ONTOLOGY ENGINEERING FOR DISTRIBUTED COLLABORATION IN MANUFACTURING

Line Pouchard,
Collaborative Technologies Research Center
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6414
pouchardlc@ornl.gov

Nenad Ivezic
Manufacturing Engineering Laboratory
National Institute of Standards and Technology
100 Bureau Drive
Gaithersburg, MD 20899
nivezic@nist.gov

Craig Schlenoff
Manufacturing Engineering Laboratory
National Institute of Standards and Technology
100 Bureau Drive
Gaithersburg, MD 20899
schlenof@cme.nist.gov

KEYWORDS: Process Specification Language,

ontology, inter-operability, agent-based systems.

ABSTRACT

The problems of inter-operability are
acute for manufacturing applications, as
applications using process specifications do not
necessarily share syntax and definitions of
concepts. The Process Specification Language
developed at the National Institute of Standards
and Technology proposes a formal ontology and
translation mechanisms representing
manufacturing concepts. When an application
becomes ‘PSL compliant,” its concepts are
expressed using PSL, with a direct one-to-one
mapping or with a mapping under certain
conditions. An example of how to resolve
semantic ambiguities is provided for the
manufacturing concept ‘resource’. Finally some
ideas on how to use PSL for inter-operability in
agent-based systems are presented.

1. INTRODUCTION

As enterprise integration increases in
the manufacturing domain, developers face
increasingly complex problems related to inter-
operability. Independent contractors and
suppliers who collaborate on demand within
virtual supply chains to bring to market new
products must share product-related data.
Legacy vendor applications that are not
designed to inter-operate must now share

processes. When enterprises collaborate, a
common frame of reference or at least a
common terminology is necessary for human-to-
human, human-to-machine, and machine-to-
machine communication. Similarly, within a core
enterprise where distributed collaboration
between remote sites and production units take
place, a common understanding of business-
and manufacturing-related terms is
indispensable. However, this common
understanding of terms is often at best implicit in
the business transactions and software
applications and may not even be always
present. Misunderstandings between humans
conducting business-related tasks in teams, and
ad-hoc translations of software applications
contribute to the rising costs of interoperability in
manufacturing. Moreover, manufacturing
enterprise applications using distributed
software agents are becoming increasingly
ubiquitous. Software agents require a shared
terminology and syntax in order to efficiently and
effectively inter-operate.

Ontology engineering offers a direction
towards solving the inter-operability problems
brought about by semantic obstacles, i.e. the
obstacles related to the definitions of business
terms and software classes. Ontology
engineering is a set of tasks related to the
development of ontologies for a particular
domain. An ontology is a taxonomy of concepts
and their definitions supported by a logical
theory (such as first-order predicate calculus).



Ontologies have been defined as an explicit
specification of a conceptualization (Gruber
1993). Ontology engineering aims at making
explicit the knowledge contained within software
applications, and within enterprises and
business procedures for a particular domain. An
ontology expresses, for a particular domain, the
set of terms, entities, objects, classes and the
relationships between them, and provides formal
definitions and axioms that constrain the
interpretation of these terms (Gomez-Perez
1998). An ontology permits a rich variety of
structural and nonstructural relationships, such
as generalization, inheritance, aggregation, and
instantiation and can supply a precise domain
model for software applications (Huhns and
Singh 1997). For instance, an ontology can
provide the object schema of object-oriented
systems and class definitions for conventional
software (Fikes and Farquhar 1999).
Ontological definitions, written in a variety of
logical languages, are human-readable. They
can also serve to automatically infer translation
engines for software applications. By making
explicit the implicit definitions and relations of
classes, objects, and entities, ontology
engineering contributes to knowledge sharing
and re-use (Gomez-Perez 1998).

Throughout the manufacturing life cycle,
software applications, such as process planning,
process modeling, scheduling, workflow and
simulation, use process information to describe
the activities involved in production, resource
requirements, ordering relations and temporal
constraints. These applications do not usually
inter-operate, although the output data and
processes of one application may constitute the
input of another. For each software application
and vendor, a translator must therefore be
written to allow for data and process sharing.
Because the process definitions are not explicit,
one encounters incompatibilities due to
problems of synonymy and inconsistencies due
to semantic plurality. Synonymy occurs when
two objects or classes representing the same
function are called with a different name or
string. It is not obvious in machine
communication that automobile (application A) =
vehicle (application B). Semantic plurality
occurs when the same names cover two
different meanings in two applications. For
instance, resource (application A) =
consumable-resource, whereas resource
(application B) = machine-tool. Point-to-point
translators have traditionally been designed for
problems of this kind. But when many
applications need to inter-operate, the number of

translators to be written increases exponentially,
and so does the cost of implementing inter-
operability.

