
Ontology Matching: A Machine Learning

Approach

AnHai Doan1?, Jayant Madhavan2, Pedro Domingos2, and Alon Halevy2

1 Department of Computer Science
University of Illinois, Urbana-Champaign, IL, U.S.A.
anhai@cs.uiuc.edu

2 Department of Computer Science and Engineering
University of Washington, Seattle, WA, U.S.A.
{jayant,pedrod,alon}@cs.washington.edu

This chapter studies ontology matching : the problem of finding the seman-
tic mappings between two given ontologies. This problem lies at the heart of
numerous information processing applications. Virtually any application that
involves multiple ontologies must establish semantic mappings among them,
to ensure interoperability. Examples of such applications arise in myriad do-
mains, including e-commerce, knowledge management, e-learning, information
extraction, bio-informatics, web services, and tourism (see Part D of this book
on ontology applications).

Despite its pervasiveness, today ontology matching is still largely con-
ducted by hand, in a labor-intensive and error-prone process. The manual
matching has now become a key bottleneck in building large-scale informa-
tion management systems. The advent of technologies such as the WWW,
XML, and the emerging Semantic Web will further fuel information sharing
applications and exacerbate the problem. Hence, the development of tools to
assist in the ontology matching process has become crucial for the success of
a wide variety of information management applications.

In response to the above challenge, we have developed GLUE, a system that
employs learning techniques to semi-automatically create semantic mappings
between ontologies. We shall begin the chapter by describing a motivating ex-
ample: ontology matching on the Semantic Web. Then we present our GLUE
solution. Finally, we describe a set of experiments on several real-world do-
mains, and show that GLUE proposes highly accurate semantic mappings.

1 A Motivating Example: the Semantic Web

The current World-Wide Web has well over 1.5 billion pages [2], but the
vast majority of them are in human-readable format only (e.g., HTML). As

? Work done while the author was at the University of Washington, Seattle

2 AnHai Doan et al.

a consequence software agents (softbots) cannot understand and process this
information, and much of the potential of the Web has so far remained un-
tapped.

In response, researchers have created the vision of the Semantic Web [5],
where data has structure and ontologies describe the semantics of the data.
When data is marked up using ontologies, softbots can better understand the
semantics and therefore more intelligently locate and integrate data for a wide
variety of tasks. The following example illustrates the vision of the Semantic
Web.

Example 1. Suppose you want to find out more about someone you met at a
conference. You know that his last name is Cook, and that he teaches Com-
puter Science at a nearby university, but you do not know which one. You
also know that he just moved to the US from Australia, where he had been an
associate professor at his alma mater.

On the World-Wide Web of today you will have trouble finding this person.
The above information is not contained within a single Web page, thus making
keyword search ineffective. On the Semantic Web, however, you should be able
to quickly find the answers. A marked-up directory service makes it easy for
your personal softbot to find nearby Computer Science departments. These
departments have marked up data using some ontology such as the one in
Figure 1.a. Here the data is organized into a taxonomy that includes courses,
people, and professors. Professors have attributes such as name, degree, and
degree-granting institution. Such marked-up data makes it easy for your softbot
to find a professor with the last name Cook. Then by examining the attribute
“granting institution”, the softbot quickly finds the alma mater CS department
in Australia. Here, the softbot learns that the data has been marked up using an
ontology specific to Australian universities, such as the one in Figure 1.b, and
that there are many entities named Cook. However, knowing that “associate
professor” is equivalent to “senior lecturer”, the bot can select the right subtree
in the departmental taxonomy, and zoom in on the old homepage of your
conference acquaintance. 2

The Semantic Web thus offers a compelling vision, but it also raises many
difficult challenges. Researchers have been actively working on these chal-
lenges, focusing on fleshing out the basic architecture, developing expressive
and efficient ontology languages, building techniques for efficient marking up
of data, and learning ontologies (e.g., [15, 7, 29, 22, 3]).

A key challenge in building the Semantic Web, one that has received rel-
atively little attention, is finding semantic mappings among the ontologies.
Given the de-centralized nature of the development of the Semantic Web,
there will be an explosion in the number of ontologies. Many of these on-
tologies will describe similar domains, but using different terminologies, and
others will have overlapping domains. To integrate data from disparate on-
tologies, we must know the semantic correspondences between their elements

Ontology Matching: A Machine Learning Approach 3
CS Dept US CS Dept Australia

UnderGrad
Courses

Grad
Courses

Courses StaffPeople

StaffFaculty

Assistant
Professor

Associate
Professor

Professor

Technical StaffAcademic Staff

Lecturer
Senior

Lecturer
Professor

- name
- degree
- granting-institution

- first-name
- last-name
- education

R.Cook
Ph.D.
Univ. of Sydney

K. Burn
Ph.D.
Univ. of Michigan

(a) (b)

Fig. 1. Computer Science Department Ontologies

[5, 34]. For example, in the conference-acquaintance scenario described ear-
lier, in order to find the right person, your softbot must know that “associate
professor” in the US corresponds to “senior lecturer” in Australia. Thus, the
semantic correspondences are in effect the “glue” that hold the ontologies to-
gether into a “web of semantics”. Without them, the Semantic Web is akin
to an electronic version of the Tower of Babel. Unfortunately, manually spec-
ifying such correspondences is time-consuming, error-prone [27], and clearly
not possible on the Web scale. Hence, the development of tools to assist in
ontology mapping is crucial to the success of the Semantic Web [34].

2 Overview of Our Solution

In response to the challenge of ontology matching on the Semantic Web and
in numerous other application contexts, we have developed the GLUE system,
which applies machine learning techniques to semi-automatically create se-
mantic mappings. Since taxonomies are central components of ontologies, we
focus first on finding correspondences among the taxonomies of two given on-
tologies: for each concept node in one taxonomy, find the most similar concept
node in the other taxonomy.

The first issue we address is the meaning of similarity between two con-
cepts. Clearly, many different definitions of similarity are possible, each being
appropriate for certain situations. Our approach is based on the observation
that many practical measures of similarity can be defined based solely on
the joint probability distribution of the concepts involved. Hence, instead of
committing to a particular definition of similarity, GLUE calculates the joint
distribution of the concepts, and lets the application use the joint distribution
to compute any suitable similarity measure. Specifically, for any two concepts
A and B, the joint distribution consists of P (A,B), P (A,B), P (A,B), and
P (A,B), where a term such as P (A,B) is the probability that an instance in
the domain belongs to concept A but not to concept B.

