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In the electronic health record, using clinical notes to identify entities such as disorders and

their temporality (e.g. the order of an event relative to a time index) can inform many

important analyses. However, creating training data for clinical entity tasks is time consuming

and sharing labeled data is challenging due to privacy concerns. The information needs of the

COVID-19 pandemic highlight the need for agile methods of training machine learning

models for clinical notes. We present Trove, a framework for weakly supervised entity

classification using medical ontologies and expert-generated rules. Our approach, unlike

hand-labeled notes, is easy to share and modify, while offering performance comparable to

learning from manually labeled training data. In this work, we validate our framework on six

benchmark tasks and demonstrate Trove’s ability to analyze the records of patients visiting

the emergency department at Stanford Health Care for COVID-19 presenting symptoms and

risk factors.
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A
nalyzing text to identify concepts such as disease names
and their associated attributes like negation are founda-
tional tasks in medical natural language processing (NLP).

Traditionally, training classifiers for named entity recognition
(NER) and cue-based entity classification have relied on hand-
labeled training data. However annotating medical corpora
requires considerable domain expertise and money, creating
barriers to using machine learning in critical applications1,2.
Moreover, hand-labeled datasets are static artifacts that are
expensive to change. The recent COVID-19 pandemic highlights
the need for machine-learning tools that enable faster, more
flexible analysis of clinical and scientific documents in response to
rapidly unfolding events3.

To address the scarcity of hand-labeled training data, machine-
learning practitioners increasingly turn to lower cost, less accurate
label sources to rapidly build classifiers. Instead of requiring
hand-labeled training data, weakly supervised learning relies on
task-specific rules and other imperfect labeling strategies to pro-
grammatically generate training data. This approach combines
the benefits of rule-based systems, which are easily shared,
inspected, and modified, with machine learning, which typically
improves performance and generalization properties. Weakly
supervised methods have demonstrated success across a range of
NLP and other settings4–8.

Knowledge bases and ontologies provide a compelling foun-
dation for building weakly supervised entity classifiers. Ontologies
codify a vast amount of medical knowledge via taxonomies and
example instances for millions of medical concepts. However,
repurposing ontologies for weak supervision creates challenges
when combining label information from multiple sources without
access to ground-truth labels. The hundreds of terminologies
found in the Unified Medical Language System (UMLS)
Metathesaurus9 and other sources10 typify the highly redundant,
conflicting, and imperfect entity definitions found across medical
ontologies. Naively combining such conflicting label assignments
can cause substantial performance drops in weakly supervised
classification11; therefore, a key challenge is correcting for labeling
errors made by individual ontologies when combining label
information.

Rule-based systems for NER and cue detection12,13 are com-
mon in clinical text processing, where labeled corpora are difficult
to share due to privacy concerns. Generating imperfect training
labels from indirect sources (e.g., patient notes) is often used in
analyzing medical images14–16. Recent work has explored learn-
ing the accuracies of sources to correct for label noise when
using rule-based systems to generate training data for text

classification4,17. Weakly supervised clinical applications have
explored document and relation classification using task-specific
rules18,19 or leveraging dependency parsing and compositional
grammars to automate relation classification for standardizing
clinical concepts20. However, these largely focus on relation and
document classification via task-specific labeling rules or sourcing
supervision from a single ontology and do not explore NER or
automating labeling via multiple ontologies.

Prior research on weakly supervised NER has required complex
preprocessing to identify possible entity spans21, generated labels
from a single source rather than combining multiple sources22, or
relied on ad hoc rule engineering23. High-impact application
areas, such as clinical NER using weak supervision, are largely
unstudied. Recent weak supervision frameworks such as
Snorkel11 are domain- and task-agnostic, introducing barriers to
quickly developing and deploying labeling heuristics in complex
domains such as medicine. Key questions remain about the extent
to which we can automate weak supervision using existing
medical ontologies and how much additional task-specific rule
engineering is required for state-of-the-art performance. It is also
unclear whether, and by how much, pretrained language models
such as BioBERT24 improve the ability to generalize from weakly
labeled data and reduce the need for task-specific labeling rules.

We present a Trove, a framework for training weakly super-
vised medical entity classifiers using off-the-shelf ontologies as a
source of reusable, easily automated labeling heuristics. Doing so
transforms the work of using weak supervision from that of
coding task-specific labeling rules to defining a target entity type
and selecting ontologies with sufficient coverage for a target
dataset, which is a common interface for popular biomedical
annotation tools such as NCBO BioPortal and MetaMap10,25. We
examine whether ontology-based weak supervision, coupled with
recent pretrained language models such as BioBERT, reduces the
engineering cost of creating entity classifiers while matching the
performance of prior, more expensive, weakly supervised
approaches. We further investigate how ontology-based labeling
functions can be extended when we need to incorporate addi-
tional, task-specific rules. The overall pipeline is shown in Fig. 1.

In this work, we demonstrate the utility of Trove through six
benchmark tasks for clinical and scientific text, reporting state-of-
the-art weakly supervised performance (i.e., using no hand-
labeled training data) on NER datasets for chemical/disease and
drug tagging. We further present weakly supervised baselines for
two tasks in clinical text: disorder tagging and event temporality
classification. Using ablation analyses, we characterize the per-
formance trade-offs of training models with labels generated from

Fig. 1 Trove pipeline for ontology-driven weak supervision for medical entity classification. Users specify (I) a mapping of an ontology’s class categories

to entity classes, (II) a set of label sources (e.g., ontologies, task-specific rules) for weak supervision, and (III) a collection of unlabeled document sentences

with which to build a training set. Ontologies instantiate labeling function templates that are applied to sentences to generate a label matrix. This matrix is

used to train the label model that learns source accuracies and corrects for label noise to predict a consensus probability per word. Consensus labels are

transformed into the probabilistic sequence label dataset that is used as training data for an end model (e.g., BioBERT). Alternatively, the label model can

also be used as the final classifier.
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easily automated ontology-based weak supervision vs. more
expensive, task-specific rules. Finally, we present a case study
deploying Trove for COVID-19 symptom tagging and risk factor
monitoring using a daily data feed of Stanford Health Care
emergency department notes.

