
VU Research Portal

Ontology Evolution: Not the Same as Schema Evolution

Noy, Natalya F.; Klein, Michel

published in
Knowledge and Information Systems
2004

DOI (link to publisher)
10.1007/s10115-003-0137-2

document version
Peer reviewed version

document license
Unspecified

Link to publication in VU Research Portal

citation for published version (APA)
Noy, N. F., & Klein, M. (2004). Ontology Evolution: Not the Same as Schema Evolution. Knowledge and
Information Systems, 6(4), 428-440. https://doi.org/10.1007/s10115-003-0137-2

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 25. Aug. 2022

https://doi.org/10.1007/s10115-003-0137-2
https://research.vu.nl/en/publications/866520bb-f80c-4fe9-84c5-49e1e1c88556
https://doi.org/10.1007/s10115-003-0137-2

Under consideration for publication in Knowledge and Information
Systems

Ontology Evolution: Not the Same as
Schema Evolution

Natalya F. Noy1 and Michel Klein2

1Stanford Medical Informatics,

Stanford University,

Stanford, CA 94305;
2Vrije University Amsterdam

De Boelelaan 1081a

1081 HV Amsterdam, The Netherlands

Abstract. As ontology development becomes a more ubiquitous and collaborative pro-
cess, ontology versioning and evolution becomes an important area of ontology research.
The many similarities between database-schema evolution and ontology evolution will
allow us to build on the extensive research in schema evolution. However, there are
also important differences between database schemas and ontologies. The differences
stem from different usage paradigms, the presence of explicit semantics, and different
knowledge models. A lot of problems that existed only in theory in database research
come to the forefront as practical problems in ontology evolution. These differences
have important implications for the development of ontology-evolution frameworks:
The traditional distinction between versioning and evolution is not applicable to on-
tologies. There are several dimensions along which compatibility between versions must
be considered. The set of change operations for ontologies is different. We must develop
automatic techniques for finding similarities and differences between versions.

Keywords: Ontologies; Ontology evolution; Schema evolution

1. Ontologies Are Ready To Evolve

If we trace the evolution of ontology research in Computer Science, we can see
that as the field grows and matures, the focus of research and the questions that
the researchers address shifts as well. The progress naturally reflects the shift
from more theoretical issues in ontology research to the issues associated with

Received xxx
Revised xxx
Accepted xxx

2 Noy and Klein

the use of ontologies in real-world large-scale applications. The active research
in ontologies started with defining what a formal ontology is and what re-
quirements an ontology must satisfy [11]. The term “ontology” came to refer
to a wide range of formal representations from taxonomies and hierarchical ter-
minology vocabularies to detailed logical theories describing a domain. Later,
the research focus shifted to the development of representation languages for
defining and exchanging ontologies. Knowledge Interchange Format [10] and the
Open Knowledge Base Connectivity protocol [7] are the most prominent results
of the research in this direction. Having defined what ontologies are and hav-
ing decided how to represent and exchange them, researchers were faced with
the next challenge: The lack of a critical mass of reusable ontologies became
(and still remains) a bottleneck to achieving the vision of widespread use and
reuse of ontologies. Developing the content of the ontologies became high on the
agenda. The top-level of the Cyc ontology (www.opencyc.org) became publicly
available, the Ontolingua ontology library (ontolingua.stanford.edu) grew, and
large domain-specific ontologies, such as EcoCyc [14], GALEN [25], and Gene On-
tology (www.geneontology.org) were developed. With the appearance of a large
number of small and large ontologies in overlapping domains, the issue of ontol-
ogy merging and alignment came to the forefront of the ontology research.
A number of tools for finding similarities and differences among ontologies in a
semi-automated way have recently appeared [15]. Today, ontologies are becoming
an integral part of many industrial and academic applications in the fields such as
supporting semantics-based search, interoperability support, configuration sup-
port, constraint specification and validation, Semantic Web applications, and
others [19]. With this widespread use of ontologies come the problems that the
database community faced many years ago when databases became an integral
part of many applications: evolution and versioning. The researchers in ontol-
ogy evolution can undoubtedly learn a lot from the database-schema–evolution
research. Schema-evolution research includes analysis of causes of change, effects
of different operations on the data and frameworks for handling different versions
coherently. And in theory, many issues in ontology evolution are exactly the same
as the issues in schema evolution. This fact is especially true for schema evolu-
tion in object-oriented databases, which have a knowledge model that is very
close to that of frame-based ontologies. In practice, however, there are signifi-
cant differences between ontologies and database schemas from the point of view
of evolution and versioning. The content and usage of ontologies are often more
complex than that of database schemas. Ontologies turn some of the theoretical
problems and opportunities of database-schema versioning into practical ones.
We will discuss the differences in the usage and development paradigms, in the
presence of explicit semantics, in the knowledge representation. We will then
discuss the practical implications of these differences on the development of a
framework for ontology evolution and versioning.

