
Ontology Integration Using Mappings: Towards

Getting the Right Logical Consequences

Ernesto Jiménez-Ruiz1,�, Bernardo Cuenca Grau2, Ian Horrocks2,
and Rafael Berlanga1

1 Universitat Jaume I, Spain
{ejimenez,berlanga}@uji.es

2 University of Oxford, UK
{berg,ian.horrocks}@comlab.ox.ac.uk

Abstract. We propose a general method and novel algorithmic tech-
niques to facilitate the integration of independently developed ontologies
using mappings. Our method and techniques aim at helping users un-
derstand and evaluate the semantic consequences of the integration, as
well as to detect and fix potential errors. We also present ContentMap,
a system that implements our approach, and a preliminary evaluation
which suggests that our approach is both useful and feasible in practice.

1 Introduction

Effective ontology integration techniques are often needed both during ontology
development (e.g., when an ontology being developed reuses one or more external
ontologies), and when ontologies are used in conjunction with data (e.g. when
integrating and querying data sources annotated using different ontologies).

When the ontologies to be integrated have been independently developed,
their vocabularies will most likely diverge, either because they use different
namespaces, or because they use different names or naming conventions to refer
to their entities. As a consequence, these ontologies will most likely be unrelated
from a logical point of view, even if they intuitively overlap.

For example, suppose that Peter wants to develop an ontology about juvenile
forms of arthritis.1 He finds on the Web two independently developed ontologies
O1 and O2 with different vocabularies, which describe different types of arthritis
and juvenile diseases respectively, and decides that an integration of these two
ontologies would make a good starting point. Although largely independent,
the two ontologies do overlap; for example, both describe a particular form of
juvenile arthritis known as JRA (Juvenile Rheumatoid Arthritis), although they
use different vocabulary in their descriptions.

As a first step in the integration of such independently developed ontolo-
gies it is usually necessary to establish appropriate correspondences (or map-
pings) between the terms used in the various ontologies. For example, Peter
may need to establish that Rheumatoid Arthritis in O1 has the same intended
� Ernesto was supported by his PhD Fellowship of the Generalitat Valenciana.
1 The development of an ontology describing types of juvenile arthritis is one of the

goals of the Health-e-Child project (http://www.health-e-child.org/).

L. Aroyo et al. (Eds.): ESWC 2009, LNCS 5554, pp. 173–187, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.health-e-child.org/

174 E. Jiménez-Ruiz et al.

meaning as Rheum Arthritis in O2. Ontologies are, however, often too large and
complex for ontology developers to manually establish these correspondences.
To address this problem, a number of sophisticated tools have been developed
(see http://www.ontologymatching.org/ for a comprehensive list), the purpose of
which is to (semi-) automatically establish appropriate correspondences.

When reasoning with the ontologies to be integrated together with the auto-
matically generated mappings, however, errors are likely to occur. There are two
main causes for these errors. On the one hand, mappings suggested by automated
tools are likely to include some errors. On the other hand, even if the correct
mappings have been found, the ontologies may contain conflicting descriptions
of the overlapping entities. These errors manifest themselves as unintended logi-
cal consequences (e.g., unsatisfiable concepts or unintended subsumptions), and
they can be difficult to detect, understand and repair. However, existing tools
provide little or no support for the user in trying to obtain the right logical conse-
quences when integrating ontologies using mappings—as discussed in Section 5,
research in this area is still at an early stage [1, 2].

In this paper, we present a new general method and novel algorithmic tech-
niques designed to provide just such support. We also present ContentMap,2 a
system that implements our approach, and a preliminary evaluation which sug-
gests that our approach is both useful and feasible in practice.

We will assume some basic knowledge of OWL and Description Logics, and
refer to [3, 4] for comprehensive overviews. Moreover, due to lack of space, proofs
and some details concerning the empirical evaluation are included in an online
technical report [5].

2 Problems with Ontology Integration Using Mappings

In this section, we discuss some of the problems that arise when integrating
ontologies using mappings, and analyze the requirements for a suitable tool.

Let us consider the ontologies O1 and O2 from Section 1 about arthritis and
juvenile diseases respectively. As already mentioned, O1 and O2 overlap concep-
tually in the description of different types of juvenile rheumatoid arthritis. The
overlapping parts of O1 and O2 are shown in Table 1.

Suppose that Peter—the ontology developer—uses an automatic mapping tool
to find correspondences between entities in O1 and O2. Mappings are often
represented as a tuple 〈id, e1, e2, n, ρ〉 [6], where id is a unique identifier for the
mapping, e1, e2 are entity names in the vocabulary of O1 and O2 respectively,
n is a numeric confidence measure between 0 and 1, and ρ is a relation between
e1 and e2 (typically subsumption (�), equivalence (≡), or disjointness (⊥)).

