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Chapter 1

Introduction

“I pretty much try to stay in a constant state of confusion just
because of the expression it leaves on my face.”

Johnny Depp

1.1 Introduction

An intelligent computer system needs to maintain an internal representation
of that part of reality it is to be intelligent about: it needs to understand its
domain. This understanding is commonly captured in models on the basis of
which a computer can perform automated reasoning. For instance, a suitable
model of ‘table’ will allow a machine to infer that each occurrence of a table
has four legs. Models are often not a direct reflection of the domain itself, but
rather represent our knowledge of that domain. The construction of models
thus involves a mapping – a translation – between human understanding and
that of a computer. In fact, the translation of human knowledge to computer
models is one of the most profound problems in Artificial Intelligence (Newell,
1982).

Over the course of several years, I have worked on many projects that in-
volved the design and construction of such models, for a variety of purposes.
The specification of an ontology for a large insurance company in the CLIME
project (Boer et al., 2001; Winkels et al., 2002), made me aware that not only
this modelling is a lot of work, but also that mistakes are easily made (Hoek-
stra, 2001).1 The systematic representation of the contents of regulations in the
E-POWER project (van Engers et al., 2000), illustrated not just the benefits of
this approach, but simultaneously highlighted the enormous effort and scru-

1CLIME, Cooperative Legal Information Management and Explanation, Esprit Project 25414.

1



1.1. Introduction 2

tiny required from the people that actually build the models.2 Furthermore,
both the E-POWER and KDE projects (Jansweijer et al., 2001) made it acutely
clear how important the language is in which the model is expressed.3 Coming
from academia, it was puzzling to see how easily one defaults to inexpressive
but intuitive languages (or even just database tables), rather than well-wrought
languages that support reasoning. What is more, it was very difficult to defend
a more principled approach as available languages did not have widespread
tool support (yet), nor did they offer even the trivial reasoning capabilities our
users were interested in: then what makes them ‘better’ languages? Was I a
puritan?

When I first set out to work on this book the objective was to investigate a
formal representation of physical causation for the purposes of automatic at-
tribution of liability in legal cases. It was the natural follow-up on the work
of Lehmann (2003), who gave an overview of the different forms of causation
involved in liability and responsibility attribution. Our approach, described in
Breuker and Hoekstra (2004b); Hoekstra and Breuker (2007), was based on the
hypothesis that legal causation (which is a form of liability) can only be estab-
lished given full knowledge of the chain of events leading from some initial
event (an action) to an undesirable state (some damage).

This approach turned out to be problematic for two reasons. First of all, the
subject of causation – and legal causation and liability in particular – plays a
prominent role in philosophy and legal theory. One cannot present a formal,
computational representation of causation without taking a stance in this dis-
cussion. Perhaps this is because a necessary step for automated reasoning,
namely the construction of a computational model of a theory, may be confused
with the presentation of a formal theory. As no established theory on causation
directly fit our needs, there was no escaping: even though we did not purport
to present a new theory on causation, our model was considered as such.

The second problem was more practical: the representation of even a very
simplistic model of physical causation turned out to be quite difficult (though
not entirely impossible, see Section 7.4). The heart of the problem was our re-
quirement that the existence of a causal relation was to be inferred on the basis
of a description of multiple successive situations and the changes between
them, rather than only from other causal relations. An event (and consequently
causes) is then classified by recognising the two situations between which it oc-
curs. First we used the Web Ontology Language (OWL, Bechhofer et al. (2004)),
a language optimised for classification, but its expressiveness was too limited
to enforce relations between the two situations. For instance, it is impossible
to express that a change occurs to two states of a single object instead of to two
different ones (Hoekstra et al., 2006). We were able to express these restrictions
using the Prolog language; but it required the implementation of a custom clas-
sifier. Clearly, that was not the solution either.

The ESTRELLA project brought the development of a legal knowledge in-
terchange language (LKIF, Boer et al. (2007a)) and a core ontology for the legal
domain (LKIF Core, see Hoekstra et al. (2008) and Chapter 6).4 An important

2E-POWER, European Program for an Ontology based Working Environment for Regulations
and Legislation, IST-2000-28125.

3KDE, Knowledge Desktop Environment, Esprit Project 28678.
4ESTRELLA, European project for Standardized Transparent Representations in order to Extend

Legal Accessibility, IST-2004-027655.
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role of this ontology is to provide the conceptual basis for more expressive and
elaborate models that can be used to provide complex reasoning services. In
practice, this meant a revisiting of the problems I faced in my work on caus-
ation. For, how to combine representations in OWL with highly expressive
languages that have a direct correspondence with legal theory? Secondly, to
allow for intelligent reasoning, the OWL definitions in the ontology had to be
extended to more intricate descriptions: the language was pushed to its limits.5

1.2 Questions

These experiences expose several interesting questions pertaining to the rep-
resentation of human knowledge in a computer model. I briefly discuss the
five most prominent ones here:

How can the quality of models be ensured? Evaluating the quality of a
model depends on the criteria used in its evaluation. What quality criteria and
requirements apply to representations of knowledge, and how do they inter-
act? To what extent do design principles, methods, and the choice of language
contribute to the quality of our models?

Can the design of models be facilitated, or made easier? Building a formal
computational model is both difficult and a lot of work, while the possible
pay-off is not always immediately clear. What solutions have been proposed
to lower this threshold, and how do they perform in practice?

To what extent do theory and practice go hand in hand? Formal theories can
be said to reflect a profound understanding of a domain; but are they adequate
computer models? To what extent can and should criteria that hold for formal
theories be applied to models designed to be used in an intelligent system?

What is the rationale behind representation languages? The field of artificial
intelligence boasts a large number of languages that can be used to construct
models. Although these languages can be very different, each has been de-
signed with a specific purpose in mind. The question is, how does one know
which language is appropriate for the purpose at hand?

How do limitations in expressiveness affect models of a concrete domain?
Every formal language distinguishes itself by offering a different set of primit-
ives that can be used to construct models. The choice for a language is therefore
a commitment to the limitations of that set of primitives. What does this com-
mitment mean in practice, for a concrete domain?

In this book I report on my quest to find answers to each of these questions.
Instead of treating each question in turn, they are rather used as background
against which the following chapters unfold. Chapter 2 presents the base line

5For examples of some of the problems we faced, see Breuker et al. (2007); Hoekstra (2008);
Klarman et al. (2008); van de Ven et al. (2008b); Hoekstra and Breuker (2008); Hoekstra et al. (2008),
and Chapter 7.
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for answering all five questions. Chapter 5 has a strong focus on the first two
questions, while Chapter 4 is primarily concerned with the issue raised in the
third question. Chapter 3 elaborates on the second chapter to improve a better
understanding of the fourth and fifth question. Chapters 6 and 7 present the
consequences of the discussion in the preceding chapters for the case of a con-
crete domain. Chapter 6 emphasises the first and third question, and Chapter 7
focuses on the second, fourth and last question.

1.3 Ontologies

The following chapters discuss the questions introduced in the previous sec-
tion in the context of a particular type of computer model: ontologies. This
section explains what makes the design of ontologies such a suitable domain
for this investigation.

‘Ontology’ is a term that people who have come across the subject of the
Semantic Web will be familiar with: the two go hand in hand. The use of on-
tologies is widespread; their utility is universally acknowledged and they are
the talk of the town at many conferences. However, it is quite hard to find out
what exactly ontologies are, and why they play such a prominent role. The
term ‘ontology’ is clearly overloaded, bringing together insights from philo-
sophy, artificial intelligence, systems engineering, information management,
computational linguistics, and cognitive psychology. The cacophony of voices
resulting from this interdisciplinary interest leads to heated and interesting de-
bates but can be quite bewildering to the ingenuous newcomer who simply
wants to use the technology.

In answering their principal question – what is an ontology – experts are
implicitly biased with respect to their own perspective. As I will discuss, the in-
terplay between abstract, theoretical considerations and practical requirements
render it impossible provide a single correct answer. This book attempts to
elucidate the different perspectives, and emphasises one interpretation, that of
knowledge representation. Knowledge representation is a field of artificial intel-
ligence that tries to deal with the problems surrounding the design and use of
formal languages suitable for capturing human knowledge. The ultimate goal
of this formal representation is to enable intelligent automated reasoning on
the basis of that knowledge. This knowledge-based reasoning takes place within
systems that are designed, as a whole, to perform tasks which are normally
carried out by human experts. These tasks typically require the consideration
of large amounts of data, e.g. where human reasoning is error prone, or just
tedious. Analogous to software engineering, knowledge engineering is the field
that concerns itself with the specification and design of such systems. It is
an important aspect of knowledge acquisition, the general problem of how to
extract and organise knowledge from human experts in such a way that it is
implementable in a reusable manner.

The design of ontologies plays a prominent role in both knowledge repres-
entation and engineering. The field of ontology engineering has brought forth
numerous methodologies and design principles on the subject of ontology con-
struction. The Web Ontology Language (OWL) is a prominent member of the
knowledge representation languages family, designed specifically for the rep-
resentation of ontologies. Its expressiveness is restricted to guarantee favour-
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able computational properties. Around the start of the ESTRELLA project, the
OWLED community was soliciting support for a new working group at the
W3C – the internet’s main standardisation body.6 The working group was to
follow-up on a member submission by several members of the community that
proposed a number of extensions to OWL: an opportune moment for extend-
ing and exploring the expressiveness bounds of this language.

The specification of ontologies in OWL is often considered difficult. This
drives tool development, e.g. Protégé 4 and its plugin library,7 explanation
facilities, a continuous refinement of methodologies, and (more recently) the
specification of ontology design patterns. Furthermore, a fair number of on-
tologies have been developed that are targeted to provide a (generic) unifying
framework for multiple domains. It is generally held that such ontologies aid
the construction and reusability of more specific domain ontologies and know-
ledge representations.

In short, the construction of ontologies is a well-established topic of re-
search that provides ample inspiration for answering the questions iterated
in the previous section:

• The role and quality of ontologies have been topics of research for quite
some time. An assessment of the state of the art in the context of ques-
tions one and two provides insight as to what extent these questions are
(or can be) answered, and what issues should be considered.

• The term ‘ontology’ originates in philosophical theory, but is adopted
by the more application-oriented field of artificial intelligence and the
Semantic Web. The interplay between these fields is an enticing use case
for investigating the third question.

• Ontologies can be expressed using a tailor-made knowledge representa-
tion language that is subject to several important limitations. The charac-
teristics of this language shed light on the requirements imposed on the
development of knowledge representation languages, and thus on the
fourth question.

• Several ontologies have been put forward that can be regarded as gold
standard for ontology development. These prominent examples do not
just illustrate some perspective on the quality and design of ontologies,
but contribute to insight in the trade-off between theory and practice
(question three), and ontology specification using a particular language
(questions four and five).

• Ontologies play an important role on the Semantic Web, and are widely
used by a very diverse group of people. In other words, they are not just
abstract, theoretical notions that do not affect practice, but have a signific-
ant user base that will benefit greatly from tangible guidelines that would
result from an answer to all five questions. In particular, a worked-out
example of the simultaneous application of these insights to a concrete

6W3C, World Wide Web Consortium, http://www.w3.org. OWLED, OWL Experiences and
Directions, see http://www.webont.org/owled/.

7Protégé 4 is an OWL ontology editor developed by the universities of Stanford and
Manchester. See http://protege.stanford.edu.

http://www.w3.org
http://www.webont.org/owled/
http://protege.stanford.edu
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domain (question five) may provide better understanding of the issues
involved than a separate consideration would.

1.4 Contribution and Overview

The following chapters explore the topics introduced in this chapter as follows:

Chapter 2 – Knowledge Representation gives a historical overview of the
field of knowledge representation and acquisition. It discusses the quest for a
knowledge representation language that has a clearly understood status with
respect to the knowledge that it can represent. Important in this light are issues
of maintenance and reusability of knowledge based systems. These require-
ments show that a knowledge representation language is not ‘just’ a generic
formal language. This chapter presents arguments for a language that has well-
defined computational properties and can be used to build task independent
knowledge system components.

Chapter 3 – Semantic Web introduces the ideas underlying the Semantic
Web, the Web Ontology Language, and in particular its successor OWL 2.
Both highly expressive web-based knowledge representation languages. The
chapter shows how the requirements formulated in Chapter 2 interact with
the open nature of the web, and explains the rationale and limitations of the
primitives available in OWL 2. This language is selected as base line for the
discussion of ontologies, methodologies and design patterns in the subsequent
chapters.

Chapter 4 – Ontologies discusses the widely varying conceptions of what
(an) ontology is, paying attention mainly to its use in philosophy and in know-
ledge representation. This discussion makes clear that a lot of the confusion
surrounding ontologies stems from an obfuscation of the two perspectives,
and proposes a more crisp distinction between different types of ontologies.
The role of ontologies that are expressed using knowledge representation lan-
guages is explained and adopted as central to the task of ontology engineering
discussed in the subsequent chapters.

Chapter 5 – Ontology Engineering presents an overview of methodological
approaches to building ontologies. It highlights several design principles for
ontology construction. In particular, the role of ontologies as reusable know-
ledge components leads to a number of restrictions both with respect to what
an ontology contains, and as to how it may be reused. For each of these topics,
this chapter discusses whether and how these can be reconciled with the know-
ledge representation perspective on ontologies described in Chapter 4. Fur-
thermore, the chapter proposes a refinement of current views on reuse, design
patterns, and of the kind of knowledge expressed in ontologies.

Chapter 6 – Commonsense Ontology applies the insights of the preceding
chapters to the construction of a core ontology for the legal domain: LKIF Core.
This ontology is designed to support the reasoning task of a knowledge based
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system; it is specified in OWL 2, and compared to a number of existing upper
and core ontologies. An important difference with these ontologies is that it is
based on insights from cognitive science rather than philosophy, and reflects
a common sense, rather than theoretical perspective. The discussion of the
LKIF Core ontology serves to illustrate the consequences of the considerations
introduced in the preceding chapters as applied to a concrete domain; both
considering the knowledge representation language used, and the stance with
respect to (legal) theory.

Chapter 7 – Design Patterns describes a suite of design patterns that have
been implemented in the LKIF Core ontology: a diamond shaped pattern is
applied to the definition of transactions; summarisation of reified relations is
used to define social concepts; and sequences are employed to define processes
and causal relations. These patterns are combined in the definition of actions.

Where the preceding chapter provides a high level description of the per-
spective and design decisions underlying the LKIF Core ontology, this chapter
zooms in to the level of the OWL 2 knowledge representation language to illus-
trate how these considerations are applied in the definition of concepts cent-
ral to both legal and other domains. At this level, the conceptual insights of
the preceding chapters are directly confronted with expressiveness bounds of
OWL 2. The discussion of design patterns explicitly addresses the trade offs in-
volved in their specification, and explains useful strategies for extending and
combining them in more elaborate structures. The way in which these patterns
are presented is meant to maximise insight in the task of ontology design as a
whole.



Chapter 2

Knowledge Representation

“Once the characteristic numbers of most notions are determ-
ined, the human race will have a new kind of tool, a tool that will
increase the power of the mind much more than optical lenses
helped our eyes, a tool that will be as far superior to microscopes
or telescopes as reason is to vision.”

Gottfried Wilhelm Leibniz, Philosophical Essays

2.1 Introduction

The goal of AI research is the simulation or approximation of human intelli-
gence by computers. To a large extent this comes down to the development of
computational reasoning services that allow machines to solve problems. Ro-
bots are the stereotypical example: imagine what a robot needs to know before
it is able to interact with the world the way we do? It needs to have a highly ac-
curate internal representation of reality. It needs to turn perception into action,
know how to reach its goals, what objects it can use to its advantage, what kinds
of objects exist, etc. Because this problem solving takes place in a different en-
vironment (inside a computer) than human problem solving, it is subject to
different restrictions, such as memory capacity, processing power and symbol
manipulation. Where human reasoning can resort to a wide array of highly
redundant patterns, machines will inevitably resort to parsimonious and in-
complete representation, suitable only for solving a particular set of problems.