1.1. Causes of ontology change

Like database schemas, ontologies inevitably change over time. To examine the
cause of changes, we will start with a popular definition of an ontology proposed
by Gruber [11]. Formally, an ontology is an explicit specification of a conceptual-
ization of a domain. Therefore, changes to any of the three elements in the defi-
nition can cause changes in an ontology: (1) changes in the domain, (2) changes

Ontology Evolution: Not the Same as Schema Evolution 3

in conceptualization, or (3) changes in the explicit specification. Changes in the
domain are very common and their effects are comparable to changes in database
schemas. Ventrone and Heiler [28] sketch several situations in which changes in
the real world (domain evolution) require changes to a database model. For ex-
ample, when two university departments with different administrative structures
merge, the ontology describing this domain needs to evolve to reflect this change.

Changes in conceptualization can result from a changing view of the world
and from a change in usage perspective. Different tasks may imply different views
on the domain and consequently a different conceptualization. For example, con-
sider an ontology describing traffic connections in Amsterdam, which includes
such concepts as roads, cycle tracks, canals, bridges, and so on. If we adapt the
ontology to describe not only the bicycle perspective but also a water-transport
perspective, the conceptualization of a bridge changes from a remedy for crossing
a canal to a time consuming obstacle. Finally, changes in the explicit specifica-
tion occur when an ontology is translated from one knowledge-representation
language to another. The languages differ not only in their syntax, but also (and
more important) in their semantics and expressivity. Therefore, preserving the
semantics of an ontology during translation is a non-trivial task [8].

1.2. The knowledge model

In the rest of the article we will refer to traditional elements of an ontology:
classes, slots, slot restrictions, and instances [7]. Classes are collections of ob-
jects that have similar properties. Classes constitute a subclass–superclass hi-
erarchy with multiple inheritance. Slots attached to a class describe attributes
and properties of the class. Slots are usually first-class objects. That is, a slot
can exist without being attached to a particular class. Slots can be transitive
or symmetric, or have inverses. Each slot has a set of restrictions on its values,
such as cardinality and range. Instances are individual members of classes. We
use the term instance data to refer to instances and their slot values. We do not
make any assumptions about the actual representation of ontologies or instance
data.

2. Differences between Ontologies and Database Schemas

We start our discussion with differences between database schemas and ontolo-
gies in general. We then discuss different usage paradigms for database schemas
and ontologies. The last group of differences addresses knowledge-representation
issues. We discuss here only the differences that have direct implications on de-
veloping a framework for ontology evolution and versioning.

2.1. Ontologies are data, too

The main goal for schema-evolution support in databases is to preserve the in-
tegrity of the data itself: How does the new schema affect the view of the old
data? Will queries based on the old schema work with the new data? Can old data
be viewed using the new schema? The same issues are certainly valid for instance
data in ontologies. We can view ontologies as “schemas for knowledge bases.”

4 Noy and Klein

Having defined classes and slots in the ontology, we populate the knowledge base
with instance data. However, there is a major second thrust in ontology evolu-
tion: Ontologies themselves are data to an extent to which database schemas
have never been. Ontologies themselves (and not the instance data) are used
as controlled vocabularies, to drive search, to provide navigation through large
collections of documents, to provide organization and configuration structure of
Web sites. And in many cases, an ontology will not have any instance data at all.
A result of a database query is usually a collection of instance data or references
to text documents, whereas a result of an ontology query can include elements
of the ontology itself (e.g., all subclasses of a particular class). Therefore, when
considering ontology evolution, we must consider not only the effect of ontol-
ogy changes on the way applications access instance data, but also the effect of
these changes on queries for the ontology contents itself. There is an extra layer
of abstraction where database schemas themselves do act as data—meta data
repositories [18]. Meta data repositories provide the information about various
databases and applications in an organization. Ontologies are different from meta
data repositories: Meta data repositories are designed to store schema and appli-
cation data, whereas ontologies describe a domain of discourse for any domain.
Concepts and relations in an ontology usually have formally-defined semantics
that machines can interpret. In addition, meta data repositories are different
from schemas themselves, providing an extra layer of description, whereas with
ontologies no such extra layer exists. Therefore, while we can learn from the
research in the schema-evolution issues for meta data repositories, they will not
be directly applicable to ontology evolution.

