
Ontology-Driven Visualization of Architectural Design Decisions

Remco C. de Boer1, Patricia Lago1, Alexandru Telea2, and Hans van Vliet1

1Department of Computer Science, VU University Amsterdam, the Netherlands
2Institute for Mathematics and Computer Science,University of Groningen, the Netherlands

1{remco,patricia,hans}@cs.vu.nl, 2a.c.telea@rug.nl

Abstract

There is a gradual increase of interest to use ontolo-

gies to capture architectural knowledge, in particular archi-

tectural design decisions. While ontologies seem a viable

approach to codification, the application of such codified

knowledge to everyday practice may be non-trivial. In par-

ticular, browsing and searching an architectural knowledge

repository for effective reuse can be cumbersome.

In this paper, we present how ontology-driven visualiza-

tion of architectural design decisions can be used to assist

software product audits, in which independent auditors per-

form an assessment of a product’s quality. Our visualization

combines the simplicity of tabular information representa-

tion with the power of on-the-fly ontological inference of

decision attributes typically used by auditors. In this way,

we are able to support the auditors in effectively reusing

their know-how, and to actively assist the core aspects of

their decision making process, namely trade-off analysis,

impact analysis, and if-then scenarios. We demonstrate our

visualization with examples from a real-world application.

1 Introduction

The software architecture community is showing a grad-

ual increase of interest to use ontologies to capture ar-

chitectural knowledge, in particular architectural design

decisions. Recent results in this area include work by

Kruchten [12], Akerman and Tyree [2], Prabhakar c.s. [3],

and Zimmermann et al. [18]. While ontologies seem a vi-

able approach to capture architectural knowledge, applying

such codified knowledge to everyday practice may be non-

trivial. In particular, it can be hard to explore and search an

architectural knowledge repository so that previously cap-

tured knowledge can be reused.

In their early work on visualizing codified architectural

design decisions [13], Lee and Kruchten distinguished four

visualization types: a simple decision table showing design

decisions with their attributes and a separate table of rela-

tions between decisions; a decision structure visualization

showing decisions and their relations as nodes and edges in

a graph; a decision chronology visualization showing how

decisions evolve; and a decision impact visualization that

shows which decisions may be impacted by a change. They

conclude that more case studies, and also additional visual-

ization techniques, may be required.

Decision tables are the most often used type of visual-

ization for browsing [13]. Yet, such a view has several

drawbacks. Most notably, a list or table is not very effec-

tive in showing relationships. As such, it ignores much of

the added value of using an ontology. On the other hand, a

decision-structure visualization, which seems to be the most

natural visualization for a decision ontology, has drawbacks

too. While it accurately represents decisions and their rela-

tionships, the resulting graph can become cluttered and thus

incomprehensible for all but the smallest data sets. More-

over, a graph-like visualization strongly deviates from the

tabular view many practitioners are most accustomed to.

In this paper, we present an ontology-driven visual-

ization that combines the strengths of the decision-table

and decision-structure visualizations, and overcomes their

drawbacks. Our solution revolves around two tabular views

that show design decisions and their mutual relations, re-

spectively. While not unlike Lee and Kruchten’s deci-

sion/relationship tables, our visualization adds to the stan-

dard tabular view the capability to infer on-the-fly several

decision attributes (i.e. columns) from the structural infor-

mation captured by the decision ontology. Moreover, we

provide several interaction and visual highlighting mecha-

nisms that simplify the process of decision-making in the

potentially large and complex state space implied by the

ontology. Overall, our aim is to enable users to employ

the added value of a decision ontology without losing the

simplicity of tabular information visualization.

The remainder of this paper is organized as follows. Sec-

tion 2 introduces the audit context used to demonstrate our

visualization. Section 3 briefly overviews QuOnt, an ontol-

ogy that supports the reuse of architectural knowledge, i.e.

quality criteria, in the early stage of software product audits.

51978-1-4244-4985-9/09/$25.00 c©2009 IEEE

Section 4 introduces our ontology-driven visualization tool

that supports dynamic exploration of ontology-driven audit

scenarios. Section 5 outlines the design details behind our

tool. Finally, Section 6 concludes this paper.

2 Architectural Knowledge in Audits

Over the past four years, we have collaborated with

DNV-CIBIT, a Dutch SME that acts as an independent audit

organization in software product quality assessments. One

goal of this collaboration was to investigate the role archi-

tectural knowledge plays in software product audits, and to

improve upon current practices to manage such knowledge.

In a software product audit, a customer asks an indepen-

dent third party – the audit organization – to assess the qual-

ity of a supplier’s product. Auditors need to elicit the cus-

tomer’s idea of ‘quality’ and compare it with actual charac-

teristics of the supplier’s software product. Hence, one of

the first stages of a software product audit, is for the auditor

to translate the customer’s idea of quality – often expressed

in terms of quality attributes such as “the product should

be scalable” or “security is important” – to quality criteria:

concrete measures that should, or should not, be present in

the product. For example, in a system where security is

important, proper user authentication is a likely quality cri-

terion; without such authentication the necessary level of

security is unlikely to be reached.