The field of knowledge representation (KR) tries to deal with the problems
surrounding the incorporation of some body of knowledge (in whatever form)
in a computer system, for the purpose of automated, intelligent reasoning. In
this sense, knowledge representation is the basic research topic in AI. Any arti-
ficial intelligence is dependent on knowledge, and thus on a representation of
that knowledge in a specific form.

8



2.2. Two Schools 9

The history of knowledge representation has been nothing less than turbu-
lent. The roller coaster of promise of the 50’ies and 60’ies, the heated debates
of the 70’s, the decline and realism of the 80’s and the ontology and knowledge
management hype of the 90’s each left a clear mark on contemporary know-
ledge representation technology and its application. In particular, the idea of a
Semantic Web (discussed in Chapter 3) led to the integration of insights from
two distinct fields in symbolic AI: knowledge representation, and knowledge
acquisition (expert systems). Two areas that had showed little or no interaction
for three decades, at least not significantly, since the divide between epistemic
and heuristic aspects of an intelligent system (McCarthy and Hayes, 1969).

In this chapter I give an overview of the historical origins and rationale of
knowledge representation, and the family of languages known as description
logics in particular. These languages turned out to play an important role in the
development of semantics on the web, discussed in Chapter 3, and could not
have reached their current prominence without the wide adoption of the word
‘ontology’ in the AI literature of the nineties (see Chapter 4).

2.2 Two Schools

In the early second half of the 20th century, AI housed two very different
schools of thought. The first was very much based on the idea that know-
ledge is best captured using a general purpose, clean and uniform language:
logic. With roots in philosophy, it was oriented towards the adequate repres-
entation of our theoretical understanding of the structure of the world, and
assumed that a small set of elegant first principles can account for intelligence.
The second school’s main interest was the approximation of human intelligence,
and human behaviour in particular. Its main proponents had a background in
psychology and linguistics, rather than philosophy or mathematics, and were
less concerned with rigourous formal semantics. They built systems that ‘just
work’, based on the assumption that human intelligence is a hodgepodge of
many different ad hoc conceptions and strategies. Roger Schank coined the
two groups the neats and the scruffies, respectively.

In short, research in KR can be roughly categorised as having either a philo-
sophical or psychological nature. In an influential paper McCarthy and Hayes
(1969) discussed a number of fundamental issues for AI (amongst which the
famous frame problem). They operationalise (artificial) intelligence as follows:

“. . . an entity is intelligent if it has an adequate model of the world (including
the intellectual world of mathematics, understanding of its own goals and other
mental processes), if it is clever enough to answer a wide variety of questions
on the basis of this model, if it can get additional information from the external
world when required, and can perform such tasks in the external world as its
goals demand and its physical abilities permit.”

(McCarthy and Hayes, 1969, p.4)

This definition introduces the distinction between a representation of the
world, and a mechanism that uses problems and information expressed in that
representation to perform problem solving and decision making. Artificial



2.2. Two Schools 10

First Order Logic
Theorem Provers

(exhaustive, combinatorial)

Semantic Nets, 
Frames, (Rules)

Problem Solvers
(goal directed, rational)

Rules Expert Systems

Semantics
(Epistemological Adequacy)

Reasoning
(Heuristic Adequacy)

Philosophy

Psychology

Practice

Table 2.1: Schools and systems in Knowledge Representation

intelligence systems should attain a balance between both epistemological ad-
equacy and heuristic adequacy.

The distinction between these approaches was very much evident in AI
research in the seventies. Mylopoulos (1981) organised the schools in a tax-
onomy; KR languages can first of all be divided into procedural and declar-
ative ones. The first is aimed at attaining heuristic adequacy, the second has
an epistemological perspective. The declarative languages can be further sub-
divided into logic-based and semantic network ones, see Table 2.1. It wasn’t
until the end of the seventies that so-called hybrid systems attempted to com-
bine declarative and procedural views (see Figure 2.1).

2.2.1 Intelligence by First Principles

The idea of automated intelligent reasoning has been around for a long time,
and can be traced back to ancient Greece. Aristotle’s syllogisms are often seen
as the first example of a formalisation of valid reasoning. With the separation
of mind and body in the 17th century by Descartes, and in common sense, the
road was opened up to apply newly found mathematical insights to model and
imitate parts of human thought as mechanistic processes. Perhaps the most ap-
pealing examples are Pascal’s arithmetic machine for addition and subtraction,
and Leibniz’ improvements to it to support multiplication, division and com-
puting the square root.

In the mean time other great minds, such as John Wilkins (the first secretary
of the Royal Society) were busy working on a systematic account of all of hu-
man knowledge using his Real Character. The real character encoded words in
such a way that each had a unique non-arbitrary name. For this, Wilkins used
a three-layered tree structure. All concepts are distributed over forty Genuses;
these in turn are divided into Differences which are separated as Species. Each
of these layers adds one or more letters, such that any path through the tree
can be represented as a unique four-letter word.

More influential, however was Leibniz’ invention of the binary system of
numbers that lies at the heart of his calculator. He entertained the thought of
encoding ‘notions’ as unique binary encoded numbers. Using a simple method
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Figure 2.1: History of knowledge representation

of combining these numbers by applying mathematical operators, a machine
– the calculus ratiocinator – could be built that would ‘think’. Unfortunately,
gathering all notions proved to be too formidable a task, and for various reas-
ons – his work on the differential calculus beckoning – Leibniz was unable to
continue his work in this direction. A few decades later Linnaues was more
successful when he built his Systema Naturae of a more limited domain.

In Leibniz’ view, intelligent reasoning is a form of calculation: the manip-
ulation of symbols according to a set of logical axioms. Still (or even more)
prevalent once computers became available, logic based knowledge represent-
ation was very popular during the 1960’s after the development of automatic
theorem proving using resolution. The idea of a general-purpose logical engine
fuelled the idea that logics could be used as the basis of all intelligent action.
Despite the fact that logic based knowledge representation has the advantage
of a well-understood formal semantics, standard inference rules, and relatively
simple notation, it has several drawbacks as well (Mylopoulos, 1981).

Logic based languages did not provide a way to organise knowledge in sep-
arately understandable modules. And as time progressed it became clear that
this engine was not “powerful enough to prove theorems that are hard on a hu-
man scale”, which lead to the “great theorem-proving controversy of the late
sixties and early seventies” (Newell, 1982, p.90-91). Instead of being univer-
sally applicable, research in theorem proving increasingly focussed on smaller,
theoretically hard topics. The result was a rather allergic reaction to anything
smelling of uniform procedures, and at the start of the seventies it seemed that
logic as knowledge representation language was very much done for in AI
Hayes (1977); Newell (1982).



2.2. Two Schools 12

Receptors

Effectors
Memory

Processor

Information Processing SystemEnvironment
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Newell and Simon (1972))

Another problem was that logics are not well suited to represent proced-
ural knowledge. The PROLOG programming language (Kowalski, 1974; Bratko,
1986) was designed to alleviate this problem by the interpretation of implica-
tions as procedure declarations (see Figure 2.1).

2.2.2 Production Systems

At the start of the seventies, much of AI research was targeted at building
psychologically sound computer models. Such models were used in cognit-
ive psychology research for the study of both language semantics and human
reasoning. It soon became evident that people within the two areas of research
entertained differing views on what ‘knowledge’ is. While one group main-
tained that knowledge is all about ‘how’ (the heuristic view), the other group
advocated the ‘what’ (the epistemological view). The latter is discussed in Sec-
tion 2.2.3.

During the 1950s, Newell and Simon (1972) developed the Logic Theorist
and the General Problem Solver (GPS) programs which were able to perform
various tasks using a combination of theorem proving and heuristics. Al-
though they started out in a similar vain as the purist logicians, they soon de-
veloped a quite different approach. In their view, human thinking and problem
solving is by information processing: “the human operates as an information
processing machine”(Newell and Simon, 1972, p.21). Even though this inform-
ation processing system (IPS) perspective soon turned out to be overly simplistic
as a correct model of the human mind; it is a useful abstraction, and has de-
veloped into a major knowledge representation paradigm. The general struc-
ture of an IPS is that of a processor that interacts with its environment – using
a receptor and effector – and stores information about the environment in its
memory (see Figure 2.2).

The processor consist of a set of elementary information processes (eip) and
an interpreter that determines the sequence of processes to be executed as a
function of the symbols stored in memory. This view was very much oriented
towards the way in which computers can be used to do thinking. Of primary
concern, here, were the questions as to 1) how elementary information pro-
cesses should be expressed, and 2) what strategies should be implemented as
part of the interpreter.
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Systems that follow the IPS architecture of Newell and Simon are gener-
ally a type of production system (Buchanan and Shortliffe, 1984). These systems
were first conceived of as a general computational mechanism by Post (1943),
used to describe the manipulation of logical symbols. In its simplest form, a
production rule consists of a left hand side (condition) and a right hand side
(action), usually in the form of an if ...then ... statement. A production
rule is essentially the operationalisation of a reasoning step (i.e. an eip) in an
IPS: given some input structure of symbols, the rule produces a new (modi-
fied) structure of symbols. An interpreter iteratively evaluates all productions
in the system until it finds one that matches one or more symbols stored in
memory. This evaluation of the condition of rules is a passive operation that
has no impact on those symbols. When the interpreter evaluates some input to
the conditions of a rule, it is said to ‘fire’, and performs the operations specified
on the right hand side on relevant symbols in memory. Because of its depend-
ency on the order in which the interpreter carries out evaluation, a production
is not applied in the same way as the full combinatorics of logical implication.
Where the consequent of an implication necessarily holds at all times – all in-
formation implicit in the knowledge base holds at all times – the consequent of
a production rule only comes into effect after the rule has fired.

Production rules were (and still are) used for a wide variety of applications.
They can be categorised according to two views: as a means for psychological
modelling on the one hand (as in IPS), and for expert systems on the other. In
cognitive psychology, production rule systems were part of an effort to create
programs that capture human performance of simple tasks. This performance
includes typical human treats such as forgetting, mistakes etc. and rules were
a promising paradigm for capturing heuristics in human problem solving. For
these scruffies, human intelligence was rather a “particular variety of human
behaviour” (Davis et al., 1993, p.10); the ‘intelligence’ of reasoning can only be
assessed by virtue of its correspondence to human intelligence, and not neces-
sarily by whether it is clean and logical. To them, production systems provided
a clear formal way to represent the basic symbol processing acts of information
processing psychology (Davis and King, 1984). The production rule semantics
allowed an escape from the nothing-or-all inferences of theorem proving, and
could be used to capture the local, rational control of problem solving.

During the eighties, rule-based knowledge representation was applied in a
number of large scale projects, and found its way into many enterprise indus-
trial and government applications. Because of their rather practical, applica-
tion oriented perspective, focus shifted from a cognitive perspective to build-
ing large knowledge-based systems, and creating and maintaining elaborate
models that capture expert knowledge. Knowledge-based expert systems, em-
phasise problem-solving performance at the cost of psychological plausibility.
Production rules are used to capture expert knowledge about a particular task
or domain, and enable the system to support, augment or even surpass human
problem solving. Production rules can be modified and extended relatively
easily, which makes them a convenient paradigm for incremental system de-
velopment. A well known example of such a system is is the MYCIN expert
system for medical diagnosis (Buchanan and Shortliffe, 1984). Rather than at-
tempting to simulate diagnosis by human experts, it captures and formalises
the (often implicit) knowledge, i.e. the ‘rules of thumb’ used by those experts,
into the form of production rules. Because of the emphasis on performance,
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Figure 2.3: A semantic network, using the notation of Quillian (1966)

interest soon grew towards the improvement of the interpreter with more effi-
cient strategies.

2.2.3 Semantic Networks

While production systems were rather good at mimicking the heuristics of hu-
man problem solving, they were severely limited when it comes to another
major area in AI: natural language understanding. Looking at it in terms of
an IPS, a natural language processing system is all about mapping terms and
structures in natural language to their cognitive interpretation in memory. In
other words, lexical terms are to be grounded in a model that represents their
semantics, where the semantics should mimic the human understanding of
these terms in memory. This application area brought forth a number of very
influential knowledge representation technologies that count as the direct pre-
decessors of the languages currently used for representing knowledge on the
Semantic Web.

The theory of semantic memory by Quillian (1966), is based on the idea that
memory consists of associations between mental entities, i.e. semantic memory
is associative memory (Anderson and Bower, 1973). Quillian’s semantic memory
can be depicted using semantic networks, directed graphs where nodes are terms
and the relationships between those terms are represented as arcs (see Figure
2.3). In semantic networks, different senses of a word concept (a node) can
be organised into planes, and can be related through pointers (edges). Point-
ers within a plane form the structure of a definition. Pointers leading outside
a plane indicate other planes in which the referenced words themselves are
defined. The use of planes and pointers allowed the ‘import’ of a word defini-
tion by reference. Quillian (1966) distinguished five kinds of pointers: subclass,
modification, disjunction, conjunction, subject/object.

Though graph-based representations had been used extensively in the past
for a wide variety of representations, Quillian was the first to use semantic
networks for representing human knowledge:
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“His intent was to capture in a formal representation the ‘objective’ part of the
meanings of words so that ‘humanlike use of those meanings’ would become
possible”

(Brachman, 1979, p. 5)

Underpinning the cognitive perspective of this approach, was his later re-
search using reaction time in assessing the factual truth of statements (Collins
and Quillian, 1969, semantic verification) to test the psychological plausibil-
ity of semantic network models. Of particular interest was the question as
to whether the retrieval of inferred property values (over the subclass rela-
tion) would take more time than directly represented property values. The fact
that indeed this was the case provided backing for property inheritance over a
superclass-subclass taxonomic hierarchy in semantic network representations
of human semantic memory. Furthermore, he intended his model to be suit-
able for automatic inference, allowing for querying information implicit in the
model. Effectively turning the semantic network paradigm into not only a rep-
resentation but a simulation of human memory.

The expressive power of the original semantic networks soon became too
restricted, and a number of innovations and extensions followed. Quillian’s
original set of five link types turned out to be insufficient, and was superseded
by the ability to type pointers using named attributes, i.e. a means to use a token
to point to a type. Furthermore, a distinction was introduced between concepts
and examples (later instances), in Carbonell (1970). These innovations led to a
plethora of widely variant, rather unprincipled, semantic network ‘languages’.
Many of which applied the technique to domains other than psychology.

A true show-stopper, however, was that new link types, and even concept
types, were not explained and the interpretation of semantic networks was left
to the ‘intuition’ of the reader (Brachman, 1979): semantic networks did not
really have semantics. For instance, both the concept–instance distinction and
the type–token distinction were obfuscated by the use of the infamous ‘IS-A’
link (Woods, 1975; Brachman, 1983).

Perhaps most manifest to current readers was the critique that the networks
made no distinction between domain level constructs – conceptual relations in
the domain – and knowledge structuring principles such as the subclass rela-
tion. As semantic networks relied heavily on graphical notation, this is most
apparent in the uniformity of presentations. Woods stressed the importance of
considering the semantics of the representation itself.

To summarise, semantic networks were developed as part of an effort in
psychology to represent human semantic memory. Although they have been
successful in many ways, they suffered from lack of proper semantics: “The
‘semanticness’ of semantic nets lies in their being used in attempts to represent
the semantics of English words.” (Brachman, 1979, p. 26).

2.2.4 Frames

The semantic network model received criticism from cognitive science itself
as well. Most notable in this respect is Minsky (1975),1 who argued against

1Though, as is common his ideas had been brooding in the community, cf. Schank and Abelson
(1975); Woods (1975)
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the paradigm of associative networks for representing semantic memory. In
his view the ‘chunks’ of thought should be larger and more structured, and
their “factual and procedural content must be more intimately connected”. He
proposed frames as knowledge structures that represent stereotyped situations.
This meant a move away from the focus on word concepts in semantic nets
to more contextual representation of knowledge. Frames are thus presented
as part of a theory on the contents of thought (semantic memory), similar to
the notion of script in Schank and Abelson (1975), used in natural language
understanding.