The Process Specification Language
(PSL), developed at the National Institute of
Standards and Technology (NIST 1999), takes a
different approach to developing inter-operable
applications. PSL ‘s approach is to develop an
ontology providing unambiguous definitions for
manufacturing-related concepts and
mechanisms to support translation of definitions
among applications. PSL seeks to create a
standard language for process specification with
which to specify a process or flow of processes
and supporting parameters and to serve as a
common exchange language between
manufacturing processes (Schlenoff et al.
1999a). PSL is a robust exchange technology
enabling distributed collaboration among
manufacturing applications. This paper shows
how the Process Specification Language
handles issues related to semantic problems
when applied to manufacturing processes. It
also offers some initial ideas on how to adapt
PSL for use in agent-based systems for
manufacturing enterprise integration.

2. SEMANTIC MODELING USING THE
PROCESS SPECIFICATION LANGUAGE

Definitions of concepts within PSL are
expressed using Knowledge Interchange Format
(KIF) (Genesereth 1992) and use formal logic to
define their semantics. The use of KIF provides
the advantage of being able to prove the
consistency and completeness of definitions and
axioms. The PSL ontology is extensible, and
built upon a core of axioms and extensions.
There are three basic entities (activity, object,
and timepoint) and four basic relations
(participates_in, before, begin_of and end_of).
The PSL core ontology and extensions are
discussed elsewhere (Schlenoff et al. 1999a,
1998; Knutilla et al. 1997). PSL presently
contains about 300 concepts distributed within
31 modules. Concepts intrinsic to process
modeling, scheduling, and simulation are
currently represented. To validate PSL as an
exchange language, the first pilot
implementation exchanging process information
between an IDEF3-based process modeling tool
and a C++ scheduler application was
successfully implemented (Schlenoff et al.
1999b). The second pilot implementation
demonstrating inter-operability between process
planning and simulation applications is currently
under way.



MATERIAL Workin | WORKPIECE
Progress
STOCK ... Material RESOURCE
(rB)
RESOURCE |- Machine MACHINE_
(rA) TOOL
Application A Application B

Figure 1: Semantic plurality for resource

An example of a semantic problem is
the case of two process planning applications,
Application A and Application B both containing
general concepts for designating resources.

The objects designating these concepts are
“Material, Stock, and Resource” in Application A,
and Workpiece, Resource, and Machine_Tool”
in Application B. The semantic problems are
expressed in Figure 1.

Semantic plurality occurs for resource
where resource designates a machine entity in
application A (rA) and a material entity in
application B (rB). If the processes of
application A need to be analyzed by Application
B, translators between the two applications are
written. However, systems designed with
procedural and object-oriented languages
contain implicit definitions of classes, objects,
and relations. Formal definitions for objects and
classes are not usually supplied with a system
because the system does not need a formal
definition of a class or object in order to invoke a
method or apply inheritance. As a result, the
semantic problem described above may be
ignored during translation, introducing confusion.
A translator is typically a set of compilation rules
allowing the syntax of one application to be
parsed to the other. (Ciocoiu 1998; Schlenoff
1999b). A translator may compile the syntactical
rules of use for Resource (rA) of application A as
rules for Resource (rB) of Application B.

PSL provides a neutral, standard
description of the processes in manufacturing
so that the concepts of application A can be
unambiguously expressed using PSL concepts.
The concepts of Application B are also
expressed using PSL concepts. PSL thus
provides an interlingua for manufacturing
processes. A given application is said to be
“PSL compliant” if there exists a proven
translator to and from PSL for that application
(Schlenoff 1999a, 1999b). In an domain where
inter-operability between applications is
becoming ubiquitous, the PSL approach reduces

the number of translators from O (n2) to O (n) by
requiring that an application only maps its
concepts to PSL concepts, rather than mapping
to all the other applications.