2.2. Ontologies themselves incorporate semantics

Database schemas and catalogs often provide very little explicit semantics for
their data. Either the detailed semantics has never been specified, or the seman-
tics were specified explicitly at database-design time in the conceptual schema,
but this specification was lost in the translation to a physical database schema
and is not available anymore. Therefore, with databases, we need specific proto-
cols for resolving conflicting restrictions when the schema changes. These proto-
cols are usually part of a schema-evolution framework [1]. Ontologies, however,
are logical systems that themselves incorporate semantics. Formal semantics of
knowledge-representation systems allow us to interpret ontology definitions as a
set of logical axioms. We can often leave it to the ontology itself to resolve incon-
sistencies and do not need to do anything about them in the evolution framework.
For example, if a change in an ontology results in incompatible restrictions on
a slot, it simply means that we have a class that will not have any instances
(is “unsatisfiable”). If an ontology language based on Description Logics (DL) is
used to represent the ontology (e.g., OIL [9] and DAML+OIL [13]), then we can
use description-logics reasoners to re-classify changed concepts based on their
new definitions.

2.3. Ontologies are more often reused

A database schema defines the structure of a specific database and other databases
and schemas do not usually directly reuse or extend existing schemas. The

Ontology Evolution: Not the Same as Schema Evolution 5

schema is part of an integrated system and is rarely used apart from it. There
are exceptions to this rule, which include schemas that support packaged com-
mercial produces for applications such as accounting and personnel records. The
situation with ontologies is exactly the opposite: Ontologies often reuse and ex-
tend other ontologies, and they are not bound to a specific system. Therefore,
a change in one ontology affects all the other ontologies that reuse it, and, con-
sequently, the data and applications that are based on these ontologies. Even
seemingly monotonic changes, such as additions of new concepts to an ontology,
can have adverse effects on the other ontologies that reuse it. If we add a con-
cept that already exists in the reusing ontology, no logical conflicts arise, but the
reusing ontology contains two representations of the same concept. We will need
to specify an equivalence statement to reflect this fact.

2.4. Ontologies are de-centralized by nature

Traditionally, database schema development and update is a centralized process:
Developers of the original schema (or employees of the same organization) usually
make the changes and maintain the schema. The development and maintenance
of integrated databases [2] and federated database systems [27] is already much
more de-centralized, but at the very least, database-schema developers usually
know which databases use their schema. By nature, ontology development (and,
therefore, evolution) is an even more de-centralized and collaborative process.
As a result, there is no centralized control over who uses a particular ontology.
It is much more difficult (if not impossible) to enforce or synchronize updates:
If we do not know who the users of our ontology are, we cannot inform them
about the updates and cannot assume that they will find out themselves. Lack of
centralized and synchronized control also makes it difficult (and often impossible)
to trace the sequence of operations that transformed one version of an ontology
into another. Recently, ontologies have become a cornerstone of the Semantic
Web [3], which has the model of distributed, reusable, and extendable ontologies
at its core. The envisioned huge scale of the Semantic Web and even more de-
centralization in ontology development and maintenance greatly exacerbate the
problem: In today’s Web, we can neither know who uses an ontology that we
maintain or how many users there are, nor prevent or require others to use a
particular ontology. It is interesting to note that in recent years, the database
field is moving in the direction of de-centralization as well: there are standard
XML schemas that are reused through different applications, particularly in e-
commerce.

2.5. Ontology data models are richer

An inherent part of any schema-evolution methodology is a detailed considera-
tion of the effects of each change operation on the data: What happens if a new
superclass is added to a class in an object-oriented database, if an instance vari-
able is removed from a class, if a domain of an instance variable is changed, and
so on. The number of representation primitives in many ontologies is much larger
than in a typical database schema. For example, many ontology languages and
systems allow the specification of cardinality constraints, inverse properties, tran-
sitive properties, disjoint classes, and so on. Some languages (e.g., DAML+OIL)

6 Noy and Klein

add primitives to define new classes as unions or intersections of other classes,
as an enumeration of its members, as a set of objects satisfying a particular re-
striction. Therefore, any detailed treatment of ontology changes must include a
much more extensive set of possible operations.