Weakly supervised learning is an umbrella term referring to
methods for training classifiers using imperfect, indirect, or lim-
ited labeled data and includes techniques such as distant
supervision26,27, co-training28, and others29. Prior approaches for
weakly supervised NER such as cotraining use a small set of
labeled seed examples30 that are iteratively expanded through
bootstrapping or self-training31. Semi-supervised methods also
use some amount of labeled training data and incorporate unla-
beled data by imposing constraints on properties such as expected
label distributions32. Distant supervision requires no labeled
training data, but typically focuses on a single source for labels
such as AutoNER22, which used phrase mining and a tailored
dictionary of canonical entity names to construct a more precise
labeler, rather than unifying labels assigned using heterogeneous
sources of unknown quality. Crowdsourcing methods combine
labels from multiple human annotators with unknown
accuracy33. However, compared to human labelers, programmatic
label assignment has different correlation and scaling properties
that create technical challenges when combining sources. Data
programming11,17,34 formalizes theory for combining multiple
label sources with different coverage and unknown accuracy, as
well as correlation structure to correct for labeling errors.

In the setting of weakly supervised NER and sequence labeling,
SwellShark21 uses a variant of data programming to train a
generative model using labels from multiple dictionary and rule-
based sources. However, this approach required task-specific
preprocessing to identify candidate entities a priori to achieve
competitive performance. Safranchik et al.23 presented WISER, a
linked hidden Markov model where weak supervision was defined
separately over tags and tag transitions using linking rules derived
from language models, ngram statistics, mined phrases, and
custom heuristics to train a BiLSTM-CRF. SwellShark and
WISER both focused on hand-coded, task-specific labeling
function design.

Trove advances weakly supervised medical entity classification
by (1) eliminating the requirement for identifying probable entity
spans a priori by combining word-level weak supervision with
contextualized word embeddings, (2) developing general-purpose,
more easily automated ontology-based labeling functions that
reduce the need for engineering hand-coded rules, (3) quantifying
the relative contributions of sources of label assignment—such as
pre-existing ontologies from the UMLS (low cost) and task-
specific rule engineering (high cost)—to the achieved

performance for a task, and (4) evaluating Trove in a deployed
medical setting, tagging symptoms and risk factors of COVID-19.

Results
Experiment overview. After quantifying the performance of
ontology-driven weak supervision in all our tasks, we performed
four experiments. First, we examined performance differences by
label source ablations, which compared ontology-based labeling
functions against those incorporating task-specific rules. Second,
we compared Trove to existing weakly supervised tagging
methods. Third, we examined learning source accuracies for
UMLS terminologies. Finally, we report on a case study that used
Trove to monitor emergency department notes for symptoms and
risk factors associated with patients tested for COVID-19.

We evaluated four methods of combining labeling functions to
train entity classifiers. (1) Majority vote (MV) is the majority class
for each word predicted by all labeling functions. In cases of
abstain or ties, predictions default to the majority class. (2) Label
model (LM) is the default data programming model. Abstain and
ties default to the majority class. (3) Weakly supervised (WS) is
BioBERT trained on the probabilistic dataset generated by the
label model. (4) Fully supervised (FS) is BioBERT trained on the
original expert-labeled training set, tuned to match current
published state-of-the-art performance, and using the validation
set for early stopping.

For reference, we also included published F1 metrics for state-
of-the-art (SOTA) supervised performance for each task, as
determined to the best of our knowledge. Note that some
published SOTA benchmarks (e.g., BC5CDR in Lee et al.24) use
both the hand-labeled train and validation sets for training, so
they are not directly comparable to our experimental setup.

Performance of Trove in medical entity classification tasks.
Table 1 reports F1 performance for weak supervision using
ontology-based labeling functions and those incorporating addi-
tional, task-specific rules. For NER tasks, adding task-specific rules
performed within 1.3–4.9 F1 points (4.1%) of models trained on
hand-labeled data and for span tasks within 3.4–13.3 F1 points.
The total number of task-specific labeling functions used ranged
from 9 to 27. For ontology-based supervision, the label model
improved performance over MV by 4.1 F1 points on average, and
BioBERT provided an additional average increase of 0.3 F1 points.

Labeling source ablations. For NER tasks, we examined five
ablations, ordered by increasing the cost of labeling effort. (1)
Guidelines, a dictionary of all positive and negative examples
explicitly provided in annotation guidelines, including

Table 1 F1 scores for ontology and task-specific rule-based weak supervision.

