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Abstract

The Semantic Web relies heavily on the formal ontologies that structure underlying data for

the purpose of comprehensive and transportable machine understanding. Therefore, the success

of the Semantic Web depends strongly on the proliferation of ontologies, which requires fast and

easy engineering of ontologies and avoidance of a knowledge acquisition bottleneck.

Ontology Learning greatly facilitates the construction of ontologies by the ontology engineer.

The vision of ontology learning that we propose here includes a number of complementary dis-

ciplines that feed on different types of unstructured, semi-structured and fully structured data in

order to support a semi-automatic, cooperative ontology engineering process. Our ontology learn-

ing framework proceeds through ontology import, extraction, pruning, refinement, and evaluation

giving the ontology engineer a wealth of coordinated tools for ontology modeling. Besides of

the general framework and architecture, we show in this paper some exemplary techniques in the

ontology learning cycle that we have implemented in our ontology learning environment, Text-To-

Onto, such as ontology learning from free text, from dictionaries, or from legacy ontologies, and

refer to some others that need to complement the complete architecture, such as reverse engineer-

ing of ontologies from database schemata or learning from XML documents.

Ontologies for the Semantic Web

Conceptual structures that define an underlying ontology are germane to the idea of machine process-

able data on the Semantic Web. Ontologies are (meta)data schemas, providing a controlled vocabulary

of concepts, each with an explicitly defined and machine processable semantics. By defining shared

and common domain theories, ontologies help both people and machines to communicate concisely,
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supporting the exchange of semantics and not only syntax. Hence, the cheap and fast construction of

domain-specific ontologies is crucial for the success and the proliferation of the Semantic Web.

Though ontology engineering tools have become mature over the last decade (cf. [2]), the manual

acquisition of ontologies still remains a tedious, cumbersome task resulting easily in a knowledge

acquisition bottleneck. Having developed our ontology engineering workbench, OntoEdit, we had to

face exactly this issue, in particular we were given questions like

� Can you develop an ontology fast? (time)

� Is it difficult to build an ontology? (difficulty)

� How do you know that you’ve got the ontology right? (confidence)

In fact, these problems on time, difficulty and confidence that we ended up with were similar to

what knowledge engineers had dealt with over the last two decades when they elaborated on method-

ologies for knowledge acquisition or workbenches for defining knowledge bases. A method that

proved extremely beneficial for the knowledge acquisition task was the integration of knowledge ac-

quisition with machine learning techniques [12]. The drawback of these approaches, e.g. the work

described in [6], however, was their rather strong focus on structured knowledge or data bases, from

which they induced their rules.

In contrast, in the Web environment that we encounter when building Web ontologies, the struc-

tured knowledge or data base is rather the exception than the norm. Hence, intelligent means for an

ontology engineer takes on a different meaning than the — very seminal — integration architectures

for more conventional knowledge acquisition [1].

Our notion of Ontology Learning aims at the integration of a multitude of disciplines in order

to facilitate the construction of ontologies, in particular machine learning. Because the fully auto-

matic acquisition of knowledge by machines remains in the distant future, we consider the process

of ontology learning as semi-automatic with human intervention, adopting the paradigm of balanced

cooperative modeling [5] for the construction of ontologies for the Semantic Web. This objective

in mind, we have built an architecture that combines knowledge acquisition with machine learning,

feeding on the resources that we nowadays find on the syntactic Web, viz. free text, semi-structured

text, schema definitions (DTDs), etc. Thereby, modules in our framework serve different steps in the

engineering cycle, which here consists of the following five steps (cf. Figure 1):
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First, existing ontologies are imported and reused by merging existing structures or defining

mapping rules between existing structures and the ontology to be established. For instance, [9] de-

scribe how ontological structures contained in Cyc are used in order to facilitate the construction of a

domain-specific ontology. Second, in the ontology extraction phase major parts of the target ontol-

ogy are modeled with learning support feeding from web documents. Third, this rough outline of the

target ontology needs to be pruned in order to better adjust the ontology to its prime purpose. Fourth,

ontology refinement profits from the given domain ontology, but completes the ontology at a fine

granularity (also in contrast to extraction). Fifth, the prime target application serves as a measure for

validating the resulting ontology [11]. Finally, one may revolve again in this cycle, e.g. for including

new domains into the constructed ontology or for maintaining and updating its scope.
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Figure 1: Ontology Learning process steps
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An Architecture for Ontology Learning

Given the task of constructing and maintaining an ontology for a Semantic Web application, e.g. for

an ontology-based knowledge portal that we have been dealing with (cf. [10]), we have produced a

wish list of what kind of support we would fancy.