The second challenge is then computing the joint distribution of concepts A
and B. Under certain general assumptions (discussed in Section 5), a term such
as P (A,B) can be approximated as the fraction of instances that belong to

4 AnHai Doan et al.

both A and B (in the data associated with the taxonomies or, more generally,
in the probability distribution that generated it). Hence, the problem reduces
to deciding for each instance if it belongs to A ∩ B. However, the input to
our problem includes instances of A and instances of B in isolation. GLUE
addresses this problem using machine learning techniques as follows: it uses
the instances of A to learn a classifier for A, and then classifies instances of
B according to that classifier, and vice-versa. Hence, we have a method for
identifying instances of A ∩ B.

Applying machine learning to our context raises the question of which
learning algorithm to use and which types of information to use in the learning
process. Many different types of information can contribute toward deciding
the membership of an instance: its name, value format, the word frequencies
in its value, and each of these is best utilized by a different learning algorithm.
GLUE uses a multi-strategy learning approach [11]: we employ a set of learners,
then combine their predictions using a meta-learner. In previous work [11] we
have shown that multi-strategy learning is effective in the context of mapping
between database schemas.

Finally, GLUE attempts to exploit available domain constraints and gen-
eral heuristics in order to improve matching accuracy. An example heuristic is
the observation that two nodes are likely to match if nodes in their neighbor-
hood also match. An example of a domain constraint is “if node X matches
Professor and node Y is an ancestor of X in the taxonomy, then it is un-
likely that Y matches Assistant-Professor”. Such constraints occur frequently
in practice, and heuristics are commonly used when manually mapping be-
tween ontologies. Previous works have exploited only one form or the other of
such knowledge and constraints, in restrictive settings [28, 25, 20, 24]. Here,
we develop a unifying approach to incorporate all such types of information.
Our approach is based on relaxation labeling, a powerful technique used ex-
tensively in the vision and image processing community [16], and successfully
adapted to solve matching and classification problems in natural language
processing [30] and hypertext classification [9].

We observe that the GLUE system is just one piece of a more complete
ontology matching solution. We envisage any such tool to have a significant
user-interaction component. Semantic mappings can often be highly subjective
and depend on choice of target application, and can be more complex expres-
sions than the simple correspondences produced by GLUE. User-interaction is
invaluable and indispensable in such cases. We however do not address this
in our solution. The automated support that GLUE will provide to a more
complete tool will however very significantly reduce the effort required of any
user, and in many cases reduce it to just mapping validation rather than
construction.

In the rest of this chapter, we define the ontology-matching (section 3),
discuss our approach to measuring similarity (section 4), and then describe the
GLUE system (sections 5-6). We then present some experimental validation of

Ontology Matching: A Machine Learning Approach 5

our approach (section 7). We conclude with a review of related work (section 8)
and avenues for future work (section 9).

3 Ontology Matching

For our purpose, an ontology specifies a conceptualization of a domain in
terms of concepts, attributes, and relations [14]. The concepts provided model
entities of interest in the domain. They are typically organized into a taxonomy
tree where each node represents a concept and each concept is a specialization
of its parent. Figure 1 shows two sample taxonomies for the CS department
domain (which are simplifications of real ones).

Each concept in a taxonomy is associated with a set of instances. By
the taxonomy’s definition, the instances of a concept are also instances of
an ancestor concept. For example, instances of Assistant-Professor, Associate-
Professor, and Professor in Figure 1.a are also instances of Faculty and People.

Each concept is also associated with a set of attributes. For example, the
concept Associate-Professor in Figure 1.a has the attributes name, degree, and
granting-institution. An ontology also defines a set of relations among its con-
cepts. For example, a relation AdvisedBy(Student,Professor) might list all in-
stance pairs of Student and Professor such that the former is advised by the
latter.

Many formal languages to specify ontologies have been proposed for the
Semantic Web, such as OIL, DAML+OIL, SHOE, and RDF [7, 1, 15, 6].
Though these languages differ in their terminologies and expressiveness, the
ontologies that they model essentially share the same features we described
above.

Given two ontologies, the ontology-matching problem is to find seman-
tic mappings between them. The simplest type of mapping is a one-to-one
(1-1) mapping between the elements, such as “Associate-Professor maps to
Senior-Lecturer”, and “degree maps to education”. Notice that mappings be-
tween different types of elements are possible, such as “the relation Ad-
visedBy(Student,Professor) maps to the attribute advisor of the concept Stu-
dent”. Examples of more complex types of mapping include “name maps to
the concatenation of first-name and last-name”, and “the union of Undergrad-
Courses and Grad-Courses maps to Courses”. In general, a mapping may be
specified as a query that transforms instances in one ontology into instances
in the other [8].

In this chapter we focus on finding 1-1 mappings between the taxonomies.
This is because taxonomies are central components of ontologies, and success-
fully matching them would greatly aid in matching the rest of the ontologies.
Extending matching to attributes and relations and considering more complex
types of matching is the subject of ongoing research.

There are many ways to formulate a matching problem for taxonomies.
The specific problem that we consider is as follows: given two taxonomies and
their associated data instances, for each node (i.e., concept) in one taxonomy,

6 AnHai Doan et al.

find the most similar node in the other taxonomy, for a pre-defined similarity
measure. This is a very general problem setting that makes our approach
applicable to a broad range of common ontology-related problems, such as
ontology integration and data translation among the ontologies.

4 Similarity Measures

To match concepts between two taxonomies, we need a measure of similarity.
We first identify some desiderata for any such similarity measure.

First, we would like the similarity measures to be well-defined. A well-
defined measure will facilitate the evaluation of our system. It also makes
clear to the users what the system means by a match, and helps them figure
out whether the system is applicable to a given matching scenario. Further-
more, a well-defined similarity notion may allow us to leverage special-purpose
techniques for the matching process.

Second, we want the similarity measures to correspond to our intuitive
notions of similarity. In particular, they should depend only on the semantic
content of the concepts involved, and not on their syntactic specification.