Table 2 contains the mappings obtained by Peter using the mapping tool
OLA (see http://ola.gforge.inria.fr/). The prefixes ‘1:’ and ‘2:’ for the entity
names refer to the namespaces (omitted in Table 1) of O1 and O2. Note that the
mappings and confidence values suggested by different tools can vary enormously,
so experience and/or experimentation may be needed in order to select the most
suitable tool (or combination of tools) for the problem at hand.
2 A logiC-based ONtology inTEgratioN Tool using MAPpings.

http://www.ontologymatching.org/
http://ola.gforge.inria.fr/

Ontology Integration Using Mappings 175

Table 1. Example Ontologies

Ontology O1

α1 Juvenile Arthritis � Systemic Disease � Rheumatoid Arthritis

α2 Multi Joint Disease � Disease � � 5 affects.Joint

α3 Rheumatoid Arthritis � Disease � ∃has Factor.�
α4 Poly Juvenile Arthritis � Juvenile Arthritis � Multi Joint Disease

α5 Oly Juvenile Arthritis � Juvenile Arthritis � ¬Poly Juvenile Arthritis

α6 Oly Juvenile Arthritis � ∀has Factor.Negative Factor

α7 Negative Factor � Positive Factor � ⊥
Ontology O2

β1 Juv Rheum Arthritis � Rheum Arthritis � Juv Disease

β2 Rheum Arthritis � Disease � ∃has Rheum Factor.�
β3 Poly Juv Rheum Arthritis � Juv Rheum Arthritis � = 3 affects.Joint

β4 Poly Juv Rheum Arthritis � ∀has Rheum Factor.Positive Rheum Factor

β5 Negative Rheum Factor � Positive Rheum Factor � ⊥

Table 2. Example Mappings

Intended Mappings

〈μ1, 1:Joint, 2:Joint, 1.0, (≡)〉;
〈μ2, 1:Disease, 2:Disease, 1, (≡)〉;
〈μ3, 1:Disease, 2:Disease, 1.0, (≡)〉;
〈μ4, 1:affects, 2:affects, 0.87, (≡)〉;
〈μ5, 1:Rheumatoid Arthritis, 2:Rheum Arthritis, 1.0, (≡)〉;
〈μ6, 2:Juv Disease, 1:Disease, 0.63, (�)〉;
〈μ7, 1:Poly Juvenive Arthritis, 2:Poly Juv Rheum Arthritis, 0.7, (≡)〉;
〈μ8, 1:has Factor, 2:has Rheum Factor, 0.7, (≡)〉;
〈μ9, 1:Positive Factor, 2:Positive Rheum Factor, 0.75, (≡)〉;
〈μ10, 1:Negative Factor, 2:Negative Rheum Factor, 0.75, (≡)〉;
〈μ11, 2:Juv Rheum Arthritis, 1:Rheumatoid Arthritis, 0.5, (�)〉;
Erroneous Mappings

〈μ12, 1:Rheumatoid Arthritis, 2:Juv Rheum Arthritis, 0.5, (�)〉;
〈μ13, 1:Disease, 2:Juv Disease, 0.63, (�)〉;
〈μ14, 1:Positive Factor, 2:Negative Rheum Factor, 0.63, (≡)〉;
〈μ15, 2:Positive Factor, 1:Negative Rheum Factor, 0.63, (≡)〉;

As shown in Table 2, some of the mappings are clearly erroneous and, un-
der any reasonable semantics for the mappings, will lead to unintended logical
consequences. Indeed, the mappings μ14 and μ15 entail the logical equivalence of
two concepts that are disjoint in both O1 and O2 (see also intended mappings μ9

and μ10); also, the mapping μ12 will lead to unintended subsumptions since not
all forms of rheumatoid arthritis affect only children. Furthermore, even if only

176 E. Jiménez-Ruiz et al.

intended mappings had been generated, errors would still have occurred due to
conflicting descriptions of some of the entities that occur in both ontologies. For
example, the descriptions of Polyarticular Juvenile Rheumatoid Arthritis (ax-
ioms α4, α2 in O1 and β3 in O2) are contradictory: in O1 it is described as a
disease that affects at least 5 different joints, whereas in O2 it is said to affect
exactly 3 joints. The intended mapping μ7 will reveal this contradiction.

This example suggests some requirements for a tool supporting ontology in-
tegration using mappings. A suitable tool should provide support for: (i) gen-
erating sets of mappings, either manually or by selecting one or more mapping
algorithms and setting their parameters; (ii) editing sets of mappings and fil-
tering them according to different criteria; (iii) reasoning with the ontologies to
be integrated together with the relevant mappings; (iv) comparing the entail-
ments holding before and after the integration and detecting possible unintended
entailments; (v) suggesting possible ways to repair the identified errors.

3 Proposed Method, Algorithms and Tool Support

In this paper, we present a novel approach for integrating ontologies using map-
pings that addresses the requirements from Section 2. To this end, a formal
representation of ontology mappings should be adopted. This is crucial, for ex-
ample, to reason unambiguously with the mappings together with the ontologies
to be integrated, and thus to address requirements (iii)–(v) in Section 2.