Ontologies (guidelines+UMLS+ other) +Task-specific rules Hand-labeled

Task LFs MV LM WS LFs MV LM WS FS SOTA

Chemical 22 79.8 88.0 ± 0.1† 88.5 ± 0.2* +9 81.1 89.2 ± 0.2† 91.1 ± 0.1* 92.4 ± 0.2 93.524

Disease 16 74.7 78.9 ± 0.1† 78.3 ± 0.2* +6 76.4 79.8 ± 0.3† 79.9 ± 0.2 84.5 ± 0.2 87.224

Disorder 25 67.8 68.3 ± 0.3† 69.1 ± 0.2* +11 71.2 75.0 ± 0.2† 76.3 ± 0.1* 79.6 ± 0.3 80.165

Drug 16 75.3 78.6 ± 0.1† 79.2 ± 0.2* +11 82.2 85.8 ± 0.4† 88.3 ± 0.3* 93.2 ± 0.3 91.466

Negation – – – – 17 92.5 93.0 ± 0.0† 92.7 ± 0.6* 96.1 ± 0.2 ~

DocTimeRel – – – – 27 67.8 69.2 ± 0.0† 72.9 ± 0.5* 86.2 ± 0.1 83.467

Models are majority vote (MV); label model (LM); weakly supervised BioBERT (WS); our fully supervised BioBERT (FS); and published state-of-the-art (SOTA). LFs denote labeling function counts or

total added task-specific rules. Bold indicates the best score for each approach and task. Scores are the mean and ± 1 SD of n= 10 random weight initializations. A two-sided Wilcoxon signed-rank test

was used to compute statistical significance. *Denotes P < 0.05 for the difference between weakly supervised BioBERT (WS) and the label model (LM). For (chemical, disease, disorder, drug) exact P

values for ontologies were (0.0039, 0.0020, 0.0020, 0.0020) and for task-specific rules (0.0020, 0.3223, 0.0020, 0.0020). For Negation P= 0.0273 and for DocTimeRel P= 0.0020. †Denotes

P < 0.05 for the difference between the label model (LM) and majority vote (MV). Here, all task P values were 0.0020. ~Mowery et al.68 only reported accuracy for the negation task.
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dictionaries for punctuation, numbers, and English stopwords.
(2) +UMLS, all terminologies available in the UMLS. (3) +Other,
additional ontologies or existing dictionaries not included in the
UMLS. (4) +Rules, task-specific rules, including regular expres-
sions, small dictionaries, and other heuristics. (5) Hand-labeled,
supervised learning using the expert-labeled training split.

Tiers 1–4 are additive and include all prior levels. We
initialized labeling function templates as follows:

For ontology-based labeling functions, we used the UMLS
Semantic Network and the corresponding Semantic Groups as
our entity categories and defined a mapping of semantic types
(STYs) to target class labels y∈ {− 1, 0, 1}. Non-UMLS ontolo-
gies that did not provide semantic-type assignments (e.g., ChEBI)
were mapped to a single class label. All UMLS terminologies v
were ranked by term coverage on the unlabeled training set,
defined as each term’s document frequency summed by
terminology, and the top s terminologies were used to initialize
templates, where s was tuned with a validation set. The remaining
(vs+1, . . . , v92) UMLS terminologies were merged into a single
labeling function to ensure that all terms in the UMLS were
included. UMLS synsets were constructed using concept unique
identifiers (CUIs) and templates were initialized with the union of
all terminologies and fixed across all NER tasks.

For task-specific labeling functions, we evaluated our ability to
supplement ontology-based supervision with hand-coded labeling
functions and estimated the relative performance contribution of
adding these task-specific rules. All training set documents were
preprocessed to tag entities using the ontology-based labeling
functions outlined above and indexed to support search queries
for efficient data exploration. The design of task-specific labeling
functions is a mix of data exploration, i.e., looking at entities
identified by ontology labeling functions to identify errors, and
similarity search to identify common, out-of-ontology concept
patterns. Only the training set was examined during this process
and the test set was held out during all labeling function
development and model tuning.

For NER, we used two rule types to label concepts: (1) pattern
matching via regular expressions and small dictionaries of related
terms (e.g., illegal drugs), and (2) bigram word co-occurrence
graphs from ontologies to support fuzzy span matching. Pattern
matching comprised the majority of our task-specific labeling
functions. While task-specific labeling functions codify general-
ized patterns not captured by ontologies, we also note that a
number of our task-specific labeling functions were necessary due
to the idiosyncratic nature of ground-truth labels in benchmark
tasks. For example, in the i2b2/n2c2 drug tagging task, annotation
guidelines included more complex, conditional entity definitions,
such as not labeling negated or historical drug mentions. We
incorporated these guidelines using the Negation and DocTi-
meRel labeling functions described below. See Supplementary
Fig. 1 and Supplementary Note for a more detailed example of
designing task-specific labeling functions.

For span tasks, which classify Negation and DocTimeRel for
preidentified entities, we do not use ontology-based labeling
functions directly for supervision. Instead, ontology-tagged
entities were used to guide the development of labeling functions
that search left- and right-context windows around a target entity
for cue phrases. Designing search patterns for left- and right-
context windows is the same strategy used by NegEx/
ConText12,35 to assign negation and temporal status. For
Negation, we built on NegEx by adding additional patterns
found via exploration of the training documents. For DocTi-
meRel, we used a heuristic based on the nearest explicit datetime
mention (in the token distance) to an event mention36.
Additional contextual pattern matching rules were added to
detect other cues of event temporality, e.g., using section headers
such as past medical history to identify events occurring before
the note creation time.

Figure 2 reports F1 scores across all ablation tiers. In all
settings, the weakly supervised BioBERT models outperformed
MV. Gains of 8.0–34.7 F1 points are seen in the guideline-only
tier and 1.3–8.2 points in other tiers. Incorporating source

Fig. 2 Ablation study of F1 performance by labeling source. Majority vote (MV) vs. weakly supervised BioBERT (WS) vs. fully supervised (FS) for all

labeling source ablations showing the absolute F1 score for all labeling tiers. The colored region of each bar indicates MV performance and the white

regions denote performance improvements of WS over MV. The mean performance of FS is indicated by the green lines and square points. WS and FS

consist of n= 10 experiment replicates using different random initialization seeds, presented as the mean with error bars ± SD. MV is deterministic and

does not include replicates.
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accuracies into BioBERT training provided significant benefits
when combining high-precision sources with low-precision/high-
recall sources. In the case of chemical tagging with MV, the
UMLS tier (red) outperformed UMLS+Other (orange) by 1.8 F1
points (81.6 vs. 79.8). This was due to adding the ChEBI ontology
that increased recall but only had 65% word-level precision.
Majority vote cannot learn or utilize this information, so naively
adding ChEBI labels hurts performance. However, the label
model learned ChEBI’s accuracy to take advantage of the noisier,
but higher-coverage signal; thus, the WS UMLS+Other (orange
+white) outperformed UMLS ((red+white)) by 2.5 F1 points
(88.0 vs. 85.5). See Supplementary Tables 1–4 for complete
performance metrics across all ablation tiers.