2.6. Classes and instances can be the same

Databases make a clear distinction between the schema and the instance data.
In many rich knowledge-representation systems it is hard to distinguish where
an ontology ends and instances begin. The use of metaclasses—classes which
have other classes as their instances [7]—in many systems (e.g., Protégé-2000
[21], Ontolingua, RDFS [5]) blurs or erases completely the distinction between
classes and instances. . In set-theoretic terms, metaclasses are sets whose ele-
ments are themselves sets. This means that “being an instance” and “being a
class” is actually just a role for a concept. For example, the “Lonely Planet for
Amsterdam” is a specific instance of the class “Travel guides” in a bookstore; at
the same time, however, it is a class of which the individual copies of the book
are instances. Therefore, analysis of schema-change operations, which considers
only effects on instance data, is not directly applicable to ontologies.

3. Implications for Evolution and Versioning of Ontologies

The differences between ontologies and database schemas that we have just out-
lined, have direct practical implications for any methodology for ontology evo-
lution and versioning. We discuss the following implications in the rest of this
section:

1. The traditional distinction between versioning and evolution is not applicable
to ontologies.

2. Defining what constitutes compatibility between different versions becomes a
more salient issue since there are several dimensions to compatibility (e.g.,
preservation of instance data, preservation of answers to ontology queries,
consequence preservation, etc.).

3. The set of change operations that we must consider in classifying effects of
ontology changes is much wider. In addition, we must consider the effects of
these operations along different dimensions of compatibility

4. We need techniques for determining compatibility between different versions
even if we do not have a trace of the changes that led from one version to
another.

3.1. Ontology versioning and evolution is change management

Database researchers distinguish between schema evolution and schema version-
ing [26]. Schema evolution is the ability to change a schema of a populated
database without loss of data (i.e., providing access to both old and new data
through the new schema). Schema versioning is the ability to access all the data
(both old and new) through different version interfaces. For ontologies, how-
ever, we cannot distinguish between evolution, which allows access to all data

Ontology Evolution: Not the Same as Schema Evolution 7

only through the newest schema, and versioning, which allows access to data
through different versions of the schema. Multiple versions of the same ontol-
ogy are bound to exist and must be supported. Not knowing how an ontology
is being reused means not being able to “force” the reusing ontologies and ap-
plications to switch to a new version. Ideally, developers should maintain not
only the different versions of an ontology, but also some information on how the
versions differ and whether or not they are compatible with one another. For
example, the ontology-versioning mechanism in SHOE [12] enables developers
to declare whether or not the new version is backward-compatible with an old
version (that is, applications and agents can use the new ontology in place of the
old one). However, some applications may continue to use the old versions and
upgrade at their own pace (or not at all). The management of changes is there-
fore the key issue in the support for evolving ontologies. Hence, we will combine
ontology evolution and versioning into a single concept defined as the ability to
manage ontology changes and their effects by creating and maintaining differ-
ent variants of the ontology. This ability consists of methods to distinguish and
recognize versions, specifications of relationships between versions, update and
change procedures for ontologies, and access mechanisms that combine different
versions of an ontology and the corresponding data. We use the term “ontology
evolution” for this concept through the rest of this article.

3.2. Compatibility of ontologies has several dimensions

In order to determine which changes to an ontology are backward-compatible, we
need to determine what compatibility means. In databases, backwards-compatibility
usually means the ability to access all of the old data through the new schema.
In other words, no instance data is lost as a result of the change. For ontologies,
query results can include not only instance data but also elements of the ontology
itself. Therefore, we cannot express compatibility only in terms of preservation
of instance data. Consider a situation in which a new class is added to an on-
tology as a subclass of an existing class. This change has no effect on instance
data and will not change or invalidate answers to existing queries that return
only instance data. However, if queries are about the ontology itself (e.g., a list
of subclasses of a specific class), the answers to existing queries change. This
issue becomes even more complicated with ontology languages that support au-
tomatic classification (e.g., DAML+OIL): When a class is added to an ontology,
a reasoner can re-classify existing concepts and instances, possibly invalidating
existing data or applications. Here are some of the dimensions that we must
consider when determining whether a new version of an ontology is compatible
with the old one:

– Instance-data preservation—no data is lost in transformation from the old
version to the new one.

– Ontology preservation—a query result obtained using the new version is a
superset of the result of the same query obtained using the old version.

– Consequence preservation—if an ontology is treated as a set of axioms, all the
facts that could be inferred from the old version can still be inferred from the
new version.