Ontology Engineering Workbench OntoEdit. As core to our approach we have built a graphi-

cal user interface to support the ontology engineering process manually performed by the ontology

engineer. Here, we offer sophisticated graphical means for manual modeling and refining the final

ontology. Different views are offered to the user targeting the epistemological level rather than a par-

ticular representation language. However, the ontological structures built there may be exported to

standard Semantic Web representation languages, such as OIL and DAML-ONT, as well as our own

F-Logic based extensions of RDF(S). In addition, executable representations for constraint check-

ing and application debugging can be generated and then accessed via SilRi1, our F-Logic inference

engine, that is directly connected with OntoEdit.

The sophisticated ontology engineering tools we knew, e.g. the Prot́egé modeling environment

for knowledge-based systems [2], would offer capabilities roughly comparable to OntoEdit. However,

given the task of constructing a knowledge portal, we found that there was this large conceptual bridge

between the ontology engineering tool and the input (often legacy data), such as Web documents,

Web document schemata, databases on the Web, and Web ontologies, which ultimately determined

the target ontology. Into this void we have positioned new components of our ontology learning

architecture (cf. Figure 2). The new components support the ontology engineer in importing existing

ontology primitives, extracting new ones, pruning given ones, or refining with additional ontology

primitives. In our case, the ontology primitives comprise:

� a set of strings that describe lexical entries L for concepts and relations;

� a set of concepts2 — C;

� a taxonomy of concepts with multiple inheritance (heterarchy) HC ;

� a set of non-taxonomic relations — R — described by their domain and range restrictions;
1http://www.ontoprise.com/— then download area.
2Concepts in our framework are roughly akin to synsets in WordNet [4].

4



� a heterarchy of relations, i.e. a set of taxonomic relations HR;

� relations F and G that relate concepts and relations with their lexical entries, respectively; and,

finally,

� a set of axiomsA that describe additional constraints on the ontology and allow to make implicit

facts explicit [10].
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Figure 2: Architecture for Learning Ontologies for the Semantic Web

This structure corresponds closely to RDFS, the one exception is the explicit consideration of

lexical entries. The separation of concept reference and concept denotation, which may be easily ex-

pressed in RDF, allows to provide very domain-specific ontologies without incurring an instantaneous

conflict when merging ontologies — a standard request in the Semantic Web. For instance, the lexical

entry “school” in one ontology may refer to a building in ontology A, but to an organization in ontol-
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ogy B, or to both in ontology C. Also in ontology A the concept refered to in English by “school” and

“school building” may be referred to in German by “Schule” and “Schulgebäude”.

Ontology learning relies on ontology structures given along these lines and on input data as de-

scribed above in order to propose new knowledge about reasonably interesting concepts, relations,

lexical entries, or about links between these entities — proposing the addition, the deletion, or the

merging of some of them. The results of the ontology learning process are presented to the ontology

engineer by the graphical result set representation (cf. Figure 4 for an example of how extracted prop-

erties may be presented). The ontology engineer may then browse the results and decide to follow,

delete, or modify the proposals in accordance to the purpose of her task.

Components for Learning Ontologies

Integrating the considerations from above into a coherent generic architecture for extracting and main-

taining ontologies from data on the Web we have identified several core components. There are, (i),

a generic management component dealing with delegation of tasks and constituting the infrastructure

backbone, (ii), a resource processing component working on input data from the Web including, in

particular, a natural language processing system, (iii), an algorithm library working on the output

of the resource processing component as well as the ontology structures sketched above and return-

ing result sets also mentioned above and, (iv), the graphical user interface for ontology engineering,

OntoEdit.

