
Ontology Patterns: Clarifying Concepts and Terminology

Ricardo A. Falbo
1
, Giancarlo Guizzardi

1,2
, Aldo Gangemi

2
, Valentina Presutti

2

1Federal University of Espírito Santo, Vitória, Brazil

{falbo, gguizzardi}@inf.ufes.br
2ISTC, National Research Council, Italy

{aldo.gangemi,valentina.presutti}@cnr.it

Abstract. Ontology patterns have been pointed out as a promising approach for

ontology engineering. The goal of this paper is to clarify concepts and the ter-

minology used in Ontology Engineering to talk about the notion of ontology

patterns taking into account already well-established notions of patterns in

Software Engineering.

Keywords: ontology pattern, ontology design pattern, ontology engineering

1 Introduction

Although nowadays ontology engineers are supported by a wide range of ontology

engineering methods and tools, building ontologies is still a difficult task even for

experts [1]. In this context, reuse is pointed out as a promising approach for ontology

engineering. Ontology reuse allows speeding up the ontology development process,

saving time and money, and promoting the application of good practices [2]. Howev-

er, ontology reuse, in general, is a hard research issue, and one of the most challeng-

ing and neglected areas of ontology engineering [3]. The problems of selecting the

right ontologies for reuse, extending them, and composing various ontology frag-

ments have not been properly addressed yet [4].

Ontology patterns (OPs) are an emerging approach that favors the reuse of encoded

experiences and good practices. OPs are modeling solutions to solve recurrent ontolo-

gy development problems [5]. Experiments, such as the ones presented in [4], show

that ontology engineers perceive OPs as useful, and that the quality and usability of

the resulting ontologies are improved. However, compared with Software Engineering

where patterns have been used for a significant time [6, 7, 8], patterns in Ontology

Engineering are still in infancy. The first works are from the beginning of the 2000s

(e.g. [9, 10]), and only recently this approach has gained more attention, especially by

the communities of Ontology Engineering [2, 3, 4, 5] and Semantic Web [1, 11].

In this paper, we discuss the notion of ontology pattern by means of an analogy to

the notion of pattern in Software Engineering. A premise underlying the discussion

made in this paper is that, for developing a domain ontology, an ontology engineer

should follow an ontology development process that is quite similar to the software

development process in Software Engineering. i.e., in our view, a domain ontology

mailto:gguizzardi%7D@inf.ufes.br

should be developed following an ontology development process comprising activi-

ties such as ontology requirements elicitation, ontology conceptual modeling, ontolo-

gy design, ontology implementation, and ontology testing.

This paper is organized as follows. In Section 2, we present some important pat-

tern-related concepts as used in Software Engineering, and also the current view of

patterns in Ontology Engineering. In Section 3, we revisit some notions related to

ontology patterns by means of an analogy to patterns in Software Engineering. In

Section 4, we show, by means of examples, how some types of ontology patterns can

be used during the ontology development process. Finally, in Section 5, we present

our final considerations.

2 Software Engineering Patterns and Ontology Patterns

Patterns, in general, are vehicles for encapsulating knowledge. They are considered

one of the most effective means for naming, organizing, and reasoning about design

knowledge. “Design knowledge” in this sentence is applied in a general sense, mean-

ing design in several different areas, such as Architecture and Software Engineering.

According to [12], “a pattern describes a particular recurring design problem that

arises in specific design contexts and presents a well-proven solution for the problem.

The solution is specified by describing the roles of its constituent participants, their

responsibilities and relationships, and the ways in which they collaborate”.