Architectural knowledge in software product audits ex-

ists on at least two levels. First, there is architectural knowl-

edge that relates to the actual state of the software product.

This knowledge originates from the product’s supplier, and

it can be found in product artifacts such as code and docu-

mentation. Secondly, there is architectural knowledge that

relates to the desired state of the software product. This

knowledge originates from the customer, is enhanced by

the auditor, and takes the form of what we call ‘quality cri-

teria’. Whereas the supplier’s software product represents

architectural decisions that have been taken, quality crite-

ria represent architectural decisions that should have been

taken [7].

We should note that quality criteria need not always map

to measures that contribute to the desired quality level. In-

stead, when a certain measure is known to inhibit the de-

sired quality level, a quality criterion could be that that mea-

sure should not be present in the software product. Quality

criteria may thus be expressed as an explicit rejection of a

particular design option.

Whether or not a measure should be present in a software

product is often a matter of trade-offs. For example, when

user-friendliness is essential, there may arguably be no user

authentication measures present; when security is essential,

user authentication measures are mandatory. If both secu-

rity and user-friendliness are important, the appropriateness

QualityCriterion

QualityAttribute

Audit
Effect

PositiveEffect

NegativeEffect

OntoCriterion

DiaCriterion
Anticriterion

Pericriterion

subClassOf

subClassOf

subClassOf

subClassOf

hasEffectOn

usedIn

priorityInsubClassOf

subClassOf

strongerThan/
weakerThan/

comparableTo

isRelatedTo

hasSubCharacteristic

Figure 1. The QuOnt Ontology

of authentication measures depends on which of the two has

precedence. Such trade-offs imply that deciding on a par-

ticular quality criterion – i.e. whether or not a particular

measure should be present – can be hard.

The work we present here demonstrates how ontology-

driven visual analysis of existing quality criteria can pro-

vide decision support for auditors to determine which qual-

ity criteria should be used in an audit. This support consists

of three main elements: 1. support for trade-off analysis,

2. support for impact analysis, and 3. support for if-then

scenarios.

3 QuOnt: An Ontology for the Reuse of

Quality Criteria

When performing several software product audits, some

quality criteria may be reused. For example, some form

of user authentication will be necessary in all high-security

systems. In a less-than-ideal setting, such reuse may happen

ad-hoc, e.g. by re-reading past audit reports to find previ-

ously used criteria applicable to the situation at hand. To

enable a more structured approach, in previous work [7] we

presented the QuOnt ontology that can be used to codify

quality criteria for reuse. This ontology forms the basis of

our ontology-driven visual analysis discussed here. It con-

sists of the following elements (see Fig. 1):

QualityCriterion is the ontology’s main element. The is-

RelatedTo relationships capture how a quality criterion can

be related to other quality criteria (discussed in more de-

tail below). We distinguish four types of criteria: ontocri-

teria (concrete measures or artifacts that must appear in the

software product), anticriteria (measures that must not ap-

pear), diacriteria (properties that should hold for the whole

system and cannot be traced to a single product artifact),

and pericriteria (criteria for the audit process itself). For a

more detailed discussion of the four criteria types, which are

52 2009 IEEE/IFIP WICSA/ECSA

Table 1. Relations as constraints on a QuOnt

instance
Relation Constraints

enables C1 ∀x, y : enablesx,y ⇒ ¬constrainsx,y

constrains C2 ∀x, y : constrainsx,y ⇒ (¬usedInx ⇒ ¬usedIny)
isBoundTo C3 ∀x, y : constrainsx,y ∧ constrainsy,x ⇒

isBoundTox,y

C4 ∀x, y : isBoundTox,y ⇒ isBoundToy,x

forbids C5 ∀x, y : forbidsx,y ⇒ (usedInx ⇒ ¬usedIny) ∨

overridesy,x

subsumes C6 ∀x, y : subsumesx,y ⇒ (usedInx ⇒ usedIny)
conflicts C7 ∀x, y : conflictsx,y ⇒ forbidsx,y ∧ forbidsy,x

overrides C8 ∀x, y : overridesx,y ⇒ forbidsy,x ∧ usedInx
alternative C9 ∀x, y : alternativex,y ⇒ ¬(usedInx ∧ usedIny)

C10 ∀x, y, z : alternativex,y ∧ alternativey,z ⇒

alternativex,z

comprises C11 ∀x, y : comprises
x,y1,2,...,n

⇒ (¬usedInx ⇒

¬usedIny1
∧ ¬usedIny2

∧ . . . ∧ ¬usedInyn
)

depends C12 ∀x, y : depends
x,y

⇒ constrainsy,x ∨

comprises
y,x

∨ overridesx,y

based on the major classes of architectural design decisions

from [12], we refer to [7].

QualityAttribute represents a quality attribute that can be

further specialized in subattributes. For example, in ISO

9126 ‘efficiency’ is further divided into ‘time behaviour’,

‘resource utilisation’, and ‘efficiency compliance’ [10].

Effect is a reified relation from criterion to quality attribute,

having two attributes: effect type (positive or negative) and

[0 . . . n] reciprocal relations to other ‘effect’ relationships,
which indicate the relative strength (stronger than, weaker

than, or comparable) of the ‘effect’ relations.