Management component. The ontology engineer uses the management component to select input

data, i.e. relevant resources such as HTML & XML documents, document type definitions, databases,

or existing ontologies that are exploited in the further discovery process. Secondly, using the man-

agement component, the ontology engineer also chooses among a set of resource processing methods

available at the resource processing component and among a set of algorithms available in the algo-

rithm library.

Furthermore, the management component even supports the ontology engineer in discovering

task-relevant legacy data, e.g. an ontology-based crawler gathers HTML documents that are relevant

to a given core ontology and an RDF crawler follows URIs (i.e., unique identifiers in XML/RDF) that

are also URLs in order to cover parts of the so far tiny, but growing Semantic Web.
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Resource processing component. Resource processing strategies differ depending on the type of

input data made available:

� HTML documents may be indexed and reduced to free text.

� Semi-structured documents, like dictionaries, may be transformed into a predefined relational

structure.

� Semi-structured and structured schema data (like DTD’s, structured database schemata, and

existing ontologies) are handeled following different strategies for import as described later in

this paper.

� For processing free natural text our system accesses the natural language processing system

SMES (Saarbrücken Message Extraction System), a shallow text processor for German (cf.

[7]). SMES comprises a tokenizer based on regular expressions, a lexical analysis component

including various word lexicons, a morphological analysis module, a named entity recognizer,

a part-of-speech tagger and a chunk parser.

After first preprocessing according to one of these or similar strategies, the resource processing

module transforms the data into an algorithm-specific relational representation.

Algorithm Library. As described above an ontology may be described by a number of sets of

concepts, relations, lexical entries, and links between these entities. An existing ontology definition

(including L; C;HC ;R;HR;A;F ;G) may be acquired using various algorithms working on this def-

inition and the preprocessed input data. While specific algorithms may greatly vary from one type of

input to the next, there is also considerable overlap concerning underlying learning approaches like

association rules, formal concept analysis, or clustering. Hence, we may reuse algorithms from the

library for acquiring different parts of the ontology definition.

Subsequently, we introduce some of these algorithms available in our implementation. In general,

we use a multi-strategy learning and result combination approach, i.e. each algorithm that is plugged

into the library generates normalized results that adhere to the ontology structures sketched above and

that may be combined into a coherent ontology definition.
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Import & Reuse

Given our experiences in medicine, telecommunication, and insurance, we expect that for almost

any commercially significant domain there are some kind of domain conceptualizations available.

Thus, we need mechanisms and strategies to import & reuse domain conceptualizations from existing

(schema) structures. Thereby, the conceptualizations may be recovered, e.g., from legacy database

schemata, document-type definitions (DTDs), or from existing ontologies that conceptualize some

relevant part of the target ontology.

In the first part of the import & reuse step, the schema structures are identified and their general

content need to be discussed with domain experts. Each of these knowledge sources must be im-

ported separately. Import may be performed manually — which may include the manual definition of

transformation rules. Alternatively, reverse engineering tools, such as exist for recovering extended

entity-relationship diagrams from the SQL description of a given database (cf. reference [19, 11] in

survey, Table 1), may facilitate the recovery of conceptual structures.

In the second part of the import & reuse step, imported conceptual structures need to be merged

or aligned in order to constitute a single common ground from which to take-off into the subsequent

ontology learning phases of extracting, pruning and refining. While the general research issue con-

cerning merging and aligning is still an open problem, recent proposals (e.g., [8]) have shown how to

improve the manual process of merging/aligning. Existing methods for merging/aligning mostly rely

on matching heuristics for proposing the merge of concepts and similar knowledge-base operations.

Our current research also integrates mechanisms that use a application data oriented, bottom-up ap-

proach. For instance, formal concept analysis allows to discover patterns between application data on

the one hand and the usage of concepts and relations and the semantics given by their heterarchies

on the other hand in a formally concise way (cf. reference [7] in survey, Table 1, on formal concept

analysis).