A number of specialised semantics for ontology mappings have been proposed
in the literature (e.g. [6, 7]). In this paper, however, we have chosen to represent
ontology mappings as OWL 2 axioms [4]. Such a representation seems semanti-
cally coherent, and allows us to reuse the extensive range of OWL algorithmic
techniques and infrastructure that is currently available. The general approach

Table 3. Ontology Integration Method

Input: O1,O2: ontologies with Sig(O1) = Σ1, Sig(O2) = Σ2 and Σ1 ∩ Σ2 = {�,⊥}
Output: O′

1,O′
2: modified ontologies

M′: Mappings between Σ1 and Σ2

1: (�) Select mapping algorithm map(O1,O2)
2: (�) Select M ⊆ map(O1,O2)
3: (�) if O1,O2,M satisfactory, then return O′

1 := O1,O′
2 := O2,M′ := M

4: U := O1 ∪O2 ∪M
5: (�) Select approximation functions diff≈ and mdiff≈

6: Compute Λ = diff≈
Σ1

(O1,U) ∪ diff≈
Σ2

(O2,U) ∪ mdiff≈
Σ1,Σ2

(M,U)
7: (�) Select �+,�− ⊆ Λ
8: (�) Select O− ⊆ U
9: P := all minimal plans for U given �+, �−, and O−

10: (�) if no satisfactory plan in P, then come back to either Step 2 or Step 7
11: (�) Select P ∈ P

12: return O′
1 := O1 \ P ,O′

2 := O2 \ P ,M′ := M\P

Ontology Integration Using Mappings 177

Fig. 1. GUI for Visualising Explicit Mappings in ContentMap

we present here, however, could be adapted to alternative formal representations
of mappings (see Section 5 for further discussion).

We assume from now on that a set of mappings is represented as an OWL
2 ontology M, where mappings 〈id, e1, e2, n, ρ〉 are given as axioms of the form
SubClassOf(e1 e2), EquivalentClasses(e1 e2), or DisjointClasses(e1 e2), for ρ of
the form (�), (≡), or (⊥) respectively, with id (the mapping id) and n (the
confidence value) added as axiom annotations [4]. We denote with conf(α) the
confidence value with which an axiom α is annotated. Representing mappings in
this way gives them a standard “crisp” semantics, with ids and confidence values
being represented only as annotations and thus having no effect on entailments.

Our general approach is given in Table 3. It is an interactive process where
some steps involve computations that tools should perform automatically, while
others (marked with (�)) may require manual intervention. It consists of four
main parts: i) Computation of mappings (Steps 1–3); ii) Computation of new
entailments (Steps 4–6); iii) Detection of errors (Step 7); iv) Repair of the identi-
fied errors (Steps 8–12). We next present our method and describe its realisation
in ContentMap—a Protégé 4 plugin available for download (see [5]).

3.1 Computation of the Mappings

General Description. Ontology mappings can be computed using one or more
mapping tools (see Step 1), and can subsequently be refined (Step 2) in various
ways (e.g., via manual selection or filtering according to a given threshold).
After obtaining and possibly refining the mappings, a user may decide that
the integration process is complete (Step 3), in which case it remains a purely
syntactic process. They may, however, want to analyse the semantic consequences
of the integration, in which case a reasoner is required.

Tool Support. ContentMap provides for the input ontologies to be loaded,
and for one or more mapping tools to be selected. Different weights can also be
assigned to each of the mapping tools. It is also possible to load pre-computed
mappings in the form of an OWL 2 ontology.

ContentMap provides a GUI for visualising the mappings (Fig. 1) and show-
ing those that are to be accepted (marked with �) and those that are to be
rejected (marked with ⊗). Users can automatically filter the mappings by set-
ting a confidence threshold τ : mappings with a confidence value lower than τ are

178 E. Jiménez-Ruiz et al.

automatically marked for rejection while those with a confidence value greater
than τ are marked for acceptance. These selections can then be refined at will.

3.2 Computation of New Entailments

General Description. To help users understand the semantic consequences of
the integration, they should be informed about new entailments that hold in the
merged ontology U , but not in O1, O2 and M alone. To this end, we use the
notion of deductive difference [8, 9]. Intuitively, the deductive difference between
O and O′ w.r.t a signature Σ is the set of entailments constructed over Σ that
do not hold in O, but do hold in O′.

Definition 1. Let DL be a DL and Σ be a DL-signature. The Σ-deductive
difference between DL-ontologies O and O′ is given as follows:

diffΣ(O,O′) = {α | α a DL-axiom, O �|= α, O′ |= α and Sig(α) ⊆ Σ} (1)

In our integration scenario, we want to inform the user about new entailments
that hold in O1 or O2 as a result of the integration, i.e., diffΣ1(O1,U) and
diffΣ2(O2,U). In our example from Tables 1 and 2, where the mappings are given
as an OWL 2 ontology as described above, the entailments (Positive Factor � ⊥)
and (Rheum Arthritis � Juv Disease) belong to diffΣ1(O1,U) and diffΣ2(O2,U)
respectively. In addition, we want to inform the user about new entailments that
contain symbols from both O1 and O2. These entailments can be seen as inferred
mappings provided that the notion of a mapping is generalised to be an arbitrary
DL axiom using terms from two signatures:

Definition 2. Let DL be a DL and let Σ1, Σ2 be two DL-signatures s.t. Σ1 ∩
Σ2 = {�,⊥}. Let Σ = Σ1 ∪ Σ2. A DL-mapping between Σ1 and Σ2 is a DL-
axiom α over Σ such that (Sig(α) ∩ Σi) \ {�,⊥} �= ∅ for each i ∈ {1, 2}. The
axiom α is annotated with an id and with a confidence value 0 < conf(α) ≤ 1.