Audit models a software product audit in which particular

quality criteria have been used to assess a prioritized set of

quality attributes. The usedIn relation captures the relation

between criteria and audits. The priorityIn relation captures

the relation between quality attributes and audits.

Inspired by Kruchten’s work in [12], we recognize ten ways

in which criteria can be related. These different types of

relationships can be expressed as constraints on a QuOnt

ontology instance (cf. [7, 9]), as listed in Table 1.

In this paper, we mainly focus on five types of relation-

ships: constrains, subsumes, conflicts/forbids, and alterna-

tive. First, when a quality criterion X constrains another

criterion Y, Y cannot be used in the audit unless X is also

used (C2). Second, when a quality criterion X subsumes

another criterion Y, the use of X implies the use of Y (C6).

Third, when criterion X conflicts with criterion Y, X forbids

Y and Y forbids X (C8); this means that when X is used, Y

may not be used and vice versa, unless the decision is made

that Y overrides X (C5). Finally, when criterion X is an al-

ternative to criterion Y, X and Y cannot both be used at the

same time (C9). This is a transitive relation (C10). Of the

remaining five relationships, enables and overrides are not

supported by the particular reasoning engine our prototype

uses (see also Section 5); isBoundTo and depends are short-

Figure 2. Visualization tool overview

hands for combinations of other relations; and comprises

can be seen as a trivial extension of constrains.

4 Ontology-driven Visualization: Three Sce-

narios

In this section, we shall present our ontology-driven vi-

sualization (ODV) tool by means of three usage scenarios

derived from an auditor’s actual practice, described step-by-

step. Although different decision support elements appear

in all scenarios, each scenario focuses on a particular aspect

of the decision support provided by the ODV; the first sce-

nario focuses on trade-off analysis, the second on impact

analysis, and the third on ‘if-then’ scenarios.

Throughout the scenarios, we shall refer to different wid-

gets, or areas, of our visualization tool, as follows (see also

Fig. 2)1. The ‘Quality attribute tree’ shows the hierarchy

of quality attributes according to a particular quality model,

in this case the extended ISO-9126 or ‘Quint’ model [17].

The ‘Quality attributes of interest’ area shows the quality

attributes of interest, which capture the customer’s idea of

‘quality’ and are an input to the remainder of the audit. The

‘Effect matrix’ shows the quality criteria relevant to the cur-

rent audit. Relevant criteria are those criteria that have a

positive or negative effect on one or more attributes of in-

terest, as well as criteria for which it is determined that they

should or should not be present in the product. The ‘Cri-

teria matrix’ shows the relations between quality criteria.

All areas are correlated by means of interactive selection

and drag-and-drop operations, thereby allowing the auditor

to both construct and query data to support different audit

scenarios, as illustrated next.

1The screenshots in this section are necessarily small, because of space

limitations. Larger versions of the screenshots can be obtained from

http://www.cs.vu.nl/˜remco/WICSA2009-figures.pdf

2009 IEEE/IFIP WICSA/ECSA 53

Authenticate Users

Use passwords

Single sign-on

Security

Changeability

User-

friendliness

constrains
constrains

hasPositiveEffect
hasPositiveEffect

hasNegativeEffect hasNegativeEffect

hasNegativeEffect

hasNegativeEffect

=

>

<

alternative

Figure 3. Ontology instance for scenario 1

4.1 Scenario 1: Trade-off analysis

In the first scenario, an auditor uses the ODV to perform

a trade-off analysis for determining which quality criteria to

include in an audit. The audit is done on behalf of BSO, a

fictional enterprise that wants to assess the quality of a new

human resource management (HRM) system being devel-

oped by a third-party, which will allow employees to view

salary statements and request holiday leave. Together with

BSO, the auditor establishes that this HRM system should

be secure (first and foremost), user-friendly, but also easily

changeable, since BSO’s internal IT department will even-

tually maintain it. Based on this prioritized list of quality at-

tributes (1. security, 2. user-friendliness, 3. changeability),

the auditor now needs to determine which quality criteria to

use in this audit.

We assume the audit organization has used QuOnt to

codify quality criteria from previous audits (not described

here). Fig. 3 shows a part of the knowledge base avail-

able for this audit. We deliberately consider only part of

the knowledge base, so we can focus on just three interre-

lated quality criteria relevant in our audit: AUTHENTICATE

USERS, USE PASSWORDS, and SINGLE SIGN-ON. As visi-

ble from Fig. 3, the criteria USE PASSWORDS and SINGLE

SIGN-ON are alternatives that are both constrained by AU-

THENTICATE USERS. Both of them have a comparable pos-

itive effect on security. While the negative effect of the use

of passwords on user-friendliness is stronger than that of

single-sign on, its negative effect on the product’s change-

ability is weaker.

4.1.1 Quality attribute selection

The auditor’s first task is to select and prioritize the quality

attributes to be used in his audit. Priorities are quantified on

a scale from 1 (lowest) to 100 (highest). The auditor usually

elicits these values directly from the customer, e.g. using the

‘100-point method’ (or ‘hundred-dollar test’ [14]) or similar

workshop techniques. When such a workshop is infeasible,

the auditor may assign a score to the (ordinal) prioritization

expressed by the customer, e.g. 100 to the highest-priority

quality attribute, 90 to the second highest, an so on.