In Software Engineering, patterns help to alleviate software complexity in several

phases of the software development process [13]. During the software development

process, regardless of the method or process model adopted, there are some activities

that should be performed, namely: requirements elicitation, conceptual modeling,

architectural design, detailed design, and implementation. There are different types of

patterns covering different abstraction levels related to these phases. Analysis patterns

are to be used during conceptual modeling. They describe how to model (in the con-

ceptual level) a particular kind of problem in an application domain. They comprise

of conceptual model fragments that represent knowledge of the problem domain, and

their goal is to aid developers in understanding the problem rather than showing how

to design a solution. According to [14], there are two main types of analysis patterns:

domain-specific and domain-independent analysis patterns. Domain-specific analysis

patterns model problems that only appear in specific domains. They capture the core

knowledge related to a domain-specific problem and, therefore, they can be reused to

model applications that share this core knowledge. On the other hand, domain-

independent analysis patterns capture the core knowledge of atomic notions that are

not tied to specific application domains and, hence, can be reused to model the same

notions whenever they appear in any domain. Patterns such as the ones proposed by

Fowler [7] are examples of analysis patterns. Architectural patterns describe selected

types of components and connectors (the generalized constituent elements of all soft-

ware architectures) together with a control structure that governs system execution

[15]. They can be seen as templates for concrete software architectures [8], and thus

are to be used during the architectural design phase. Several of the patterns proposed

in the Pattern Oriented Software Architecture (POSA) approach [8], and most of the

patterns presented in [16] are architectural patterns. Design Patterns provide a scheme

for refining subsystems or components of a software system, or the relationships be-

tween them. They describe commonly-recurring structures of communicating compo-

nents that solves general design problems within a particular context [6]. Design pat-

terns are medium-scale patterns. They are smaller in scale than architectural patterns,

but they are independent of a particular programming language (implementation-

independent patterns) [8]. Moreover, they are used in the detailed design phase. The

Gang of Four (GoF) patterns [6] are the most known examples of a design patterns

catalog. Finally, idioms (or programming patterns) represent the lowest-level patterns.

They are specific to a programming language (patterns at a source code level). An

idiom describes how to implement particular aspects of components or the relation-

ships between them, using the features of a given language [8]. Idioms are used in the

implementation phase. Coplien’s C++ patterns [17] are examples of idioms.

The Ontology Engineering community has also tackled the notion of patterns, es-

pecially for aiding developing domain ontologies. Domain ontologies aim at describ-

ing the conceptualization related to a given domain, such as electrocardiogram in

medicine [18].

According to [3], an Ontology Design Pattern (ODP) is a modeling solution to

solve a recurrent ontology design problem. Gangemi and Presutti [3] have identified

several types of ODPs, and have grouped them into six families: Structural, Reason-

ing, Correspondence, Presentation, Lexico-Syntactic, and Content ODPs.

Structural ODPs include Logical and Architectural ODPs. Logical ODPs provide

solutions for solving problems of expressivity, while architectural ODPs affect the

overall shape of the ontology either internally or externally. Reasoning ODPs inform

about the state of an ontology, and let a system decide what reasoning has to be per-

formed on the ontology in order to carry out queries and evaluation, among others.

Correspondence ODPs include Reengineering ODPs and Mapping ODPs. Reengi-

neering ODPs provide solutions to the problem of transforming a conceptual model

(which can even be a non-ontological resource) into a new ontology. Mapping ODPs

are patterns for creating semantic associations between two existing ontologies.

Presentation ODPs deal with usability and readability of ontologies from a user per-

spective. They are meant as good practices that support the reuse of ontologies by

facilitating their evaluation and selection (e.g. naming conventions). Lexico-syntactic

ODPs are linguistic structures or schemas that consist of certain types of words fol-

lowing a specific order, and that permit to generalize and extract some conclusions

about the meaning they express. They are useful for associating simple Logical and

Content ODPs with natural language sentences, e.g., for didactic purposes. Finally,

Content ODPs are small fragments of ontology conceptual models that address a spe-

cific modeling issue, and can be directly reused by importing them in the ontology

under development. They provide solutions to domain modeling problems [3].

As pointed by Gangemi [19], Content ODP can extract a fragment of either a foun-

dational or a core ontology, which constitutes its background. Based on this fact,

Falbo et al. [20] consider two types of Content ODPs: Foundational ontology patterns,

which are extracted from foundational ontologies, and tend to be more generally ap-

plied, and Domain-related ontology patterns, which are domain-specific patterns, and

thus are applicable to solve problems in specific domains.