A frame can be regarded as a group of interwoven nodes and relations
(somewhat akin to Quillian’s planes), but with a fixed structure. The ‘top’
levels of a frame represent that which is always true for the situation, the lower
levels consist of terminals or ‘slots’. These terminals can specify conditions that
its assignments (through specific instances or data) must meet. Minsky distin-
guishes simple conditions – in the form of ‘markers’ that require straightfor-
ward assignments to e.g. (smaller) sub-frames – from complex conditions that
specify relations. The terminals of frames are filled with default assignments,
which may be overridden when a frame is filled by a suitable particular situ-
ation.

Frame systems are collections of closely related frames. For instance, the
effects of possible actions are reflected as transformations between the frames
of a system. Frames within a system share the same terminals; this to allow
the integration of information from different viewpoints on the same situation.
For example, two frames representing the same cube at different angles share
some of the faces of the cube.

Where semantic networks could already support a limited form of auto-
matic inference, an important addition of the frame paradigm is the require-
ment of an information retrieval network that supports a standard matching pro-
cedure for determining whether a candidate situation fits a frame. This pro-
cedure tries to assign values to the frame’s markers. In the case of a mismatch,
the network should be able to propose a new replacement frame as possible
candidate for a match. Matching is not performed solely on the constraints on
a frame, but also by the current goals, which are used to determine constraint
relevance.

The main contribution of the frame-based view was that it fixed a know-
ledge representation perspective. Semantic nets could be used to represent any-
thing – not just word concepts – and were in many ways equivalent to generic
graph representations. The frame proposal fixes the perspective on descrip-
tions of situations in general, and objects and processes in a situation in particular.
Minsky (1975) discusses how frames can be used to represent a wide variety of
domains – vision, language understanding, memory – without compromising
this perspective. His proposal is often viewed in line with the development of
object oriented programming.

Furthermore, the frame-based approach incorporates a view on the manip-
ulation of knowledge, i.e. the transitions between frames in a frame system.
This effectively introduced the reuse of information as a knowledge organising
principle. Lastly, it envisioned a procedure for matching specific situations to
candidate descriptions in frames, and introduced defaults for dealing with in-
complete knowledge.
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2.2.5 Frame Languages

Research in the late seventies produced a number of – what in retrospect could
be called – frame based KR languages. Not because they were explicitly de-
veloped to define Minsky’s original frames (they were not), but because they
share its emphasis on interrelated, internally structured concepts as primary
language primitive.

Knowledge Representation Language (KRL) The Knowledge Representa-
tion Language (KRL), developed by Bobrow and Winograd (1976), was built
on the idea that knowledge is organised around conceptual entities with as-
sociated descriptions and procedures. In their view, a KR language should be
independent from the processing strategies or representations of a particular
domain. It must provide a flexible set of underlying tools.

KRL descriptions represent partial knowledge about an entity, and can con-
sist of multiple descriptors that can be grouped to capture differing viewpoints
on the entity. KRL’s descriptions are by comparison to a known entity (the pro-
totype), extended with a further specification of the described entity. The pro-
totype provides a perspective from which to view the object being described.
The description of a concept entity can combine different modes of description
(Bobrow and Winograd, 1976, p. 6), such as category membership, stating a
relationship, or role in a complex object or event etc.

Reasoning in KRL is done by way of a process of recognition where newly
introduced objects are compared to stored sets of prototypes. Specialised reas-
oning strategies can be attached to these prototypes in the form of procedural
attachments. These procedures could be called depending various triggers (on
classes) or traps (on objects) such as goal directed procedure calls (servant pro-
cedures) and side-effects of system actions (demon procedures). Such proced-
ural attachments are coined procedural properties, as opposed to declarative
properties.

Bobrow and Winograd make a strong claim that “it is quite possible . . .
for an object to be represented in a knowledge system only through a set of
such comparisons” between prototypes (Bobrow and Winograd, 1976, p.7).
The definition of an object is wholly contained within the system, but also
functionally complete with respect to that definition as the system can an-
swer any relevant query about it. This represents a fundamental difference
in spirit between the KRL notion of representation and standard logical repres-
entations. Because the definition of an object is in terms of other objects, and
vice versa, and its position within that network of comparisons is determined
by a standard inference mechanism, it is the inference mechanism that determ-
ines the meaning of an object.

Structured Inheritance Networks (SI-Nets) Another frame-like language,
the Structured Inheritance Networks (SI-Nets) of Brachman (1979) were an at-
tempt to define an epistemologically well-founded class of KR languages (see
Section 2.3.2): granted that we distinguish concepts and relations, how can we
account for the apparent meaning of concepts that determines their position
within a network? The most prominent of these languages, KL-ONE (Brach-
man, 1979; Brachman and Schmolze, 1985), is organised around concepts. Con-
cepts are intensional, and can represent objects, attributes and relations in a
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Figure 2.4: Instantiation, individuation and denotation, from Brachman (1979)

domain. Brachman furthermore distinguishes between generic and individual
concepts:2

Generic Concept
represents a class of individuals by describing a prototypical member of
the class.

Individual Concept
represents an individual object, relation or attribute by individuating more
general concepts.

Individual Object
(or instance) is an object in the actual world that instantiates a Generic
Concept, and is denoted by an Individual Concept, see Figure 2.4.

Similar to KRL entities, KL-ONE concepts are structured objects. They are
described by role/filler descriptions, the ‘slots’ of the concept. These determine
the type of entity that can fill the role, the number of fillers and the importance
(modality) of the role. Where KRL uses five modes of description, KL-ONE is
more abstract and distinguishes three role modality types – inherent, derivable
and obligatory – that enable a modeller to distinguish between information
needed for recognition and more neutral descriptions.

KL-ONE supports procedural attachments, but distinguishes meta descrip-
tions – meta statements on concepts using KL-ONE’s formalism – from inter-
pretive attachments. The former, so-called structural descriptions (SD), can be
used to prescribe the way in which role fillers interact for any individual; SD’s
relate two or more roles. The latter are similar to KRL’s procedural attach-
ments, and can be expressed using the interpreter language that implements
KL-ONE itself (INTERLISP).

In summary, frame-based KR languages introduced a number of know-
ledge structuring principles that were absent in earlier semantic nets. They

2The distinction is similar to that between types (generic concepts), tokens (individual objects)
and occurrences (individual concepts) in philosophy.
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focus on structured concepts, which are defined by simple or very elaborate
structural or procedural descriptions in terms of other concepts. Concepts are
either generic or individual, and are clearly distinguished from their real world
counterparts. The meaning of a concept is determined by its position within
the network of other concepts, which is enforced by a standard inference mech-
anism based on the descriptions of the concept. Because of the combination of
conceptual and procedural (production rule-like) primitives, languages such
as KL-ONE and KRL are sometimes called hybrid systems.

2.3 Epistemology

“One man’s ceiling is another man’s floor”

Paul Simon, 1973

Frame based languages proved to be a significant improvement over other se-
mantic networks.3 They fixed a paradigm which was more rigourous and bet-
ter suited for representing knowledge. The development of these languages
was not only given in by the cognitive psychology argument of Minsky (1975),
but also (and perhaps more importantly) by the growing awareness of the need
to have a clear definition of what a knowledge representation is.

The interaction between psychological insights and knowledge representa-
tion practice led to two fundamental questions:

1. What is the relation between a machine representation and the thing (do-
main, body of knowledge) it denotes? and,

2. How does the representation language relate to the representation itself?

So, while at first developers of both semantic and procedural knowledge rep-
resentations were primarily concerned with the psychological plausibility of their
models, the proliferation of semantic nets and frame based languages sparkled
growing concern about the epistemological status of knowledge, representation,
and the KR languages themselves.

In his 1980 inaugural presidential address to the AAAI4 Newell (1982) dis-
cussed exactly this topic: the nature of knowledge, and in particular the re-
lation between knowledge and representation. In his view, the latter is used
precisely and clearly in computer science while the former is often used in-
formally. He identifies a problem with representation, in that it is attributed a
‘somewhat magical’ role.

“What is indicative of underlying difficulties is our inclination to treat repres-
entation like a homunculus as the locus of real intelligence.”

(Newell, 1982, p.90)

3The above quote was taken from Brachman (1979).
4American Association of Artificial Intelligence
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Table 2.2: Computer System Levels (Newell, 1982)

Level Description
Knowledge Level Knowledge and rationality
Symbol Level Symbols and operations (also program

level)
Logic Level Boolean logic switches (e.g.

AND/OR/XOR gates, consists of the
register-transfer sublevel and logic circuit
sublevel)

Circuit Level Circuits, connections, currents
Device Level Physical description

The most salient task in AI is identifying the proper representation of a
problem. It can make the difference between combinatorial and directed prob-
lem solving: “... the crux for AI is that no one has been able to formulate in a
reasonable way the problem of finding the good representation, so that it can
be tackled by an AI system.” (Newell, 1982, p.3). The capability to find the
proper representation apparently requires some special kind of intelligence.

What epistemological adequacy is, turned out to differ widely, as we have
seen in the previous section. McCarthy and Hayes propose to construct a prac-
tical philosophical system, based on our common sense understanding of the
world. For semantic network-adepts, epistemological adequacy equates to
psychological plausibility. But even the criterion of psychological plausibil-
ity is not suitably specific to distinguish between production systems and net-
work representations. All three proposals, the logic-based, production-based
and network approach, aim to answer the two fundamental questions raised
at the start of this section. Although they formulate some description on what
a knowledge representation should contain and how it relates to the world
it represents, this description remains vague: none of them clearly defines a
framework for this relation. And secondly, they do not give an answer to how
knowledge relates to the language it is represented in: what are the primitives
of knowledge representation?

2.3.1 Knowledge and Representation

In his discussion on the nature of knowledge, Newell (1982) presented the
knowledge level as a computer system level. The execution of computer pro-
gram code is made possible by its translation to physical operations on a circuit
board. This translation passes through a number of steps, or ‘levels’ at which
the program can be expressed (e.g. from java code at the symbol level, to java
byte code to processor instructions etc.), see Table 2.2. Levels have a medium,
the system it is used to express, primitive processing components and guidelines
for their composition, and a definition of how system behaviour depends on the
behaviour and structure of components.

Every computer system level can be defined autonomously – without refer-
ence to another level – and is reducible to a lower level. Because a description
of a system at some level does not imply a description at a higher level, these
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levels are not levels of abstraction: A level is rather a specialisation of the class
of systems that can be described at the level directly below it. Computer sys-
tem levels are concrete and really exist, they are “a reflection of the nature of
the physical world” (p. 98). Newell postulated the existence of the knowledge
level as a hypothesis:

The Knowledge Level Hypothesis. There exists a distinct computer systems
level, lying immediately above the symbol level, which is characterised by
knowledge as the medium and the principle of rationality as the law of be-
haviour.

(Newell, 1982, p.99)

The question is, how does the knowledge level fit into the rather technical
framework of levels in a computer system? The idea is that when we perform
knowledge representation – both procedural and declarative – we express our
rather abstract, implicit notions of knowledge manipulating systems (people,
or rather agents) in terms of a symbol level system. This includes the definition
of the medium (knowledge), components (actions, goals), and laws of beha-
viour (rationality) prevalent at this level. Newell (1982) insisted that a know-
ledge level description of a system is not just a matter of treating a system as a
rational agent as in the intentional stance of Dennett (1987). But rather that the
level exists and behaves in the same way as any of the other computer system
levels. The term ‘knowledge level’ is often used to describe representations of
knowledge in terms of concepts, tasks, goals etc. The representation is said to
be ‘at’ the knowledge level. For Newell, however, the knowledge level is the
knowledge itself, a representation will always be ‘at’ the symbol level (Newell,
1993).

One implication of this perspective is that a knowledge representation is
to be regarded as truly a representation of knowledge and not a representation
of physical, philosophical or psychological reality. Though, by its very nature
knowledge is itself some representation of a reality. The relations between con-
cepts and individual objects of KL-ONE in Figure 2.4 are in fact reflections of
our knowledge of that object.

Figure 2.5 is an extended version of Brachman’s triangle and illustrates the
relation between a knowledge representation and reality. At the far right are
the individual objects that exist in reality, our knowledge of reality is cast both
in terms of knowledge of these individuals as individual concepts and as gen-
eralisations over these individuals. A knowledge representation is constructed
in a similar fashion. Individual concepts in representation are denoted by our
knowledge of individual concepts; generic concept representations are indi-
viduated by these individual concepts. However, we can also choose to repres-
ent a generalisation over the generic concepts in human knowledge, these meta
concepts individuate representations of generic concepts, and are instantiated
by actual generic knowledge. Finally, a knowledge representation language
provides constructs that allow us to formulate the concepts in our representa-
tion through instantiation.

Although it is clear that all knowledge representation occurs by proxy of our
knowledge of reality, it is not always practical to take the separation between
knowledge and reality explicitly into account. If a system is to represent reality
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Figure 2.5: Relation between a representation and the world.

as we understand it, there is no more useful and well-tuned proxy than the
mental models of reality we use and live by every day.

2.3.2 Representation and Language

The introduction of the knowledge level helps us to put the representation of
knowledge into perspective, but does not address the suitability issue of the
knowledge representation languages of Section 2.2.

Levels In his review of lessons learned in semantic nets, Brachman (1979)
identified five distinct groups of primitive types used in these languages. He
considered each of these groups to stand for a particular viewpoint, or concep-
tual ‘level’. Any network, he argued, can be “analysed in terms of any of the
levels” (p.27). In other words, a concept expressed in a language at one level,
can be understood and expressed at all other levels as well. On the other hand,
an interpreter usually commits to support only one of these sets.

At the implementational level, semantic nets are mere graphs, data struc-
tures where links are pointers and nodes are destinations for links. The logical
level emerged in reaction to criticism that semantic nets did not have formal
semantics. It perceives semantic nets as a convenient depiction of predicates or
propositions (the nodes) and the logical relationships between them (the links).
Originally, however, semantic nets were meant to capture the meaning of word
concepts. At this conceptual level, links are case relations between nodes rep-



2.3. Epistemology 23

Table 2.3: Levels of Semantic Networks (Brachman, 1979)

Level Primitives
Implementational Atoms, pointers
Logical⋆ Propositions, predicates, logical

operators
Epistemological Concept types, conceptual sub

pieces, inheritance and structur-
ing relations

Conceptual Semantic or conceptual relations
(cases), primitive objects and ac-
tions

Linguistic Arbitrary concepts, words, ex-
pressions

⋆ Note that the logical Level of Brachman is not the same as Newell’s Logic Level

resenting word senses. Here, the primitives are less neutral, and encompass
conceptual elements and relations, such as action types and cases (thematic
roles) respectively. Not always are these primitives explicitly defined as part of
the semantic net language, but on the whole the relations do have this flavour.
One level higher, nodes and links are language dependent. Linguistic level net-
works are composed of arbitrary relations and nodes that exist in a domain.
Each consecutive level adds a commitment to a particular interpretation of the
structure of the world.

In line with the criticism of Woods (1975), who urged the consideration of
the semantics of KR languages, and Minsky (1975), who argued for structured
concepts, Brachman postulates that part of the promiscuity of semantic net-
work languages lies in the absence of an intermediate level between the logical
and conceptual levels. He proposed the introduction of an epistemological level
which allows the definition of knowledge-structuring primitives as opposed to
knowledge primitives:

“The formal structure of conceptual units and their interrelationships as concep-
tual units (independent of any knowledge expressed therein) forms what could
be called an epistemology.”

(Brachman, 1979, p.30)

To illustrate, even while we can argue about which properties exist, we can
still agree that properties exist. See table 2.3 for an overview of Brachman’s
levels. Perhaps his levels are best understood as levels of detail or abstraction.
When regarding a linguistic level representation, using plain English words
etc., we can zoom in to see the case structure and concepts that underlie the
language. If we then zoom in again, we can view the internal structure of
these concepts and what makes that they can be related in certain ways. Not
very surprisingly, his KL-ONE is designed for representing knowledge at the
epistemological level.

We must be careful, however, not to misinterpret the analysis Brachman
made as a deconstruction of layers in semantic-network based knowledge rep-
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resentation only. In fact, it remains rather unclear what Brachman believes to
be at a level. His description leaves room for the following alternative inter-
pretations:

Language
A KR language can be designed to be adequate for the representation of
knowledge using primitives at a particular level.