Our ODV tool supports interactive prioritizing of at-

tributes: quality attributes can be dragged from the attribute

tree and dropped in the list of quality attributes of interest

below. Fig. 4 (step 1) shows this for the ‘security’ attribute.

As part of the drop action, the user is asked to enter the

priority score of the selected attribute (Fig. 4, step 2). As

soon as a quality attribute has been selected and prioritized,

the tool inspects the underlying ontology and updates the

effect matrix to display all quality criteria that affect any

of the quality attributes of interest. Fig. 4 (step 3) shows

the criteria USE PASSWORDS and SINGLE SIGN-ON, in the

effect matrix, which both have an effect on the ‘security’

attribute that was just selected. Just as for ‘security’, the

auditor selects and prioritizes the two other attributes of in-

terest, ‘user-friendliness’ and ‘changeability’, with a score

of 50 and 25, respectively. Fig. 5 shows the result.

Figure 4. Selection and prioritization of relevant quality attributes for an analysis scenario

54 2009 IEEE/IFIP WICSA/ECSA

Figure 5. Effect matrix, all attributes of inter-

est

4.1.2 Effect matrix

The effect matrix has a row for each quality criterion rele-

vant to the current audit, and several columns as follows.

The rightmost n columns describe each of the n quality

attributes of interest. A cell at (row=i,column=j) in these

columns is colored red, green, or white to show that crite-

rion i has a negative, positive, and respectively no effect

on quality attribute j. In Fig. 5, there are n = 3 such
columns (the rightmost ones) for our three attributes of in-

terest: security, changeability, and user-friendliness. We see

that both criteria have a positive effect on security, and a

negative effect on changeability and user-friendliness.

The effect matrix has two additional columns: ‘negative

rank’ and ‘positive rank’ (columns 4 and 5 in Fig. 5). These

show the overall negative, respectively positive effects of a

quality criterion on all quality attributes, using scaled color

bars. Longer bars represent higher values (also shown nu-

merically2). Negative-rank bars are shaded from transparent

gray (low values) to saturated red (high values). Positive-

rank bars are shaded from transparent gray (low values) to

saturated green (high values). In this way, the user’s atten-

tion is strongly drawn to high positive or negative values,

whereas low values are less prominent [15]. In our exam-

ple in Fig. 5 we see that, although the overall positive effect

of both criteria is comparable, the overall negative effect of

USE PASSWORDS exceeds that of SINGLE SIGN-ON (longer

bar in column 4, row 2 than in column 4, row 1). This shows

that, while both quality criteria have a comparable positive

effect on security, USE PASSWORDS has a larger negative

effect on user-friendliness (the second-highest priority qual-

ity attribute) than SINGLE SIGN-ON.

Having seen this, the auditor decides that the SINGLE

SIGN-ON criterion should be present in the audited soft-

ware. This is done by clicking the ‘should be present’ col-

umn checkbox for SINGLE SIGN-ON (row 2, column 1, see

Fig. 6). The effect matrix provides also a similar column

2We calculate these values using partial ordering [5]. The score of a

quality attribute is divided by the average rank of a criterion in the set of

criteria partially ordered on effect strength. In Fig. 5, the negative value

62 for USE PASSWORDS, for example, is given by 50

1
+ 25

2
, since the

average rank of USE PASSWORDS based on the strength of its effect on

user-friendliness is 1, and for its effect on changeability 2.

with checkboxes for ‘should not be present’ quality crite-

ria. Using these inputs, auditors can indicate which mix of

quality criteria best matches the client’s requirements.

As soon as the auditor makes his decision by

(un)checking a quality criterion, a reasoning engine dy-

namically inspects the ontology to determine which new

facts can be inferred. In this case, since USE PASSWORDS

and SINGLE SIGN-ON are alternatives, they cannot be both

present in the software product (cf. C9 in Table 1 and

Fig. 3). Hence, from the auditor’s decision that SINGLE

SIGN-ON should be present, the reasoning engine infers

that USE PASSWORDS should not be present; the check-

box ‘should not be present’ of criterion USE PASSWORDS

is automatically checked and its name grayed out to reflect

this. Moreover, since AUTHENTICATE USERS constrains

SINGLE SIGN-ON, the presence of SINGLE SIGN-ON im-

plies that AUTHENTICATE USERS should also be present;

so the checkbox ‘should be present’ of criterion AUTHEN-

TICATE USERS is checked accordingly, and the inference

engine adds AUTHENTICATE USERS to the effect matrix.

This inference is done automatically, and enables the on-

tological relations to be reflected directly in the effect ma-

trix. The updated matrix showing which measures should

be present is shown in Fig. 6. In this image, the auditor

can see all quality criteria for this audit: the HRM system

1. should provide user authentication, 2. should provide a

single sign-on facility, and 3. should not use passwords.