Finally, we note that many reasonable similarity measures exist, each being
appropriate to certain situations. For example, in searching for your conference
acquaintance, your softbot should use an “exact” similarity measure that maps
Associate-Professor into Senior Lecturer, an equivalent concept. However, if the
softbot has some postprocessing capabilities that allow it to filter data, then it
may tolerate a “most-specific-parent” similarity measure that maps Associate-
Professor to Academic-Staff, a more general concept. Hence, to maximize our
system’s applicability, we would like it to be able to handle a broad variety of
similarity measures.

Most existing works in ontology (and schema) matching do not satisfy the
above motivating criteria. Many works implicitly assume the existence of a
similarity measure, but never define it. Others define similarity measures based
on the syntactic clues of the concepts involved. For example, the similarity of
two concepts might be computed as the dot product of the two TF/IDF (Term
Frequency/Inverse Document Frequency) vectors representing the concepts,
or a function based on the common tokens in the names of the concepts.
Such similarity measures are problematic because they depend not only on
the concepts involved, but also on their syntactic specifications.

4.1 Distribution-based Similarity Measures

We use joint probability distributions as a framework for multiple well-defined
similarity measures. Consider modeling each concept as a set of instances ,
taken from a universe of instances. In the CS domain, for example, the uni-
verse consists of all entities of interest in that world: professors, assistant
professors, students, courses, and so on. The concept Professor is then the
set of all instances in the universe that are professors. Given this model,
the notion of the joint probability distribution between any two concepts A

Ontology Matching: A Machine Learning Approach 7

and B is well defined. This distribution consists of the four probabilities:
P (A,B), P (A,B), P (A,B), and P (A,B). A term such as P (A,B) is the prob-
ability that a randomly chosen instance from the universe belongs to A but
not to B, and is computed as the fraction of the universe that belongs to A
but not to B.

Many practical similarity measures can be defined based on the joint dis-
tribution of the concepts involved. For instance, a possible definition for the
“exact” similarity measure mentioned in the previous section is

Jaccard-sim(A, B) = P (A ∩ B)/P (A ∪ B) =
P (A, B)

P (A, B) + P (A, B) + P (A, B)
(1)

This similarity measure is known as the Jaccard coefficient [35]. It takes the
lowest value 0 when A and B are disjoint, and the highest value 1 when A
and B are the same concept. We use this measure in most of our experiments.

A definition for the “most-specific-parent” similarity measure is

MSP (A, B) =

{

P (A|B) if P (B|A) = 1
0 otherwise

(2)

where the probabilities P (A|B) and P (B|A) can be trivially expressed in
terms of the four joint probabilities. This definition states that if B subsumes
A, then the more specific B is, the higher P (A|B), and thus the higher the
similarity value MSP (A,B) is. Thus it suits the intuition that the most spe-
cific parent of A in the taxonomy is the smallest set that subsumes A.

Instead of trying to estimate specific similarity values directly, GLUE fo-
cuses on computing the joint distributions. Then, it is possible to compute
any of the above mentioned similarity measures as a function over the joint
distributions.

5 The GLUE Architecture

The basic architecture of GLUE is shown in Figure 2. It consists of three
main modules: Distribution Estimator, Similarity Estimator, and Relaxation
Labeler.

The Distribution Estimator takes as input two taxonomies O1 and O2, to-
gether with their data instances. Then it applies machine learning techniques
to compute for every pair of concepts 〈A ∈ O1, B ∈ O2〉 their joint probabil-
ity distribution: the four numbers P (A,B), P (A,B), P (A,B), and P (A,B).
Thus a total of 4|O1||O2| numbers will be computed, where |Oi| is the num-
ber of nodes (i.e., concepts) in taxonomy Oi. The Distribution Estimator uses
a set of base learners and a meta-learner. We describe the learners and the
motivation behind them in Section 5.2.

Next, the above numbers are fed into the Similarity Estimator, which
applies a user-supplied similarity function (such as the ones in Equations 1
or 2) to compute a similarity value for each pair of concepts 〈A ∈ O1, B ∈ O2〉.
The output from this module is a similarity matrix between the concepts in
the two taxonomies.

8 AnHai Doan et al.

Relaxation Labeler

Similarity Estimator

Taxonomy O2

(tree structure + data instances)
Taxonomy O1

(tree structure + data instances)

Base Learner Lk

Meta Learner M

Base Learner L1

Joint Distributions: P(A,B), P(A, notB), ...

Similarity Matrix

Mappings for O1 , Mappings for O2

Similarity function

Common knowledge &
Domain constraints

Distribution
Estimator

Fig. 2. The GLUE Architecture

The Relaxation Labeler module uses the similarity matrix and, together
with domain-specific constraints and heuristic knowledge, searches for the
mapping configuration that best satisfies the domain constraints and the com-
mon knowledge. This mapping configuration is the output of GLUE.

We first describe the Distribution Estimator. The Similarity Estimator is
trivial because it simply applies a user-defined function to compute the simi-
larity of two concepts from their joint distribution, and hence is not discussed
further. Section 6 describes the Relaxation Labeler.

5.1 The Distribution Estimator

Consider computing the value of P (A,B). This joint probability can be com-
puted as the fraction of the instance universe that belongs to both A and B.
In general we cannot compute this fraction because we do not know every
instance in the universe. Hence, we must estimate P (A,B) based on the data
we have, namely, the instances of the two input taxonomies. Note that the
instances that we have for the taxonomies may be overlapping, but are not
necessarily so.

R

A C D

E F

G

B H

I J
t1, t2 t3, t4

t5 t6, t7
t1, t2, t3, t4

t5, t6, t7

Trained
Learner L

s2, s3 s4

s1
s5, s6

s1, s2, s3, s4

s5, s6

L s1, s3 s2, s4

s5 s6

Taxonomy O2

U2

U1

not A

not A,B

Taxonomy O1

U2
not B

U1
A

U2
B

U2
A,not B

U2
not A,not B

U2
A,B

(b) (c) (d) (e) (f)(a)

Fig. 3. Estimating the joint distribution of concepts A and B

To estimate P (A,B), we make the general assumption that the set of
instances of each input taxonomy is a representative sample of the instance

Ontology Matching: A Machine Learning Approach 9

universe covered by the taxonomy.3 We denote by Ui the set of instances given
for taxonomy Oi, by N(Ui) the size of Ui, and by N(UA,B

i) the number of
instances in Ui that belong to both A and B.