The Manchester’s Ontology Design Patterns Catalog [21] is a public catalog of

ODPs focused on the biological knowledge domain. In this catalog, there types of

ODPs are considered, namely [21, 22]: Extensional ODPs, which provide ways of

extending the limits of the chosen knowledge representation language; Good practice

ODPs, which are used to produce more modular, efficient and maintainable ontolo-

gies; and Domain Modeling ODPs, which are used to model a concrete part of the

knowledge domain.

In contrast with the case of patterns in Software Engineering, patterns in Ontology

Engineering are not properly linked to the development phase in which they can be

applied. Moreover, it is important to highlight that the term “design” in “ontology

design patterns” does not have the same meaning of “design” in “design patterns” of

Software Engineering. In “ontology design patterns”, the term “design” is applied in a

general sense, meaning the creation (building) of the ontology. In Software Engineer-

ing, in the other hand, “design” refers to the software development phase in which

developers cross the border from the problem space to the solution space. While re-

quirements elicitation and analysis deal with the problem domain, aiming at under-

standing the problem to be solved and its domain, in the design phase, the focus is on

providing a solution, what requires taking technological aspects into account. Concep-

tual models, built during requirements analysis, are only concerned with modeling a

view of the domain for a given application, and thus are independent of the technolo-

gy to be applied in the solution. Design models, on the other hand, are committed to

translating the conceptual view to the most suitable implementation according to the

underlying implementation environment and also considering a number of non-

functional (technological) requirements (such as efficiency, usability, reliability, port-

ability, etc.). Thus, designers should know a priori features of the implementation

environment to properly address the non-functional requirements in a given solution.

In fact, the same conceptual model can lead to several design solutions, and the de-

sign phase involves choosing the most adequate solution for the problem.

Guizzardi [23] defends an analogous process for Ontology Engineering. In an on-

tology conceptual modeling phase, a reference domain ontology should be produced,

whose aim is to make a clear and precise description of the domain elements for the

purposes of communication, learning and problem solving. Reference ontologies are

to be used in an off-line manner to assist humans in tasks such as meaning negotiation

and consensus establishment. In the design phase, this conceptual specification should

be transformed into a design specification by taking into account a number of issues

ranging from architectural issues and non-functional requirements, to target a particu-

lar implementation environment. The same reference ontology can potentially be used

to produce a number of (even radically) different designs. Finally, in the implementa-

tion phase, an ontology design is coded in a target language to be then deployed in a

computational environment. This implementation version is frequently termed an

operational ontology [20]. Unlike reference ontologies, operational ontologies are not

focused on representation adequacy, but are designed with the focus on guaranteeing

desirable computational properties. A design phase, thus, is necessary to bridge the

gap between the conceptual modeling of reference ontologies and the coding of them

in terms of a specific operational ontology language (such as, for instance, OWL and

RDFS, but other DL-based languages [24], Datalog-based languages [25], relational

databases [26], etc.). Issues that should be addressed in the design phase are, for in-

stance: determining how to deal with the differences in expressivity of the languages

that are used in each of these phases; or how to produce lightweight specifications

that maximize specific non-functional requirements, such as reasoning performance.

Figure 1 illustrates this Ontology Engineering view.

Fig. 1. Ontology Engineering as a Software Development Process

Based on this view of Ontology Engineering, in the next section, we revisit the no-

tion of ontology patterns in order to clarify some concepts and the terminology used.

Moreover, we compare the types of ontology patterns identified by Gangemi and

Presutti [3] with the types of patterns related to the development phases in Software

Engineering.

3 Ontology Patterns: Aligning Concepts and Terminology to

Software Engineering Patterns

Once we have discussed a view of ontology development that is analogous to the well

established view of software development in Software Engineering, we can revisit the

notion of Ontology Pattern. Gangemi and Presutti [3] define Ontology Design Pattern

as a modeling solution to solve a recurrent ontology design problem. As discussed in

the previous section, “design” in this definition is used in a broad sense. In order to

avoid confusion with the term “design” referring to the “design phase” of ontology

development, we prefer to name patterns applied to Ontology Engineering as Ontolo-

gy Patterns (instead of Ontology Design Patterns).