This simple scenario shows how ODV supports the au-

ditor in deciding which quality criteria to use. The deci-

sion input uses the attribute trade-offs, shown as high or

low positive or negative ranks. Typical decision-making

will have measures with a high positive rank present in the

software product, and avoid measures with a high negative

rank. When the user records his decision, the reasoning en-

Figure 6. Selection and inference of quality

criteria

2009 IEEE/IFIP WICSA/ECSA 55

Authenticate Users

Use JAAS
Use COM+
security call

Develop in-house

authentication module

Prevent ripple

effect

Information

hiding
Use intermediary Maintain

interface

Target Java

platform

Target dotNet

platform

Use standard

APIs

constrains

constrains

constrains

constrainsconstrains

constrains

constrainsconstrains

constrains
constrains

forbids

subsumes
subsumes

alternative

alternative

alternative

conflicts

+ changeability + changeability

+ changeability

+ changeability

- performance

+ security

+ security

+ security

Figure 7. Ontology instance for scenario 2

gine determines and visualizes the impact of that decision

on other quality criteria. This impact can be analyzed for

further decision refinement, as described in the next section

for a more complicated scenario.

4.2 Scenario 2: Impact analysis

In this scenario, the auditor has the same goal as in sce-

nario 1: assess the quality of an HRM system. This time,

however, we will examine a larger part of the knowledge

base, and consider more quality criteria than in the first

scenario (see Fig. 7)3. Again, the customer indicates that

for the HRM system security is the most important qual-

ity attribute, followed by user-friendliness and changeabil-

ity. Additionally, the customer stresses that the product

should be built in Java, since his internal IT department only

has experience with Java maintenance. Because of the up-

front requirement that Java should be used, the auditor starts

with a preselected criterion TARGET JAVA PLATFORM, even

though no quality attributes have been selected yet (Fig. 8).

Just as in scenario 1, the auditor selects and assigns pri-

orities to the quality attributes of interest. With ‘security’

being the most important quality attribute, the auditor wants

to analyze which quality criteria affect security. Hence, he

sorts the effect matrix on the ‘security’ column by click-

ing the column’s label. Now the quality criteria with the

highest effect on security are placed at the top of the effect

matrix, as shown in Fig. 9(a) (top image). These are the

topmost three rows of the effect matrix, all having green

cells in the ’Security’ column; all three effects are posi-

tive. Out of these, USE COM+ SECURITY CALL, has been

3For presentation conciseness, we assume the strengths of all effects on

a particular quality attribute are comparable. Hence, Fig. 7 only indicates

that a criterion has a positive (’+’) or negative (’-’) effect on an attribute.

Unlike in Fig. 3, we do not draw relations between the effects that indicate

their relative strength so the diagram remains readable.

Figure 8. Predefined user requirement

marked ‘should not be used’ by the reasoning engine, since

it is constrained by TARGET DOTNET PLATFORM which in

turn conflicts with the initially preselected criterion TAR-

GET JAVA PLATFORM (cf. Fig. 7). This leaves the audi-

tor with two security-related criteria to choose from: USE

JAAS and DEVELOP IN-HOUSE AUTHENTICATION MOD-

ULE (or DEVELOP IN-HOUSE for short).

(a) Effect matrix and criteria matrix

forbids / conflicts alternative

constrains / bound to enables

subsumes comprises

relatedTo

(b) Color scheme for criteria relations

Figure 9. Security-related analysis

56 2009 IEEE/IFIP WICSA/ECSA

4.2.1 Criteria matrix

Since USE JAAS and DEVELOP IN-HOUSE both have a

comparable positive effect on security, both are eligible to

be selected as practices that should be present in the audited

product. To further decide, the auditor wants to inspect the

relations between criteria. Our tools supports this task with

its third and last area: the Criteria matrix (Fig. 9(a) bottom).

This area shows all relations between quality criteria as an

adjacency matrix. Each relation, i.e. matrix cell, is colored

using the color scheme shown in Fig. 9(b). Red cells show

relations that, when the auditor decides a particular crite-

rion should be used, inhibit the use of some criteria (i.e.

‘forbids’, ‘conflicts’, ‘alternative’); green cells show rela-

tions that imply the use of some criteria (‘constrains’, ‘sub-

sumes’); blue cells show aggregation (‘subsumes’, ‘com-

prises’); purple denotes generic relations whose nature is

not further specified (‘relatedTo’). Brushing with the mouse

over the matrix cells shows tooltips with details on the re-

lations. For example, the mouse over the cell (USE STAN-

DARD APIS, USE INTERMEDIARY) in Fig. 9(a) shows that

“USE STANDARD APIS subsumes USE INTERMEDIARY”.

Often, users want to focus on the quality criteria that are

most relevant from the perspective of a chosen criterion of

interest. We support this as follows. Clicking on a row

or column label in the criteria matrix sorts the rows of this

matrix so that the criterion of interest, corresponding to the

clicked row or column, is placed first (at top) and the criteria

that have a direct relation with it are placed immediately

thereafter. For example, Fig. 9(a) shows the criteria matrix

sorted on the criterion DEVELOP IN-HOUSE.