Definition 1 can now be extended to take into account the new mappings, i.e.:

mdiffΣ1,Σ2(O,O′) = {α ∈ diffΣ(O,O′) | α DL-mapping between Σ1, Σ2} (2)

In our scenario, inferred mappings are captured by mdiffΣ1,Σ2(M,U). For
example, the mapping (1:Juvenile Arthritis � 2:Rheum Arthritis) would belong to
this difference, because it is entailed by U but not by M alone.

The notion of deductive difference, however, has several drawbacks in prac-
tice. First, there is no algorithm for computing diff(O,O′) in expressive DLs
such as SROIQ (OWL 2) and SHOIQ (OWL DL) [9]. For these languages,
checking whether diff(O,O′) = ∅ is undecidable. Currently, algorithms only ex-
ist for (fragments of) the OWL 2 EL and QL profiles [10, 9, 8]. Second, the
number of entailments in the difference can be huge (even infinite), and so likely
to overwhelm users. These drawbacks motivate the need for approximations—
subsets of the difference—that the user can select in Step 5 from Table 3.

Definition 3. A function diff≈
Σ(O,O′) (resp. mdiff≈

Σ1,Σ2
(O,O′)) is an approxi-

mation for diffΣ(O,O′) (mdiffΣ1,Σ2(O,O′)) if for any two DL-ontologies O,O′,
diff≈

Σ(O,O′) ⊆ diffΣ(O,O′) (mdiff≈
Σ1,Σ2

(O,O′) ⊆ mdiffΣ1,Σ2(O,O′)).

Ontology Integration Using Mappings 179

Tool Support. A useful approximation should be easy to compute, yet still
provide meaningful information to the user. One possibility is to define an ap-
proximation by considering only entailments of a certain form.

The GUI implemented in ContentMap allows users to customise approxima-
tions by selecting among the following simple kinds of entailment, where A, B
are atomic concepts (including �,⊥) and R, S atomic roles or inverses of atomic
roles: (i) A � B, (ii) A � ¬B, (iii) A � ∃R.B, (iv) A � ∀R.B, and v) R � S.
The smallest implemented approximation considers only axioms of the form (i),
while the largest one considers all types (i)—(v).

All these approximations can be algorithmically computed, and ContentMap
uses a number of optimisations for computing them. Clearly, the larger the class
of entailments presented to the user, the more errors could be detected. The
corresponding differences, however, are harder to compute, harder to present to
the user, and may be harder for the user to understand.

3.3 Detection of Errors

General Description. Some entailments in the relevant (approximate) differ-
ences may be intended, while others may reveal potential errors in the merged
ontology U . Step 7 therefore involves selecting entailments that: (i) are intended
and should be entailed in U (written �+ in Table 3), and (ii) are unintended
and should not be entailed by U (written �−).

In our example, the entailments (Positive Factor � ⊥) and (Rheum Arthritis �
Juv Disease) in diffΣ1(O1,U) and diffΣ2(O2,U) respectively are unintented and
should belong to �−. In contrast, the entailed mapping (1:Rheum Arthritis �
2:Disease) is intended and should be included in �+.

Tool Support. The development of techniques to help users understand the
relevant differences and subsequently select the sets of intended and unintended
entailments is especially challenging.

First, the tool should explain why the new entailments that hold in U do not
hold in O1, O2 and M alone. The notion of a justification has proved very useful
in understanding why an ontology entails a certain axiom [11, 12].

Definition 4. Let O |= α. A justification for α in O is an ontology O′ ⊆ O
satisfying the following properties: (i) O′ |= α, and (ii) there is no O′′ ⊂ O′ s.t.
O′′ |= α. We denote by Just(α,O) the set of all justifications for α in O.

In order to explain a given entailment, ContentMap presents all its justifications.
Computing justifications is expensive, so ContentMap uses the optimisations pro-
posed in [13, 14] which have proved effective in practice.

Second, the potentially large number of relevant entailments may overwhelm
the user. Hence, on the one hand, the tool should try to present these entailments
in a way that makes them easier to understand and, on the other hand, it should
provide suggestions about which entailments to include in �+ and �−.

ContentMap exploits the dependencies between entailments to organise the
way in which they are presented. Intuitively an entailment β depends on α in O

180 E. Jiménez-Ruiz et al.

Algorithm 1. Heuristic suggestions for �+, �−

Input: Λ = diff≈
Σ1

(O1,U) ∪ diff≈
Σ2

(O2,U) ∪ mdiff≈
Σ1,Σ2

(M,U) as in Table 3
τ1, τ2: real values with 0 < τ1 ≤ τ2 ≤ 1
�: dependency relation between axioms in Λ w.r.t. U
Output: �+,�−: entailments suggested to be hold or not

1: �+,�− := ∅
2: for each α ∈ Λ do
3: if α of the form A � ⊥ for A an atomic concept then
4: �− := �− ∪ {α}
5: for each β ∈ Λ such that α �∗ β do �− := �− ∪ {β}
6: end if
7: conf(α) := confidence of α as in Definition 7
8: if conf(α) ≤ τ1 then �− := �− ∪ {α}
9: if conf(α) ≥ τ2 and α /∈ �− then �+ := �+ ∪ {α}

10: end for
11: return �+,�−

if, whenever α is invalidated by removing a set of axioms from O, then β is also
invalidated. This implies that if α ∈ �−, then β should also be included in �−

(and never in �+). This idea can be formalised in our setting as follows:

Definition 5. Let O |= α, β. The axiom β depends on α w.r.t. O, written α�β,
iff for each Jβ ∈ Just(β,O) there is Jα ∈ Just(α,O) s.t. Jα ⊆ Jβ.