With the above assumption, P (A,B) can be estimated by the equation:

P (A, B) = [N(UA,B
1) + N(UA,B

2)] / [N(U1) + N(U2)], (3)

Computing P (A,B) then reduces to computing N(UA,B
1

) and N(UA,B
2

). Con-

sider N(UA,B
2

). We can compute this quantity if we know for each instance s
in U2 whether it belongs to both A and B. One part is easy: we already know
whether s belongs to B – if it is explicitly specified as an instance of B or of
any descendant node of B. Hence, we only need to decide whether s belongs
to A.

This is where we use machine learning. Specifically, we partition U1, the
set of instances of ontology O1, into the set of instances that belong to A and
the set of instances that do not belong to A. Then, we use these two sets as
positive and negative examples, respectively, to train a classifier for A. Finally,
we use the classifier to predict whether instance s belongs to A.

In summary, we estimate the joint probability distribution of A and B as
follows (the procedure is illustrated in Figure 3):

1. Partition U1, into UA
1

and UA
1

, the set of instances that do and do not
belong to A, respectively (Figures 3.a-b).

2. Train a learner L for instances of A, using UA
1

and UA
1

as the sets of
positive and negative training examples, respectively.

3. Partition U2, the set of instances of taxonomy O2, into UB
2

and UB
2

, the set
of instances that do and do not belong to B, respectively (Figures 3.d-e).

4. Apply learner L to each instance in UB
2

(Figure 3.e). This partitions UB
2

into the two sets UA,B
2

and UA,B
2

shown in Figure 3.f. Similarly, applying

L to UB
2

results in the two sets UA,B
2

and UA,B
2

.
5. Repeat Steps 1-4, but with the roles of taxonomies O1 and O2 being

reversed, to obtain the sets UA,B
1

, UA,B
1

, UA,B
1

, and UA,B
1

.
6. Finally, compute P (A,B) using Formula 3. The remaining three joint

probabilities are computed in a similar manner, using the sets UA,B
2

, . . . , UA,B
1

computed in Steps 4-5.

By applying the above procedure to all pairs of concepts 〈A ∈ O1, B ∈ O2〉
we obtain all joint distributions of interest.

5.2 Multi-Strategy Learning

Given the diversity of machine learning methods, the next issue is deciding
which one to use for the procedure we described above. A key observation

3 This is a standard assumption in machine learning and statistics, and seems
appropriate here, unless the available instances were generated in some unusual
way.

10 AnHai Doan et al.

in our approach is that there are many different types of information that a
learner can glean from the training instances, in order to make predictions.
It can exploit the frequencies of words in the text value of the instances, the
instance names , the value formats , the characteristics of value distributions,
and so on.

Since different learners are better at utilizing different types of information,
GLUE follows [11] and takes a multi-strategy learning approach. In Step 2 of the
above estimation procedure, instead of training a single learner L, we train a
set of learners L1, . . . , Lk, called base learners. Each base learner exploits well
a certain type of information from the training instances to build prediction
hypotheses. Then, to classify an instance in Step 4, we apply the base learners
to the instance and combine their predictions using a meta-learner. This way,
we can achieve higher classification accuracy than with any single base learner
alone, and therefore better approximations of the joint distributions.

The current implementation of GLUE has two base learners, Content
Learner and Name Learner, and a meta-learner that is a linear combination
of the base learners. We now describe these learners in detail.

The Content Learner: This learner exploits the frequencies of words in
the textual content of an instance to make predictions. Recall that an instance
typically has a name and a set of attributes together with their values. In the
current version of GLUE, we do not handle attributes directly; rather, we treat
them and their values as the textual content of the instance4. For example,
the textual content of the instance “Professor Cook” is “R. Cook, Ph.D.,
University of Sidney, Australia”. The textual content of the instance “CSE
342” is the text content of this course’ homepage.

The Content Learner employs the Naive Bayes learning technique [13], one
of the most popular and effective text classification methods. In [12] we give
a detailed description of the working of this learner. In general, it applies well
to long textual elements, such as course descriptions, or elements with very
distinct and descriptive values, such as color (red, blue, green, etc.). It is less
effective with short, numeric elements such as course numbers or credits.

The Name Learner: This learner is similar to the Content Learner, but
makes predictions using the full name of the input instance, instead of its
content . The full name of an instance is the concatenation of concept names
leading from the root of the taxonomy to that instance. For example, the full
name of instance with the name s4 in taxonomy O2 (Figure 3.d) is “G B J
s4”. This learner works best on specific and descriptive names. It does not do
well with names that are too vague or vacuous.

The Meta-Learner: The predictions of the base learners are combined
using the meta-learner. The meta-learner assigns to each base learner a learner

4 However, more sophisticated learners can be developed that deal explicitly with
the attributes, such as the XML Learner in [11].

Ontology Matching: A Machine Learning Approach 11

weight that indicates how much it trusts that learner’s predictions. Then it
combines the base learners’ predictions via a weighted sum.

For example, suppose the weights of the Content Learner and the Name
Learner are 0.6 and 0.4, respectively. Suppose further that for instance s4 of
taxonomy O2 (Figure 3.d) the Content Learner predicts A with probability 0.8
and A with probability 0.2, and the Name Learner predicts A with probability
0.3 and A with probability 0.7. Then the Meta-Learner predicts A with prob-
ability 0.8 ·0.6+0.3 ·0.4 = 0.6 and A with probability 0.2 ·0.6+0.7 ·0.4 = 0.4.

In the presented results (section 7), the learner weights are set manually
based on the characteristics of the base learners and the taxonomies. However,
they can also be set automatically using a machine learning approach called
stacking [36, 33], as we have shown in [11].

6 Exploiting constraints and heuristic knowledge

The Relaxation Labeler takes the similarity matrix from the Similarity Esti-
mator, and searches for the mapping configuration that best satisfies the given
domain constraints and heuristic knowledge. We first describe relaxation la-
beling, then discuss the domain constraints and heuristic knowledge employed
in our approach.