Overall, the import and reuse step in ontology learning seems to be the one that is the hardest

to generalize. The task may remind vaguely of the general problems with data warehousing adding,

however, challenging problems of its own.
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Extracting Ontologies

In the ontology extraction phase of the ontology learning process, major parts, i.e. the complete on-

tology or large chunks reflecting a new subdomain of the ontology, are modeled with learning support

exploiting various types of (Web) sources. Thereby, ontology learning techniques partially rely on

given ontology parts. Thus, we here encounter an iterative model where previous revisions through

the ontology learning cycle may propel subsequent ones and more sophisticated algorithms may work

on structures proposed by more straightforward ones before.

Describing this phase, we sketch some of the techniques and algorithms that have been embedded

in our framework and implemented in our ontology learning environment Text-To-Onto (cf. Figure 3).

Doing so, we cover a very substantial part of the overall ontology learning task in the extraction

phase. Text-To-Onto proposes many different ontology components, which we have described above

(i.e. L; C;R; : : :), to the ontology engineer feeding on several types of input.

Figure 3: Screenshot of our Ontology Learning Workbench Text-To-Onto
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Lexical Entry & Concept Extraction. This technique is one of the baseline methods applied in our

framework for acquiring lexical entries with corresponding concepts. In Text-To-Onto, web documents

are morphologically processed, including the treatment of multi-word terms such as “database reverse

engineering” by N-grams, a simple statistics means. Based on this text preprocessing, term extraction

techniques, which are based on (weighted) statistical frequencies, are applied in order to propose new

lexical entries for L.

Often, the ontology engineer follows the proposal by the lexical entry & concept extraction mech-

anism and includes a new lexical entry in the ontology. Because the new lexical entry comes without

an associated concept, the ontology engineer must then decide (possibly with help from further pro-

cessing) whether to introduce a new concept or link the new lexical entry to an existing concept.

Hierarchical Concept Clustering. Given a lexicon and a set of concepts, one major next step is

the taxonomic classification of concepts. One generally applicable method with to this regard is

hierarchical clustering. Hierarchical clustering exploits the similarity of items in order to propose a

hierarchy of item categories. The similarity measure is defined on the properties of items.

Given the task of extracting a hierarchy from natural language text, adjacency of terms or syntacti-

cal relationships between terms are two properties that yield considerable descriptive power to induce

the semantic hierarchy of concepts related to these terms.

A sophisticated example for hierarchical clustering is given by Faure & Nedellec (cf. reference

[6] in survey, Table 1): They present a cooperative machine learning system, ASIUM, which acquires

taxonomic relations and subcategorization frames of verbs based on syntactic input. The ASIUM

system hierarchically clusters nouns based on the verbs that they are syntactically related with and vice

versa. Thus, they cooperatively extend the lexicon, the set of concepts, and the concept heterarchy

(L; C;HC).

Dictionary Parsing. Machine-readable dictionaries (MRD) are frequently available for many do-

mains. Though their internal structure is free text to a large extent, there are comparatively few

patterns that are used to give text definitions. Hence, MRDs exhibit a large degree of regularity that

may be exploited for extracting a domain conceptualization and proposing it to the ontology engineer.

Text-To-Onto has been used to generate a taxonomy of concepts from a machine-readable dictio-

nary of an insurance company (cf. reference [13] in survey, Table 1). Likewise to term extraction

from free text morphological processing is applied, this time however complementing several pattern-

10



matching heuristics. For example the dictionary contained the following entry:

Automatic Debit Transfer: Electronic service arising from a debit authorization of the

Yellow Account holder for a recipient to debit bills that fall due direct from the account..

Several heuristics were applied to the morphologically analyzed definitions. For instance, one

simple heuristic relates the definition term, here “automatic debit transfer”, with the first noun phrase

occurring in the definition, here “electronic service”. Their corresponding concepts are linked in the

heterarchy HC : HC(AUTOMATIC DEBIT TRANSFER, ELECTRONIC SERVICE). Applying this heuristic

iteratively, one may propose large parts of the target ontology, more precisely L; C and HC to the

ontology engineer. In fact, because verbs tend to be modeled as relations, R (and the linkage between

R and L) may be extended by this way, too.