Comparing Trove with existing weakly supervised methods.
We compared Trove to three existing weakly supervised
methods for NER and sequence labeling: SwellShark21,
AutoNER22, and WISER23. We compared performance on
BC5CDR (the combination of disease and chemical tasks)
against all methods and on the i2b2/n2c2 drug task for Swell-
Shark. All performance numbers are for models trained on the
original training set split, with the exception of SwellShark that
is trained on an additional 25,000 weakly labeled documents.
All weakly supervised methods use the labeling functions,
preprocessing, and dictionary curation methods as described in
the original manuscripts. Table 2 compares Trove with these
existing weakly supervised methods. Our ontology-based
approach outperformed AutoNER by 1.7 F1 points. For mod-
els incorporating task-specific rules, we outperformed the best
weakly supervised model SwellShark by 1.9 F1 points. Swell-
Shark reported F1 scores on the i2b2/n2c2 drug task of 78.3 for
dictionaries and 83.4 for task-specific rules. Our best models
achieved 79.2 and 88.4 F1, respectively.

UMLS terminologies as plug-and-play weak supervision. Bio-
medical annotators such as NCBO BioPortal require selecting a
set of target ontologies/terminologies to use for labeling. Since
Trove is capable of automatically combining noisy terminologies,
given a shared semantic-type definition, we tested the ability to
avoid selecting specific UMLS terminologies for use as super-
vision sources. This is challenging because estimating accuracies
with the label model requires observing agreement and dis-
agreement among multiple label sources; however, it is non-
obvious how to partition the UMLS, which contains many
terminologies, into labeling functions. The naive extremes are to
either create a single labeling function from the union of all
terminologies or include all terminologies as individual labeling
functions.

To explore how partitioning choices impact label model
performance, we held all non-UMLS labeling functions fixed

across all ablation tiers and computed performance across s=
(1, . . . , 92) partitions of the UMLS by terminology. All scores
were normalized to the best global majority vote score per tier,
selected using the best s choice evaluated on the validation set, to
assess the impact of correcting for label noise.

Figure 3 shows the impact of partitioning the UMLS into s
different labeling functions. Modeling source accuracy consis-
tently outperformed MV across all tiers, in some cases by 2–8 F1
points. The best performing partition size s ranged from 1 to 10
by task. The naive baseline approaches—collapsing the UMLS
into a single labeling function or treating all terminologies as
individual labeling functions—generally did not perform best
overall.

Case study in rapidly building clinical classifiers. We deployed
Trove to monitor emergency departments for patients under-
going COVID-19 testing, analyzing clinical notes for presenting
symptoms/disorders and risk factors37. This required identifying
disorders and defining a novel classification task for exposure to a
confirmed COVID-19-positive individual, a risk factor informing
patient contact tracing. The dataset consisted of daily dumps of
emergency department notes from Stanford Health Care (SHC),
beginning in March 2020. Our study was approved by the Stan-
ford University Administrative Panel on Human Subjects
Research, protocol #24883, and included a waiver of consent. All
included patients from SHC signed a privacy notice, which
informs them that their records may be used for research pur-
poses given approval by the IRB, with study procedures in place
to protect patient confidentiality.

We manually annotated a gold test set of 20 notes for all
mentions of disorders and 776 notes for mentions of positive
COVID exposure. Two clinical experts generated gold annota-
tions that were adjudicated for disagreements by authors AC and
JAF. As a baseline for disorder tagging, we used the fully
supervised ShARe/CLEF disorder tagger. This reflects a readily
available, but out-of-distribution training set (MIMIC-II38 vs.
SHC). We used the same disorder labeling function set as our
prior experiments, adding one additional dictionary of COVID
terms39. BioBERT was trained using 2482 weakly labeled
documents. Custom labeling functions were written for the
exposure task and models were trained on 14 k sentences.

Table 3 contains our COVID case study results. The label
model provided up to 5.2 F1 points improvement over majority
vote and performed best overall for disorder tagging. Our best
weakly supervised model outperformed the disorder tagger
trained on hand-labeled MIMIC-II data by 2.3 F1 points. For
exposure classification, the label model provided no benefit, but
the weakly supervised end model provided a 6.9% improvement
(+5.2 F1 points) over the rules alone.

Table 2 Comparison of Trove against existing weakly supervised NER methods.

Supervision method Label source Number of train docs End model P R F1

Fully supervised Hand-labeled 500 BioBERT 87.6 89.3 88.7

Fully supervised Hand-labeled 500 BiLSTM-CRF 87.2 87.9 87.5

SwellShark Dictionaries 25,500 BiLSTM-CRF 84.6 74.1 79.0

AutoNER Dictionaries 500 BiLSTM-CRF 83.2 81.1 82.1

Ours (Trove+ Snorkel) Dictionaries 500 BioBERT 81.6 86.1 83.7

SwellShark Custom rules 25,500 BiLSTM-CRF 86.1 82.4 84.2

WISER Custom rules 500 BiLSTM-CRF 82.7 83.3 83.0

Ours (Trove+ Snorkel) Custom rules 500 BioBERT 85.5 86.8 86.1

Precision (P), recall (R), and F1 scores for the BC5CDR task. Underlined numbers indicate the best weakly supervised score using only dictionaries/ontologies, and bold indicates the best score using

custom rules. For this task, ontology-based supervision alone outperformed existing weakly supervised methods except for SwellShark which required custom rules and candidate generation.