We can now further elaborate the definition of ontology pattern: an Ontology Pat-

tern (OP) describes a particular recurring modeling problem that arises in specific

ontology development contexts and presents a well-proven solution for the problem.

Taking this definition into account, we can now look at the types of ontology pat-

terns identified by Gangemi and Presutti [3], and try to introduce them in another

classification of ontology patterns that considers the ontology development phase

depicted in Figure 1.

First, there are some types of patterns in [3] that, according to the definition pre-

sented above, do not qualify as OPs. They capture best practices, but do not conform

to this definition. This is the case, for instance, of the lexico-syntatic and presentation

patterns, which do not refer to a modeling problem. Mapping OPs also do not fit well

to the definition above, since they do not address a modeling problem in a specific

ontology development context. Mapping OPs are useful for integrating ontologies,

and not for developing a new one. Although presentation OPs cannot be properly said

to be ontology pattern, they have a counterpart in Software Engineering: naming con-

ventions. In Software Engineering, there are name conventions that apply to different

development phases. For instance, language-specific naming conventions, such as

Java naming conventions, are to be applied during the implementation phase; naming

conventions for classes, attributes and operations in general can be applied during

conceptual modeling and design phases. Thus, analogously, ontology name conven-

tions that are language-independent are to be applied during ontology conceptual

modeling and design phases; language-specific ontology name conventions (such as

OWL name conventions) are to be used during ontology implementation.

The Reengineering OP type is a case apart. Reengineering OPs are defined as

transformation rules applied in order to create a new ontology (target model) starting

from elements of a source model [3]. Based on this definition, we can say that they

can be applied in several ontology development phases. However, most of the exist-

ing Reengineering patterns are language-dependent, such as patterns to transform

non-OWL models to OWL DL operational ontologies, or refactoring patterns for

refactoring an existing OWL DL source ontology into a new OWL DL target ontolo-

gy. Such alleged patterns are, in fact, not proper patterns but Idioms.

In the other hand, content, architectural, logical and reasoning OPs can be related

to ontology development phases. Content OPs are analogous to analysis patterns in

Software Engineering; Architectural OPs to architectural patterns; and Logical and

Reasoning OPs to design patterns, although some of them are, again, in fact, idioms.

Regarding the Manchester’s Catalog, according to [21], “this catalog is generated

from OWL files”. Thus, its patterns better classify as Idioms.

Figure 2 shows a taxonomy of OPs, reorganizing some of the ontology pattern

types identified in [3], and introducing subtypes of Content OPs (renamed as Concep-

tual OPs), as defined in [20].

Ontology Conceptual Patterns are fragments of either foundational ontologies

(Foundational OPs) or domain reference ontologies (Domain-related OPs). They are

to be used during the ontology conceptual modeling phase, and focus only on concep-

tual aspects, without any concern with the technology or language to be used for de-

riving an operational ontology. Ontology Conceptual Patterns are analogous to Analy-

sis Patterns in Software Engineering. Foundational OPs are analogous to Domain-

independent Analysis Patterns, while Domain-related OPs are analogous to Domain-

specific Analysis Patterns.

Fig. 2. Ontology Pattern Types

Foundational OPs (FOPs) are reusable fragments of foundational ontologies. Since

foundational ontologies span across many fields and model the very basic and general

concepts and relations that make up the world [18], FOPs can be applied in any do-

main. They are reused by analogy between the pattern and the problem in hand. An

example of a FOP is the pattern for the problem of specifying roles with multiple

disjoint allowed types, which were extracted from the ontology of substantial univer-

sals of the Unified Foundational Ontology (UFO) [27]. Another example is the ap-

pointment pattern, which were extracted from the ontology of social entities of UFO

[28]. These two FOPs and how they can be reused are discussed in Section 4.