The relation � is consistent with our intuitions, as shown next:

Proposition 6. Consider Table 3 and Definition 5. Let U |= α, β, U ′ ⊂ U and
α � β. Then: 1) U ′ �|= α implies U ′ �|= β, and 2) U ′ |= β implies U ′ |= α.

In order to suggest to the user which entailments to include in �+ and �−, Con-
tentMap exploits both the dependencies between entailments in the differences
and the confidence values for each explicit mapping. We use the confidence val-
ues in the mappings to compute confidence values in the entailments from each
of the obtained differences: we consider our confidence in an entailment to be
equal to the maximum confidence we have in one of its justifications, and our
confidence in a justification to be the product of our confidences in each of the
axioms it contains. We formalise this in the following definition, in which we ex-
tend conf() to arbitrary (explicit) axioms and justifications. We assume that we
have complete confidence in an axiom (i.e., conf(α) = 1) if it is not a mapping.

Definition 7 (Confidence in an Entailment). Let O be an ontology, α an
axiom in O that is not annotated with a confidence value, J a justification, and
β an entailment s.t. O |= β. We define conf(α) = 1, and conf(J) and conf(β)
as follows:

conf(J) =
∏

γ∈J
conf(γ) and conf(β) = max(

⋃

J∈Just(β,O)

conf(J)) (3)

Ontology Integration Using Mappings 181

Fig. 2. GUI for Visualising New Entailments in ContentMap

The following proposition shows that the confidence values in Definition 7 are
well-behaved w.r.t. Definition 5: if β depends on α then the confidence in β is
smaller than the confidence in α.

Proposition 8. If α �∗ β, then conf(β) ≤ conf(α)

In order to compute initial suggestions for �− and �+, ContentMap implements
the heuristics in Algorithm 1, which are based on Definitions 5, 7 and Propo-
sitions 6, 8. The algorithm accepts as input the entailments in the relevant
differences, their dependencies, and two confidence thresholds τ1 and τ2. For
each input entailment α, Algorithm 1 uses �, τ1 and τ2 to either include it in
�+ (i.e. α is intended), in �− (i.e. α is unintended) or in neither of them. An
entailment α is included in �− if it reveals a contradiction (Line 3), depends on
a contradiction (Line 5), or if its confidence according to Definition 7 is lower
than τ1 (Line 8). In contrast, α is included in �+ if it is not contained in �−

and its confidence is higher than the threshold τ2 (Line 9).
Figures 2 and 3 show the ContentMap GUI for selecting �+ and �−. Figure

2 shows the new entailments in each of the computed differences. The left-hand
side of Figure 3(a) displays the dependency relation as a hierarchy, which can be
expanded and contracted in the usual way; on the right-hand side of Figure 3(a),
the user can select an entailment to be in �+ or �− and show its justifications
(Figure 3(b)). When displaying justifications, the GUI indicates whether the
axioms in these justifications come from O1, O2, or the mappings M (marked
with ‘1’, ‘2’ and ‘M’ respectively). The entailments in Figures 2 and 3(a) already
marked as intended/unintended are those suggested by Algorithm 1.

3.4 Repair

General Description. If the user has selected one or more unintended entail-
ments (i.e., �− �= ∅), then U clearly contains errors. These errors can always

182 E. Jiménez-Ruiz et al.

(a) Dependency Relation (b) Justifications

Fig. 3. GUI for Visualising the Dependency Relation and the Justifications

be repaired by removing axioms from U—in the limit, removing all the axioms
from U will eliminate all entailments. However, any removal of axioms should
also respect �+, the user’s selection of intended entailments, i.e., the entailments
in �+ should still hold after any removal of axioms.

As mentioned in Section 1, errors could be due to erroneous mappings, to
inherently conflicting information in the two ontologies, or to some combination
of both. Repairing such errors might, therefore, require the removal of axioms
from M, O1 and O2. The user may, however, have a (principled or pragmatic)
preference regarding the source of axioms to be removed; e.g., M might be
considered the most likely source of errors, or it may be impossible to change
(one or both of) O1 and O2. We therefore define the notion of a repair plan (or
plan for short) for an ontology O w.r.t. the (un-) intended entailments �− and
�+, and a subset O− of O, where the axioms in O− are those that are allowed
to be removed from O. Such a plan is simply a subset of the axioms in O− whose
removal from O both eliminates the entailments in �− and preserves those in
�+. In general, there may be zero or more such plans.