Using the criteria matrix, the auditor observes that USE

JAAS and DEVELOP IN-HOUSE are alternatives, hence

only one of them can be present. Moreover, there are some

conflicting (red) and enabling (green) relations from USE

STANDARD APIS to both criteria. Also, USE STANDARD

APIS has relations with other criteria such as INFORMA-

TION HIDING and MAINTAIN INTERFACE, some of which

have yet more relations with other criteria, as shown by

the corresponding colored cells in the criteria matrix in

Fig. 9(a). This means that a decision on either USE JAAS or

DEVELOP IN-HOUSE can have ripple effects on other crite-

ria. Even though the auditor could examine the criteria ma-

trix to trace those effects, it is difficult to see at once which

of the two criteria he should expect to be present.

With the security-related alternatives at a tie, the auditor

shifts to the next highest-priority quality attribute. Since

there are neither positive nor negative effects associated to

user-friendliness, he directs his attention to changeability.

Fig. 10 (step 1) shows the effect matrix ordered on

the criteria’s effect on changeability, i.e. with the four

changeability-related criteria USE STANDARD APIS, IN-

Figure 10. Six-step changeability analysis

2009 IEEE/IFIP WICSA/ECSA 57

FORMATION HIDING, USE INTERMEDIARY and MAIN-

TAIN INTERFACE atop. From the criteria matrix in this im-

age, we see (step 2) that USE STANDARD APIS and MAIN-

TAIN INTERFACE (top-left corner of the matrix) are alter-

natives. Since the former has a higher overall positive rank

than the latter (25 vs 12, as shown by the ‘positive rank’

column in the effect matrix), USE STANDARD APIS is a

good candidate to select as a practice required in the soft-

ware product. Moreover, it has no relations to the other

changeability-related criteria that inhibit its selection (i.e.

no red cells on the intersection of the top matrix row and the

6th and 7th columns). Hence, the auditor decides that USE

STANDARD APIS should be present and checks its ‘should

be used’ column accordingly (Fig. 10 step 3).

After the selection of USE STANDARD APIS, the rea-

soning engine automatically infers which of the other cri-

teria should or should not be present. The result is shown

in Fig. 10 step 4. We see that, in addition to USE COM+

SECURITY CALL, criteria MAINTAIN INTERFACE and DE-

VELOP IN-HOUSE are now also inferred not to be present.

From the criteria matrix, the auditor can trace why: USE

STANDARD APIS forbids DEVELOP IN-HOUSE, and is an

alternative to MAINTAIN INTERFACE. The only choice left

for the auditor is whether JAAS should be used or not. Since

USE JAAS is an alternative to criteria that we now know

should not be present (Fig. 10 step 5), the auditor deter-

mines that JAAS should indeed be used (Fig. 10 step 6).

This concludes the selection of criteria for this audit.

Summarizing, we have seen how the criteria matrix and

the inference engine aid the auditor in determining the

impact of his decisions. The criteria matrix provides an

overview of the relations between criteria. After the auditor

takes a decision that a certain measure should be present or

absent, the tool eliminates the need to take decisions that

logically follow from that decision, using its inference en-

gine. This saves the auditor time, and can also prevent tak-

ing conflicting decisions.

4.3 Scenario 3: If-then scenario

What would have happened in the previous scenario

if the auditor had selected a security-related quality crite-

rion instead of considering changeability first? With USE

JAAS and DEVELOP IN-HOUSE at a tie, the auditor could

choose DEVELOP IN-HOUSE without realizing that this

would eventually conflict with USE STANDARD APIS.

In Fig. 11 (step 1), the auditor takes the (as we now know,

wrong) decision to expect the presence of an in-house devel-

oped authentication module in the software product. Since

there are no conflicts yet, the tool accepts the auditor’s deci-

sion and infers that JAAS should not be used in the product

(Fig. 11 step 2). Then, like in the scenario described in Sec-

tion 4.2, the auditor decides that in this product standard

APIs should be used (Fig. 11 step 3).

When the inference engine processes this last decision, it

finds a conflict: the use of standard APIs means that an in-

house authentication module cannot be used; but the audi-

tor explicitly specified that an in-house authentication mod-

ule should be used. The tool supports the auditor in de-

tecting and solving such conflicts by marking inconsistent

criteria with a red background in the effect matrix (e.g. DE-

VELOP IN-HOUSE in Fig. 11 step 4). The auditor can re-

solve this conflict manually, by deselecting that DEVELOP

IN-HOUSE ‘should be used’ and setting it to ‘should not

Figure 11. Conflict during security analysis

58 2009 IEEE/IFIP WICSA/ECSA

be used’, which creates the opportunity to do the opposite

with USE JAAS. Alternatively, the auditor can undo the last

steps up to the point where he selected the criterion now in

an inconsistent state, and continue from there. In that case,

the auditor has two remaining options: decide that JAAS

should be used or consider another quality attribute first. In

both cases, the end result would eventually be the same as

the result in Fig. 10 (step 4).

This scenario shows how the auditor can perform if-then

scenarios without the need to investigate and trace the in-

tricate set of all relations. From discussions with actual au-

ditors, we know that such scenarios are a valuable decision

support mechanism, since they provide immediate feedback

on the consequences of (tentative) decisions and thus save

time by culling paths in the decision space.