3. REPRESENTING CONCEPTS USING PSL

In our example, Application A’s original syntax
and terminology reads:{resourceA: inject_mold
(x)}. First the concepts of application A must be
formally represented using KIF syntax or any
other formal representation that can be
translated to KIF. The concepts of application A
represented in KIF syntax express that
inject_mold is a resource:
(forall (r)
(=> (inject_mold)
(resourceA ?r)))

The ontology for Application A is also
expressed. This non-trivial task is performed
using technical documentation that is
supplemented by interviews with developers and
training by vendors. Expressing the ontology of
application A means expressing what kind of
resource is implied by resourceA in application
A. Here resourceA is re-usable; it is a machine
that can still be used by a process after another
process that also requires resourceA completes
its occurrence. The ontology of application A
expresses the definition for resourceA, where ?r
is the resource variable and ?a the process
variable:
(forall (?r ?a)
(<=> (resourceA ?r)
(exists (?a)
(reusable ?r ?a)))

Once a definition of resource is provided for
application A, using Application A terminology,
the next step is to look for possible mappings
between resourceA and PSL concepts. 3
possibilities occur: 1)a one-to-one mapping is
possible, 2)a one-to-one mapping is possible
under certain conditions, 3)PSL does not contain
the concept in question and needs to be
extended to accommodate application A. This
mapping is done for every concept and relation
contained in ApplicationA.

PSL contains a concept of resource defined as--
a resource is any object that is required by some
activity -- where “activity” and “requires” are
defined elsewhere in PSL. This definition is
expressed with KIF syntax:

(defrelation resource (?r) :=

(and (object ?r)

(exists (?a)



(requires ?a ?r))))

PSL also specifies roles for resources and
defines the concept of a reusable resource as --
a resource ?r is reusable by an activity ?a if any
other activity that also requires ?r is still possible
to perform after ?a completes its occurrence, in
every possible future -- where “common,”
“occurs_over,” “legal_interval,” “legal,” and
“legal_activity” are defined elsewhere in PSL.
This definition is expressed with KIF syntax:

(defrelation reusable (?r ?al) :=

(forall (?a2 ?occ)

(=> (and (common ?al ?a2 ?r)
(occurs_over ?al ?occ))

(forall (?b)
(=> (forall (?s3)
(=> (and

(legal_interval ?b)
(situation_during ?s3 ?b)

(occurs_during ?occ (legal ?s3)))
(legal_activity ?a2
?s3))))))

In our example, a mapping appears to exist, but
more information about ApplicationA is needed
before deciding for a one-to-one mapping. This
information must be obtained from the
documentation for Application A, and other
sources (vendors). PSL specifies that a
reusable resource is such that, as soon as one
activity occurs, it is always possible to perform
the next activity. An example of reusable
resource according to PSL is a machine that
does not require setup between activities. If the
resource in application A satisfies this condition,
we have a one-to-one mapping between the
Application A concept, resourceA, and the PSL
concepts, resource and reusable. This mapping
is expressed as:
(forall (r)
(<=> (resourceA ?r)
(and (resource ?r)
(reusable ?r)))

)

Another possibility is a non-direct, conditional
mapping. An example occurs in the first pilot
implementation where the ILOG (TM) scheduler
offers the concept ilcActivity. The ilcActivity
concept is narrower than the PSL concept of
activity: it maps to the PSL activity concept only
if the PSL activity is both primitive and a non-
deterministic resource activity. PSL definition: --
An activity is a nondeterministic resource activity

iff the reason that the activity is nondeterministic
is because it is a nondeterministic selection
activity with respect to some resource set. The
one-to-one mapping with conditions between
Application A concepts and PSL concepts is
expressed:

(forall (?a)

(=> (and (nondet_res_activity

?a)
(primitive ?a))
(<=> (ilcActivity ?a)
(activity ?a))))
AppB syntax into
KIF
AppB own T
syntax and i
terminology
\ AppB ontology
Parsing of AppB expressed
relevant PSL —— using PSL
concepts for B concepts

Figure2: Stepsfor expressing an application concepts

into PSL

Similar steps are followed in the translation of
Application B’s concepts into PSL (Figure 2): an
ontology expresses the concepts of Application
B, the syntax of Application B is expressed in
KIF, and a translator is written for mapping the
concepts of Application B to PSL concepts. The
result of the second mapping is that every
concept of application B is defined in terms of
PSL concepts. In addition, a parsing of each
PSL concept relevant to Application B concepts
is done using the mapping. Our two applications
A and B have now become “PSL compliant”.
When an engineer implements a model for a
manufacturing task using Application A, the
model is represented with PSL concepts, using
a translator that is parsing the application to KIF.
The model represented with PSL concepts is
subsequently imported into Application B (Figure
3) (see Schlenoff 1999b for details of the
implementation).