– Consistency preservation—if an ontology is treated as a set of axioms, the new
version of the ontology does not introduce logical inconsistencies.

8 Noy and Klein

When we characterize the effects of change operations we need to take these
(and, possibly, other) dimensions into account.

3.3. Ontology-change operations and effects

The set of possible change operations for ontologies is larger than the traditional
sets of database schema-change operations [1]. There are two causes of the differ-
ences between these two sets. The first cause is the richer knowledge model for
ontologies: We must add operations that deal with changes in slot restrictions,
with slot attachment, and so on. The second cause is the use of composite opera-
tions which few researchers in the schema-evolution community have addressed
(with the notable exception of Lerner [17]). Consider for example a change in
the domain of a slot from a class to its superclass. Our model for traffic con-
nections in Amsterdam may have used a slot speed-limit only for roads. To
change the domain of the speed-limit slot to include thoroughfares (both roads
and canals), we need to “move” the slot up the class hierarchy (imposing a speed
limit for boats as well). If we treat this operation as a sequence of two operations,
removing the slot from the Road class and then adding it to the Thoroughfares
class, we would have to delete all the values of the speed-limit slot for all in-
stances of Road after the first operation. However, after the second operation, all
instances of Road can have the speed-limit slot again. The composite effect of
the two operations does not violate the integrity of the instance data, whereas
one of the operations does. Therefore, the algebra of ontology-change operations
must include these composite operations since their compound effect on schema
evolution (1) is predictable and (2) can belong to a completely different class of
operations than each of the simple operations that constitute it. In 1 we sketch
a set of possible ontology-change operations based on the knowledge model we
described in Section 1.2 and discuss their effects. More specifically, we consider
the effects with respect to the instance-data–preservation dimension, i.e. we con-
sider whether instance data can still be accessed through the changed ontology.
We classify the operations effects as:

– Information-preserving changes—no instance data is lost (“+” in the table)
– Translatable changes—no instance data is lost if a part of the data is translated

into a new form (“∼” in the table). We illustrate some translatable changes
in 1.

– Information-loss changes—it cannot be guaranteed that no instance data is
lost (“−” in the table).

We also assume that there is no automatic classification.

3.4. There are two modes of evolution

Characterizing effects of specific changes on compatibility between versions of
an ontology is important. However, because of the extremely distributed nature
of ontologies, we must also account for the fact that we will not always have the
trace of changes that led from one version to another. Therefore, we distinguish
two modes of ontology evolution: traced and untraced evolution. Traced evolution
largely parallels schema-evolution where we treat the evolution as a series of
changes in the ontology. After each operation that changes the ontology (e.g.,

Ontology Evolution: Not the Same as Schema Evolution 9

Operation Eff Comment on effect

Create class C + No data is lost
Delete a class C − Instances of C have a less specific

type (they have become instances
of the superclass of C)

Create slot S + No data is lost
Delete a slot S − The values of slot S for all in-

stances are lost
Attach a slot S to a class C + No data is lost
Remove a slot S from a class C − The values of slot S for instances

of C are lost
Add a subclass–superclass link between a sub-
class SubC and a superclass SuperC

+ SubC has new slots inherited
from SuperC—in most cases,
equivalent to adding slots1

Remove a subclass–superclass link between a sub-
class SubC and a superclass SuperC

− SubC no longer has the slots that
it inherited from SuperC. The
values for these slots for instances
of SubC are lost

Re-classify an instance I as a class + No data is lost
Re-classify a class C as an instance + Instances of C are less specifically

typed
Declare classes C1 and C2 as disjoint − Instances that belonged to both

C1 and C2 are invalid
Define a slot S as transitive or symmetric − Slot values for S that violated the

transitivity or symmetry prop-
erty are invalid

Move a slot S from a subclass SubC to a super-
class SuperC (“move a slot up the hierarchy”)

+ Class SubC still inherits slot S
(and the instances preserve all
the values for slot S)

Move a slot S from a superclass SuperC to a sub-
class SubC (“move a slot down in the hierarchy”)

− Class SuperC no longer has slot
S. The values for slot S for in-
stances of SuperC are lost

Move a slot S from a class C1 to a referenced
class C2 (see Figure 1a)

∼ No data is lost if the values of the
slot are moved

Encapsulate a set of slots into a new class (see
Figure 1b)

∼ No data is lost if the values of the
slot are moved

Change a superclass of a class C to a class higher
in the hierarchy (“move a class up the class hier-
archy”)

− C no longer has the slots that it
inherited from its direct super-
class. The values for these slots
for instances of C are lost

Change a superclass of a class C to a class lower
in the hierarchy (“move a class down”)

+ C has possibly inherited addi-
tional slots. No data is lost

“Widen” a restriction for a slot S (e.g., increase
the number of allowed values, decrease the num-
ber of required values, add a class to the range
or replace an existing class in the range with its
superclass, etc.)