5 Design Rationale of ODV

5.1 Visual Design

We followed several well-known design principles in

information- and software visualization [4, 6]. First and

foremost, our visual design is simple. Each of our four

linked views supports a user task: the quality attribute hi-

erarchy for browsing all available attributes and selecting

those of interest; the attributes-of-interest view for selecting

attributes for a given analysis; the effect matrix for showing

relations between criteria and attributes and criteria proper-

ties; and the criteria matrix for showing relations between

criteria (Fig. 2). We use 2D matrix layouts to show rela-

tions, rather than graphs or 3D layouts. 2D matrix layouts

are highly scalable and simple to use, as shown by many

software visualization examples [1, 8]. Third, we use a

small set of contrasting colors, which is effective in attract-

ing the user’s attention to salient events, e.g. large posi-

tive or negative ranks (effect matrix) or conflicting relations

(criteria matrix). Finally, interaction is simple and directly

doable on all views: just a sequence of sorts and selects.

Overall, the tool’s minimal design and classical GUI made

it easily usable and accepted by its target group, and effec-

tively lets users perform ‘what if’ scenarios in just a few

mouse clicks. As such, our tool and its application fits in

the newly emerging Visual Analytics discipline [11]: in-

stead of being a static data presentation, our tool guides and

supports the user’s decision and reasoning process. Interac-

tion, linked views, and continuously changing the displayed

data based on the decision path are essential elements to this

visual analytics design.

The auditors of DNV-CIBIT who assessed our tool re-

acted very positively. Especially the easy selection of qual-

ity criteria and the way the tool invites the user to ‘play

around’ and consider ‘what if’ scenarios were cited as the

tool’s main benefits [16].

5.2 Technical Design

The tool’s technical design relies on the use of seman-

tic technologies. The ontology is implemented using the

‘Web Ontology Language’ (OWL), which is endorsed by

the World Wide Web consortium and supported by various

ontology editors and reasoning engines. The QuOnt ontol-

ogy presented in Section 3 can be expressed in OWL quite

straightforwardly.

The constraints from Table 1 are expressed using the Se-

mantic Web Rule Language (SWRL), an OWL-based rule

language. Like OWL, SWRL makes an ‘open world’ as-

sumption. Briefly, this means that the absence of a state-

ment does not necessarily mean the statement is false.

Hence, in the OWL implementation of QuOnt, the absence

of the statement that a criterion ‘should be used’ in an au-

dit does not automatically imply that the criterion ‘should

not be used’; it only means that it is not known yet whether

the criterion should be used. This mimics the way in which

auditors reason about quality criteria.

Another implication of the open world assumption is that

OWL and SWRL only support monotonic reasoning; only

new facts can be introduced and existing facts cannot be

changed. Consequently, SWRL does not support negation

(¬) nor disjunction (∨). Since many of the constraints in Ta-
ble 1 use negation and/or disjunction, this poses some prob-

lems when modeling QuOnt constraints as SWRL rules.

Fortunately, many of the problems of constraint imple-

mentation can be solved. The lack of negation can be

largely overcome by introducing a ‘notUsedIn’ relation for

quality criteria that should not be used in an audit. With

this new relation, some constraints can be rewritten to elim-

inate the open world assumption where appropriate. For

instance, in SWRL the relation constrainsx,y can be im-

plemented as two rules: notUsedInx ⇒ notUsedIny and

usedIny ⇒ usedInx.

Still, two constraints cannot be implemented in SWRL:

the ‘enables’ relation that implies the negation of the ‘con-

strains’ relation, which violates monotonic reasoning; and

the ‘overrides’ relation that is a disjunction of the ‘forbids’

relation. Although this is unfortunate, we found that the

‘enables’ relation (which is simply defined as ‘a weak form

of constrains’ [12]) has limited practical value. Also, given

the open world assumption, the tool still allows to define

criteria that at the same time ‘should be’ and ‘should not

be’ used in an audit, which is in essence the goal of the

‘overrides’ relation in a closed world assumption.

6 Conclusion

In this paper, we have introduced ontology-driven visu-

alization (ODV) of architectural design decisions, a type

of visualization that combines the strengths of tabular and

2009 IEEE/IFIP WICSA/ECSA 59

structural visualization and overcomes their drawbacks. We

showed how ODV can be employed in a decision support

system that assists in the reuse of quality criteria, a partic-

ular type of design decision in the early stage of a software

product audit. This decision support consists of three main

elements: 1. support for trade-off analysis, 2. support for

impact analysis, and 3. support for if-then scenarios.

In our work, we have taken the existence of ontology

instances such as the ones used in the three scenarios as

given. However, one of the largest challenges we see for

widespread acceptance of ODV (and for the use of decision

ontologies in general) is to overcome the need for complete

up-front codification, especially codification of relations of

which the potential amount rapidly increases when the num-

ber of decisions in the ontology rises.