Definition 9. Let O, �+, �−, and O− be finite sets of axioms such that O− ⊆
O, O |= �−, O |= �+, and �+ ∩ �− = ∅.

A repair plan for O given O−, �+ and �− is a set P ⊆ O− such that: 1)
(O \ P) |= α for each α ∈ �+, and 2) (O \ P) �|= β for each β ∈ �−. A plan P
is minimal if there is no P1 such that P1 ⊂ P.

In our method, �−, �+ and O− are selected by the user in Steps 7 and 8 from
Table 3. In our example, if Peter imports O1 and O2 from the Web, and if
he is not willing to copy and modify them (e.g., if he wants to always import
the latest versions), then plans should only remove axioms from the mappings
(i.e., O− = M). However, the descriptions of Polyarticular Juvenile Rheumatoid
Arthritis in O1 and O2 are inherently in contradiction and hence, if O− = M,
the corresponding error cannot be fixed without deleting reasonable mappings.
In this case a more sensible choice would be to repair one or both of O1 and O2.

Ontology Integration Using Mappings 183

Algorithm 2. Computing All Plans Using Justifications
Procedure all Plans(O,O−,�+,�−)
Input: O, O−, �+, �− as in Definition 9, Just(γ,O) for each γ ∈ �+ ∪ �−

Output: P: set of all plans

1: P := ∅
2: for each P ⊆ O− do
3: validPlan := true
4: for each α ∈ �+ do
5: foundJust := false
6: for each Jα ∈ Just(α,O) do
7: if Jα ⊆ O \ P then foundJust := true
8: end for
9: if foundJust = false then validPlan := false

10: end for
11: for each β ∈ �− and Jβ ∈ Just(β,O) do
12: if Jβ ⊆ O \ P then validPlan := false
13: end for
14: if validPlan = true then P := P ∪ {P}
15: end for
16: return P

Tool Support. Definition 9 suggests a simple procedure for computing all plans:
for each possible P ⊆ O−, use a reasoner to check if P is a valid plan, i.e., satisfies
Conditions 1 and 2 from Definition 9. ContentMap, however, implements an
algorithm (see Algorithm 2) that avoids potentially expensive entailment checks
by reusing the justifications already computed when obtaining the dependency
relation from Definition 5. The algorithm is based on the following principles:
(i) in order for α ∈ �+ to hold after the execution of a plan P , the ontology
O \P must contain at least one justification for α in O (see Lines (6-8)); (ii) in
order for β ∈ �− not to hold after the execution of P , it is sufficient to show
that no justification for β in O is in O \ P (Lines 11-13). The set of all minimal
plans can be straightforwardly computed once all the plans have been obtained.

Proposition 10. Algorithm 2 computes all the plans for O given O−, �+, �−.

Note that conflicting choices in �+ and �− may make it impossible to find any
plans. Some of these conflicts can be detected using the dependency relation �,
as shown in the following proposition:

Proposition 11. Let O, �+, �− and O− be as in Definition 9 and let O |= α, β.
If α �∗ β w.r.t. O, α ∈ �− and β ∈ �+, then no plan exists.

There may also be particular selections of O−, �+ and �− for which the number
of minimal plans is very large. In this case, selecting the most suitable minimal
plan becomes difficult for users.

In order to assist users in the selection of a minimal plan (Steps 10-11), Con-
tentMap implements a number of heuristics based on the confidence of the map-
pings in the plans and the total number of axioms in the plan, among others.

184 E. Jiménez-Ruiz et al.

4 Evaluation

In our experiments, we used a suite of four ontologies adapted from the 2004 EON
Ontology Alignment Contest3 which describe the domain of bibliographic refer-
ences. These ontologies have been developed independently by INRIA (OINR),
MIT (OMIT), UMBC (OUMBC) and AIFB Karlsruhe (OAIFB) respectively. Their
sizes vary from 58 classes, 46 object properties, 26 data properties and 235 ax-
ioms in OAIFB to 18 classes, 12 object properties, 19 data properties and 96
axioms in OUMBC. Even if small, all these ontologies are fairly expressive (OINR

and OMIT are expressible in the DL ALCHQ(D), OUMBC in ALCIN (D) and
OAIFB in ALCI(D) respectively). Their average classification time is less than a
second when using Pellet 1.5.

In the 2004 EON contest, OINR was used as reference ontology, and the other
ontologies were independently aligned with it using each of the competing tools.
For evaluation, a manually produced gold standard containing the agreed-upon,
correct mappings was provided for each pair of aligned ontologies. The gold stan-
dards for OMIT, OUMBC and OAIFB contain 119, 83 and 98 mappings respectively.
All the test ontologies and gold standards are available at our web page [5].

The experiments are organised in two parts, which we specify next, and were
performed on a laptop with a 1.82 GHz processor and 3GB of RAM.

Repair of Ontologies Using Gold Standard. First, we have evaluated the
semantic consequences of integrating each of OMIT, OUMBC and OAIFB with OINR

using the corresponding gold standard to detect inherent disagreements between
them. In each case we have applied our method from Table 3, with the mappings
in Step 2 being the corresponding gold standard. We have used both the small-
est and the largest approximations of the deductive differences implemented in
ContentMap (see Section 3.2), and obtained the following results.

