaschi, M. Klusch, P. Edwards, and P. Petta,
editors, Intelligent Information Agents Research and Development in
Europe: An AgentLink Perspective, volume 2586 of Lecture Notes in
Computer Science, pages 22–49. Springer, 2003.

[8] S. Bergamaschi, F. Guerra, and M. Vincini. A Peer-to-Peer Information
System for the Semantic Web. In International Workshop on Agents
and Peer-to-Peer Computing (AP2PC), pages 113–122, 2003.

26

[9] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos,
L. Serafini, and I. Zaihrayeu. Data Management for Peer-to-Peer Com-
puting: A Vision. In International Workshop on the Web and Databases
(WebDB), pages 89–94, 2002.

[10] Y. A. Bishr. Overcoming the Semantic and Other Barriers to GIS Inter-
operability. International Journal of Geographical Information Science,
12(4):229–314, 1998.

[11] G. Cabri, F. Guerra, M. Vincini, S. Bergamaschi, L. Leonardi, and
F. Zambonelli. MOMIS: Exploiting Agents to Support Information In-
tegration. International Journal of Cooperative Information Systems,
11(3):293–314, 2002.

[12] S. D. Camillo, C. A. Heuser, and R. dos Santos Mello. Querying Hetero-
geneous XML Sources through a Conceptual Schema. In International
Conference on Conceptual Modeling (ER), pages 186–199, 2003.

[13] S. S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakon-
stantinou, J. D. Ullman, and J. Widom. The TSIMMIS Project: Inte-
gration of Heterogeneous Information Sources. In Meeting of the Infor-
mation Processing Society of Japan (IPSJ), pages 7–18, Tokyo, Japan,
1994.

[14] Y. Chen and P. Revesz. CXQuery: A Novel XML Query Language. In
International Conference on Advances in Infrastructure for Electronic
Business, Science, and Medicine on the Internet (SSGRR 2002w), 2002.

[15] I. F. Cruz, A. Rajendran, W. Sunna, and N. Wiegand. Handling Seman-
tic Heterogeneities Using Declarative Agreements. In International Sym-
posium on Advances in Geographic Information Systems (ACM GIS),
pages 168–174, McLean, VA, 2002.

[16] I. F. Cruz and H. Xiao. Using a Layered Approach for Interoperability
on the Semantic Web. In International Conference on Web Information
Systems Engineering (WISE), pages 221–232, December 2003.

[17] I. F. Cruz and H. Xiao. The Role of Ontologies in Data Integration.
Journal of Engineering Intelligent Systems, 13(4):245–252, December
2005.

27

[18] I. F. Cruz, H. Xiao, and F. Hsu. An Ontology-based Framework
for Semantic Interoperability between XML Sources. In International
Database Engineering and Applications Symposium (IDEAS), pages
217–226, 2004.

[19] I. F. Cruz, H. Xiao, and F. Hsu. Peer-to-Peer Semantic Integration of
XML and RDF Data Sources. In Workshop on Agents and Peer-to-Peer
Computing (AP2PC 2004), volume 3601 of Lecture Notes in Computer
Science, pages 108–119. Springer, 2005.

[20] J. Euzenat, A. Isaac, C. Meilicke, P. Shvaiko, H. Stuckenschmidt,
O. S̆váb, V. Svátek, W. R. van Hage, and M. Yatskevich. First Results of
the Ontology Evaluation Initiative 2007. In Second ISWC International
Workshop on Ontology Matching. CEUR-WS, 2007.

[21] T. R. Gruber. A Translation Approach to Portable Ontology Specifica-
tions. Knowledge Acquisition, 5(2):199–220, 1993.

[22] T. R. Gruber and G. R. Olsen. An Ontology for Engineering Mathe-
matics. In International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR), pages 258–269, 1994.

[23] N. Guarino. Formal Ontology and Information Systems. In International
Conference on Formal Ontologies in Information Systems (FOIS 1998),
pages 3–15, 1998.

[24] A. Y. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: Data Man-
agement Infrastructure for Semantic Web Applications. In International
World Wide Web Conference (WWW), pages 556–567, 2003.

[25] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and
M. Scholl. RQL: A Declarative Query Language for RDF. In Interna-
tional World Wide Web Conference (WWW), pages 592–603, 2002.

[26] M. C. A. Klein. Interpreting XML Documents via an RDF Schema
Ontology. In International Conference on Database and Expert Systems
Applications (DEXA), pages 889–894, 2002.

[27] L. V. Lakshmanan and F. Sadri. Interoperability on XML Data. In
International Semantic Web Conference (ISWC), pages 146–163, 2003.