Domain-related OPs (DROPs) are reusable fragments extracted from reference

domain ontologies. DROPs should capture the core knowledge related to a domain,

and thus they can be seen as fragments of a core ontology of that domain. In contrast

with FOPs, DROPs are reused by extension, i.e. concepts and relations of the pattern

are specialized when the pattern is reused. In Section 4, we present a DROP for the

domain of software processes and discuss its reuse by extension in the development of

a software testing ontology.

Ontology Architectural Patterns are patterns that describe how to arrange an ontol-

ogy (generally a large one) in terms of sub-ontologies or ontology modules, as well as

patterns that deal with the modular architecture of an ontology network, where the

involved ontologies play the role of modules [3]. These patterns can be used both

during the conceptual modeling phase, and at the beginning of the ontology design

phase. Since modularity is recognized as an important quality characteristic of good

ontologies, we advocate for their use since the first stages of ontology development,

for splitting the ontology into smaller parts, allowing tackling the problems one at a

time. When applied at the beginning of the design phase, the purpose is to reorganize

the ontology modules for addressing technological aspects, in special by taking non-

functional requirements into account.

Ontology Design Patterns (ODPs) are patterns that address problems that occur

during the ontology design phase. Based on the Gangemi and Presutti’s taxonomy of
types of ontology patterns [3], we identified two main types of ODPs: logical and

reasoning ODPs. Reasoning ODPs, as the name suggests, aims at addressing specific

design problems related to improving reasoning with ontologies (and qualities related

to reasoning, such as computational tractability, decidability and reasoning perfor-

mance). Logical ODPs, in turn, regards problems related to the expressivity of the

formalism to be used in ontology implementation. They help to solve design problems

that appear when the primitives of the implementation language do not directly sup-

port certain logical constructs. Logical ODPs are extremely important for ontology

design, since most languages for coding operational ontologies are not focused on

representation adequacy, but are designed with the focus on guaranteeing desirable

computational properties [23]. We should highlight, however, that many patterns that

address reasoning and logical problems are, in fact, Ontology Idioms (or Ontology

Coding Patterns), since they describe how to solve problems related to reasoning or to

expressivity of a specific logical formalism (e.g. OWL). According to the notion de-

fended here, ODPs are more widely applied than ontology idioms, since they address

problems related to various languages that share the same characteristics. For in-

stance, a pattern addressing the problem of how to express n-ary relation semantics by

only using class and binary relation primitives is a Logical ODP. It applies to all logi-

cal formalisms that do not have a construct for representing n-ary relationships, but

have constructs for representing classes and binary relations. A pattern addressing the

problem of how to express n-ary relation semantics in OWL is an Ontology Idiom.

Figure 3 shows the relationships between the types of ontology patterns shown in

Figure 2 and the ontology development activities, shown in Figure 1. In the next sec-

tion, we illustrate some Ontology Conceptual Patterns, and discuss how they can be

reused.

Fig. 3. Applicability of Ontology Patterns with respect to Ontology Development Phases

4 Reusing Ontology Conceptual Patterns

There are two main ways of reusing ontology patterns: by analogy and by extension.

Moreover, several patterns can be reused when developing a domain ontology. Thus,

pattern composition is also an important mechanism for combining patterns.

In reuse by analogy [29], with an ontology modeling problem at hands, we look for

OPs that describe knowledge related to the type of situation we are facing. Once se-

lected the pattern, we have to identify which concepts in our domain correspond to the

concepts in the pattern, and we reproduce the structure of the pattern in the domain

ontology being developed. Most of the OPs are reused by analogy (including most

Ontology Architectural and Design Patterns, Idioms, but also Foundational Ontology

Patterns (FOPs)). Domain-related OPs (DROPs), in turn, are typically reused by ex-

tension. In reuse by extension, the OP is incorporated in the domain ontology being

developed, and it can be extended by means of specialization of its concepts and rela-

tions, and also by including new properties and relationships with the extended con-

cepts.