1. Alignment OMIT, OINR: for the smallest (resp. the largest) approximation,
there were 3 (resp. 33) new entailments in OMIT, 13 (resp. 85) in OINR and
35 (resp. 189) new mappings.

2. Alignment OUMBC, OINR: for the smallest (largest) approximation, there were
2 (7) new entailments in OUMBC, 10 (300) in OINR and 28 (176) new mappings.

3. Alignment OAIFB, OINR:for the smallest (largest) approximation, there were
4 (37) new entailments in OAIFB, 2 (19) in OINR and 46 (140) new mappings.

Note that the number of new entailments (and hence the amount of information
that ContentMap shows to users) largely depends on the selected approximation.

In all cases we found a significant number of obviously unintended inferences
due to inherent disagreements between the ontologies being integrated. For ex-
ample, when integrating OAIFB and OINR, our tool detected a total of 34 newly
unsatisfiable concepts in the two ontologies. The large number of (rather com-
plex) justifications for some of these entailments would make manual repair
extremely challenging. When computing the corresponding plans, we found that
3 http://oaei.ontologymatching.org/2004/Contest/

http://oaei.ontologymatching.org/2004/Contest/

Ontology Integration Using Mappings 185

Table 4. Synthetic Experiments

Input: O1,O2: ontologies with Sig(O1) = Σ1, Sig(O2) = Σ2 and Σ1 ∩ Σ2 = {�,⊥}
M: automatically-generated mappings between Σ1 and Σ2, MG : gold standard

1: Filter M given a confidence threshold τ
2: Compute recall and precision of M with respect to MG
3: Compute diff≈

Σ1
(O1,U), diff≈

Σ2
(O2,U) and mdiff≈

Σ1,Σ2
(M,U) for U := O1 ∪O2 ∪M

4: Compute all minimal plans for U given O− = M, �+ = ∅, and �− := new concept
unsatisfiability entailments.

5: Compute O′
1 := O1 \ P ,O′

2 := O2 \ P ,M′ := M\P , for P the best plan.
6: Compute recall and precision of M′ with respect to MG
7: Compute Λ = diff≈

Σ1
(O′

1,U ′) ∪ diff≈
Σ2

(O′
2,U ′) ∪ mdiff≈

Σ1,Σ2
(M′,U ′) for U ′ := O′

1 ∪
O′

2 ∪M′; and Compute dependency relation � over Λ
8: Compute all minimal plans for U ′ given O− = M′, �+ = ∅ and �−:= as obtained

in Algorithm 1 for a pre-fixed confidence threshold τ1.
9: Compute O′′

1 := O′
1 \ P ,O′′

2 := O′
2 \ P ,M′′ := M′ \ P , for P the best plan.

10: Compute recall and precision of M′′ with respect to MG

the problem originated in the incompatible ranges of two datatype properties;
hence, the modification of two axioms was sufficient to eliminate all the errors.
In most cases, a significant number of obviously unintended new subsumptions
were also detected. For example, merging OMIT and OINR resulted in the new
subsumptions TechnicalReport � Date and TechnicalReport � ∃date.Reference.
Again, the obtained plans revealed the origin of the problems and facilitated
their repair.

Synthetic Repair of Automatically Generated Mappings. Having re-
paired the test ontologies using the gold standard mappings, we used ContentMap
to automatically detect and repair errors resulting from the generation of new
mappings using the mapping tools OLA , AROMA4 and CIDER5. Our goal was
twofold: first, to show that the algorithms in ContentMap are practical; second,
to show that ContentMap can be used to automatically detect and repair errors,
as well as to improve the quality of automatically generated mappings.

For each pair of test ontologies, and for various sets of automatically gener-
ated mappings, we performed the synthetic experiments described in Table 4,
which closely follow our proposed method from Table 3. In contrast to Table
3, however, the repair of errors is performed in two stages: first, the obvious
errors (i.e. unsatisfiable concepts); then, those subsumptions that ContentMap
heuristically found unintended. For these experiments we have used the smallest
approximation of the deductive difference available in ContentMap.

Due to space limitations, here we only summarise the main conclusions; the
complete results are, however, available in our technical report [5]. First, from a
computational point of view, the main bottleneck is the computation of all the
justifications for the entailments of interest. Once the justifications have been
computed, the time needed for computing the plans is relatively short. Hence,
4 AROMA: http://www.inrialpes.fr/exmo/people/jdavid/
5 CIDER: http://sid.cps.unizar.es/SEMANTICWEB/ALIGNMENT/

186 E. Jiménez-Ruiz et al.

it is important to investigate optimisations for computing all justifications; first
steps in this direction have been taken in [13, 14].

Second, the number of entailments in the computed differences is similar to
the results obtained using the gold standard with the same approximation, and
the number of obtained minimal plans varies from 1-50. Furthermore, the use
of the dependencies given in Definition 5 significantly reduces the amount of
information that the user would need to consider.