28

[28] M. Lenzerini. Data Integration: A Theoretical Perspective. In ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems (PODS), pages 233–246, Madison, WI, 2002.

[29] B. Ludächer, A. Gupta, and M. E. Martone. Model-Based Mediation
with Domain Maps. In IEEE International Conference on Data Engi-
neering (ICDE), pages 81–90, 2001.

[30] A. Maedche and R. Volz. The Text-To-Onto Ontology Extraction and
Maintenance System. In Workshop on Integrating Data Mining and
Knowledge Management co-located with the 1st International Conference
on Data Mining, 2001.

[31] S. Melnik and S. Decker. A Layered Approach to Information Modeling
and Interoperability on the Web. In ECDL Workshop on the Semantic
Web, Lisbon, Portugal, 2000.

[32] E. Mena, V. Kashyap, A. P. Sheth, and A. Illarramendi. OBSERVER:
An Approach for Query Processing in Global Information Systems Based
on Interoperation Across Pre-existing Ontologies. In IFCIS Interna-
tional Conference on Cooperative Information Systems (CoopIS), pages
14–25, 1996.

[33] E. Morris, L. Levine, C. Meyers, P. Place, and D. Plakosh. System
of Systems Interoperability (SOSI): Final Report. Technical Report
CMU/SEI-2004-TR-004, ESC-TR-2004-004, Carnegie Mellon Software
Engineering Institute, Pittsburgh, PA, April 2004.

[34] W. S. Ng, B. C. Ooi, K. L. Tan, and A. Zhou. PeerDB: A P2P-based
System for Distributed Data Sharing. In IEEE International Conference
on Data Engineering (ICDE), pages 633–644, 2003.

[35] P. F. Patel-Schneider and J. Siméon. The Yin/Yang Web: XML Syntax
and RDF Semantics. In International World Wide Web Conference
(WWW), pages 443–453, 2002.

[36] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fa-
gin. Translating Web Data. In International Conference on Very Large
Databases (VLDB), pages 598–609, 2002.

29

[37] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic
Schema Matching. VLDB Journal, 10(4):334–350, 2001.

[38] S. A. Renner, A. S. Rosenthal, and J. G. Scarano. Data Interoperability:
Standardization or Mediation. In IEEE Metadata Conference, 1996.

[39] L. A. Shklar, A. P. Sheth, V. Kashyap, and K. Shah. InfoHarness:
Use of Automatically Generated Metadata for Search and Retrieval of
Heterogeneous Information. In International Conference on Advanced
Information Systems Engineering (CAiSE), pages 217–230, 1995.

[40] P. Shvaiko and J. Euzenat. A Survey of Schema-Based Matching Ap-
proaches. In Journal on Data Semantics IV, volume 3730 of Lecture
Notes in Computer Science, pages 146–171. Springer, 2005.

[41] W. Sunna and I. F. Cruz. Structure-Based Methods to Enhance Geospa-
tial Ontology Alignment. In International Conference on GeoSpatial
Semantics (GeoS), volume 4853 of Lecture Notes in Computer Science,
pages 82–97. Springer, 2007.

[42] W. Sunna and I. F. Cruz. Using the AgreementMaker to Align On-
tologies for the OAEI Campaign 2007. In Second ISWC International
Workshop on Ontology Matching. CEUR-WS, 2007.

[43] Y. A. Tijerino, D. W. Embley, D. W. Lonsdale, and G. Nagy. Ontology
Generation from Tables. In International Conference on Web Informa-
tion Systems Engineering (WISE), pages 242–252, Rome, Italy, 2003.

[44] A. Tolk. Metamodels and Mappings–Ending the Interoperability War.
In Fall Simulation Interoperability Workshop, pages 748–761. IEEE CS
Press, 2004.

[45] A. Tolk, C. Turnitsa, and S. Diallo. Implied Ontological Representation
Within the Levels of Conceptual Interoperability Model. Intelligent De-
cision Technologies, 2(1):3–20, 2008.

[46] J. D. Ullman. Information Integration Using Logical Views. In Interna-
tional Conference on Database Theory (ICDT), pages 19–40, 1997.

[47] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schus-
ter, H. Neumann, and S. Hübner. Ontology-Based Integration of

30

Information–A Survey of Existing Approaches. In IJCAI Workshop on
Ontologies and Information Sharing, 2001.

[48] H. Xiao and I. F. Cruz. Integrating and Exchanging XML Data Using
Ontologies. In Journal on Data Semantics VI, volume 4090 of Lecture
Notes in Computer Science, pages 67–89. Springer, 2006.

31