A particularly interesting codification approach could be

an incremental approach, in which ODV plays a role from

the very beginning. Since ODV uses whatever information

is codified in the ontology, it can be used even on small

and/or incomplete knowledge bases. Whenever the user

finds some information missing, this information can be

added to the ontology and is henceforth available for use

and reasoning. In this way, the codified knowledge can be

incrementally extended and refined. Moreover, each refine-

ment provides immediate benefit to the user, which provides

a strong incentive to improve the knowledge base.

We see a role for data mining techniques that examine

the ontology for details on past projects and derive knowl-

edge from this historical data. For example, data mining

techniques may label criteria that are often used together

as ‘relatedTo’ each other. When these mined relations are

presented to the auditor (e.g. in ODV’s criteria matrix), the

auditor can refine the type of relation in the ontology to one

that the inference engine can reason with.

While assessment of our visualization by DNV-CIBIT’s

auditors was in general positive, we still need more data

on the use of ODV in real-life situations. These could be

the reuse of quality criteria in audits, but also reuse of de-

sign decisions in a forward engineering sense. Further case

studies should provide this data to evaluate ODV more ex-

tensively.

Acknowledgment

This research has been partially sponsored by the Dutch

Joint Academic and Commercial Quality Research & De-

velopment (Jacquard) program on Software Engineering

Research via contract 638.001.406 GRIFFIN: a GRId For

inFormatIoN about architectural knowledge. We thank

Gábor Szabó for his initial work on the visualization. We

also thank the auditors from DNV-CIBIT with whom we

have exchanged ideas, in particular Frank Niessink, Mark

Hissink Muller, Matthijs Maat, and Viktor Clerc.

References

[1] J. Abello and F. van Ham. Matrix zoom: A visual interface

to semi-external graphs. In Proc. InfoVis, pages 183–190.

IEEE, 2004.
[2] A. Akerman and J. Tyree. Using Ontology to Support De-

velopment of Software Architectures. IBM Systems Journal,

45(4):813–825, 2006.
[3] L. Babu T., M. Seetha Ramaiah, T. Prabhakar, and D. Ram-

babu. ArchVoc–Towards an Ontology for Software Archi-

tecture . In Second Workshop on SHAring and Reusing ar-

chitectural Knowledge / Architecture, Rationale, and Design

Intent (SHARK/ADI), Minneapolis, MN, USA, 2007.
[4] S. Card, J. Mackinlay, and B. Shneiderman, editors. Read-

ings in Information Visualization: Using Vision to Think.

Morgan Kaufmann, 1999.
[5] L. Carlsen. Hierarchical Partial Order Ranking. Environ-

mental Pollution, 155(2):247–253, 2008.
[6] C. Chen. Information Visualization - Beyond the Horizon.

Springer, 2004.
[7] R. C. de Boer and H. van Vliet. QuOnt: An Ontology for the

Reuse of Quality Criteria. In Fourth Workshop on SHAring

and Reusing architectural Knowledge (SHARK), Vancouver,

Canada, 2009.
[8] S. Diehl. Software visualization: Visualizing the structure,

behaviour, and evolution of software. Springer, 2007.
[9] R. Farenhorst and R. C. de Boer. Core Concepts of an On-

tology of Architectural Design Decisions. Technical Report

IR-IMSE-002, Vrije Universiteit, September 2006.
[10] ISO/IEC. Software engineering - Product quality - Part 1:

Quality model. Technical Report ISO/IEC 9126-1, 2001.
[11] D. Keim, G. Andrienko, J.-D. Fekete, C. Goerg, J. Kohlham-

mer, and G. Melancon. Visual analytics: Definition, pro-

cess, and challenges. In Information Visualization - Human-

Centered Issues and Perspectives (eds. A. Kerren et al.),

pages 154–175. Springer, 2008.
[12] P. Kruchten. An Ontology of Architectural Design Decisions

in Software-Intensive Systems. In 2nd Groningen Workshop

on Software Variability Management, Groningen, NL, 2004.
[13] L. Lee and P. Kruchten. A Tool to Visualize Architectural

Design Decisions. In S. Becker, F. Plasil, and R. Reuss-

ner, editors, 4th International Conference on the Quality

of Software-Architectures (QoSA), volume 5281 of LNCS,

pages 43–54, Karlsruhe, Germany, 2008. Springer.
[14] D. Leffingwell and D. Widrig. Managing Software Require-

ments: A Use Case Approach. Pearson Education, 2003.
[15] R. Spence. Information visualization: Design for interac-

tion. Prentice Hall, 2nd edition, 2007.
[16] G. Szabó. Visualization of Complex Quality Criteria – Tool

Support for the Software Audit Process. Master’s thesis, VU

University Amsterdam, 2008.
[17] B. van Zeist, P. Hendriks, R. Paulussen, and J. Trienekens.

Het Extended ISO-Model voor Softwarekwaliteit. In

Kwaliteit van softwareprodukten, pages 97–156. Kluwer

Bedrijfsinformatie B.V., Deventer, 1996.
[18] O. Zimmermann, J. Koehler, F. Leymann, R. Polley, and

N. Schuster. Managing architectural decision models

with dependency relations, integrity constraints, and pro-

duction rules. Journal of Systems and Software, 2009,

doi:10.1016/j.jss.2009.01.039.

60 2009 IEEE/IFIP WICSA/ECSA