Incorporating task-specific rules into Trove further improved performance.
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Discussion
Our experiments demonstrate the effectiveness of using weakly
supervised methods to train entity classifiers using off-the-shelf
ontologies and without requiring hand-labeled training data.
Medical ontologies are freely available sources of weak super-
vision for NLP applications40, and in several NER tasks, our
ontology-only weakly supervised models matched or out-
performed more complex weak supervision methods in the lit-
erature. Our work also highlights how domain-aware language
models, such as BioBERT, can be combined with weak super-
vision to build low-cost and highly performant medical NLP
classifiers.

Rule-based approaches are common tools in scientific literature
analysis and clinical text processing41. Our results suggest that
engineering task-specific rules in addition to labels provided by
ontologies provides strong performance for several NER tasks—in

some cases approaching the performance of systems built using
hand-labeled data. We further demonstrated how leveraging the
structure inherent in knowledge bases such as the UMLS to
estimate source accuracies and correct for label noise provides
substantial performance benefits. We find that the classification
performance of the label model alone is strong, with BioBERT
providing modest gains of 1.0 F1 points on average. Since the
label model is orders of magnitude more computationally efficient
to train than BERT-based models, in many settings (e.g., limited
access to high-end GPU hardware), the label model alone may
suffice.

Our tasks reflect a wide range of difficulties. Clinical tasks
required more task-specific rules to address the increased com-
plexity of entity definitions and other nongrammatical, sub-
language phenomena42. Here custom rules improved clinical
tasks an average of 8.1 F1 points vs. 2.1 points for scientific

Fig. 3 The relationship between the number of UMLS partitions and the learned accuracies of label sources. a BC5CDR chemical entities. b BC5CDR

disease entities. c ShARe/CLEF 2014 disorder entities. d i2b2/n2c2 2009 drug entities. The UMLS is partitioned into s terminologies (x axis, log-scale)

ordered by term coverage on the unlabeled training set. Red (MV) and blue (LM) lines are the mean difference in F1 performance (y axis) of n= 5 random

weight initializations. Error bars are represented using the solid colored line to denote the mean value of data points and the shaded regions corresponding

to ± SD. The gray region indicates performance worse than the best possible MV, discovered via the validation set. Across virtually all partitioning choices,

modeling source accuracies outperformed MV, with k= 1–10 performing best overall.

Table 3 COVID-19 presenting symptoms/disorders and risk factors evaluated on Stanford Health Care emergency

department notes.

MV LM WS FS

Supervision Task P R F1 P R F1 P R F1 P R F1

Hand-labeled Disorder – – – 68.0 74.5 71.1

Ontologies Disorder 64.4 66.4 65.3 69.3 71.7 70.5 67.1 72.3 69.6 –

+Task-specific Disorder 69.1 70.4 69.8 73.0 73.9 73.4 70.5 74.8 72.6 –

Task-specific Exposure 82.6 69.1 75.2 82.6 69.1 75.2 87.2 74.5 80.4 –

Bold and underlined scores indicate the best score in symptom/disorder tagging and COVID exposure classification respectively. Ontology-based weak supervision performed almost as well as the out-

of-distribution, hand-labeled MIMIC-II data used for FS. Adding task-specific rules, even though they were developed without seeing Stanford data, outperformed the hand-labeled FS model by 2.3 F1

points.
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literature. Moreover, adding non-UMLS ontologies to PubMed
tasks consistently improved overall performance while providing
little-to-no benefit for our clinical tasks. Annotation guidelines
for our clinical tasks also increased complexity. The i2b2/n2c2
drug task combines several underlying classification problems
(e.g., filtering out negated medications, patient allergies, and
historical medications) into a single tagging formulation. This
extends beyond entity typing and requires a more complex cue-
driven rule design.

Manually labeling training data is time-consuming and
expensive, creating barriers to using machine learning for new
medical classification tasks. Sometimes, there is a critical need to
rapidly analyze both scientific literature and unstructured elec-
tronic health record data—as in the case of the COVID-19
pandemic when we need to understand the full repertoire of
symptoms, outcomes, and risk factors at short notice37,43,44.
However, sharing patient notes and constructing labeled training
sets presents logistical challenges, both in terms of patient privacy
and in developing infrastructure to aggregate patient records45. In
contrast, labeling functions can be easily shared, edited, and
applied to data across sites in a privacy-preserving manner to
rapidly construct classifiers for symptom tagging and risk factor
monitoring.

This work has several limitations. Our task-specific labeling
functions were not exhaustive and only reflect low-cost rules
easily generated by domain experts. Additional rule development
could lead to improved performance. In addition, we did not
explore data augmentation or multitask learning in the BioBERT
model, which may further mitigate the need to engineer task-
specific rules. There is considerable prior work developing
machine-learning models for tagging disease, drug, and chemical
entities that could be incorporated as labeling functions. How-
ever, our goal was to explore performance trade-offs in settings
where existing machine-learning models are not available. Our
framework leverages the wide range of medical ontologies avail-
able for English language settings, which provides considerable
advantages for weakly supervised methods. Additional work is
needed to characterize the extent to which the framework can
benefit tasks in non-English settings. Combining labels from
multiple ontology sources violates an independence assumption
of data programming as used in this work, because for any pair of
source ontologies, we may have correlated noise. This restriction
applies to all label sources but is more prevalent in cases with
extremely similar label sources, as can occur with ontologies. In
our experiments, for a small number of sources, the impact was
minor; however, performance tended to decrease after including
more than 20 ontologies. Additional research into unsupervised
methods for structure learning46,47, i.e., learning dependencies
among sources from unlabeled data, could further improve per-
formance or mitigate the need to limit the number of included
ontologies.