Knowledge
The knowledge represented using a KR language can be of a type corres-
ponding to one of the levels. For instance, it is quite common to describe
concepts using some form of logic, but we can just as readily represent
logical primitives as concepts.

In the first sense, the knowledge primitives determine the level of a lan-
guage; where in the second sense the level describes the kind of knowledge
expressed in a model. The two interpretations of the levels are not wholly un-
related, and Brachman formulates a number of requirements for KR languages
to adequately support the representation of knowledge at a particular level.
Firstly, a language should be neutral with respect to knowledge at the level
above it. Secondly, it should be adequate for supporting the level above it, i.e.
it should be expressive enough to account for knowledge at that higher level.
And thirdly, it should have well defined semantics: it should prescribe legal
operations, and provide a formal definition of its primitives.

Types For a long time, the expert systems field seemed to steer clear of the
epistemological crisis of declarative knowledge representation. And indeed,
the levels presented in the previous section do not particularly fit the heuristic
perspective of production systems. Although the PSI architecture includes a
‘memory’ in which knowledge of the world is stored declaratively, these sym-
bol structures are usually very simple hierarchies with limited semantics, and
were used chiefly as database-like place holders for instance data.

All of this changed when it became clear that production rule systems were
not particularly usable in settings other than which they were designed for.
This realisation emerged when Clancey (1983) attempted to use MYCIN rules
in the GUIDON tutoring program, i.e. to “transfer back” expert knowledge
from a rule base. The idea was to use the rules to explain each step in the
diagnostic reasoning process. As the original design goal of MYCIN was for
it to be built using a simple mechanism for representing heuristics that would
support explanations and advice, it seemed at first that this educational use
would be relatively straightforward. It turned out not to be. Merely using
MYCIN’s built in explanation facility did not work as expected. GUIDON was
incapable of explaining many rules because of insufficient information about
the way the rule base was structured. In order to support a tutoring setting, it
is necessary to extract this “compiled knowledge”(Clancey, 1983).

Rules in MYCIN, but in other systems as well, implicitly encode the design
rationale behind the way rules are fitted together. Clancey clarifies the different
ways in which design knowledge is lost when building rules by distinguishing
between goals, hypotheses and rules. These three categories are organised in a
network of dependencies (see Figure 2.6). Goals are formulated as questions
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Figure 2.6: Network of goals, hypotheses and rules, adapted from Clancey
(1983)

that need to be answered for the system to solve a problem (e.g. making a
diagnostic decision). Hypotheses are potential answers to the questions, and
are ascertained by rules that have the hypothesis as their consequent. Rules
fire, i.e. make their consequent hold, when their antecedent is satisfied. This
antecedent is composed of other hypotheses that answer some goal.

The decomposition gives insight in the way the different categories interact
when MYCIN traverses the search space. For instance, when it tries to satisfy
e.g. the “meningitis” hypothesis, MYCIN will in fact consider all related hypo-
theses that answer the more general goal “what infection?”. The links between
these categories are the ‘points of flexibility’ in a rule representation.

A problem solving strategy can be conveyed by making explicit the rationale
behind the order of premises in a rule as this affects the order in which goals
and hypotheses are pursued. A decision to determine the ordering of hypo-
theses in a particular way is a strategic decision, which can be stated in relatively
domain-independent terms. The example given by Clancey is “consider differ-
ential broadening factors”. Also some level of structural knowledge is neces-
sary to “make contact with knowledge of the domain”, it provides a “handle”
by which a strategy can be applied. For instance, it seems reasonable to invest-
igate common causes of a disease before considering unusual ones.

The justification for a rule is captured by the rationale for the connection
between the conclusion in the consequent and hypotheses in the antecedent.
Justification depends on knowledge of the domain. Clancey (1983) identifies
four different types of justification, and consequently four different types of
rules (the domain theory):

• Identification rules use properties of an object to identify it, e.g. “if it walks
like a duck and talks like a duck, it is a duck”.
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• Causal rules convey a causal relation between two objects, e.g. “problem
causes disease”. In fact MYCIN distinguishes several different types of
causal relation.

• World fact rules capture common sense knowledge about the world, e.g.
“if the patient is male, he is not pregnant”

• Domain fact rules capture domain specific knowledge on the basis of do-
main definitions, e.g. “if a drug was administered orally and it is poorly
absorbed in the GI tract, then the drug was not administered adequately”

This distinction between strategy and justification proved to be a very po-
tent methodological tool. The structural domain theory can be used to make
the strategy explicit that ‘indexes’ the domain model (the knowledge base). In
other words, instead of a hodgepodge of entangled rules, the different com-
ponents of a production rule system can now be considered separately and
relatively independently. All this by a shift from the dominant heuristic per-
spective to a more epistemological analysis of the types of knowledge involved
in production systems.

2.3.3 Adequacy

The distinction between epistemological and heuristic adequacy of McCarthy
and Hayes (1969) turned out to have a deeper impact than originally envi-
sioned. Although it was primarily presented as the two main goals of AI, it
soon turned into a rift in artificial intelligence research between epistemological–
declarative (semantic networks) and heuristic–procedural (production system)
systems. Because they were treated as very distinct notions, their pursuit has
produced very different representation perspectives. But as we have seen,
these are really two sides of the same coin.

Firstly, heuristic and epistemic approaches tend to deal with the same kinds
of knowledge. Albeit in quite divergent ways. Frame descriptions are not
purely ‘epistemological’; surely the assignment of default slot values based on
a ‘match’ is a form of inference and presupposes some procedure for feeding
new information to a knowledge base. Both KRL and KL-ONE are in fact
hybrid systems and combine declarative concept definitions with procedural
attachments. Vice versa, production systems encode identification knowledge
and knowledge of facts, the primary issue in declarative approaches, and are
thus just as susceptible to the epistemological crisis.

Secondly, the two approaches interact; how can a representation mean any-
thing without some form of standard inference? McCarthy and Hayes’s rep-
resentation is “in such a form that the solution of problems follows from the
facts expressed in the representation” (p.5), but how to check whether a solu-
tion indeed follows from the representation? In other words, the inference
mechanism in frame languages is just a particular heuristic strategy of the kind
production systems are intended to capture.

Newell’s analysis showed that both aspects should be present for any know-
ledge level representation as roles of behaviour on the one hand, and the com-
position of components on the other. Both Brachman and Clancey hold that
KR languages should provide the basic elements that shape our knowledge.
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Brachman emphasises the explicit definition of knowledge-structuring prim-
itives. Clancey distinguishes components of a knowledge base, the interaction
between different types of knowledge.

Furthermore, the separation of heuristics and epistemology is still import-
ant, but has been detached from the KR formalisms and has become rather
an interaction between strategic and domain knowledge. A strategy ‘indexes’
domain facts, and the combination of the two constitutes a domain model.

Both Clancey and Brachman thus operate at the epistemological level, and
argue that only knowledge representation at this level can account for know-
ledge level system behaviour. For Clancey the ultimate test is the reuse of a
knowledge system for a different task (explanation vs. diagnosis: same do-
main, different strategy), for Brachman this was the built-in appropriateness of
a language to represent a particular kind of (higher-level) knowledge.

More than a decade later, Davis et al. (1993) tried to settle the issue once
and for all. A lot of the discussion in the field of knowledge engineering is, in
their view, caused by a conflation of the different roles played by a knowledge
representation. As we have seen, knowledge representation is first, and fore-
most, a surrogate for ‘the thing itself’ – a particular domain – used to enable
reasoning as a simulation of the domain. As a representation cannot cover all
of the domain, it needs to make a selection of relevant features of the domain
and thus fixes a perspective on it. Every representation is therefore a set of
ontological commitments, a commitment to the terms in which one should think
about the domain (the domain and world facts of production systems). This
commitment pertains not only to the contents of a particular model, but also to
the KR language used. The ontological commitment accumulates in layers. For
instance, a language for describing knowledge at the conceptual level commits
to the existence of concepts, whereas a logical level language makes no such
claims.

As we have seen in the preceding, a well designed representation language
includes a standard inference mechanism. This makes a language a fragmentary
theory of intelligent reasoning; it sanctions heuristic adequacy, and prescribes the
way in which an AI system reasons on the basis of some adequately represen-
ted domain. Also, in its ‘magical’ role (Newell (1982), cf. Section 2.3.1) a KR
language includes a commitment to a particular way of formulating problems
that turns it into a medium for pragmatically efficient computation. The combina-
tion of language and representation is by itself a language which allows us to
describe the world in a particular way; it is a medium of human expression (Stefik,
1986).
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2.4 Components of a Knowledge Based System

As described in Section 2.3 the reusability of expert systems can be enhanced
by separating the different types of knowledge in a model. In particular, this in-
sight proved valuable in dealing with the problem first encountered by Wilkins
and Leibniz in the 17th century: accumulating and representing all knowledge
necessary for performing a particular task can be an arduous undertaking. Of
the three schools discussed, the expert systems field was the one exposed to
such large quantities knowledge, that this step of knowledge acquisition (KA)
became regarded as worthy of study in its own right.

In early expert system development, models were built in an ad hoc, un-
principled and incremental manner. This lead to models such as that of MY-
CIN, in which expert knowledge was ‘compiled’ away, which made them very
hard to understand for people other than the original designers. The models
could not be reconstructed for other purposes than the one originally intended.
Another problem was that this left no other means to check the correctness of
a model, than by evaluating system behaviour as a whole. The knowledge ac-
quisition field soon set out to develop a priori ways for ensuring expert system
quality. Knowledge representation had become an engineering task, know-
ledge should be modelled rather than merely extracted from experts, and this
process of knowledge engineering should be guided by a principled method-
ology. The methodology guarantees a level of quality by making design de-
cisions explicit (see also Chapter 5).

2.4.1 Modelling Principles

In most approaches of the 1990’s, knowledge engineering is regarded as a creat-
ive activity in which the construction of a knowledge base should be preceded
by a modelling step. As in software engineering, the actual implementation
of a KBS is guided by a functional specification. These approaches had a very
strong methodological perspective, and covered every step in the construction
of a KBS. From the identification of the purpose of a system and methods for
knowledge elicitation and acquisition, to the specification and actual imple-
mentation of the system.

For instance, in the KADS methodology (Wielinga et al., 1992; van Heijst
et al., 1997) knowledge acquisition is the construction of a knowledge level
model (the knowledge or conceptual model).5 Knowledge representation is then
the implementation of this knowledge-level model in a knowledge base. This
design model is a symbol level representation and takes into account addi-
tional considerations regarding e.g. computational efficiency of the system
(See Figure 2.8). These considerations are recorded as design decisions. The
PROTÉGÉ system of Puerta et al. (1992) adopted a similar approach where an
initial knowledge level model was automatically translated into a CLIPS rule
base.6

5Rather than a model consisting of ‘concepts’, the KADS conceptual model itself has concept
status, it is a preliminary, abstract version (in another language) of the design model (a system
component).

6CLIPS: C Language Integrated Production System, see http://clipsrules.

sourceforge.net

http://clipsrules.sourceforge.net
http://clipsrules.sourceforge.net
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Figure 2.8: Steps in the knowledge engineering process (van Heijst et al., 1997)

Knowledge systems can be described at the knowledge level of Newell
(1982), as long as the description is properly abstracted from the structural or-
ganisation of knowledge. In other words, the knowledge base (KB) of such
a system should be described in terms of its competencies: “knowledge is to
be characterised entirely functionally, in terms of what it does, not structurally
in terms of physical objects with particular properties and relations” (p. 105).
Levesque (1984) describes a functional perspective on KB characterisation. A
KB can be treated as an abstract data type, where its behaviour is described in
terms of a limited set of TELL and ASK methods. The capabilities of a KB are
a function of the range of questions it can answer and assertions it can accept.
How a KB implements this functionality should be hidden from the rest of the
system. The advantage of this functional approach is that the knowledge en-
gineer does not have to take into account considerations of implementation
while constructing the knowledge model – at least to a large extent. As a res-
ult, the knowledge level model is less biased towards the implementation in a
particular knowledge representation language.

Knowledge level models are more accessible to domain experts as they can
be constructed and interpreted without in-depth understanding of technical-
ities. A knowledge level model can therefore help to reduce the knowledge ac-
quisition bottleneck (Feigenbaum, 1980): the general difficulty to correctly extract
relevant knowledge from an expert into a knowledge base.

Reuse of symbol level representations in the way discussed by Clancey
(1983) turned out to be problematic because of the interaction problem (Bylander
and Chandrasekaran, 1987). The problem that different types of knowledge in
a knowledge base cannot be cleanly separated, because the purpose of the KBS,
– translated into strategies – influences the way in which the domain theory is
structured (recall Newell (1982) in Section 2.3). This is similar to the context
dependency of the meaning of concepts. However, as knowledge models are
formulated at a more abstract level – relatively untainted by issues of imple-
mentation and structure – it was thought that reuse of such models would be
feasible. This “limited interaction hypothesis” (Wielinga et al., 1992) assumed
that if domain knowledge was represented in a ‘well structured and principled
manner’, general descriptions of methods should be possible. Unfortunately
the structure of domain knowledge is often characteristic for a domain, and is
not merely a matter of design (Valente et al., 1998).

The development of libraries of skeletal models, partially filled-in models of
typical use, was thought to be the answer to the hugeness problem. Building
a KBS requires a significant effort, not only because of the KA bottleneck, but
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Figure 2.9: The standard diagnosis PSM, from Schreiber et al. (2000).

also because expertise domains in general are very large and complex. Skeletal
models do not only help to reduce the amount of specification needed, but
provide guidance with respect to the knowledge needed to build a KBS as well:
they ensure coverage.

To enable knowledge level reuse, the roles played by elements in a model
should be identified (Clancey, 1983; Bylander and Chandrasekaran, 1987). Ap-
proaches based on role limiting facilitate reuse by indexing symbol level repres-
entations – executable models – to types of knowledge at the knowledge level
(Valente et al., 1998). These models are detailed blueprints for implementation
in a system. Other approaches, such as KADS, rather took skeletal models to
be sketches of models and provided no direct connection to implementation.
The models in KADS supported reuse of ‘understanding’.

Role limiting and knowledge typing are accomplished firstly by the separ-
ation between heuristics and epistemology.7 For instance, KADS categorises
elements as a type of control knowledge or as part of a domain theory (See also
Figure 2.7). Control knowledge is the knowledge regarding how a system ob-
tains it goals and solves problems. The CommonKADS approach distinguished
two types of control knowledge in expertise models (van Heijst et al., 1997;
Valente et al., 1998; Schreiber et al., 2000):

Task Knowledge
is a abstract high level description of the decomposition of the goals
within a KBS that must be achieved by problem solving.

Inference Knowledge
An inference is an primitive problem solving step which is solely defined
in terms of its input/output signature. Its internal workings cannot be
meaningfully expressed at the knowledge level even though they can
perform very complex operations. Inferences can be combined in infer-
ence structures.

Tasks and inferences are combined in problem solving methods (PSM); these
are descriptions of a particular way to perform some task: a PSM expresses a
strategy, and reflects the “competence to decompose a task” (Valente et al.,

7Note that at the knowledge level, this does not correspond to a distinction between procedural
vs. declarative: everything specified at the knowledge level is declarative.
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Figure 2.10: A suite of problem types, dependencies and views from Breuker
(1994).

1998, p.400). See Figure 2.9 for an example problem solving method. Where
role limiting approaches generally used a fixed task hierarchy, PSMs are or-
thogonal to such a hierarchy and can combine several tasks to perform a more
complex one. In other words, if a task hierarchy divides a task into sub tasks,
a PSM describes a particular path along those tasks in terms of an inference
structure that implements them. Breuker and Van De Velde (1994); Breuker
(1997) argue that a library of PSMs should be indexed by a suite of problem
types, rather than by a taxonomy of tasks (Breuker, 1994).