Association Rules. Association rule learning algorithms are typically used for prototypical applica-

tions of data mining, like finding associations that occur between items, e.g. supermarket products, in

a set of transactions, e.g. customers’ purchases. The generalized association rule learning algorithm

extends its baseline by aiming at descriptions at the appropriate level of the taxonomy, e.g. “snacks

are purchased together with drinks” rather than “chips are purchased with beer” and “peanuts are

purchased with soda”.

In Text-To-Onto (cf. reference [14] in survey, Table 1) we use a modification of the generalized

association rule learning algorithm for discovering properties between classes. A given class hierarchy

HC serves as background knowledge. Pairs of syntactically related classes (e.g. pair(FESTIVAL,ISLAND)

describing the head-modifier relationship contained in the sentence “The festival on Usedom3 attracts

tourists from all over the world.”) are given as input to the algorithm. The algorithm generates asso-

ciation rules comparing the relevance of different rules while climbing up and/or down the taxonomy.

The appearingly most relevant binary rules are proposed to the ontology engineer for modeling rela-

tions into the ontology, thus extending R.

As the number of generated rules is typically high, we offer various modes of interaction. For

example, it is possible to restrict the number of suggested relations by defining so-called restriction

classes that have to participate in the relations that are extracted. Another way of focusing is the

flexible enabling / disabling of the use of taxonomic knowledge for extracting relations.
3Usedom is an island located in north-east of Germany in the Baltic Sea.
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Results are presented offering various views onto the results as depicted in Figure 4. A generalized

relation that may be induced by the partially given example data above may be the PROPERTY(EVENT,AREA),

which may be named by the ontology engineer as LOCATEDIN, viz. EVENTS are located in an AREA

(thus extending L and F ). The user may add the extracted relations to the ontology by drag-and-drop.

To explore and determine the right aggregation level of adding a relation to the ontology, the user

may browse the hierarchy view on extracted properties as given in the left part of Figure 4. This view

may also support the ontology engineer in defining appropriate SUBPROPERTYOF relations between

properties, such as SUBPROPERTYOF(HASDOUBLEROOM,HASROOM) (thereby extending HR).

Figure 4: Result Presentation in Text-To-Onto

Pruning the Ontology

A common theme of modeling in various disciplines is the balance between completeness and scarcity

of the domain model. It is a widely held belief that targeting completeness for the domain model on

the one hand appears to be practically inmanagable and computationally intractable, and targeting the

scarcest model on the other hand is overly limiting with regard to expressiveness. Hence, what we

strive for is the balance between these two, which is really working. We aim at a model that captures

a rich conceptualization of the target domain, but that excludes parts that are out of its focus. The

import & reuse of ontologies as well as the extraction of ontologies considerably pull the lever of
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the scale into the imbalance where out-of-focus concepts reign. Therefore, we pursue the appropriate

diminishing of the ontology in the pruning phase.

There are at least two dimensions to look at the problem of pruning. First, one needs to clarify

how the pruning of particular parts of the ontology (e.g., the removal of a concept or a relation) affects

the rest. For instance, Peterson et. al. [9] have described strategies that leave the user with a coher-

ent ontology (i.e. no dangling or broken links). Second, one may consider strategies for proposing

ontology items that should be either kept or pruned. We have investigated several mechanisms for

generating proposals from application data Given a set of application-specific documents there are

several strategies for pruning the ontology. They are based on absolute or relative counts of frequency

of terms (cf. reference [13] in survey, Table 1).

Refining the Ontology

Refining plays a similar role as extracting. Their difference exists rather on a sliding scale than by a

clear-cut distinction. While extracting serves mostly for cooperative modeling of the overall ontology

(or at least of very significant chunks of it), the refinement phase is about fine tuning the target ontol-

ogy and the support of its evolving nature. The refinement phase may use data that comes from the

concrete Semantic Web application, e.g. log files of user queries or generic user data. Adapting and

refining the ontology with respect to user requirements plays a major role for the acceptance of the

application and its further development.

In principle, the same algorithms may be used for extraction as for refinement. However, during

refinement one must consider in detail the existing ontology and the existing connections into the

ontology, while extraction works more often than not practically from scratch.