Identifying named entities and attributes, such as negation, are
critical tasks in medical natural language processing. Manually

labeling training data for these tasks is time consuming and
expensive, creating a barrier to building classifiers for new tasks.
The Trove framework provides ontology-driven weak supervision
for medical entity classification and achieves state-of-the-art
weakly supervised performance in the NER tasks of recognizing
chemicals, diseases, and drugs. We further establish new weakly
supervised baselines for disorder tagging and classifying the
temporal order of an event entity relative to its document time-
stamp. The weakly supervised NER classifiers perform within
1.3–4.9 F1 points of classifiers trained with hand-labeled data.
Modeling the accuracies of individual ontologies and rules to
correct for label noise improved performance in all of our entity
classification tasks. Combining pretrained language models such
as BioBERT with weak supervision results in an additional
improvement in most tasks.

The Trove framework demonstrates how classifiers for a wide
range of medical NLP tasks can be quickly constructed by
leveraging medical ontologies and weak supervision without
requiring manually labeled training data. Weakly supervised
learning provides a mechanism for combining the generalization
capabilities of state-of-the-art machine learning with the flex-
ibility and inspectability of rule-based approaches.

Methods
Datasets and tasks. We analyze two categories of medical tasks using six datasets:
(1) NER and (2) span classification where entities are identified a priori and
classified for cue-driven attributes such as negation or document relative time, i.e.,
the order of an event entity relative to the parent document’s timestamp. Both
categories of tasks are formalized as token classification problems, either tagging all
words in a sequence (NER) or just the head words for an entity set (span classi-
fication). Table 4 contains summary statistics for all six datasets. All documents
were preprocessed using a spaCy48 pipeline optimized for biomedical tokenization
and sentence boundary detection19.

Our COVID-19 case study used a daily feed of emergency department notes
from Stanford Health Care (SHC), beginning in March 2020. Our study was
approved by the Stanford University Administrative Panel on Human Subjects
Research, protocol #24883 and included a waiver of consent. All included patients
from SHC signed a privacy notice which informs them that their records may be
used for research purposes given approval by the IRB, with study procedures in
place to protect patient confidentiality.

We used 99 label sources covering a broad range of medical ontologies. We used
the 2018AA release of the UMLS Metathesaurus, removing non-English and
zoonotic source terminologies, as well as sources containing fewer than 500 terms,
resulting in 92 sources. Additional sources included the 2019 SPECIALIST
abbreviations49, Disease Ontology50, Chemical Entities of Biological Interest
(ChEBI)51, Comparative Toxicogenomics Database (CTD)52, the seed vocabulary
used in AutoNER22, ADAM abbreviations database53, and word sense abbreviation
dictionaries used by the clinical abbreviation system CARD54.

We applied minimal preprocessing to all source ontologies, filtering out English
stopwords and numbers, applying a letter case normalization heuristic to preserve
abbreviations, and removing all single-character terms. We did not incorporate
UMLS term-type information, such as filtering out terms explicitly denoted as
suppressible within a terminology since this information is not typically available in
non-UMLS ontologies. Our overall goal was to impose as few assumptions as
possible when importing terminologies, evaluating their ability to function as plug-
and-play sources for weak supervision.

Formulation of the labeling problem. We assume a sequence-labeling

problem formulation, where we are given a dataset D ¼ fXig
N
i¼1 of N sequences

Table 4 Dataset summary statistics.

Task Domain Name Type k Documents Entities

Disease Literature BC5CDR69 NER 2 500/500/500 4182/4244/4424

Chemical Literature BC5CDR69 NER 2 500/500/500 5203/5347/5385

Disorder Clinical ShARe/CLEF 201468 NER 2 166/133/133 5619/4449/7367

Drug Clinical i2b2/n2c2 200970 NER 2 100/75/75 3157/2504/2819

Negation Clinical ShARe/CLEF 201468 Span 2 166/133/133 5619/4449/7367

DocTimeRel Clinical THYME 201671 Span 4 293/147/151 38937/20974/18990

There are (k) classes per task. The (Documents) and (Entities) columns indicate counts for train/validation/test splits.
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Xi= (xi,1, . . . , xi,t) consisting of words x from a fixed vocabulary. Each sequence is
mapped to a corresponding sequence of latent class variables Yi= (yi,1, . . . , yi,t),
where y∈ {0, . . . , k} for k-tag classes. Since Y is not observable, our primary
technical challenge is estimating Y from multiple, potentially conflicting label
sources of unknown quality to construct a probabilistically labeled dataset

D̂ ¼ fXi;
bYig

N

i¼1 . This dataset can then be used for training classification models
such as deep neural networks. Such a labeling regimen is typically low-cost, but less
accurate than the hand-curated labels used in traditional supervised learning;
hence, this paradigm is referred to as weakly supervised learning.