Breuker’s suite defines an intermediate level between task decompositions
and problem solving methods. Central to this view are two standard sequences
of problem types part of any task (Figure 2.10). The two sequences can be dis-
tinguished by a behavioural view and a structural view. The former incorporates
the problems that deal with the interaction of a system with its environment:
planning and assessment. The latter includes problems of design, monitoring
and diagnosis and has a more internal perspective.

The interaction problem tells us that control knowledge and domain theory
cannot be fully separated in the way assumed in the limited interaction thesis.
On the other hand, a too close connection between the two kinds of know-
ledge severely limits reusability. A library of reusable knowledge components
should therefore contain descriptions of domain knowledge: a PSM cannot be
specified without at least some reference to domain knowledge. Firstly, a PSM
expresses domain knowledge in terms of its role in a problem solving pro-
cess. This captures the use of domain knowledge as an epistemology (see Sec-
tion 5.5.2). Secondly, this epistemology is connected to its possible role fillers:
the categories in the domain that are able to fulfil a role in problem solving. Re-
use of PSMs is achieved by connecting categories in the epistemology to their
counterparts in a generic domain theory. In short, the domain theory has two
roles:

• To index problem solving methods for reuse, and in this way

• Communicates the kinds of things an expert system ‘knows’ about.

By the way it is constructed, an expert system cannot do otherwise than
simply disregard anything it does not know about. In a way, the incorporation
of a particular domain theory is therefore a significant ontological commitment,
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in the sense of Davis et al. (1993). The domain theory expresses that which
persistently exists for an expert system: it is an ‘ontology’ (see Chapter 4).

2.5 Knowledge Representation

The views of KADS, CommonKADS and the role limiting approaches did not
just have impact on knowledge level specification (in the engineering sense)
but also influenced the languages used for knowledge representation. While
the psychological view and rationale of problem solving was abstracted to a
meta-level of problem solving and reasoning strategies, knowledge based sys-
tems still require implementation at the symbol level. Even when this imple-
mentation is not intended to be directly reusable, as in role limiting, it needs to
explicitly commit to a level of quality with respect to efficiency and computa-
tional properties.

In line with the functional paradigm of Levesque (1984), a knowledge base
is in fact a service that can function as a black-box component of knowledge-
based systems. As Levesque pointed out, to be reusable, such a component
must be well described: it should guarantee answers to a specific set of tell/ask
queries. This way, the different knowledge types of knowledge level specifica-
tion can be instantiated as separate components of a knowledge based system
architecture. This means that although reasoning, and problem solving in par-
ticular, is often a non-monotonic affair (McCarthy, 1980) where hypotheses are
frequently asserted and retracted, inference does not have to be.8

Because KL-ONE like languages were already the most targeted to a spe-
cific type of knowledge, they gradually took on the singular role of expressing
the domain theory of knowledge based systems.9 This required the fine-tuning
of standard inference over the structural descriptions that determine the position
of a concept definition in a network: classification. At the same time, the logic
approach first advocated by McCarthy and Hayes (1969) found its way back
into mainstream knowledge engineering. Classification was specified as a form
of logical inference. The functional specification advocated by Levesque was
thereby underpinned by a logical formalism that specified the exact semantics
of the representation language used by the knowledge component (Levesque
and Brachman, 1985).

Levesque and Brachman (1987) pointed at a trade off between the express-
ive power and computational efficiency of representation formalisms. Infer-
ence on a highly expressive language will generally be inefficient, or even un-
decidable, while limitations on expressive power can ensure tractability. Relax-
ing either of these requirements would result in a system whose answers are
not dependable. Its conclusions may not follow logically from the theory ex-
pressed by the knowledge base (soundness), or it does not give all possible an-
swers (completeness). Levesque and Brachman (1987) therefore propose what

8For sure, in some applications a non-monotonic knowledge base can be beneficial for perform-
ance reasons as not the entire knowledge base needs to be re-evaluated whenever information is
added or removed. However, non-monotonicity in general is no requirement as e.g. recent pro-
gress in decidable incremental reasoning over monotonic description logics shows (Parsia et al.,
2006).

9Although logic programming languages such as Prolog were very popular for the representa-
tion of domain theories, their order dependence makes that a Prolog representation will always be
slightly tainted by control knowledge.
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Doyle and Patil (1991) call the restricted language thesis:

“. . . general purpose knowledge representation systems should restrict their
languages by omitting constructs which require non-polynomial (or otherwise
unacceptably long) worst-case response times for correct classification of con-
cepts”

(Doyle and Patil, 1991, p.3)

However, as Doyle and Patil (1991) argue, this requirement cannot be posed
in general for all representation languages used in knowledge based systems.
In many applications, undecidable reasoning has no serious consequences and
languages should therefore be evaluated on the basis of whether they “provide
the rational or optimal conclusions rather than the logically sound conclu-
sions” (Doyle and Patil, 1991, p.6). Although this is a fair point for knowledge
based systems as a whole, it reintroduces the epistemological promiscuity of ra-
tionality at the implementation level, and thereby the interaction problem of
Bylander and Chandrasekaran.

Successors of KL-ONE such as NIKL (Moser, 1983), KL-TWO (Vilain, 1984)
and LOOM (MacGregor and Bates, 1987) and the Frame Language (Levesque
and Brachman, 1987, FL), KANDOR (Patel-Schneider, 1984), KRYPTON (Bra-
chman, 1983) and CLASSIC (Borgida et al., 1989; Brachman et al., 1991) were
often still hybrid systems that combined terminological reasoning with proced-
ural attachments. Once class membership or subsumption is established using
triggers (Brachman et al., 1991), additional rules could fire that assigned default
values to certain properties. Furthermore, Baader and Hollunder (1991) poin-
ted out that these systems often implemented sound, but incomplete subsump-
tion algorithms. The main reason was that sound and complete algorithms
were only known for small and relatively inexpressive languages. Addition-
ally, for many languages the subsumption problem was at least NP-hard, which
meant that complete implementations would be intractable, while incomplete
algorithms could be polynomial. Tractability is important for practical applic-
ations with often critical response time requirements.

2.5.1 Description Logics

The quest for more expressive but decidable combinations of language features
became ever more prominent in the development of description logics (DL).
These logics are often regarded as the direct successor of frame-based lan-
guages. However, where in frame-based systems descriptions (or descriptors)
are secondary to the concepts they describe, in DL the descriptions themselves
are first-class citizens. Current DLs have thus shifted away from concept-
centered representation to description or axiom centred semantics. Concepts
merely group together multiple descriptions to create some cognitively plaus-
ible aggregate. This paradigm shift is understandable, as frame-based sys-
tems, and early DL-systems, were not entirely ‘clean’ regarding the separation
between concept and description. The KRIS10 system of Baader and Hol-
lunder (1991) is one of the first sound and complete implementations of an
expressive but decidable description logic.

10Knowledge Representation and Inference System
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Description logics are fragments of first order logic (FOL) usually defined
by means of a model theoretic semantics, i.e. its semantics is based on the in-
terpretation of a language by means of set-theoretic structures. A sentence in
such a language can only be made true or false given some interpretation of that
sentence in terms of actual entities. For instance, the sentence “The person sits
on the chair” can only be determined to be true given a mapping to a corres-
ponding situation in reality, the domain, e.g. given a mapping from ‘person’ to
an actual person, from ‘chair’ to an actual chair, and from ‘sits’ to an actual sit-
ting relation between that person and that chair. An interpretation that makes
the sentence true is said to be a model of that sentence. In terms of Brachman
(1979) (cf. Figure 2.4), the interpretation of some sentence is the denotation
relation between generic and individual concepts on the one hand, and indi-
vidual objects and sets of objects in the domain on the other. See Figure 2.11
for a schematic depiction of the relation between concepts, individuals and the
domain.

More formally, in DL a model consists of a domain ∆I and an interpretation
function ·I that maps individual names to elements in the domain (individual
objects), class names to subsets of the domain, and property names to binary
relations on the domain. The vocabulary N of a DL knowledge base K corres-
pondingly is a tuple {NI , NC , NR} consisting of a set of individual namesNI , a
set of class names NC , and a set of role names NR. To give an example, apply-
ing the interpretation function to an individual o ∈ NI must result in a member
of the domain: oI ∈ ∆I . Similarly, the interpretation of a class C ∈ NC is a sub-
set of the domain (CI ⊆ ∆I), and the interpretation of a property R ∈ NR is a
subset of the set of all possible object pairs in the domain: RI ⊆ ∆I ×∆I . The
meaning of axioms in a DL knowledge base is given by the relations between
individuals, classes and properties in that knowledge base and correspond-
ing constraints on models. For instance, if A ⊑ B (A is a subclass of B), then
AI ⊆ BI for all models of the knowledge base. In fact, this meaning does not
depend on any meaning of objects in the domain, or on which objects make up
the domain. Rather, the meaning of an axiom arises in its relation to the other
axioms in a knowledge base: every DL knowledge base consists at least of the
two classes top (⊤) and bottom (⊥) which are defined as ⊤I = ∆I and ⊥I = ∅,
respectively. The meaning of a DL knowledge base “derives from features and
relations that are common to all possible models” (Horrocks et al., 2003).

The way in which the semantics of DL axioms is defined has several im-
portant implications. First, and foremost, every assertion in the knowledge
base should be seen as a restriction on the possible models of that knowledge
base. This means, conversely, that even though something might not have been
explicitly stated, it may still be assumed to hold (i.e. be a model of the know-
ledge base). Description logics thus adopt the open world assumption which puts
a rather counter-intuitive spin on negation: an axiom is only ‘false’ iff it has no
model, i.e. that model is not a model of the knowledge base. Negation is there-
fore quite hard to enforce in DL.

A second implication is that there exists no direct link between a knowledge
base and a domain. Although a knowledge base is defined in terms of the
interpretation to the domain, determining adequacy of the knowledge base
can only be determined internally, i.e. by 1) inferring that some axiom can not
have a model (there cannot exist a (set of) objects that can make the axiom true)
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Figure 2.11: Instantiation, individuation and denotation in DL

or by 2) explicit assertions about individuals that relate directly to individual
objects in the domain. Whether the latter relation holds or not is up to an
observer external to the knowledge base. Related to this, is the fact that DLs
do not necessarily adopt the unique name assumption, the assumption that an
individual object is denoted by exactly one individual in the knowledge base:
any number of individuals may share the same model.

As discussed earlier, the balance between computational complexity and
decidability on the one hand, and expressiveness on the other plays a promin-
ent role in description logics research (Baader et al., 2003). As a result, various
description logics can be constructed out of several basic building blocks, for
which the effect on combinations is well known.11 These building blocks each
have an associated letter, the combination of which gives the name of a par-
ticular description logic (see Table 2.4). For example, the DL SHIQ(d) is the
attributive language with complex concept negation, transitive properties, in-
verse properties, qualified cardinality restrictions and datatype properties.

The emphasis on computational efficiency has furthermore lead to a dis-
tinction between axioms in the terminological, role and assertional boxes:

Terminological Box (TBox)
Contains class axioms, the generic concepts of Brachman (1979).

Role Box (RBox)
Contains descriptions of the characteristics of properties and the relations
between them.

11See e.g. the Description Logics Complexity Navigator at http://www.cs.man.ac.uk/
~ezolin/dl/.

http://www.cs.man.ac.uk/~ezolin/dl/
http://www.cs.man.ac.uk/~ezolin/dl/
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Assertional Box (ABox)
Contains the assertions about individuals, the individual concepts of Bra-
chman (1979).

Although the distinction between these boxes is not formally relevant, sep-
arating the various types of reasoning – classification for the TBox and real-
isation for the ABox – significantly improves reasoner performance (Levesque
and Brachman, 1987). For instance, the use of class axioms such as nominals,
that define a class by enumerating its individual members and thus cross the
boundary between TBox and ABox, can have a remarkable effect on reasoning
time (Klarman et al., 2008).

2.6 Discussion

As the issues raised in this chapter show, knowledge representation is not a
trivial task and from its rise in the late sixties, the field underwent numer-
ous changes. We discussed the computational crisis of uncontrolled logical
inference in theorem proving, the debates on heuristic and epistemological ad-
equacy, the status and psychological plausibility of knowledge representation
languages, the epistemological promiscuity of expert system implementations
and the rise of an engineering perspective on knowledge based systems devel-
opment.

Although the three schools of knowledge representation (Section 2.2) em-
barked on distinct journeys, they each have a distinct role in this knowledge
engineering view. The procedural perspective of production systems allows
to express rational control in knowledge based reasoning, the semantic net-
work paradigm grew into robust languages for expressing domain theories,
and logic returned in full swing as means to define the semantics and guaran-
tee correct inference of implicit knowledge expressed using these languages.

The most important lesson learned is certainly that though human experts
may be very successful in applying highly heterogeneous knowledge, directly
mimicking this human expertise has a serious detrimental effect on know-
ledge based systems development, maintenance and performance. Knowledge
based systems should be specified at the knowledge level. This specification
contains a description of the different types of knowledge involved in the sys-
tem, and how they interact. The most prominent distinction can be made
between the domain theory of a system – what it knows about – and the con-
trol knowledge that expresses the rationale of reasoning over the domain. Con-
trol knowledge consists of a decomposition of tasks and inference types, the
performance of which can be specified by generic problem solving methods. In-
ference types are characterised by an input/output signature and can be im-
plemented by separate knowledge components that have a matching functional
specification. The different types of knowledge in an implemented knowledge
based system operate at different levels: control knowledge is applied at a meta
level with respect to the inferences performed by knowledge components.

The functional specification of knowledge system components is most vi-
gourously adopted by description logics systems, the successors of KL-ONE like
frame-based languages. Description logics are a family of decidable formal
languages designed to express concepts, relations and their instances and are
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thus naturally suited for expressing the domain theory of knowledge based
systems. DL algorithms are optimised for calculating the inferred subsumption
hierarchy, class satisfiability and class membership of instances (realisation).

Description logics research continued throughout the nineties, but played a
relatively modest role until it entered a global stage when DL became the form-
alism of choice for knowledge representation on the Semantic Web (Berners-Lee,
1999). Arguably, the development of a web-based knowledge representation
language is not trivial. Chapter 3 discusses the trade-offs and restrictions im-
posed on languages for the semantic web, and gives an overview of the result-
ing Web Ontology Language (Bechhofer et al., 2004, OWL).

Davis et al. (1993) characterised the domain theory of knowledge based sys-
tems as its ontology, a term that increased in popularity throughout the nineties.
Although the exact meaning of this term is not directly relevant for the discus-
sion of OWL as representation language in Chapter 3, ontologies do have a
specific role to play in knowledge engineering. Chapter 4 discusses the vari-
ous, often confusing, interpretations of what ontologies are, and gives a char-
acterisation of an ontology as knowledge representation artefact.



2.6. Discussion 38

Table 2.4: DL abbreviations

Abbreviation Description
AL Attributive Language:

• Atomic negation (negation of concepts that do
not appear on the left hand side of axioms)

• Concept intersection

• Universal restrictions

• Limited existential quantification (restrictions
that only have fillers of owl:Thing)

FL_ A sub-language of AL, without atomic negation
FLo A sub-language of FL_, without limited existential

quantification
C Complex concept negation
S AL and C with transitive properties. In SROIQ:

some additional features related to the RBox
H Role hierarchy (subproperties)
R Limited complex role inclusion axioms; reflexivity

and irreflexivity; role disjointness.
O Nominals, i.e. enumerated classes and object value

restrictions
I Inverse properties
N Cardinality restrictions
Q Qualified cardinality restrctions
F Functional properties
E Full existential quantification
U Concept union
(D) Datatype properties, data values and datatypes

Source: http://en.wikipedia.org/wiki/Description_logic

http://en.wikipedia.org/wiki/Description_logic


Chapter 3

Semantic Web

“He could spell his own name WOL, and he could spell Tuesday
so that you knew it wasn’t Wednesday but his spelling goes all
to pieces over delicate words like measles and buttered toast.”