6.1 Relaxation Labeling

Relaxation labeling is an efficient technique to solve the problem of assigning
labels to nodes of a graph, given a set of constraints. The key idea behind this
approach is that the label of a node is typically influenced by the features of
the node’s neighborhood in the graph. Examples of such features are the labels
of the neighboring nodes, the percentage of nodes in the neighborhood that
satisfy a certain criterion, and the fact that a certain constraint is satisfied or
not.

This influence of a node’s neighborhood on its label can be quantified using
a formula for the probability of each label as a function of the neighborhood
features. This is exploited in Relaxation labeling. Nodes are assigned initial
labels based solely on their intrinsic properties. Then iterative local optimiza-
tion is performed. In each iteration the formula is used to re-estimate the
label of a node based on the features of its neighborhood. This continues until
labels do not change from one iteration to the next, or some other convergence
criterion is reached.

Relaxation labeling appears promising for our purposes because it has been
applied successfully to similar matching problems in computer vision, natural
language processing, and hypertext classification [16, 30, 9]. It is relatively
efficient, and can handle a broad range of constraints. Even though its con-
vergence properties are not yet well understood (except in certain cases) and
it is liable to converge to a local maxima, in practice it has been found to
perform quite well [30, 9].

12 AnHai Doan et al.

Consider the problem of mapping from taxonomy O1 to taxonomy O2. We
regard nodes (concepts) in O2 as labels, and recast the problem as finding the
best label assignment to nodes (concepts) in O1, given all knowledge we have
about the domain and the two taxonomies.

Our goal is to derive a formula for updating the probability that a node
takes a label based on the features of the neighborhood. Let X be a node
in taxonomy O1, and L be a label (i.e., a node in O2). Let ∆K represent
all that we know about the domain, namely, the tree structures of the two
taxonomies, the sets of instances, and the set of domain constraints. Then we
have the following conditional probability

P (X = L|∆K) =
∑

MX

P (X = L, MX |∆K) =
∑

MX

P (X = L|MX , ∆K)P (MX |∆K) (4)

where the sum is over all possible label assignments MX to all nodes other
than X in taxonomy O1. Making the simplifying assumption that the nodes’
label assignments are independent of each other given ∆K , we have

P (MX |∆K) =
∏

(Xi=Li)∈MX

P (Xi = Li|∆K) (5)

Consider P (X = L|MX ,∆K). MX and ∆K constitutes all that we know
about the neighborhood of X. Suppose now that the probability of X get-
ting label L depends only on the values of n features of this neighborhood,
where each feature is a function fi(MX ,∆K , X, L). As we explain later in
this section, each such feature corresponds to one of the heuristics or domain
constraints that we wish to exploit. Then

P (X = L|MX , ∆K) = P (X = L|f1, . . . , fn) (6)

If we have access to previously-computed mappings between taxonomies in
the same domain, we can use them as the training data from which to esti-
mate P (X = L|f1, . . . , fn) (see [9] for an example of this in the context of
hypertext classification). However, here we will assume that such mappings
are not available. Hence we use alternative methods to quantify the influence
of the features on the label assignment. In particular, we use the sigmoid or
logistic function σ(x) = 1/(1 + e−x), where x is a linear combination of the
features fk, to estimate the above probability. This function is widely used to
combine multiple sources of evidence [4]. Thus:

P (X = L|f1, . . . , fn) ∝ σ(α1 · f1 + · · · + αn · fn) (7)

where ∝ denotes “proportional to”, and the weight αk indicates the impor-
tance of feature fk.

The sigmoid is essentially a smoothed threshold function, which makes it
a good candidate for use in combining evidence from the different features. If
the total evidence is below a certain value, it is unlikely that the nodes match;
above this threshold, they probably do.

By substituting Equations 5-7 into Equation 4, we obtain

Ontology Matching: A Machine Learning Approach 13

P (X = L|∆K) ∝
∑

MX

σ

(

n
∑

k=1

αkfk(MX , ∆K , X, L)

)

×
∏

(Xi=Li)∈MX

P (Xi = Li|∆K) (8)

The proportionality constant is found by renormalizing the probabilities of all
the labels to sum to one. Notice that this equation expresses the probabilities
P (X = L|∆K) for the various nodes in terms of each other. This is the
iterative equation that we use for relaxation labeling.

In our implementation, we optimized relaxation labeling for efficiency in a
number of ways that take advantage of the specific structure of the ontology
matching problem. Space limitations preclude discussing these optimizations
here, but see Section 7 for a discussion on the running time of this module.

6.2 Constraints

Table 1 shows examples of the constraints currently used in our approach
and their characteristics. We distinguish between two types of constraints:
domain-independent and -dependent constraints. Domain-independent con-
straints convey our general knowledge about the interaction between related
nodes. Perhaps the most widely used such constraint is the Neighborhood Con-
straint: “two nodes match if nodes in their neighborhood also match”, where
the neighborhood is defined to be the children, the parents, or both [28, 20, 25]
(see Table 1). Another example is the Union Constraint: “if all children of a
node A match node B, then A also matches B”. This constraint is specific
to the taxonomy context. It exploits the fact that A is the union of all its
children. Domain-dependent constraints convey our knowledge about the in-
teraction between specific nodes in the taxonomies. Table 1 shows examples
of three types of domain-dependent constraints.

Constraint Types Examples

Neighborhood
Two nodes match if their children also match.
Two nodes match if their parents match and at least x% of their children also match.
Two nodes match if their parents match and some of their descendants also match.

D

om
ai

n-

In
de

pe
nd

en
t

Union If all children of node X match node Y, then X also matches Y.

Subsumption
If node Y is a descendant of node X, and Y matches PROFESSOR, then it is unlikely that X matches ASST PROFESSOR.
If node Y is NOT a descendant of node X, and Y matches PROFESSOR, then it is unlikely that X matches FACULTY.

Frequency There can be at most one node that matches DEPARTMENT CHAIR.

D
om

ai
n

-D
ep

en
de

nt

Nearby
If a node in the neighborhood of node X matches ASSOC PROFESSOR, then the chance that X matches PROFESSOR is
increased.

Table 1. Examples of constraints that can be used to improve matching accuracy.