Figure 4 shows the conceptual model of the FOP for the problem of specifying roles

with multiple disjoint allowed types [27]. In this picture, the abstract class A is the

role mixin that covers different role types. Classes B and C are the disjoint subclasses

of A that can have direct instances, representing the roles (i.e., sortal, anti-rigid and

relationally dependent types) that carry the principles of identity that govern the indi-

viduals that fall in their extension. Classes D and E are the ultimate kinds that supply

the principles of identity carried by B and C, respectively. The association R repre-

sents the common specialization condition of B and C, which is represented in A.

Finally, class F represents a type that class A is relationally dependent of. Kind, Role

and Role mixin are concepts from the Unified Foundational Ontology (UFO), part A,

an ontology of endurants. This pattern is also embedded as a higher-granularity mod-

eling primitive in the ontology-driven conceptual modeling language OntoUML. For

details, see [27].

Fig. 4. Foundational OP for roles with multiple and disjunctive kinds [27].

Figure 5 shows two FOPs extracted from UFO-C, an ontology of social entities

[28], namely: atomic/complex commitment types and appointments. The Atom-

ic/Complex Commitment Types pattern, as the name suggests, models the distinction

between atomic and complex commitments. According to UFO-C, Commitments, as

intentional moments, inhere in Agents. Commitments can be atomic (Atomic Com-

mitment) or complex (Complex Commitment). Complex commitments are composed

of other commitments. The Appointment Pattern models a special type of commit-

ment, named Appointment in UFO-C. An appointment is a commitment whose pro-

positional content explicitly refers to a time interval.

Fig. 5. (a) Atomic/Complex Commitment Types FOP; (b) Appointment FOP

In Figure 6, we apply the three aforementioned patterns when developing a domain

ontology on the domain of Agendas. The Agenda Ontology was developed to support

the semantic integration of the Google Calendar API and the Google Contacts API to

a Software Engineering Environment. In an agenda we are mainly interested in regis-

tering contacts and scheduled appointments. Contacts can be either organizations or

people, which have different principles of identity. For addressing the modeling prob-

lem regarding contacts, we reuse the FOP presented in Figure 4; for addressing the

modeling problem regarding appointments, we reuse the FOPs presented in Figure 5.

The Agenda Ontology fragment produced applying these three FOPs is shown in

Figure 6. In this model, the fragment that was solved by reusing the FOP for roles

with multiple and disjunctive kinds (Figure 4) is shown detached in grey. As one can

observe, the structure of the FOP is exactly applied to solve the problem in the Agen-

da Ontology.

Regarding the reuse of the Atomic/Complex Commitment Types FOP and the Ap-

pointment FOP, the structure of the models, although not exactly the same, is analo-

gous. An Appointment in the Agenda Ontology is an Appointment in the sense of

UFO-C. Like Commitments, Appointments can be classified as Atomic and Complex

Appointments (see Atomic/Complex Commitment Types FOP). In the case of the

Agenda Ontology, all complex appointments (said Multiple Appointment) are com-

posed of atomic appointments (said Single Appointment). Multiple Appointments are

further categorized according to their frequency of occurrence into: Diary Appoint-

ment, Weekly Appointment and Monthly Appointment. Since in the agenda domain we

are not interested in commitments that are not appointments, we did not represent the

concept of commitment. However, since appointment is a special type of commit-

ment, appointments inhere in an agent (Agenda Owner).

Fig. 6. A fragment of an Agenda Ontology.

Concerning the reuse of DROPs, which occur by extension, Figure 7 shows a frag-

ment of the Reference Ontology on Software Testing (ROoST) [30], which were de-

veloped reusing DROPs organized as an ontology pattern language [20]. This picture

shows a small (and simplified) fragment of ROoST dealing with artifacts produced

and used by three software testing activities. This fragment of ROoST was built by

composing and extending two DROPs: Work Product Participation (WPPA) pattern

and Work Product Types (WPT) pattern. In Figure 7 the concepts from these patterns

are shown detached in grey. As shown in this model fragment, concepts and relations

from the DROPs (concepts: Activity Occurrence, Document and Code; relations: uses

and produces) are extended for the testing domain. Test Execution, Test Coding and

Test Case Design are subtypes of Activity Occurrence. Test Case and Test Result are

subtypes of Document (sub-kinds in UFO). Test Code is a sub-kind of Code, while

Code To Be Tested is a role played by a Code when used in a Test Execution. Regard-

ing relation specializations, Test Case Design produces Test Case. Test Coding uses

Test Case and produces Test Code. Finally, Test Execution uses Test Code and Code

To Be Tested, and produces Test Results.