About Owl, in ‘Winnie the Pooh’ by A.A.Milne

3.1 Introduction

In November 2001, the WebOnt working group set out to develop a new Web
Ontology Language (OWL, Bechhofer et al. (2004)) to be used for knowledge
representation in a form that it could be shared across the web.1 The working
group was tasked with the development of:2

“A Web ontology language, that builds on current Web languages that allow
the specification of classes and subclasses, properties and subproperties (such
as RDFS), but which extends these constructs to allow more complex relation-
ships between entities including: means to limit the properties of classes with
respect to number and type, means to infer that items with various properties
are members of a particular class, a well-defined model of property inheritance,
and similar semantic extensions to the base languages.”

WebOnt WG Charter

The Web Ontology Language is tightly interwoven with the development of
the semantic web, first described in Berners-Lee (1999); Berners-Lee et al. (2001).
The purpose of the Semantic Web is to advance the machine interpretability

1The working group disliked the proper acronym “WOL” and decided to call the language
“OWL”. This decision was backed by the extraordinary abilities of the wise friend of Winnie the
Pooh: Owl.

2http://www.w3.org/2002/11/swv2/charters/WebOntologyCharter
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http://www.w3.org/2002/11/swv2/charters/WebOntologyCharter
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of information stored on the web. Not just for improving the accessibility and
communication of this information to humans, but primarily for knowledge ex-
change between automated web services. More importantly, semantic web tech-
nology should enable open and unattended sharing of this knowledge. A web-
based knowledge representation language should take into account the distrib-
uted nature of the web, and is necessarily subject to other constraints than a
language that is not exposed in that way: how does this trade off work out in
practice?

In this chapter I give an overview of the technical characteristics of semantic
web languages, and the trade-offs they imply for web-based knowledge rep-
resentation. Central to this discussion is the Web Ontology Language, which
is in many ways a natural step up the evolutionary ladder for the termino-
logical knowledge representation languages of the 80’s and 90’s. Although
it can be said that a significant body of documentation on OWL already ex-
ists, this has either the nature of reference guide or overview (Bechhofer et al.,
2004; McGuinness and van Harmelen, 2004), a technical specification (Patel-
Schneider et al., 2004) or rather entry-level guides and walkthroughs (Anto-
niou and van Harmelen, 2004; Smith et al., 2004; Horridge et al., 2007). This
chapter aims to lay bare the rationale and limitations of the language features
of OWL, both practical (Antoniou and van Harmelen, 2003) and theoretical
(Horrocks and Patel-Schneider, 2003). This view plays a central role in the de-
scription of design patterns in Chapter 7.

The fact that OWL is called a web ontology language, obfuscates rather than
emphasises its main character as a highly expressive description logic. For all
practical purposes, this chapter will simply use the term ‘ontology’ to denote a
terminological knowledge representation (or domain theory) expressed using
the web ontology language. Chapter 4 discusses the ambiguity of the term
‘ontology’, and sheds light on the historical reasons for giving this language
the name “OWL”.

3.1.1 The Web

The web as it exists from roughly 1993 on is not much more than a network of
inter linked pages. For sure, its success is very much based on this lightweight
approach: it uses a simple, networked architecture which is easily extensible
and immune to incorrect or incomplete data, links and mark-up. Information is
presented in a human understandable way: by means of texts, pictures, layout
etc. Legacy web languages such as HTML3 and CSS4 are specifically targeted to
facilitate the disclosure of information in a way suitable for human consump-
tion. In a way, more recent developments such as Ajax5 take this approach
even further by making web pages more responsive to human interaction.

The primary means of navigating the web is by following hyperlinks be-
tween pages, form filling and the use of search engines such as Google and
Yahoo Search. These search engines use a combination of natural language
processing (NLP), network analysis and hit-counts to determine the rank of
a page in search results. Nonetheless, still even the best engines suffer from

3Hypertext Markup Language, http://www.w3.org/html/
4Cascading Style Sheets, http://www.w3.org/Style/CSS/
5Asynchronous Javascript and XML

http://www.w3.org/html/
http://www.w3.org/Style/CSS/
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Figure 3.1: The SemanticWeb layer cake

either a high recall (low precision) or low or no recall at all (Antoniou and
van Harmelen, 2004). Both search queries and results are language dependent,
i.e. a search using one language will not reveal relevant results in another.
Furthermore search results are single webpages, whereas information relevant
to the query might be distributed across many. It is therefore unsurprising that
companies spend huge sums to improve the visibility of their pages in these
search engines. According to a Forrester report, spending will increase from
today’s 4.5 billion to 8.1 billion euros in 2012.6

A presentation-oriented way of publishing information on the web leaves
room for improvement as it is only partially suited for machine interpretation.
In other words, it is very hard for machines to find out what a page is about by
looking at its structure. In many ways this issue is similar to the problems a
visually impaired person experiences when browsing the web (Bechhofer et al.,
2006). Considering that most webpages are generated from a structured data
source it is at least odd that search engines and other crawlers have to extract
meaning in this very roundabout way. Why not present information on the
web in a way which is directly accessible to machines?

3.2 Groundwork

The Semantic Web (Berners-Lee et al., 2001) is a non-intrusive extension of the
current web and adds different ‘layers’ of machine processable semantics. The
extension is non-intrusive because each layer builds on another layer without
modifying it, see Figure 3.1. Semantics on the web is organised using the same
philosophy that underlies current web technologies: transparent heterogen-
eous networks of linked resources, similar to the Semantic Nets of Section 2.2.3.
The first two layers of this cake introduce standards for character encoding and
identification, and a modular mechanism for describing the structure of data.

6“Europe’s Search Engine Marketing Investment Exceeds EUR 8 Billion In 2012”, by
Mary Beth Kemp, http://www.forrester.com/Research/Document/Excerpt/0,7211,
42707,00.html

http://www.forrester.com/Research/Document/Excerpt/0,7211,42707,00.html
http://www.forrester.com/Research/Document/Excerpt/0,7211,42707,00.html
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Character Encoding

Characters should be encoded in a uniform way in order for strings to be in-
terpreted the same way across the globe. This holds for presentation-oriented
mechanisms – e.g. browsers should be able to display both chinese and west-
ern characters – and extensive data manipulation mechanisms alike. Unicode7

is a standard adopted by industry that enables computers to consistently rep-
resent and manipulate text expressed using a wide range of writing systems.
Amongst others, it defines several mappings from (subsets of) some 100k char-
acters onto various encodings using the Unicode Transformation Format (UTF).
The most well-known of these is UTF-8, an 8 bit encoding with variable-width
that is backwards compatible with the older ASCII format.8

Identification

By adopting Universal Resource Identifiers (URIs)9 as means for unique identific-
ation of resources on the web, anyone can make statements about other state-
ments similar to the way in which one can now hyperlink from one HTML
page to another using a Universal Resource Location (URL). In fact, every URL
is also a URI (but not vice versa):10 a URL is a URI used as a location. Al-
ternatively a URI can be used as a Universal Resource Name (URN).11 Note that
URI’s, including URN’s, attach a meaningful machine interpretable identifier to
resources on the web. They are explicitly not intended to be used as human
readable names. URI’s are structured as follows:

URI = scheme ":" hier-part [ "?" query ] [ "#" profile ]

Namespaces

A resource on the web is often specified ‘within’ a namespace. A namespace is
essentially a collection of URI’s in which every resource name is locally unique.
The URI of a namespaced resource is composed of a namespace name, and a
local name. Usually, the profile part of a URI is used to contain the local name
and the composition of scheme and hier-part is used to denote the namespace
name. This mechanism can be used to provide authority to a namespace, as
namespace names can correspond to domain names on the internet. This is
a loosely coupled form of ‘trust’, as the only way to enforce this authority is
by dereference-ability of URI’s to a location. Namespaces can be abbreviated
using so-called namespace prefixes, which typically abbreviate the scheme and
hier-part to an intelligible shorthand.

7See http://www.unicode.org/
8ASCII: American Standard Code for Information Interchange
9The URI specification is defined in RFC 3986, see http://gbiv.com/protocols/uri/

rfc/rfc3986.html
10This simple relation has been the source of much confusion, as many treat URI’s as URL’s, i.e.

by dereferencing from a URI to a URL.
11It is often thought that URN’s should always use the ‘urn’ scheme, where syntactic parts of the

name are delimited by colons. In fact, any URI can be interpreted as either a name or a location, it
is the interpretation that turns a URI into a URN or a URL respectively. However, URN’s specified
using a ‘urn’ scheme cannot be dereferenced to a URL without a defined mapping.

http://www.unicode.org/
http://gbiv.com/protocols/uri/rfc/rfc3986.html
http://gbiv.com/protocols/uri/rfc/rfc3986.html
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Structured Data

The Extensible Markup Language (XML)12 is a flexible way to explicitly encode
data in a nested datastructure. It is a subset of SGML,13 an industry stand-
ard meta language for defining exchangeable machine processable document
formats. XML diverges from SGML in general by its orientation towards the
exchange of data on the web, and was designed to be compatible with HTML,
e.g. XHTML 1.0 Strict is an XML version of HTML and supersedes older ver-
sions. Extensibility of XML is provided by the XML Schema14 language that
can be used to describe restrictions on the structure of XML encoded data
within a particular namespace; XML Schema is itself an XML dialect. It provides
a fixed set of datatypes, such as integers, strings, date, that can be used by XML
parsers when interpreting a document.

Important to note, however, is the fact that although the structure of some
data can be expressed in XML according to some schema, the way in which
this data should be interpreted, i.e. its semantics, is externally defined (if at
all). Even when we do commit to a particular interpretation of the nested struc-
ture of XML, the least we can say is that it does not convey very expressive
semantics.

3.3 Lightweight Semantics

“A little semantics goes a long way”

James Hendler

The first step towards the Semantic Web is the specification of a way to add
simple, relatively lightweight metadata to documents on the web. Currently,
the de facto metadata representation languages on the semantic web are the
Resource Description Framework (RDF) and the RDF Schema vocabulary de-
scription language extension to RDF. Contrary to other knowledge structuring
languages, such as Topic Maps (Biezunski et al., 1999)15 or even UML, which
have XML syntaxes and can thus be used to publish metadata on the web, RDF
and RDF Schema are web languages. That is, the structure of the RDF language
is designed to mimic the way in which information is stored on the web. This
way, metadata can be distributed across multiple documents or locations; and
is extensible as any RDF resource can point directly to other RDF resources in
the same way that HTML documents can.

RDF is often criticised as being too technical, having unwieldy semantics
and verbose syntax, and at the same time providing only a limited vocabu-
lary of primitives for (lexical) knowledge organisation. These attributes would

12See http://www.w3.org/TR/xml/
13SGML: Standard Generalized Markup Language
14See http://www.w3.org/TR/xmlschema-1/ (structure) and http://www.w3.org/TR/

xmlschema-2/ (datatypes)
15See http://www.topicmaps.org/, the XML syntax for Topic Maps is XTM, http://www.

topicmaps.org/xtm/index.html

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.topicmaps.org/
http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/xtm/index.html
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make it a less likely candidate for intuitive knowledge representation. In part,
this can be overcome because RDF is in general more expressive than Topic
Maps – RDF descriptions have a higher granularity – and the semantics of
both languages can be mapped to each other (Pepper et al., 2006).16 A related
initiative is the Simple Knowledge Organisation System (SKOS) described in
Miles and Bechhofer (2008) that defines an RDF data model for expressing the
taxonomies, classification structures and thesauri used in many applications to
structure and organise knowledge and information such as WordNet.17

In fact, there is a subtle distinction between the purpose of languages such
as Topic Maps and SKOS, and that of RDF. The former are designed to describe
what documents and other information sources (such as database entries) are
about. Ultimately, these languages are designed to describe indexes on inform-
ation sources akin to the old fashioned card indexes used in libraries. Both
SKOS and Topic Maps are typically used to capture lexical categories, terms,
rather than semantic categories, concepts. In fact, the SKOS specification is very
explicit about its purpose and states: “SKOS is not a knowledge representation
language” (Miles and Bechhofer, 2008). Although RDF is similarly designed
to state facts about information sources, these statements are not necessarily
intended to capture (only) the information content of a source: it can be used
to express more.

3.3.1 RDF: The Resource Description Framework

RDF is a lightweight and flexible way to represent metadata on the web. It
is a simple assertional language that defines a way to make statements about
things on the web. These statements take the form of subject, predicate, object
triples< s, p, o > a syntactic variant of traditional binary predicates, e.g. p(s, o).
The assertion of such a triple is defined to mean that predicate p is a relation
between s and o. Each part of the triple, i.e. each RDF name, denotes a resource.

How a name is treated depends on its syntactic form: URI references are
treated as logical constants, but plain literals of the form "literal value" denote
themselves and have a fixed meaning. A literal that is typed by an XML
Schema datatype, e.g. "1"ˆˆ xsd:Integer denotes the value resulting from a map-
ping of the literal value (the enclosed character string) by the datatype. For
instance, the literal "1"ˆˆ xsd:Integer denotes the integer value 1, whereas "1"
simply denotes the exact string of characters "1", including the quotes. A re-
source that has a name which is a URI reference, denotes the entity that can be
identified by means of the URI. It does not denote the URI itself; nor does it ne-
cessarily denote the entity found at the location when the URI is dereferenced
as if it were a URL. In other words, a RDF resource can be anything, and does
not have to exist on the web. Furthermore, a URI cannot be used to identify
multiple entities.

A collection of interconnected RDF triples constitutes a directed graph, where
nodes are the subjects and objects of assertions, and properties are edges. Fig-
ure 3.2 shows an example graph that expresses the phrase “Joost Breuker su-
pervises Rinke Hoekstra”. In this example, the names “Joost Breuker” and

16See e.g. the working group note of the RDF/Topic Maps Interoperability Task Force (RDFTM)
at http://www.w3.org/TR/rdftm-survey/ for an overview.

17See http://www.w3.org/2004/02/skos/. The SKOS data model itself is expressed in
OWL Full.

http://www.w3.org/TR/rdftm-survey/
http://www.w3.org/2004/02/skos/
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http://www.uva.nl/people#breuker http://www.uva.nl/people#hoekstra

http://www.uva.nl/people#supervises

http://www.uva.nl/people#breuker-hoekstra-supervision

rdf:subject

rdf:predicate
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rdf:type"Joost Breuker" "Rinke Hoekstra"

http://www.uva.nl/people#name http://www.uva.nl/people#name

Figure 3.2: An RDF graph representation of the phrase “Joost Breuker super-
vises Rinke Hoekstra”

“Rinke Hoekstra” are literal values, connected to resources that are the respect-
ive persons. These resources are identified by URI’s in the http://www.uva.
nl/people namespace: the URI http://www.uva.nl/people#breuker
denotes Joost Breuker, the actual person. In the following I will abbreviate
URIs in the http://www.uva.nl/people namespace using the prefix ‘uva’.

The supervision relation is denoted by the predicate uva:supervises that holds
between the two persons. Not only can this predicate itself be addressed as
a resource, as in uva:supervises rdf:type rdf:Property, but any triple as a whole
can be reified, and explicitly named. In RDF, reification is expressed using the
rdf:Statement construct. A resource of type rdf:Statement can explicitly refer to
the subject, predicate and object of some property relation using the rdf:subject,
rdf:predicate and rdf:object properties, respectively. For instance, the resource
uva:breuker-hoekstra-supervision in Figure 3.2 reifies the uva:supervises relation
by explicitly pointing to its relata. Note, however, that although the exist-
ence of a relation indicates the existence of its reification, an rdf:Statement by
itself does not mean that the corresponding relation holds as well (see also
Section 7.3.3). In the current example, the assertion of the uva:breuker-hoekstra-
supervision statement and its relata does allow us to infer the triple uva:breuker
uva:supervises uva:hoekstra.