To incorporate the constraints into the relaxation labeling process, we
model each constraint ci as a feature fi of the neighborhood of node X.
For example, consider the constraint c1: “two nodes are likely to match if
their children match”. To model this constraint, we introduce the feature
f1(MX ,∆K , X, L) that is the percentage of X’s children that match a child
of L, under the given MX mapping. Thus f1 is a numeric feature that takes
values from 0 to 1. Next, we assign to fi a positive weight αi. This has the

14 AnHai Doan et al.

intuitive effect that, all other things being equal, the higher the value fi (i.e.,
the percentage of matching children), the higher the probability of X matching
L is. In [12] we give additional examples of modeling constraints.

7 Empirical Evaluation

We have evaluated GLUE on several real-world domains. Our goals were to
evaluate the matching accuracy of GLUE, to measure the relative contribution
of the different components of the system, and to verify that GLUE can work
well with a variety of similarity measures.

Taxonomies # nodes
non-leaf

nodes
depth

instances
in

taxonomy

max # instances
at a leaf

max #
children
of a node

manual
mappings

created

Cornell 34 6 4 1526 155 10 34 Course Catalog
I Washington 39 8 4 1912 214 11 37

Cornell 176 27 4 4360 161 27 54 Course Catalog
II Washington 166 25 4 6957 214 49 50

Standard.com 333 30 3 13634 222 29 236 Company
Profiles Yahoo.com 115 13 3 9504 656 25 104

Table 2. Domains and taxonomies for our experiments.

Domains and Taxonomies: We evaluated GLUE on three domains, whose
characteristics are shown in Table 2. The domains Course Catalog I and II
describe courses at Cornell University and the University of Washington. The
taxonomies of Course Catalog I have 34 - 39 nodes, and are fairly similar to
each other. The taxonomies of Course Catalog II are much larger (166 - 176
nodes) and much less similar to each other. Courses are organized into schools
and colleges, then into departments and centers within each college. The Com-
pany Profile domain uses taxonomies from Yahoo.com and Standard.com and
describes the current business status of companies. Companies are organized
into sectors, then into industries within each sector. The Standard.com tax-
onomy, though of same depth, has a more granular (333 nodes) organization
than the Yahoo.com one(115 nodes).

For each taxonomy, we downloaded the entire set of data instances, and
performed some trivial data cleaning such as removing HTML tags and
phrases such as “course not offered” from the instances. We removed instances
of size less than 130 bytes, because they tend to be empty or vacuous, and
thus do not contribute to the matching process. We removed all nodes with
fewer than 5 instances, because such nodes cannot be matched reliably due
to lack of data.

Similarity Measure & Manual Mappings: We chose to evaluate GLUE
using the Jaccard similarity measure (Section 4), because it corresponds well
to our intuitive understanding of similarity. Given the similarity measure,
we manually created the correct 1-1 mappings between the taxonomies in
the same domain, for evaluation purposes. The rightmost column of Table 2
shows the number of manual mappings created for each taxonomy. For ex-
ample, we created 236 one-to-one mappings from Standard to Yahoo!, and
104 mappings in the reverse direction. Note that in some cases there were

Ontology Matching: A Machine Learning Approach 15

nodes in a taxonomy for which we could not find a 1-1 match. This was either
because there was no equivalent node (e.g., School of Hotel Administration
at Cornell has no equivalent counterpart at the University of Washington),
or when it is impossible to determine an accurate match without additional
domain expertise.

Domain Constraints: We specified domain constraints for the relaxation
labeler. For the Course Catalog I taxonomies, we specified all applicable sub-
sumption constraints (see Table 1). For the other two domains, because their
sheer size makes specifying all constraints difficult, we specified only the most
obvious subsumption constraints (about 10 constraints for each taxonomy).
For the Company Profiles taxonomies we also used frequency constraints.

Experiments: For each domain, we performed two experiments. We applied
GLUE to find the mappings from each taxonomy to the other. The matching
accuracy of a taxonomy is then the percentage of the manual mappings (for
that taxonomy) that GLUE predicted correctly.

7.1 Matching Accuracy

Figure 4 shows the matching accuracy for different domains and configurations
of GLUE. In each domain, we show the matching accuracy of two scenarios:
mapping from the first taxonomy to the second, and vice versa. The four bars
in each scenario (from left to right) represent the accuracy produced by: (1)
the name learner alone, (2) the content learner alone, (3) the meta-learner
using the previous two learners, and (4) the relaxation labeler on top of the
meta-learner (i.e., the complete GLUE system).

The results show that GLUE achieves high accuracy across all three do-
mains, ranging from 66 to 97%. In contrast, the best matching results of the
base learners, achieved by the content learner, are only 52 - 83%. It is inter-
esting that the name learner achieves very low accuracy, 12 - 15% in four out
of six scenarios. This is because all instances of a concept, say B, have very
similar full names (see the description of the name learner in Section 5.2).
Hence, when the name learner for a concept A is applied to B, it will classify
all instances of B as A or A. In cases when this classfication is incorrect,
which might be quite often, using the name learner alone leads to poor esti-
mates of the joint distributions. The poor performance of the name learner

0

10

20

30

40

50

60

70

80

90

100

Cornell to Wash. Wash. to Cornell Cornell to Wash. Wash. to Cornell Standard to Yahoo Yahoo to Standard

M
at

ch
in

g
 a

cc
u

ra
cy

 (
%

)

Name Learner Content Learner Meta Learner Relaxation Labeler

Course Catalog II Company ProfileCourse Catalog I

Fig. 4. Matching accuracy of GLUE.

16 AnHai Doan et al.

underscores the importance of data instances and multi-strategy learning in
ontology matching.

The results clearly show the utility of the meta-learner and relaxation
labeler. Even though in half of the cases the meta-learner only minimally im-
proves the accuracy, in the other half it makes substantial gains, between 6
and 15%. And in all but one case, the relaxation labeler further improves ac-
curacy by 3 - 18%, confirming that it is able to exploit the domain constraints
and general heuristics. In one case (from Standard to Yahoo), the relaxation
labeler decreased accuracy by 2%. The performance of the relaxation labeler
is discussed in more detail below. In Section 7.3 we identify the reasons that
prevent GLUE from identifying the remaining mappings.