A prototypical approach for refinement (though not for extraction!) has been presented by Hahn

& Schnattinger (cf. reference [8] in survey, Table 1). They have introduced a methodology for au-

tomating the maintenance of domain-specific taxonomies. An ontology is incrementally updated as

new concepts are acquired from text. The acquisition process is centered around the linguistic and

conceptual “quality” of various forms of evidence underlying the generation and refinement of con-

cept hypothesis. In particular they consider semantic conflicts and analogous semantic structures from

the knowledge base into the ontology in order to determine the quality of a particular proposal. Thus,

they extend an existing ontology with new lexical entries for L, new concepts for C and new relations
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for HC .

Challenges

Ontology Learning may add significant leverage to the Semantic Web, because it propels the construc-

tion of domain ontologies, which are needed fastly and cheaply for the Semantic Web to succeed. We

have presented a comprehensive framework for Ontology Learning that crosses the boundaries of

single disciplines, touching on a number of challenges. Table 1 gives a survey of what types of tech-

niques should be included in a full-fledged ontology learning and engineering environment. The good

news however is that one does not need perfect or optimal support for cooperative modeling of ontolo-

gies. At least according to our experience “cheap” methods in an integrated environment may yield

tremendous help for the ontology engineer.

While a number of problems remain with the single disciplines, some more challenges come

up regarding the particular problem of Ontology Learning for the Semantic Web. First, with the

XML-based namespace mechanisms the notion of an ontology with well-defined boundaries, e.g.

only definitions that are in one file, will disappear. Rather, the Semantic Web may yield an “amoeba-

like” structure regarding ontology boundaries, because ontologies refer to each other and import each

other (cf. e.g. the DAML-ONT primitive import). However, it is not yet clear how the semantics

of these structures will look like. In light of these facts the importance of methods like ontology

pruning and crawling of ontologies will drastically increase still. Second, we have so far restricted

our attention in ontology learning to the conceptual structures that are (almost) contained in RDF(S)

proper. Additional semantic layers on top of RDF (e.g. future OIL or DAML-ONT with axioms, A)

will require new means for improved ontology engineering with axioms, too!
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the IST-1999-10132 project “On-To-Knowledge”, and by German BMBF in the project “GETESS”
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Table 1: Survey of Ontology Learning Approaches

Until recently ontology learning per se, i.e. for comprehensive construction of ontologies, has not existed.
However, much work in a number of disciplines — computational linguistics, information retrieval, machine
learning, databases, software engineering — has actually researched and practiced techniques for solving part
of the overall problem. Hence, techniques and methods relevant for ontology learning may be found under
terms like

� Acquisition of selectional restrictions: Resnik [17] and Basili et al. [2]

� Word sense disambiguation and learning of word senses: Hastings [20]

� Computation of concept lattices from formal contexts: Ganter & Wille [7]

� Reverse Engineering in software engineering: Mueller et al. [16]

Ontology Learning puts a number of research activities, which focus on different types of inputs, but share their
target of a common domain conceptualization, into one perspective. One may recognize that these activities are
spread between very many communities incurring references from 20 completely different events / journals:

Domain Method Features used Prime purpose Papers

Free Text Clustering Syntax Extract Buitelaar [3], Assadi [1]
and Faure & Nedellec [6]

Inductive Logic
Programming

Syntax, Logic
representation

Extract Esposito et al. [5]

Association rules Syntax, Tokens Extract Maedche & Staab [14]
Frequency-based Syntax Prune Kietz et al. [13]
Pattern-Matching Extract Morin [15]
Classification Syntax, Seman-

tics
Refine Schnattinger & Hahn [8]

Dictionary Information
extraction

Syntax Extract Hearst [9], Wilks [21] and
Kietz et al. [13]

Page rank Tokens Jannink & Wiederhold [10]

Knowledge
base

Concept Induc-
tion, A-Box
mining

Relations Extract Kietz & Morik [12] and
Schlobach [18]

Semi-
structured
schemata

Naive Bayes Relations Reverse engi-
neering

Doan et al. [4]

Relational
schemata

Data Correlation Relations Reverse engi-
neering

Johannesson [11] and Tari
et al. [19]
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