Unifying and denoising sources with a label model. When using biomedical
annotators such as MetaMap or NCBO BioPortal, users specify a target set of entity
classes and a set of terminology sources with which to generate labeled concepts.
Consider the example outlined in Fig. 4, where we want to train an entity tagger for
disease names using labels generated from four terminologies. Here, we are
interested in generating a consensus set of entities using each terminology’s labeled
output. A straightforward unification method is majority vote

ŷ ¼ argmaxy2f1;:::;kg ∑
m

i¼1
1kðλiðxÞ ¼ yÞ ð1Þ

where our m terminologies are represented as individual labeling functions λi.
Labeling functions encode an underlying heuristic such as matching strings against
a dictionary and given an input instance (e.g., a document or entity span) assign a
label in the domain {− 1, 0, . . . , k} where −1 denotes abstain, i.e., not assigning any
class label. Majority vote simply takes the mode of all labeling function outputs for
each word, emitting the majority class in the case of ties or abstains.

Majority vote weights source equally when combining labels, an assumption
that does not hold in practice, which introduces noise into the labeling process.
Sources have unknown, task-dependent accuracies and often make systematic
labeling errors. Failing to account for these accuracies can negatively impact
classification performance. To correct for such label noise, we use data
programming34 to estimate accuracies of each source and ensemble the sources via
a label model that assigns a consensus probabilistic label per word.

To learn the label model, m-label sources are parameterized as labeling
functions λ1, . . . . λm. The vector of m-labeling functions applied to n instances
forms the label matrix Λ∈ {−1, 0, . . . , k}m×n. A key finding of data programming is
that we can use Λ to recover the latent class-conditional accuracy of each label
source without ground-truth labels by observing the rates of agreement and
disagreement across all pairs of labeling functions λi, λj34. This leverages the fact
that while the accuracy ai ¼ E½λiY � (the expectation of the labeling function
output λi multiplied by the true label) is not directly observable, the product of
aiaj ¼ E½λiYλjY� ¼ E½λiY�E½λjY� is the rate at which labeling functions vote

together, which is observable via Λ. Assuming independent noise among labeling
functions, accuracies are then recoverable up to a sign by solving accuracies for
disjoint sets of triplets. We refer readers to Ratner et al.17 for more details.

We use the weak supervision framework Snorkel11 to train a probabilistic label
model that captures the relationship between the true label and label sources P(Y,
Λ). Here, the training input is the label matrix Λ, generated by applying labeling
functions λ1, . . . . λm to the unlabeled dataset D. Formally, P(Y,Λ) can be encoded
as a factor graph-based model with m-accuracy factors between λ1, . . . , λm and our

true (unobserved) label y (Fig. 1, step 3).

θAccj ðΛi; yiÞ :¼ yiΛij ð2Þ

p
θ
ðY;ΛÞ / exp ∑

m

i¼1
∑
n

j¼1
θAccj ϕAccj ðΛi; yiÞ

� �
ð3Þ

Snorkel implements a matrix completion formulation of data programming, which
enables faster estimation of model parameters θ using stochastic gradient descent
rather than relying on Gibbs sampling-based approaches17. The label model

estimates P(Y∣Λ) to provide denoised consensus label predictions bY and generates

our probabilistically labeled dataset D̂.
Figure 4 shows how data programming provides a principled way to synthesize

a label when there is disagreement across label sources about what constitutes an
entity span. The disease mentioning diabetes type 2 is not found in Metathesaurus
Names (MTH) or SNOMED Clinical Terms (SNOMEDCT), which leads to
disagreement and label errors. Using a majority vote of labeling functions misses
the complete entity span, while the label model learns to account for systematic
errors made by each ontology to generate a more accurate consensus label
prediction.

Labeling function templates. In this work, a labeling function λj accepts an
unlabeled sequence Xi as input and emits a vector of predicted labels
eYi;j ¼ ð~yj;1; :::;~yj;tÞ, i.e., a label ~yj 2 f�1; 0; :::; kg for each word in Xi. A typical

labeling function serves as a wrapper for an underlying, potentially task-specific
labeling heuristic such as pattern matching with a regular expression or a more
complex rule system. Since these labeling functions are not easily automated and
require hand coding, we refer to them as task-specific labeling functions. These are
analogous to the rule-based approaches used in 48% of recent medical concept
recognition publications41.

In contrast, medical ontologies can be automatically transformed into labeling
functions with little-to-no custom coding by defining reusable labeling function
templates. Templates only require specifying a set of target entity categories and
providing a collection of terminologies mapped to those categories. These
categories are easily derived from knowledge bases such as the UMLS
Metathesaurus (where the UMLS Semantic Network55 provides consistent
categorization of UMLS concepts) or other domain-specific taxonomies. In this
work, we use UMLS Semantic Groups56 (mappings of semantic types into simpler,
nonhierarchical categories such as disorders) as the basis for our concept
categories.

We explore two types of ontology-based labeling functions, which leverage
knowledge codified in medical ontologies for term semantic types and synonymy.

Semantic type labeling functions require a set of terms (single or multiword
entities) t∈ T mapped to semantic types, where a term may be mapped to
multiple-entity classes. This mapping is converted to a k-dimensional probability
vector where k is the number of entity classes ti→ [p1, . . . , pk]. Given input
sequence Xi, use string matching to find all longest-term matches (in token length)
and assign each match to its most probable entity class ~y ¼ maxðtiÞ, abstaining on
ties. Using the longest match is a heuristic that helps disambiguate nested terms
(lung as anatomy vs. lung cancer as a disease). Matching optionally includes a set of
slot-filled patterns to capture simple compositional mentions (e.g., {*} ({*})→
Tylenol (Acetaminophen)).