RDF graphs can be stored in different formats. Most commonly this will
be some plain text file, which means that the graph needs to be serialised, i.e.
‘flattened’ or deflated to fit the a sequential order of characters in a file. RDF
serialisations are order independent because the order in which triples are ad-
ded to a file depends on an arbitrary choice for which node is serialised first.
There exist three official serialisation syntaxes for RDF: RDF/XML, N-Triple
and more recently the Terse RDF Triple Language (Turtle).18

18See http://www.w3.org/TR/rdf-syntax-grammar/, http://www.w3.org/

http://www.uva.nl/people
http://www.uva.nl/people
http://www.uva.nl/people#breuker
http://www.uva.nl/people
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
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The RDF/XML syntax has the advantage of being a native XML format,
though parsing it can be hard as the native order-dependent tree model of XML
documents gets in the way of the RDF graph model. Secondly, this makes
the syntax notoriously verbose. For instance, the RDF graph of Figure 3.2 is
serialised in RDF/XML as follows:19

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:uva="http://www.uva.nl/people#"
xml:base="http://www.uva.nl/people">

<rdf:Property rdf:ID="supervises"/>
<rdf:Property rdf:ID="name"/>
<rdf:Description rdf:about="#breuker" >

<uva:supervises rdf:resource="#hoekstra"/>
<uva:name>"Joost Breuker"</uva:name>

</rdf:Description>
<rdf:Description rdf:about="#hoekstra" >

<uva:name>"Rinke Hoekstra"</uva:name>
</rdf:Description>
<rdf:Statement rdf:ID="breuker-hoekstra-supervision">

<rdf:subject rdf:resource="#breuker"/>
<rdf:predicate rdf:resource="#supervises"/>
<rdf:object rdf:resource="#hoekstra"/>

</rdf:Statement>
</rdf:RDF>

RDF/XML uses the rdf:about property to state that some rdf:Description con-
cerns the resource indicated by the URI reference. The rdf:resource property
connects the predicate of a relation to its object, e.g. the object of the rdf:subject
relation in the statement uva:breuker- hoekstra- supervision is the resource uva:
breuker.20 Provided that the type of some resource is known, as is the case
with the uva:supervises and uva:name properties, we can directly state the prop-
erties of that resource under an element of its type and a rdf:ID attribute that
gives the resource’s URI. For instance, the serialisation above states that the
uva:supervises resource is of type rdf:Property. An equivalent serialisation that
does not explicitly introduce the resource, but rather adds information about it,
is:

TR/2004/REC-rdf-testcases-20040210/#ntriples and http://www.w3.org/

TeamSubmission/turtle/, respectively.
19Note that the xml:base attribute is used to abbreviate some of the URIs.
20Namespace abbreviation can be a bit confusing because of the intermixed use of RDF URI

references and xml:ID datatypes for the identifiers. The rdf:ID attribute is an xml:ID and its value is
automatically interpreted by an XML parser as an identifier within the base (or default) namespace.
This means that an RDF parser does not have to deal with whether an rdf:ID is a full URI or just
the fragment, as it will be presented as a full URI of the form <namespace>+#+<local name>. The
rdf:about and rdf:resource properties, on the other hand, do not specify the identity of the XML
element they are located at, but rather point towards some other resource. If the URI reference is not
fully specified, an RDF parser will have to resolve the URI, and it does this by simply concatenating
the value of the xml:base attribute and the URI fragment identifier: xml:base+<fragment identifier>.
Hence the necessity to prefix the name with a pound character (#).

http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/#ntriples
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TeamSubmission/turtle/
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<rdf:Description rdf:about="#supervises">
<rdf:type

rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Property"/>
</rdf:Description>

Turtle was developed as a subset of the N3 language,21 and has a much
more readable syntax than RDF/XML. It is similar to N-Triple, in which all
triples in the graph are spelled-out, but it allows several shorthand notations.
For instance, the omission of the object of a triple in several consecutive state-
ments that are separated by semicolons, and the reserved word a that replaces
rdf:type. The Turtle serialisation of the RDF graph in Figure 3.2 is as follows:

@prefix uva: <http://www.uva.nl/people#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

uva:breuker
uva:name "\"Joost Breuker\"" ;
uva:supervises uva:hoekstra .

uva:breuker-hoekstra-supervision
a rdf:Statement ;
rdf:object uva:hoekstra ;
rdf:predicate uva:supervises ;
rdf:subject uva:breuker .

uva:hoekstra
uva:name "\"Rinke Hoekstra\"" .

uva:name
a rdf:Property .

uva:supervises
a rdf:Property .

3.3.2 The RDF Schema Vocabulary Description Language

Although RDF can already be used to describe quite complex graph structures,
it provides little in the way of semantics and automatic inferencing. For in-
stance, there is no standard way to say that both uva:breuker and uva:hoekstra
are persons, or that the uva:supervises relation is a relation only between per-
sons. RDF Schema (RDFS) extends RDF with basic primitives that do allow us
to express such more generic knowledge.

In fact, most of these primitives are already commonplace in the semantic
networks of the 1970s. RDFS introduces the notion of classes (rdfs:Class) and
transitive subclass relations (rdfs:subClassOf) which allow to describe taxonom-
ies. Individual resources can be said to belong to a class using the rdf:type
property. Under RDFS semantics, the type of a resource is inherited over the
rdfs:subClassOf relation: resources belonging to a class belong to all its super

21See http://www.w3.org/DesignIssues/Notation3.html. N3 allows for several non-
RDF constructs such as a forAll loop, rules and paths.

http://www.w3.org/DesignIssues/Notation3.html
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rdfs:Resource

rdfs:Class

rdf:type

rdf:Property

rdf:type

rdfs:Literal

rdfs:subClassOf

rdf:type

rdfs:subClassOf

rdfs:Datatype

rdfs:subClassOf

rdf:type

http://example.com/foo#someDatatype

rdf:typerdfs:subClassOf

http://example.com/foo#typedLiteral

rdf:type

http://example.com/foo#unTypedLiteral

rdf:type

rdf:type

rdfs:subClassOf

Figure 3.3: Overview of relations between RDFS classes.

classes. The resource rdfs:Class is defined as the set of all classes: all classes
in RDFS are of the type rdfs:Class. The class rdfs:Resource is the set of all re-
sources, and is therefore by default the super class of all resources of type
rdfs:Class. All RDF literals are members of the class rdfs:Literal. Typed liter-
als are consequently instances of the subclass of rdfs:Literal defined by their
datatype. Each XML Schema datatype supported by RDF is a member of the
class rdfs:Datatype. The rdf:Property, although still in the RDF namespace, is
defined as the class of all properties. The relations between the various RDFS
classes are shown in Figure 3.3.

The transitive rdfs:subPropertyOf property can be used to specify that two
resources related by one property (the sub property) are also related by an-
other property (the super property). In RDF Schema, any resource of the type
rdf:Property can be assigned a domain and range. Domain and range specific-
ations are inherited over the rdfs:subPropertyOf relation. If any two resources
are related by a rdfs:domain or rdfs:range property, then the subject of that rela-
tion is an instance of rdf:Property and the object an instance of rdfs:Class. If that
property then is used to relate two other resources, their type is inferred to be
of the classes specified by the domain and range. Multiple domain and range
restrictions are interpreted as intersections, i.e. class membership is inferred
for all classes in the domain or range, respectively.22

To given an example, given just the following three triples:

22The rdf:type property is a special property and holds between instances and classes, instead of
only classes. It therefore does not have a rdfs:domain property
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uva:supervises
rdfs:domain uva:Person ;
rdfs:range uva:Person .

uva:breuker
uva:supervises uva:hoekstra .

we can infer that uva:supervises is a property, uva:Person is a class and that
uva:breuker and uva:hoekstra both belong to that class:

uva:supervises
a rdf:Property .

uva:Person
a rdfs:Class .

uva:breuker
a uva:Person .

uva:hoekstra
a uva:Person .

The properties rdfs:label and rdfs:comment can be used to annotate resources
in human readable form, using multiple languages (by means of language
tags). Values of an rdfs:label property are intended to give a human readable
name alternative to the URI of a resource. The range of these properties is the
xsd:string datatype:

uva:name
a rdf:Property;
rdfs:label "Name"@en;
rdfs:label "Nom"@fr;
rdfs:label "Name"@de;
rdfs:label "Naam"@nl;
rdfs:comment "This property is used to specify a person’s name."@en;

rdfs:comment "Dit property wordt gebruikt voor de naam van een persoon."@nl.

Meta-Modelling in RDFS

RDFS has a non-fixed meta modelling architecture; it can have an infinite num-
ber of class layers because rdfs:Resource is both an instance and a super class of
rdfs:Class, which makes rdfs:Resource a member of its own subset (Nejdl et al.,
2000). All classes (including rdfs:Class itself) are instances of rdfs:Class, and
every class is the set of its instances. There is no restriction on defining sub
classes of rdfs:Class itself, nor on defining sub classes of instances of instances
of rdfs:Class and so on. This is problematic as it leaves the door open to class
definitions that lead to Russell’s paradox (Pan and Horrocks, 2002). The Russell
paradox follows from a comprehension principle built in early versions of set
theory (Horrocks et al., 2003). This principle stated that a set can be constructed
of the things that satisfy a formula with one free variable. In fact, it introduces
the possibility of a set of all things that do not belong to itself: {x|x /∈ x} given
the formula x /∈ x. We cannot determine whether the class x is a member of
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itself: this only holds if and only if it is not a member of itself.
Meta modelling of the type sanctioned by RDFS provides no means to ex-

clude the definition of such classes from extensions of the RDFS semantics. For
instance, a straightforward semantic extension of RDFS that allows qualified
cardinality restrictions (as the DL’s SHIQ(D) and SHROIQ(D) do, cf. Sec-
tion 4.2 and Section 3.5.2, respectively) would allow us to define a class as an
instance of itself, or even add a cardinality constraint of 0 on the rdf:type prop-
erty (Pan and Horrocks, 2003).

In RDFS, the reserved properties rdfs:subClassOf, rdf:type, rdfs:domain and
rdfs:range are used to define both the other RDFS modelling primitives them-
selves and the models expressed using these primitives. In other words, there
is no distinction between the meta-level and the domain. In terms of Figure 2.5
in Section 2.3.1, this means that RDFS conflates the language and representa-
tion columns.

One example is the circular definition of rdfs:subClassOf and rdfs:Class; rdfs:
Class is defined as the rdfs:subClassOf rdfs:Resource, but rdfs:subClassOf is defined
as a relation between resources of the type rdfs:Class. Some of the promiscuity
of RDFS primitives was resolved by specifying a model theoretic semantics
(Hayes, 2004, RDFS MT).23 However, RDFS MT included the inherent prob-
lems with a non-fixed meta modelling architecture (Pan and Horrocks, 2003;
Motik, 2007).

In a nutshell, RDFS has its appeals as a relatively lightweight means to add
additional semantics to RDF models, but it falls short in many ways as a lan-
guage for specifying knowledge on the web. As knowledge representation lan-
guage the RDFS is still quite weak. Other than domain and range restrictions
it has no means to describe the requirements for class-membership needed for
concise definitions, such as necessary & sufficient conditions, cardinality con-
straints and negation. For instance, it can be useful to express that two classes
are disjoint, e.g. to distinguish between animals and plants: no animal can be a
plant and vice versa;24 or to state that every person has at most one father and
one mother. It furthermore embraces the ‘anything goes’ mentality of RDF,
which leads to conceptual, computational and decidability issues.

3.4 Requirements for Web-Based Knowledge Rep-

resentation

The ideas behind the Semantic Web initiative was met with a fair amount of
enthusiasm by the knowledge representation and acquisition community. The
ideal of knowledge sharing that was so prominent in the literature of the early
nineties (Neches et al., 1991; Gruber, 1993; Breuker and Van De Velde, 1994,
etc.) was not feasible when confined to the traditional libraries or knowledge
servers, but the web, and the semantic web, seemed its perfect partner. Know-
ledge sharing need no longer be controlled through publication in a library, but
can be unattended and made possible simply by the availability of a knowledge
representation at some URL. One of the first proposals for a web-based onto-
logy language – coinciding with the development of RDF and RDFS – was the

23See Section 2.5.1 for a description of model theory.
24Although some people may turn into vegetables.
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Simple HTML Ontology Extensions language, SHOE for short (Heflin et al.,
1999)). SHOE allowed the semantic annotation of webpages, had an XML syn-
tax and was frame-based, i.e. concepts are defined as frames with slots (cf.
Section 2.2.4). However, like RDF Schema, it did not have a well-defined se-
mantics.

An important requirement was that a web-based knowledge representation
language should sanction standard inference. Reasoners complying with the
standard should produce the same inferences, given the same input. This is a
significant difference with highly expressive languages such as the Knowledge
Interchange Format (Genesereth and Fikes, 1992, KIF), which itself did not
have reasoners but instead relied on a translation to less expressive languages
for which implementations were available. The web ontology language was to
be more than just a specification language that can be used to exchange formal
theories between systems, but rather a representation language in its own right.
This requirement gains an extra edge as knowledge published on the web is not
merely intended for human consumption, but also, and more importantly, for
direct communication between different systems that act as knowledge com-
ponents in a larger, distributed knowledge based system. Only systems that
commit to the same representation will be able to properly interpret each oth-
ers messages.

Information exchange between web-based systems becomes increasingly
more mission critical: knowledge-based reasoning should not only be suit-
ably efficient, but sound and complete as well (see Section 2.5.1). A web-
based knowledge representation language is therefore subject to the restricted
language thesis of Levesque and Brachman (1987) and needs to trade off ex-
pressive power with computational efficiency. The relaxed view of Doyle and
Patil (1991) may well hold for applications where the user is in direct control,
and understands the rationale of the system. But it is untenable on the web,
where any user may use any knowledge representation for any purpose in any
system. In other words, because standard reasoning should be efficient and
decidable, the language should be limited in computational complexity and
expressiveness.

From the outset, it was clear that the language should strike a fine balance
between the open nature and expansiveness of the web on the one hand, and
formal, well-defined semantics on the other. It should therefore build on top
of existing (semantic) web standards such as XML, RDF, and RDF Schema (cf.
Figure 3.1), and allow knowledge engineers and users to freely extend and
reuse the knowledge made available on the web. This meant not only that on-
tology files should be able to import each other from URL’s, but also that the
semantics of every ontology should take into account that it can be imported
and extended. In other words, the ontology language should assume that any
ontology represents incomplete knowledge and adopt the open world assump-
tion; a reasoner should only make inferences based on those statements that
are known to be true. This is in stark contrast with common practice in many
rule based systems, where inference generally takes place on the assumption
that any statement not known to be true is false. In a closed system this closed
world assumption (or negation as failure principle) is quite sensible, but it can
be quite dangerous on the web. For instance, it would mean that what is in-
ferred for an individual given the axioms in an ontologyAmay be inconsistent
with that which is inferred for the same individual when imported to another
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ontology B. In the former case, any inference based on the axioms in B is
assumed not to hold, where they do hold in the latter case.

The DAML+OIL language of Connolly et al. (2001)25 was a proposal for a
semantic web knowledge representation language in the tradition of the earlier
KRSS (Patel-Schneider and Swartout, 1993, see Section 4.2). It had a DL-style
semantics and was a combination of two languages; the DARPA Agent Markup
Language (DAML-ONT),26 and the Ontology Inference Layer (Fensel et al.,
2000, OIL).27

Both approaches were very similar, they were:

• languages with formal semantics,

• extensions of XML and RDF(S),

• intended for defining concepts and relations,

• to be shared on the web

DAML+OIL was the first knowledge representation language that com-
bined the principle of knowledge sharing with the formal semantics and lim-
ited expressiveness of DL, allowing for sound and complete automated reason-
ing (Baader et al., 2003). Where the semantics of OIL relied on a translation to
the description logic SHIQ(d) (Horrocks, 2000) and was not necessarily com-
patible with RDF, DAML+OIL was rather a syntactic variant of a description
logic and aimed to maximise compatibility with RDFS. It was the first proper
knowledge representation language specifically tailored for the web.

3.5 The Web Ontology Language

OWL extends the syntax and semantics of RDFS with a fair number of con-
structs and combines the description logics semantics of DAML+OIL with more
rigorous semantic and syntactic compatibility regarding RDF and RDFS. It fur-
thermore prescribes how ontologies should be published on the web, and in-
corporates a mechanism akin to that of SHOE for ontology imports. In the fol-
lowing I give a brief, non exhaustive, overview of the OWL vocabulary and its
semantics. The interested reader may refer to Horrocks et al. (2003); Bechhofer
et al. (2004) for a full overview.