Fig. 7. A Fragment of the Reference Ontology on Software Testing

It is worthwhile to point out that new concepts and relations can also be added to

the domain ontology being developed. In the case of ROoST model fragment shown

in Figure 7, two relations were added: Test Code implements Test Case, and Test Re-

sult is relative to Test Case.

5 Final Considerations

Ontology patterns (OPs) are currently recognized as a beneficial approach for ontolo-

gy development [3, 4]. In this paper we made an analogy between patterns in Soft-

ware Engineering and patterns in Ontology Engineering, in order to clarify and har-

monize the terminology used in both areas. Since patterns in Software Engineering

have already been studied and used longer than in Ontology Engineering, we revisited

some notions in the latter. In particular, by revisiting the classification proposed by

Gangemi and Presutti in [3], we propose another way of classifying OPs, which is

strongly related to the ontology development phase in which they are to be used.

Moreover, we discuss ways of reusing OPs, namely by analogy and by extension.

Domain-related OPs are typically reused by extension; while the other types of OPs

are typically reused by analogy. It is worthwhile to point out that a third way is com-

plementary to both: patterns composition. By means of examples, we illustrated how

different ontology conceptual patterns can be reused for developing domain reference

ontologies.

Acknowledgments. This research is funded by the Brazilian Research Funding

Agencies FAPES (PRONEX # 52272362/11) and CNPq (#311578/2011-0).

References

1. Noppens, O., Liebig, T., Ontology Patterns and Beyond - Towards a Universal Pattern

Language. In: Proceedings of the Workshop on Ontology Patterns (WOP 2009), Washing-

ton D.C., USA, 2009.

2. Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A., Reusing Ontology Design

Patterns in a Context Ontology Network. In: Second Workshop on Ontology Patterns

(WOP 2010), Shangai, China, 2010.

3. Gangemi, A., Presutti, V., Ontology Design Patterns. In: Handbook on Ontologies, Second

edition, Staab, S., Studer, R. (Eds.), Springer, 2009, pp. 221 - 243.

4. Blomqvist, E., Gangemi, A., Presutti, V. Experiments on Pattern-based Ontology Design.

In Proceedings of K-CAP 2009, pp. 41-48. 2009.

5. Presutti, V., Daga, E., Gangemi, A., Blomqvist, E. eXtreme Design with Content Ontology

Design Patterns. In: Proceedings of the Workshop on Ontology Patterns (WOP 2009),

Washington D.C., USA, 2009.

6. Gamma, E., Helm, R., Johnson, R.E., Vlissides,J. Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 1995.

7. Fowler, M. Analysis Patterns: Reusable Object Models. Addison-Wesley Professional

Computing Series, 1997.

8. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. Pattern-Oriented Soft-

ware Architecture, Volume 1: A System of Patterns, John Wiley & Sons, 1996.

9. Clark, P., Thompson, J., Porter, B. Knowledge patterns. In: Proceedings of the 7th Interna-

tional Conference on Principles of Knowledge Representation and Reasoning (KR 2000),

pp. 591–600, San Francisco, 2000.

10. Reich, J.R. Ontological design patterns: Metadata of molecular biological ontologies, in-

formation and knowledge. Proceedings of the 11th International Conference on Database

and Expert Systems Applications, DEXA 2000, pp. 698–709, London, 2000.

11. Svatek, V., Design Patterns for Semantic Web Ontologies: Motivation and Discussion. In:

Proceedings of the 7th Conference on Business Information Systems, Poznan, Poland,

2004.

12. Buschmann, F., Henney, K., Schmidt, D.C., Pattern-Oriented Software Architecture: On

Patterns and Pattern Languages, John Wiley & Sons Ltd, 2007.