In the current experiments, GLUE utilized on average only 30 to 90 data
instances per leaf node (see Table 2). The high accuracy in these experiments
suggests that GLUE can work well with only a modest amount of data.

We also experimented with the most-specific-parent similarity measure de-
scribed in Section 4 and found GLUE performing quite well with it. This ex-
periment is described in more detail in [12]. The results illustrate how GLUE
can be effective with more than one similarity measure.

7.2 Performance of the Relaxation Labeler

In all of our experiments, we found relaxation labeling to be very fast. The
iterations were performed until the labeling converged. It took only a few sec-
onds in Catalog I and under 20 seconds in the other two domains to finish
ten iterations. This observation shows that relaxation labeling can be imple-
mented efficiently in the ontology-matching context. It also suggests that we
can efficiently incorporate user feedback into the relaxation labeling process
in the form of additional domain constraints.

We also experimented with different values for the constraint weights (see
Section 6), and found that the relaxation labeler was quite robust with respect
to such parameter changes. Further details and other experiments can be
found in [12].

7.3 Discussion

The accuracy of GLUE is quite impressive as is, but it is natural to ask what
limits GLUE from obtaining even higher accuracy. There are several reasons
that prevent GLUE from correctly matching the remaining nodes. First, some
nodes cannot be matched because of insufficient training data. For example,
many course descriptions in Course Catalog II contain only vacuous phrases
such as “3 credits”. While there is clearly no general solution to this problem,
in many cases it can be mitigated by adding base learners that can exploit
domain characteristics to improve matching accuracy. Second, the relaxation
labeler performed local optimizations, and sometimes converged to only a
local maxima, thereby not finding correct mappings for all nodes. Here, the
challenge will be in developing search techniques that work better by taking

Ontology Matching: A Machine Learning Approach 17

a more “global perspective”, but still retain the runtime efficiency of local
optimization. Further, the two base learners we used in our implementation
are rather simple general-purpose text classifiers. Using other leaners that
perform domain-specific feature selection and comparison can also improve
the accuracy. It will be interesting to consider the use of a thesaurus like
WordNet to improve the performance of the Name Learner.

We note that some nodes cannot be matched automatically because they
are simply ambiguous. For example, it is not clear whether “networking and
communication devices” should match “communication equipment” or “com-
puter networks”. A solution to this problem is to incorporate user interaction
into the matching process [27, 11, 37].

GLUE currently tries to predict the best match for every node in the tax-
onomy. However, in some cases, such a match simply does not exist (e.g.,
unlike Cornell, the University of Washington does not have a School of Hotel
Administration). Hence, an additional extension to GLUE is to make it be
aware of such cases, and not predict an incorrect match when this occurs.

8 Related Work

GLUE is related to our previous work on LSD [11], whose goal was to semi-
automatically find schema mappings for data integration. There, we had a
mediated schema, and our goal was to find mappings from the schemas of a
multitude of data sources to the mediated schema. The observation was that
we can use a set of manually given mappings on several sources as training
examples for a learner that predicts mappings for subsequent sources. LSD
illustrated the effectiveness of multi-strategy learning for this problem. In
GLUE since our problem is to match a pair of ontologies, there are no manual
mappings for training, and we need to obtain the training examples for the
learner automatically. Further, GLUE is able to exploit a much richer set of
constraints using relaxation labeling than the simplistic A∗ search in LSD.
Finally, LSD did not consider in depth the semantics of a mapping, as we do
here.

We now describe other related work to GLUE from several perspectives.

Ontology Matching: Many works have addressed ontology matching in the
context of ontology design and integration (e.g., [10, 23, 27, 26]). These works
do not deal with explicit notions of similarity. They use a variety of heuristics
to match ontology elements. They do not use machine learning and do not
exploit information in the data instances. However, many of them [23, 27]
have powerful features that allow for efficient user interaction, or expressive
rule languages [10] for specifying mappings. Such features are important com-
ponents of a comprehensive solution to ontology matching, and hence should
be added to GLUE in the future.

Several recent works have attempted to further automate the ontology
matching process. The Anchor-PROMPT system [28] exploits the general

18 AnHai Doan et al.

heuristic that paths (in the taxonomies or ontology graphs) between match-
ing elements tend to contain other matching elements. The HICAL system
[17] exploits the data instances in the overlap between the two taxonomies
to infer mappings. [18] computes the similarity between two taxonomic nodes
based on their signature TF/IDF vectors, which are computed from the data
instances.

Schema Matching: Schemas can be viewed as ontologies with restricted
relationship types. The problem of schema matching has been studied in the
context of data integration and data translation (see [32] for a survey). Several
works [25, 20, 24] have exploited variations of the general heuristic “two nodes
match if nodes in their neighborhood also match”, but in an isolated fashion,
and not in the same general framework we have in GLUE.

Notions of Similarity: The similarity measure in [17] is based on κ statis-
tics, and can be thought of as being defined over the joint probability distri-
bution of the concepts involved. In [19] the authors propose an information-
theoretic notion of similarity that is based on the joint distribution. These
works argue for a single best universal similarity measure, whereas GLUE al-
lows for application-dependent similarity measures.

Ontology Learning: Machine learning has been applied to other ontology-
related tasks, most notably learning to construct ontologies from data and
other ontologies, and extracting ontology instances from data [29, 22, 31].
Our work here provides techniques to help in the ontology construction process
[22]. [21] gives a comprehensive summary of the role of machine learning in
the Semantic Web effort.

9 Conclusion and Future Work

With the proliferation of data sharing applications that involve multiple on-
tologies, the development of automated techniques for ontology matching will
be crucial to their success. We have described an approach that applies ma-
chine learning techniques to match ontologies. Our approach is based on well-
founded notions of semantic similarity, expressed in terms of the joint proba-
bility distribution of the concepts involved. We described the use of machine
learning, and in particular, of multi-strategy learning, for computing concept
similarities. This learning technique makes our approach easily extensible to
additional learners, and hence to exploiting additional kinds of knowledge
about instances. Finally, we introduced relaxation labeling to the ontology-
matching context, and showed that it can be adapted to efficiently exploit
a variety of heuristic knowledge and domain-specific constraints to further
improve matching accuracy. Our experiments showed that we can accurately
match 66 - 97% of the nodes on several real-world domains.