Third, the use of automatically generated mappings did result in the occur-
rence of a significant number of unintended entailments. For example, when
aligning OAIFB and OINR using CIDER with confidence threshold τ = 0.1, we
found 55 new unsatisfiable concepts. After fixing these errors, ContentMap found
34 unintended subsumption relationships using Algorithm 1 with a threshold
τ1 = 0.3. Moreover, we checked manually selected examples and found out that
the heuristically detected unintended subsumptions were indeed errors; further-
more, these errors were mainly caused by incorrect mappings.

Fourth, the application of the plans resulted in the automatic correction of
the identified errors, which resulted in an improvement in the precision of the
automatically generated mappings. The improvement in precision occurred in all
cases and varied from 1%-5%, achieving a good balance with respect to the recall,
which remained unchanged in most cases, although a decrease from 1%-3% was
observed in a few isolated cases.

5 Related Work and Conclusion

In the last few years, the problem of automatically generating mappings between
ontologies has been extensively investigated. An comprehensive and up-to-date
source of information about the topic (including papers, tools, ontologies for
evaluation, etc.) can be found at http://www.ontologymatching.org/

The problem of reasoning with the generated mappings has also received sig-
nificant attention. Different semantics have been proposed for assigning formal
meaning to ontology mappings (e.g. [6, 7]). As mentioned in Section 3, our gen-
eral approach is applicable regardless of the semantics adopted for the mappings.

Recently, research has been conducted on the debugging and revision of map-
pings [1, 2]. This research has so far been focused on mappings represented using
Distributed Description Logics (DDL) [7]. Our work is also related to the exist-
ing approaches for debugging and repairing inconsistencies in OWL ontologies
(e.g. [15, 12, 11, 13]). In both of these lines of research, the detected and repaired
errors are limited to unsatisfiable concepts and inconsistent ontologies.

When compared to this existing work, we believe that our approach presents a
number of improvements. First,the entailments to be repaired are not restricted
to obvious inconsistencies, but can include any unintended entailment. Second,
users can customise the kinds of entailments to be taken into account when
comparing the integrated ontology to the individual ones in order to detect errors
(i.e., select the approximation of the deductive difference). Third, users can select
not only which entailments should be invalidated, but also which ones should
necessarily hold upon completion of the repair process. To this end, we provide

http://www.ontologymatching.org/

Ontology Integration Using Mappings 187

a number of novel techniques for helping the user to select which entailments are
(un)intended, such as the computation of the dependencies between entailments
(the relation �), confidence in entailments according to the confidence in the
mappings, etc. Fourth, we provide efficient algorithms for computing all the
repair plans and to help the user select the most suitable plan from amongst those
computed. Fifth, when compared to existing work on debugging and repair in
OWL, we provide a clear distinction between the ontologies being integrated and
the mappings, and users can customise the ontologies from which the plans are
allowed to delete axioms. Finally, we provide a fully-fledged editor and reasoning
infrastructure integrated with Protégé 4.

References

[1] Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Reasoning Support for Mapping
Revision. Journal of Logic and Computation (2008)

[2] Meilicke, C., Stuckenschmidt, H., Tamilin, A.: Repairing ontology mappings. In:
Proc. of AAAI, pp. 1408–1413 (2007)

[3] Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: the making of a web ontology language. J. Web Sem. 1(1), 7–26 (2003)

[4] Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler,
U.: OWL 2: The next step for OWL. J. Web Semantics 6(4), 309–322 (2008)

[5] Jimenez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology inte-
gration using mappings: Towards getting the right logical consequences. Tech-
nical report The ContentMap tool is also available at this location (2008),
http://krono.act.uji.es/people/Ernesto/contentmap

[6] Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. In:
Proc. of IJCAI, pp. 348–353 (2007)

[7] Borgida, A., Serafini, L.: Distributed description logics: Assimilating information
from peer sources. J. Data Semantics 1, 153–184 (2003)

[8] Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference be-
tween DL-Lite ontologies? In: Proc. of KR (2008)

[9] Konev, B., Walther, D., Wolter, F.: The logical difference problem for description
logic terminologies. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS, vol. 5195, pp. 259–274. Springer, Heidelberg (2008)

[10] Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2
Web Ontology Language: Profiles. W3C Working Draft (2008)

[11] Kalyanpur, A., Parsia, B., Sirin, E., Hendler, J.A.: Debugging unsatisfiable classes
in OWL ontologies. J. Web Semantics 3(4), 268–293 (2005)

[12] Schlobach, S., Huang, Z., Cornet, R., van Harmelen, F.: Debugging incoherent
terminologies. J. Autom. Reasoning 39(3), 317–349 (2007)

[13] Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of
OWL DL entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
267–280. Springer, Heidelberg (2007)

[14] Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A modularization-based approach
to finding all justifications for OWL DL entailments. In: Proc. of ASWC (2008)

[15] Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C.: Repairing unsatisfiable con-
cepts in OWL ontologies. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS,
vol. 4011, pp. 170–184. Springer, Heidelberg (2006)

http://krono.act.uji.es/people/Ernesto/contentmap

	Ontology Integration Using Mappings: Towards Getting the Right Logical Consequences
	Introduction
	Problems with Ontology Integration Using Mappings
	Proposed Method, Algorithms and Tool Support
	Computation of the Mappings
	Computation of New Entailments
	Detection of Errors
	Repair

	Evaluation
	Related Work and Conclusion