+ All the existing slot values are
still valid

“Narrow” a restriction for a slot S (e.g., decrease
the number of allowed values, increase the num-
ber of required values, remove a class from the
range or replace it with a subclass, etc.)

− Slot values that violated the nar-
rower restrictions are invalid

Merge classes: the superclasses, subclasses, and
slots of the merged class are the union of the su-
perclasses, subclasses, and slots of the original

∼ No data is lost if values of slots
are moved. However, see com-
ment at “Adding subclass link”

Split a class in several classes: the operation can
specify which of the new classes the instances of
the old class belong to based on a slot value

∼ No data is lost if values of slots
are moved

Table 1. Ontology-change operations and their effects on instance data.

10 Noy and Klein

Person
name
email
street
city
state

Person
name
email
address

Address
street
city
state

Person
name
email
contact

Contact
street
city
state

Person
name
contact

Contact
email
street
city
state

(a) (b)

Person
name
email
street
city
state

Person
name
email
address

Address
street
city
state

Person
name
email
street
city
state

Person
name
email
address

Address
street
city
state

Person
name
email
contact

Contact
street
city
state

Person
name
contact

Contact
email
street
city
state

Person
name
email
contact

Contact
street
city
state

Person
name
contact

Contact
email
street
city
state

(a) (b)

Fig. 1. Composite slot operations: (a) Move a slot S from a class C1 to a referenced C2 class:
The slot email is moved to the Contact class; (b) Encapsulate a set of slots into a new class.
Slots street, city, and state are encapsulated into a class Address.

add or delete a class, attach a slot to a class, change restrictions on slots, etc.),
we consider the effects on the instance data and related ontologies, depending
on the dimension of compatibility we use. The resulting effect is determined by
the combination of change operations.

With the untraced evolution, all we have are two versions of an ontology and
no knowledge of the steps that led from one version to another. We will need to
find the differences between the two versions in an automated or semi-automated
way. OntoView [16] is a tool that compares RDF-based ontologies and produces
a detailed list of the differences between classes and slots with the same iden-
tifier. However, if immutable identifiers are not available, the situation is more
complicated. The PromtDiff tool [23] compares ontology versions by analyz-
ing their structure. It integrates different heuristic matchers to find a structural
diff between versions. The problem of finding the differences between (versions
of) ontologies is in fact very close to the problem of ontology merging. In both
cases, we have two overlapping ontologies and we need to determine a mapping
between their elements. When we are merging ontologies, we concentrate on
similarities, whereas in evolution we need to highlight the differences, which can
be a complementary process. In addition, in the case of ontology evolution we
need to make much more “liberal” assumptions in determining which concepts
are the same. For example, if we are merging two ontologies that came from
independent sources, we cannot assume that two classes named University in
the two sources refer to the same concept: One could refer to the organizational
structure of a university and the other to a university campus. However, if two
different versions of the same ontology both contain a class named University,
it is much more likely that these classes do indeed refer to the same concept.
We can reuse many of the heuristics and algorithms (with lower thresholds)
that ontology-merging tools use to develop semi-automated interactive ontology-
evolution tools for untraced ontology evolution. Prompt [22] is one example of
an ontology-merging tool that analyzes the structure of the ontology, classes
and relations among them, as well as user actions, to present suggestions for
possible merge to the user. The ontology-merging research also provides anal-
ysis of possible ways to translate between ontologies. OntoMorph [6] provides
a powerful rule language to represent complex transformations from one ontol-
ogy to another and an engine for applying these transformations. The ONION
ontology-articulation approach [20] is based on specifying “semantic bridges” be-
tween ontologies. In ONION, the ontologies remain separate (as we would want
to do if we keep the old versions of ontologies available) and the articulation rules

Ontology Evolution: Not the Same as Schema Evolution 11

provide the mapping between ontologies. Tools for integrating database schemas
can also provide ideas for finding correspondences between ontologies. Rahm and
Bernstein [24] survey the approaches that use linguistic techniques to look for
synonyms, machine-learning techniques to propose matches based on instance
data, information-retrieval techniques to compare information about attributes,
and so on. In the database-schema research, Bernstein and colleagues [4] also
argue that we can view such tasks as schema mapping and untraced evolution
in a similar way. They suggest a formal model for expressing correspondences
between any database schemas, XML DTDs, UML models, and so on. Then any
of the tasks for managing correspondences between different sources becomes the
task of instantiating such a model.