13. Schmidt, D. C., Fayad, M., Jonhson, R.E., Software Patterns, Communications of the

ACM, vol. 39, no. 10, October 1996.

14. Hamza, H., Mahdy, A., Fayad, M.E., Cline, M. Extracting domain-specific and domain-

independent patterns. In Companion of the 18th annual ACM SIGPLAN conference on

Object-oriented programming, systems, languages, and applications (OOPSLA '03), New

York, USA, pp. 310-311, 2003.

15. Devedzic, V. Software Patterns, In: Handbook of Software Engineering and Knowledge

Engineering Vol.2 -Emerging Technologies, S.K. Chang (Ed.), World Scientific Pub Co

Inc., 2002.

16. Fowler, M., Patterns of Enterprise Application Architecture, Addison Wesley, 2003.

17. Coplien, J.O., Advanced C++ Programming Styles and Idioms, Addison-Wesley, 1992.

18. Guarino, N.: Formal Ontology and Information Systems. In: Guarino, N. (ed.) Formal On-

tology and Information Systems, pp. 3–15, IOS Press, Amsterdam, 2008.

19. Gangemi, A. Ontology Design Patterns for Semantic Web Content, In: Proc. of the 4th In-

ternational Semantic Web Conference – ISWC’2005, p. 262 – 272, Galway, Ireland, 2005.

20. Falbo, R. A., Barcellos, M.P., Nardi, J.C., Guizzardi, G. Organizing Ontology Design Pat-

terns as Ontology Pattern Languages, 10th Extended Semantic Web Conference, Montpel-

lier, France, 2013.

21. Ontology Design Patterns (ODPs) Public Catalog.

http://www.gong.manchester.ac.uk/odp/html/. Last access in 2nd September 2013.

22. Aranguren, M.E., Antezana, E., Kuiper, M., Stevens, R. Ontology Design Patterns for bio-

ontologies: a case study on the Cell Cycle Ontology. BMC bioinformatics, 9(Suppl 5):S1,

2008.

23. Guizzardi, G., On Ontology, ontologies, Conceptualizations, Modeling Languages and

(Meta)Models, In O. Vasilecas, J. Edler, A. Caplinskas (Org.). Frontiers in Artificial In-

telligence and Applications, Databases and Information Systems IV. IOS Press, Amster-

dam, 2007.

24. Guizzardi, G., Zamborlini, V., A Common Foundational Theory for Bridging two levels in

Ontology-Driven Conceptual Modeling. In: 5th International Conference of Software Lan-

guage Engineering (SLE 2012), Dresden. Germany, 2012.

25. Angele, J., Kifer, M., Lausen, G., Ontologies in F-Logic, In: Handbook on Ontologies, Se-

cond edition, Staab, S., Studer, R. (Eds.), Springer, 2009, pp. 45 – 70.

26. Silbernagl, D., Reasoning with Ontologies in Databases: including optimization strategies,

evaluation and example SQL code, VDM Verlag, 2011.

27. Guizzardi, G. Ontological Foundations for Structural Conceptual Models, Netherlands:

Universal Press, 2005.

28. Guizzardi, G., Falbo, R.A., Guizzardi, R.S.S. Grounding software domain ontologies in the

Unified Foundational Ontology (UFO): the case of the ODE software process ontology. In:

Proceedings of the XI Iberoamerican Workshop on Requirements Engineering and Soft-

ware Environments, IDEAS’2008, Recife, Brazil, pp. 244-251, 2008.

29. Rittgen, P., Translating Metaphors into Design Patterns, In: Advances in Information Sys-

tems Development, Springer, pp. 425 – 436, 2006.

30. Souza, E.F., Falbo, R.A., Vijaykumar, N.L., Using Ontology Patterns for Building a Ref-

erence Sofware Testing Ontology, The 8th International Workshop on Vocabularies, On-

tologies and Rules for the Enterprise (VORTE 2013), Vancouver, Canada, 2013.

http://www.gong.manchester.ac.uk/odp/html/