Aside from striving to improve the accuracy of our methods, our main line
of future research involves extending our techniques to handle more sophis-
ticated mappings between ontologies (i.e., non 1-1 mappings), and exploiting

Ontology Matching: A Machine Learning Approach 19

more of the constraints that are expressed in the ontologies (via attributes
and relationships, and constraints expressed on them).

Acknowledgments

We thank Phil Bernstein, Geoff Hulten, Natasha Noy, Rachel Pottinger, Matt

Richardson, Pradeep Shenoy, and a host of anonymous reviewers for their invaluable

comments. This work was supported by NSF Grants 9523649, 9983932, IIS-9978567,

and IIS-9985114. The third author is also supported by an IBM Faculty Patnership

Award. The fourth author is also supported by a Sloan Fellowship and gifts from

Microsoft Research, NEC and NTT.

References

1. www.daml.org.
2. www.google.com.
3. IEEE Intelligent Systems, 16(2), 2001.
4. A. Agresti. Categorical Data Analysis. Wiley, New York, NY, 1990.
5. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, 279, 2001.
6. D. Brickley and R. Guha. Resource Description Framework Schema Specifica-

tion 1.0, 2000.
7. J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van Harmelen, and I. Horrocks.

Enabling knowledge representation on the Web by Extending RDF Schema. In
Proceedings of the Tenth International World Wide Web Conference, 2001.

8. D. Calvanese, D. G. Giuseppe, and M. Lenzerini. Ontology of Integration and
Integration of Ontologies. In Proceedings of the Description Logic Workshop,
2001.

9. S. Chakrabarti, B. Dom, and P. Indyk. Enhanced Hypertext Categorization
Using Hyperlinks. In Proceedings of the ACM SIGMOD Conference, 1998.

10. H. Chalupsky. Ontomorph: A Translation system for symbolic knowledge. In
Principles of Knowledge Representation and Reasoning, 2000.

11. A. Doan, P. Domingos, and A. Halevy. Reconciling Schemas of Disparate Data
Sources: A Machine Learning Approach. In Proceedings of the ACM SIGMOD
Conference, 2001.

12. A. Doan, J. Madhavan, P. Domingos, and A. Y. Halevy. Learning to Map
between Ontologies on the Semantic Web. In Proceedings of the World Wide
Web Confernce (WWW), 2002.

13. P. Domingos and M. Pazzani. On the Optimality of the Simple Bayesian Clas-
sifier under Zero-One Loss. Machine Learning, 29:103–130, 1997.

14. D. Fensel. Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce. Springer-Verlag, 2001.

15. J. Heflin and J. Hendler. A Portrait of the Semantic Web in Action. IEEE
Intelligent Systems, 16(2), 2001.

16. R. Hummel and S. Zucker. On the Foundations of Relaxation Labeling Pro-
cesses. PAMI, 5(3):267–287, May 1983.

17. R. Ichise, H. Takeda, and S. Honiden. Rule Induction for Concept Hierarchy
Alignment. In Proceedings of the Workshop on Ontology Learning at IJCAI,
2001.

20 AnHai Doan et al.

18. M. Lacher and G. Groh. Facilitating the exchange of explixit knowledge through
ontology mappings. In Proceedings of the 14th Int. FLAIRS conference, 2001.

19. D. Lin. An Information-Theoritic Definiton of Similarity. In Proceedings of the
International Conference on Machine Learning (ICML), 1998.

20. J. Madhavan, P. Bernstein, and E. Rahm. Generic Schema Matching with
Cupid. In Proceedings of the International Conference on Very Large Databases
(VLDB), 2001.

21. A. Maedche. A Machine Learning Perspective for the Semantic Web. Semantic
Web Working Symposium (SWWS) Position Paper, 2001.

22. A. Maedche and S. Saab. Ontology Learning for the Semantic Web. IEEE
Intelligent Systems, 16(2), 2001.

23. D. McGuinness, R. Fikes, J. Rice, and S. Wilder. The Chimaera Ontology
Environment. In Proceedings of the 17th National Conference on Artificial In-
telligence (AAAI), 2000.

24. S. Melnik, H. Molina-Garcia, and E. Rahm. Similarity Flooding: A Versatile
Graph Matching Algorithm. In Proceedings of the International Conference on
Data Engineering (ICDE), 2002.

25. T. Milo and S. Zohar. Using Schema Matching to Simplify Heterogeneous
Data Translation. In Proceedings of the International Conference on Very Large
Databases (VLDB), 1998.

26. P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic Integration of Knowl-
edge Sources. In Proceedings of Fusion’99.

27. N. Noy and M. Musen. PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. In Proceedings of the National Conference on Artificial
Intelligence (AAAI), 2000.

28. N. Noy and M. Musen. Anchor-PROMPT: Using Non-Local Context for Seman-
tic Matching. In Proceedings of the Workshop on Ontologies and Information
Sharing at IJCAI, 2001.

29. B. Omelayenko. Learning of Ontologies for the Web: the Analysis of Existent
approaches. In Proceedings of the International Workshop on Web Dynamics,
2001.

30. L. Padro. A Hybrid Environment for Syntax-Semantic Tagging, 1998.
31. N. Pernelle, M.-C. Rousset, and V. Ventos. Automatic Construction and Re-

finement of a Class Hierarchy over Semi-Structured Data. In Proceeding of the
Workshop on Ontology Learning at IJCAI, 2001.

32. E. Rahm and P. Bernstein. On Matching Schemas Automatically. VLDB Jour-
nal, 10(4), 2001.

33. K. M. Ting and I. H. Witten. Issues in stacked generalization. Journal of
Artificial Intelligence Research (JAIR), 10:271–289, 1999.

34. M. Uschold. Where is the semantics in the Semantic Web? In Workshop on
Ontologies in Agent Systems (OAS) at the 5th International Conference on Au-
tonomous Agents, 2001.

35. van Rijsbergen. Information Retrieval. London:Butterworths, 1979. Second
Edition.

36. D. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.
37. L. Yan, R. Miller, L. Haas, and R. Fagin. Data Driven Understanding and

Refinement of Schema Mappings. In Proceedings of the ACM SIGMOD, 2001.