ResourceA
(application A)

Resource (PSL)
Machine_tool
(application B)

Figure 3: Importing a model from application A to

application B

4. FUTURE TRENDS: PSL IN AGENT-
BASED SYSTEMS

The Process Specification Language is
a good candidate for developing a content
language for manufacturing agent-based
systems. Agent-based systems are
implemented on different platforms, for different
purposes, using sometimes proprietary
languages. Among others, these systems
encounter the problems of inconsistencies and
incompatibilities described above when agents
attempt to inter-operate(Genesereth 1994).
Agent communication languages are attempting
to partially resolve the problems of
communication between agents by proposing
common communication protocols and
standards for communication languages. KQML
and FIPA ACL are the best known agent-
communication languages. They meet the
challenges of inter-operability with mitigated
success (Labrou et al. 1999). An agent-
communication language should theoretically let
heterogeneous agents communicate, but none
currently do (Singh 1998). A significant part of
the inter-operability issue is the lack of a shared
content language and ontology. A PSL-based
content language may possibly fulfill this role.
This content language would enhance the inter-
operability of agent-based systems that need to
exchange data about their manufacturing
processes, such as heterogeneous Supply
Chain Management systems.

Like FIPA ACL, the PSL effort takes a
standardization approach to the inter-operability
problem. PSL was accepted as a Preliminary
Work Item before Sub-Committee 4, Technical
Committee 184, within the International
Standards Organization. Agents for
manufacturing can be designed to use the

declarative semantics of PSL to exchange
information with each other. Once agents have
identified each other (through advertising
services) and have established communication
through a common protocol, they still need to
refer to a common representation language for
the content of the communication to be
meaningful. Agents can refer directly to a
language based on PSL as the ontology
underlying message content. Alternatively,
agents can use representations that are
translatable (Finin et al. 1994). PSL may
intervene at the content layer of an agent
communication language for representing
domain-specific knowledge needed by the
agents to act on the messages they receive. For
example, a KQML performative (a speech-act
based message) uses a content argument and
some optional arguments, such as ontology
(Finin et al. 1994). The syntax of a KQML
message can look like this:
(ask-one

:sender jane

:content (stack_paint ?stack)

‘receiver paint-server

:ontology PSL)
where ask-one is a KQML performative, and
sender, content, receiver, and ontology are its
arguments. In this example, stack_paint is an
intermediate queue, i.e. a resource-related
concept that can be expressed using PSL
terminology. Thus two agents using the same
communication protocol (FIPA ACL or the same
version of KQML) can exchange process
information by using PSL as a content language
for their interaction.

We have previously developed a manufacturing
agent-based system (MABES) for design and
analysis of discrete manufacturing systems with
a collaborative user interface (Ivezic et al.1999).
MABES supports analysis of transitions from
traditional (i.e., push) to lean manufacturing,
scheduling, and management setups (i.e., pull
and takt) within a distributed agent-based
framework. Further MABES development aims
at effectively supporting distributed developers
and users within a new collaborative agent
framework. Within such a new framework,
distributed teams could develop new system
components (i.e., agents) that, under the
assumption of shared communication and
content languages, could inter-operate within a
larger system.

The distributed agent-based system will allow
closer human-agent interaction, deferral of
responsibilities, and automated monitoring,



processing, and execution by the agent system.
In order to support such an extended agent-to-
human and agent-to-agent collaboration, a
shared semantic definition of manufacturing
concepts is required. PSL is a prime candidate
for the content language definition to support
collaboration and distributed development of
simulation systems such as MABES.