4. Conclusions and the Next Steps

With ontologies becoming an integral part of many industrial and academic ap-
plications, support for ontology evolution and versioning is the next logical step
in the ontology research. This research can undoubtedly benefit from the many
years of research in database-schema evolution, including analysis of change ef-
fects, frameworks for handling different versions, interfaces to different versions,
and so on. However, if we compare ontologies and database schemas from the
point of view of evolution, we will find important differences as well. Although
some of these issues do not form theoretical distinction between schema evolu-
tion and ontology evolution, they constitute a substantial difference in practice,
and have significant practical implications on the way ontology evolution and
versioning can be handled. We need to maintain all versions of an ontology, to
define different dimensions of compatibility depending on what must be pre-
served, to be able to find differences between versions without a trace of how one
version evolved into the other, and to define a set of ontology-change operations
and consider the effects of these changes. The research in ontology evolution is
in its very early stages. Our analysis of the problems could be a starting point
for addressing various open issues in ontology evolution. We analyzed the effects
of ontology-change operations very briefly and only with respect to the instance-
data–preservation dimension. A much more detailed analysis of these operations
and their effects along all dimensions of compatibility is needed. This analysis
should go alongside with a more precise specification of the necessary transfor-
mations on data or ontologies for translatable changes. Other open issues include
identification of change, deprecation of outdated ontologies, algorithms for find-
ing differences between versions automatically. We hope that our analysis will
help direct the research and demonstrate that ontology evolution is even more
complicated than schema evolution.

Acknowledgements. We are very grateful to Dieter Fensel, Mark Musen, and Gio
Wiederhold for their feedback on the earlier versions of the paper. We thank anonymous
reviewers for their suggestions. This research was supported in part by the contract from
the National Cancer Institute.

References

[1] Banerjee, J., et al. Semantics and Implementation of Schema Evolution in Object-Oriented
Databases. in SIGMOD Conference. 1987.

12 Noy and Klein

[2] Batini, C., M. Lenzerini, and S. B. Navathe, A comparative analysis of methodologies of
database schema integration. ACM Computing Surveys, 1986. 18(4): p. 323-364.

[3] Berners-Lee, T., J. Hendler, and O. Lassila, The Semantic Web. Scientific American, 2001.
284(5): p. 34-43.

[4] Bernstein, P. A., A. Y. Halevy, and R. A. Pottinger, A Vision for Management of Complex
Models. SIGMOD Record, 2000. 29(4): p. 55-63.

[5] Brickley, D. and R. V. Guha, Resource Description Framework (RDF) Schema Specifica-
tion, to appear, 1999.

[6] Chalupsky, H., OntoMorph: A translation system for symbolic knowledge, in Principles
of Knowledge Representation and Reasoning: Proceedings of the Seventh International
Conference (KR2000), A. G. Cohn, F. Giunchiglia, andB. Selman, Editors. 2000, Morgan
Kaufmann Publishers: San Francisco, CA.

[7] Chaudhri, V. K., et al. OKBC: A programmatic foundation for knowledge base inter-
operability. in Fifteenth National Conference on Artificial Intelligence (AAAI-98). 1998.
Madison, Wisconsin: AAAI Press/The MIT Press.

[8] Corcho, O. and A. Gómez-Pérez. A roadmap for ontology specification languages. in 12th In-
ternational Conference on Knowledge Engineering and Knowledge Management (EKAW-
2000). 2000. Juan-les-Pins, France: Springer.

[9] Fensel, D., et al. OIL in a Nutshell. in 12th International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW-2000). 2000. Juan-les-Pins, France: Springer.

[10]Genesereth, M. R. and R. E. Fikes, Knowledge Interchange Format, Version 0.3, Reference
Manual, to appear, 1992.

[11]Gruber, T. R., A Translation Approach to Portable Ontology Specification. Knowledge
Acquisition, 1993. 5: p. 199-220.