Fig. 4 An example of combining ontology-based labeling functions. Here four ontology labeling functions (MTH, CHV, LNC, SNOMEDCT) are used to

label a sequence of words Xi containing the entity diabetes type 2. Majority vote estimates Yi as a word-level sum of positive class labels, weighing each

equally (aMV). The label model learns a latent class-conditional accuracy (aLM) for each ontology, which is used to reweight labels to generate a more

accurate consensus prediction of Yi.
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Synonym (synset) labeling functions require synsets (collections of synonymous

terms) f̂t1; :::; t̂ng 2 T̂ and term T mapped to semantic types. Given input
sequence Xi and it’s parent context (e.g., document) search for > 1 unique synonym
matches from a target synset and label all matches ~y ¼ maxðtiÞ. This is useful for
disambiguating abbreviations (e.g., Duchenne muscular dystrophy→DMD),
where a long-form of an abbreviated term appears elsewhere in a document.
Matches can be unconstrained, e.g., any tuple found anywhere in a context, or
subject to matching rules, e.g., using Schwartz–Hearst abbreviation
disambiguation57 to identify out-of-dictionary abbreviations.

Training the BioBERT end model. The output of the label model is a set of
probabilistically labeled words, which we transform back into sequences

D̂ ¼ fXi;
bYig

N

i¼1 . While probabilistic labels may be used directly for classification,
this suffers from a key limitation: the label model cannot generalize beyond the
direct output of labeling functions. Rules alone can miss common error cases such
as out-of-dictionary synonyms or misspellings. Therefore, to improve coverage, we
train a discriminative end model, in this case a deep neural network, to transform
the output of labeling functions into learned feature representations. Doing so
leverages the inductive bias of pretrained language models58 and provides addi-
tional opportunities for injecting domain knowledge via data augmentation59 and
multitask learning60 to improve classification performance.

We use the transformer-based BioBERT24, a language model fine-tuned on the
biomedical text. We also evaluated ClinicalBERT61 for clinical tasks, and found its
performance to be the same as BioBERT. BioBERT is trained as a token-level
classifier with a max sequence length of 512 tokens. We follow Devlin et al.58 for
sequence-labeling formulation, using the last BERT layer of each word’s head
wordpiece token as the contextualized embedding. Since sequence labels may be
incomplete (i.e., cases where all labeling functions abstain on a word), we mask all
abstained tokens when computing the loss during training. We modified BioBERT
to support a noise-aware binary cross-entropy loss function34 that minimizes the

expected value with respect to bY to take advantage of the more informative
probabilistic labels.

ŵ ¼ argminw
1

N
∑
N

i¼1
E

ŷ�bY½Lðw; xi; ŷÞ� ð4Þ

Hyperparameter tuning for the label and end models. All models were trained
using weakly labeled versions of the original training splits, i.e., no hand-labeled
instances. We used a hand-labeled validation and test set for hyperparameter
tuning and model evaluation, respectively. Result metrics are reported using the
test set. The label model was tuned for learning rate, training epochs, L2 reg-
ularization, and a uniform accuracy prior used to initialize labeling function
accuracies. BioBERT weights were fine-tuned, and end models were tuned for
learning rate and training epochs. We used a linear decay learning rate schedule
with a 10% warmup period. See Supplementary Tables 5 and 6 for
hyperparameter grids.

Metrics. We report precision, recall, and F1 score for all tasks. DocTimeRela is
reported using microaveraging. NER metrics are computed using exact span
matching62. Each NER task is trained separately as a binary classifier using IO
(inside, outside) tagging to simplify labeling function design, with predicted tags
converted to BIO (beginning, inside, outside) to properly count errors detecting
head words. Span task metrics are calculated assuming access to gold test set spans,
as per the evaluation protocol of the original challenges. Label model and BioBERT
scores are reported as the mean and standard deviation of 10 runs with different
random seeds. A two-sided Wilcoxon signed-rank test with an alpha level of 0.05
was used to calculate statistical significance.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All primary data that support the findings of this study are available via public

benchmark datasets (BC5CDR, https://biocreative.bioinformatics.udel.edu/tasks/

biocreative-v/track-3-cdr/) or are otherwise available per data use agreements with the

respective data owners (ShARe/CLEF 2014, https://physionet.org/content/

shareclefehealth2014task2/1.0/; THYME, https://healthnlp.hms.harvard.edu/center/

pages/data-sets.html; i2b2/n2c2 2009, https://portal.dbmi.hms.harvard.edu/projects/

n2c2-nlp/). The data that support the findings of the clinical case study are available on

request from the corresponding author J.A.F. These data are not publicly available

because they contain information that could compromise patient privacy. Trove requires

access to the UMLS, which is available by license from the National Library of Medicine,

Department of Health and Human Services, https://www.nlm.nih.gov/research/umls/

index.html. Open source ontologies used in this study are available at SPECIALIST

Lexicon, https://lsg3.nlm.nih.gov/LexSysGroup/Summary/lexicon.html; Disease

Ontology, https://bioportal.bioontology.org/ontologies/DOID; Chemical Entities of

Biological Interest (ChEBI), ftp://ftp.ebi.ac.uk/pub/databases/chebi/; Comparative

Toxicogenomics Database (CTD), http://ctdbase.org; AutoNER core dictionary, https://

github.com/shangjingbo1226/AutoNER/blob/master/data/BC5CDR/dict_core.txt;

ADAM abbreviations database, http://arrowsmith.psych.uic.edu/arrowsmith_uic/adam.

html; and the Clinical Abbreviation Recognition and Disambiguation (CARD)

framework, https://sbmi.uth.edu/ccb/resources/abbreviation.htm.

Code availability
Trove is written in Python v3.6, spaCy 2.3.4 was used for NLP preprocessing, and

Snorkel v0.9.5 was used for training the label model. BioBERT-Base v1.1, Transformers

v2.863, and PyTorch v1.1.0 were used to train all discriminative models. Trove is open-

source software and publicly available at https://github.com/som-shahlab/trove;https://

doi.org/10.5281/zenodo.449721464.
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