5. CONCLUSION

This paper described how the Process
Specification Language is used to overcome
semantic-related obstacles, such as synonymy
and semantic plurality, for the inter-operability of
manufacturing processes. PSL uses KIF syntax
and semantics and contains a core ontology and
extensions related to manufacturing concepts.
PSL ‘s appeal is that it proposes a standard
content language for the exchange of processes
between heterogeneous applications. PSL also
holds a promise as a content language for agent
communication in manufacturing agent-based
systems by providing unambiguous concept
definitions for the content layer of agent-
communication languages.

REFERENCES

Ciocoiu, Mihai. 1998. “Translating IDEF3 to PSL.”
Technical Report 98-63. Department of Computer
Science, University of Maryland, College Park, MD.

Fikes, R. and A. Farquahr. 1999. “Distributed
Repositories of Highly Expressive Reusable
Ontologies.” IEEE Intelligent Systems and their
Applications 14, no.2 (March-Apr.): 73~79.

Finin, T. R. Fritzson, D. McCay, R. McEntire. 1994.
“KQML as an Agent Communication Languages.” In
Proceedings of CIKM '94 (Gaithersburgh, MD, Nov.).

Genesereth, M. 1994. “Software Agents.”
Communications of the ACM 37, no. 7 (July): 48~53,
147.

Genesereth, M. and R.E. Fikes. 1992. “Knowledge
Interchange Format, Version 3.0. Reference Manual.”
Technical Report Logic-92-1. Computer Science
Department, Stanford University, Stanford, CA.
(Jan.).

Gomez-Perez, A. 1998. “Knowledge Sharing and Re-
Use.” In The Handbook of Applied Expert Systems, J.
Liebowitz, ed. Boca Raton, 10:1-10:36.

Gruber, T. 1993. “A Translation Approach to
Portable Ontology Specifications.” Knowledge
Acquisitions 5, (May): 199-220.

Hunhs, M. N. and M. P. Singh. 1997. “Ontologies for
Agents.” IEEE-Internet Computing 1, no. 6 (Nov.-
Dec. 1997): 81~83.

Ivezic, N., Potok, T. E., and Pouchard, L. C., 1999.
“Multiagent Framework for Lean Manufacturing.”
IEEE Internet Computing 3., no. 5, (Sept.-Oct.):
58~59.

Knutilla, A.; C. Schlenoff; S. Ray et al. 1997.
“Process Specification Language: Analysis of Existing
Representations” NISTIR 6133. National Institute of
Standards and Technology, Gaithersburgh, MD,

(Sept.)

Labrou, Y., Finin, T., and Peng Y. 1999. “Agent
Communication Languages: the Current Landscape.”
IEEE Intelligent Systems and their Applications 14,
no.2 (Mar.-Apr.): 45~52.

National Institute of Standards and Technology
(NIST) 1999. “Process Specification Language.”
http://www.mel.nist.gov/psl.

Schlenoff, C.; M. Gruninger; and M. Ciocoiu. 1999a.
“The Essence of the Process Specification
Language.” Transactions of the Society for Computer
Simulation International. Special Issue on Modeling
and Simulation of Manufacturing Systems.
Forthcoming.

Schlenoff, C.; M. Gruninger; M. Ciocoiu; and D. Libes.
1999b. “Process Specification Language (PSL):
Results of the first Pilot Implementation.” In
Proceedings of IMECE: International Mechanical
Engineering Congress and Exposition (Nashville, TN,
Nov. 14-19).

Schlenoff, C.; R. Ivester; and A. Knutilla. 1998. “A
Robust Process Ontology for Manufacturing Systems
Integration.” In Proceedings of the 2™ International
Conference on Engineering Design and Automation
(Maui, HI, Aug. 7-14).

Singh, M. 1998. “Agent Communication Languages:
Rethinking the Principles.” IEEE Computer 31, no. 12
(Dec.): 40~47.

No approval or endorsement of any commercial product in
this paper by the National Institute of Standards and
Technology is implied or intended. This paper was prepared
by United State Government employees as part of their
official duties, and is, therefore, a work of the U.S.
Government and not subject to copyright.

Our work is also supported by Oak Ridge National
Laboratory, managed by the Lockheed Martin Energy
Research Corporation for the US Department of Energy.
This article was written under contract no. DE-ACO05-
960R22464.