[12]Heflin, J. and J. Hendler. Dynamic ontologies on the Web. in Seventeenth National Con-
ference on Artificial Intelligence (AAAI-2000). 2000. Austin, TX

[13]Hendler, J. and D. L. McGuinness, The DARPA Agent Markup Language. IEEE Intelligent
Systems, 2000. 16(6): p. 67-73.

[14]Karp, P. D., et al., EcoCyc: Encyclopedia of E. coli Genes and Metabolism. Nucleic Acids
Research, 1996. 24(1): p. 32-40.

[15]Klein, M. Combining and relating ontologies: an analysis of problems and solutions. in
IJCAI-2001 Workshop on Ontologies and Information Sharing. 2001. Seattle, WA

[16]Klein, M., et al. Ontology Versioning and Change Detection on the Web. in 13th Inter-
national Conference on Knowledge Engineering and Knowledge Management (EKAW02).
2002. Sigüenza, Spain:

[17]Lerner, B.S., A Model for Compound Type Changes Encountered in Schema Evolution.
ACM Transactions on Database Systems, 2000. 25(1): p. 83-127.

[18]Marco, D., Building and Managing the Meta Data Repository: A Full Lifecycle Guide.
2000, Wiley & Sons.

[19]McGuinness, D. L., Ontologies Come of Age, in The Semantic Web: Why, What, and How,
D. Fensel, et al., Editors. 2001, MIT Press

[20]Mitra, P., G. Wiederhold, and M. Kersten. A Graph-Oriented Model for Articulation of
Ontology Interdependencies. in Proceedings Conference on Extending Database Technology
2000 (EDBT’2000). 2000. Konstanz, Germany

[21]Noy, N. F., R. W. Fergerson, and M. A. Musen. The knowledge model of Protégé-2000: com-
bining interoperability and flexibility. in 12th International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW-2000). 2000. Juan-les-Pins, France: Springer-
Verlag.

[22]Noy, N. F. and M. A. Musen. PROMPT: Algorithm and Tool for Automated Ontology Merg-
ing and Alignment. in Seventeenth National Conference on Artificial Intelligence (AAAI-
2000). 2000. Austin, TX

[23]Noy, N. F. and M. A. Musen. PromtDiff: A Fixed-Point Algorithm for Comparing Ontol-
ogy Versions. in Eighteenth National Conference on Artificial Intelligence (AAAI-2002).
2002. Edmonton, Alberta

[24]Rahm, E. and P. A. Bernstein, A survey of approaches to automatic schema matching.
VLDB Journal, 2001. 10(4).

[25]Rector, A., et al. The GALEN CORE Model Schemata for Anatomy: Towards a Re-
Usable Application-Independent Model of Medical Concepts. in Medical Informatics Eu-
rope, MIE’94. 1994.

[26]Roddick, J. F., A survey of schema versioning issues for database systems. Information
and Software Technology, 1995. 37(7): p. 383-393.

Ontology Evolution: Not the Same as Schema Evolution 13

[27]Sheth, A. P. and J. A. Larson, Federated database systems for managing distributed, hetero-
geneous, and autonomous databases.. ACM Computing Surveys, 1990. 22(3): p. 183-236.

[28]Ventrone, V. and S. Heiler, Semantic heterogeneity as a result of domain evolution. SIG-
MOD Record (ACM Special Interest Group on Management of Data), 1991. 20(4): p.
16-20.

Author Biographies

Natalya F. Noy is a research scientist at the Stanford Medical In-
formatics at Stanford University. She has received her B.S. in applied
mathematics from Moscow State University, Russia. She received her
M.A. degree in Computer Science from Boston University and her
Ph.D. in Computer Science from Northeastern University in Boston.
She currently works on extending the Protégé-2000 ontology-editing
environment to support management of multiple ontologies. Her in-
terests include ontology development and evaluation, semantic inte-
gration of ontologies, and making ontology-development accessible to
experts in non-computer-science domains.

Michel Klein is a Ph.D. student in the Business Informatics group
at the Vrije Universiteit in Amsterdam, The Netherlands. He received
his Master’s degree from the same university in October 1996. After
finishing his master, he worked for two and a half year as a software
engineer at the Leiden University Medical Center on a system for the
classification and presentation of multi-media medical information. His
research interests include the use of ontologies for information integra-
tion, representational issues of ontologies, and support for the dynamic
aspects of knowledge representation on the web.

Correspondence and offprint requests to: Natalya F. Noy, Stanford Medical Informatics, Stan-

ford University, Stanford, CA 94305, USA. Email: noy@smi.stanford.edu