3.5.1 OWL

The various requirements for a web ontology language led to the specification
of three species, each emphasising different language features: OWL Full, DL,
and Lite. OWL Full is a semantic extension of RDFS that adds a number of
knowledge representation primitives that were previously unavailable. It em-
phasises expressiveness and compatibility with RDFS: the RDFS interpretation
of an OWL Full ontology is consistent with its OWL Full entailments; and any

25See http://www.w3.org/TR/daml+oil-reference
26Research funded by Darpa, the Defense Advanced Research Projects Agency, see http://

www.darpa.gov and http://www.daml.org
27Developed within the EU funded OnToKnowledge project, see http://www.

ontoknowledge.org/oil

http://www.w3.org/TR/daml+oil-reference
http://www.darpa.gov
http://www.darpa.gov
http://www.daml.org
http://www.ontoknowledge.org/oil
http://www.ontoknowledge.org/oil
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OWL Full ontology is valid RDFS and vice versa. This means, amongst others,
that in OWL Full the primitives of the language (i.e. the meta logical sym-
bols) are part of the domain. However, as proved by Motik (2007), this mixing
of logical and metalogical symbols in OWL Full leads to undecidability (see
Section 3.3.2).

The second species, OWL DL, is a syntactic subset of OWL Full, but lim-
its the semantics to the SHOIN (D) description logic (see Table 2.4). At the
time this language was the maximally expressive, decidable description logic
for which efficient algorithms were known and use cases existed. To retain de-
cidability, the compatibility with RDFS is restricted to a specific subset of that
language. This means that although every OWL DL ontology is valid OWL
Full and thus RDFS, this does not hold the other way around. However, be-
cause any conclusion given the OWL DL semantics is a valid conclusion in
OWL Full, the RDFS interpretation of an OWL DL ontology is consistent with
its DL entailments.

Because SHOIN (D) is very expressive, it allows the construction of ex-
ceedingly complex expressions which can be quite hard to grasp for an on-
tology engineer. Furthermore, reasoning with this logic is computationally ex-
pensive and intractable. The third species, OWL Lite, is meant to alleviate some
of the problems of its bigger brother. It is a syntactic subset of OWL DL, where
the semantics is designed to be limited to the SHIF(D) description logic. Sim-
ilar to OWL DL, any OWL Lite conclusion is a valid OWL DL conclusion, and
the RDFS interpretation of an OWL Lite ontology is therefore consistent with
its DL entailments. Unfortunately it soon turned out that the syntactic limit-
ations imposed on OWL Lite did not, in fact, limit it to SHIF(D), and most
of the semantics of OWL DL can be expressed using elaborate combinations of
OWL Lite constructs.

OWL follows the distinctions of DL between class axioms, property axioms
and individual assertions. Figure 2.11 shows how the OWL DL constructs owl:
Class and owl:Individual map onto their corresponding DL constructs.

Class Axioms Since not all RDFS classes are valid OWL DL and OWL Lite
classes, OWL introduces the owl:Class which is the rdfs:subClassOf rdfs:Class
consisting of all valid OWL classes. Because in OWL Full all RDFS classes
are valid, owl:Class is equivalent to rdfs:Class under OWL Full semantics.

Just as in RDFS, owl:Classes can be related using rdfs:subClassOf properties.
All OWL classes are a subclass of the class owl:Thing – which in OWL DL is
equivalent to ⊤. The class owl:Nothing represents the empty class – in OWL DL
equivalent to⊥ – and is defined as the complement of :owl:Thing. In OWL Full
owl:Thing is equivalent to rdfs:Resource.

Two classes that are the rdfs:subClassOf each other, are equivalent, which can
be directly expressed using the owl:equivalentClass property. An owl:Class is
either named or anonymous. A named class is defined using class axioms that
restrict it to be disjoint with, equivalent to or the subclass of one or more other
classes. Disjointness of two classes means that the intersection of both is the
empty set. There are three types of anonymous classes:

• Nominals are defined by exhaustively enumerating all individual class
members, for instance:28

28The _:x in the example is a blank node, an RDF resource without a URI. This blank node can
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:Animal a owl:Class ;
owl:equivalentClass _:x ;

_:x owl:oneOf (:fluffy :felix :bertha :snuffy :max :babel) .

states that the class :Animal is equivalent to the set consisting of the indi-
viduals :fluffy, :felix, :bertha, :snuffy, :max and :babel. In DL-style syntax:

Animal ≡ {fluffy, felix, bertha, snuffy,max, babel}

• Operator classes are defined using the standard set theoretic operators
union, intersection and complement, for instance:

:Animal a owl:Class ;
owl:equivalentClass [

owl:unionOf (:Mammal :Fish :Reptile :Insect)] .

states that the class :Animal is equivalent to the union of the classes :Mam-
mal, :Fish, :Reptile and :Insect. In DL-style syntax:

Animal ≡ Mammal ⊔ Fish ⊔ Reptile ⊔ Insect

• Restriction classes are defined as the set of all individuals that satisfy a
restriction on a property. The restriction can be existential or universal, i.e.
it expresses that some or all values of a property at the restricted class
must be a member of some other (anonymous) class. Or, it may restrict
the cardinality or prescribe a specific individual value of the property. For
instance:

:Animal a owl:Class ;
rdfs:subClassOf [

a owl:Restriction ;
owl:onProperty :cell_type ;
owl:allValuesFrom :Eukaryote ] ;

rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :cell_type ;
owl:minCardinality 1 ] ;

rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :friend ;
owl:hasValue :joe ] .

states that the class :Animal is the subclass of all things that have only
Eukaryotic cells, have at least one value for the cell type property, and are
the individual :joe’s friend. Multiple rdfs:subClassOf statements on one

be left implicit in the Turtle syntax by placing the triples in which the blank node occurs between
square brackets (see the operator class example). The space separated list of resources between
parentheses is the Turtle abbreviation for an rdf:List.
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class are, as in RDFS, interpreted as the intersection of the super classes.
In DL-style syntax:29

Animal ⊑ cellType only Eukaryote

⊑ cellType min 1

⊑ friend value joe

What can be confusing is that OWL allows one to state many things in dif-
ferent, but equivalent ways. For instance, note that the owl:minCardinality
restriction in the definition of Animal is equivalent to:

Animal ⊑ cellType some owl:Thing

Also, the owl:allValuesFrom restriction is trivially satisfied if an individual
has no value for the cell_type property.

Individuals Individuals can be said to belong to a class in the usual RDFS way,
i.e. by asserting an rdf:type triple between the individual and class. Asserting
property values on individuals is similarly straightforward, e.g. to state that
:joe is a :friend of :babel the fish, we write:

:babel a :Fish ;
:friend :joe .

Or, in DL syntax:30

babel ∈ Fish

friend(babel, joe)

As mentioned earlier, individuals in OWL are not subject to the unique
name assumption. We have seen that two individual names can be inferred to
have the same model through the use of a functional property. The same can
also be achieved in a less round-about way by asserting an owl:sameAs relation
between two individuals. The other way around, the owl:differentFrom property
can be used to assert that two individuals do not have the same model.

Remember that in description logics individuals are elements and classes
are subsets of the domain ∆I . As a consequence, OWL DL only allows indi-
viduals in the subject and object position of property relations, because oth-
erwise subsets of the domain are themselves elements in the domain; which
leads to undecidability (Motik, 2007).

Property Axioms Another important extension of the RDFS vocabulary is the
addition of property axioms beyond the rdfs:domain and rdfs:range attributes:

29The examples in this chapter and chapters 5,7 do not use the standard DL-style syntax, but a
more readable form that is akin to the syntax used by common OWL editors such as Protégé and
TopBraid Composer.

30Since the RDF syntax for OWL is quite verbose – even when using Turtle – the following uses
the DL-style notation for OWL constructs.
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• Any property can be stated to be the owl:inverseOf another property. Any
two individuals related via a property in one direction, are related by the
inverse of that property in the other direction. As a consequence, the
domain of a property is equivalent to the range of its inverse and vice
versa.

• An OWL property can be stated to be the rdfs:subPropertyOf another prop-
erty. The set of models of that property is a subset of the models of its
super property. Consequently, the domain and range of the property are
the respective subclasses of the domain and range of the super property.

• Functional properties have exactly one individual as range; this means
that any individuals asserted in the object position of that property have
the same model, and are thus the same. This construct should not be con-
fused with cardinality restrictions on classes. A functional property ex-
presses a global cardinality restriction; but it applies separately to every
individual in the knowledge base on which the property is used, regard-
less of the class it belongs to. For instance, consider the functional father
property. Then from

father(babel, bubba)

father(babel, elvis)

father(max, ludwig)

father(max, beethoven)

an OWL reasoner will infer that bubba = elvis and ludwig = beethoven.

• Inverse functional properties express a similar global cardinality restriction
but have exactly one individual as domain; any individuals asserted in
the subject position, for the same object of that property have the same
model:

father_of(bubba, babel)

father_of(elvis, babel)

gives bubba = elvis. An inverse functional property has the same effect
as the inverse property of a functional property, but is more concise as it
does not require the existence of a functional property.

• Transitive properties allow property values to propagate along a chain of
connected properties. Examples of transitive properties are taxonomic
relations such as the rdfs:subClassOf property and mereological relations
such as part_of, e.g.:

part_of(piston, engine)

part_of(engine, car)

gives part_of(piston, car).
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• Symmetric properties express that any two individuals related via the
property in one direction are also related in the converse direction. In
other words, a symmetric property is equivalent to its inverse. Given,
sibling(eefje, suzan) the reasoner infers sibling(suzan, eefje).

• Any two or more properties can be stated to be equivalent to each other.
The classes in the domain and range of the properties are correspond-
ingly equivalent, and any pair of individuals related via one property is
also related via the other.

The semantics of these property axioms is in fact very powerful because
the axioms hold globally. A second reason is that where (in DL) class axioms
only effect the semantics in the TBox, property axioms in the RBox can have
a significant implications for axioms in the the TBox, such as the effects on
classes in the domain and range of inverse, equivalent and sub properties.

The domain and range of properties in OWL are in principle not restricted
in any way, i.e. properties and restrictions can range over concrete data values
such as strings and integers. However, it has been shown that the combination
of datatypes and description logics, i.e. the incorporation of a concrete domain
into a concept language, may cause undecidability (Lutz, 1999). To retain de-
cidability, OWL DL adopts the solution of Horrocks and Sattler (2001); Baader
and Hanschke (1991) who introduce an additional domain for concrete data
values ∆ID in NIc which is disjoint with the domain of abstract individual ob-
jects ∆I in NIa , where NI = NIc ∪ NIa . Analogous to classes and individuals
in ∆I , datatypes are interpreted as subsets of ∆ID and data values are elements
of ∆ID. In practice, this resulted in a distinction between two disjoint types of
properties: properties that have only literal values, datatype properties or con-
crete roles in NRc , and properties that have only individuals as values, object
properties or abstract roles in NRa where NR = NRc ∪ NRa . Formally, a data-
type property D is defined as a binary relation, a subset of the set of all object
data value pairs: DI ⊆ ∆I ×∆ID. In other words, properties can not have data
values in the subject position in OWL DL. Consequently, datatype properties
cannot have an inverse, be symmetric, inverse functional or transitive. This
restriction does not hold in OWL Full as ∆ID and ∆I are not disjoint under Full
semantics.

Although generally a property can be of any or all of the property types
described, some combinations between property types and class restrictions
require extra care or are forbidden in DL (Horrocks et al., 2006). In particular
composite properties may cause decidability issues in several cases (Horrocks
et al., 1999). A composite property is any property whose semantics is defined
as a (possible) sequence of (other) properties: i.e. the transitive properties. A
complex property is a property whose definition is defined in terms of a com-
posite property, i.e. the super properties, equivalent properties and inverse of
transitive properties. In DL, complex properties are not allowed in cardinality
restrictions, nor are they allowed to be functional or inverse functional.

3.5.2 OWL 2

In October 2007, the W3C started a new working group to develop a successor
to the OWL Web Ontology Language: OWL 2. This language extends the ori-
ginal OWL with a number of features for which effective reasoning algorithms
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are available, and which meet real user needs.31 Until now, most research on
OWL 2 has been directed towards a new version of the description logics dia-
lect of OWL 1,32 and is based on the SROIQ description logic described by
Horrocks et al. (2006), but extends it with datatypes and punning (see below).

A large part of the development of OWL 2’s features has taken place during,
and in between OWLED workshops, i.e. outside of the W3C standardisation
process.33 At the start of the working group, efficient implementations of OWL
2 were already available in standard reasoners such as Pellet, FaCT++, Racer
and KAON2.34 Because of its early and wide adoption by both implementers
and users, the OWL 2 effort has a good chance of reaching W3C recommenda-
tion status.

OWL 2 has a modular and extensible architecture in the form of language
profiles, user defined datatypes and semantic annotations. It resolves several
ambiguities in the RDF mapping, such as the ability to use owl:oneOf with or
without an owl:equivalentClass axiom, and extends the OWL 1 vocabulary with
shorthand notations for frequently used combinations of OWL 1 primitives
such as disjoint union.

Some of OWL 2’s most significant additions lie in the expressiveness for
property axioms. Asymmetric properties can be used to express e.g. that if
something is bigger than something else, this does not hold vice versa, in other
words: the property is disjoint with its inverse. The asymmetry of a prop-
erty can thus also be expressed in terms of two disjoint properties. Disjointness
between two properties means that their sets of models are disjoint; no pair of
individuals can be in both sets. This can be used to express e.g. the disjoint-
ness of the brotherhood and sisterhood properties: if Mary is Bob’s sister, she is
not his brother. A nice side-effect of property disjointness is thus that it can be
used to state that some individual is not related to another individual via some
property. OWL 2 provides syntactic sugar in the form of negative property asser-
tions on individuals that can express this without the need to create a dummy
disjoint property.

The feature of property chain inclusions – also called complex role inclusion –
allows the transitive ‘inheritance’ of some property over a chain of properties
Horrocks et al. (2006). For instance,

owns o has_part ⊑ owns

expresses that if some individual owns an individual, it is also the owner of that
individual’s parts.35 As shown in Chapter 7 role inclusions are very powerful
primitives. Important to note, however, is that the chain of properties on the
left is only a sub property of the property on the right hand side: they are
not equivalent. Also, property chains, like transitive properties, are compound,
which means that their use in combination with other property and class ax-
ioms is subject to the same restrictions under OWL 2 DL.

31See the WG website at http://www.w3.org/2007/OWL/. At the time of this writing, the
exact specification of OWL 2 was not determined yet. Please refer to the website for the latest
version.

32To avoid confusion, from here on I refer to the original OWL standard as OWL 1
33OWLED: “OWL: Experiences and Directions”. See http://www.webont.org/owled/
34See http://pellet.owldl.com, http://owl.man.ac.uk/factplusplus/, http://

www.racer-systems.com and http://kaon2.semanticweb.org/ for respective descrip-
tions and downloads.

35Where o is a concatenation operator.

http://www.w3.org/2007/OWL/
http://www.webont.org/owled/
http://pellet.owldl.com
http://owl.man.ac.uk/factplusplus/
http://www.racer-systems.com
http://www.racer-systems.com
http://kaon2.semanticweb.org/
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OWL2 properties can be reflexive or irreflexive, to express such things as that
every thing is part of itself, or that no effect can be its own cause. Global re-
flexivity of a property makes it apply to all individuals. A more subtle way
to express reflexivity is local reflexivity of properties in class descriptions. This
enables us to express that each member of the restricted class is related to it-
self via that property. A local reflexivity restriction takes the form of a ‘self’
restriction on an object property. For instance, the class definition:

Narcissist ≡ Person ⊓ likes some self

states that the class Narcissist is equivalent to the set of persons who like them-
selves. To indicate the difference, if the likes property were itself reflexive then
every individual would like itself. The selfrestriction can only be used in com-
bination with an existential restriction.

A second new class axiom is the qualified cardinality restriction (QCR). QCR’s
add the ability to restrict the cardinality of a property to a particular range, e.g.
a table has exactly four legs as parts, but can have more parts which are not
legs:

Table ⊑ has_part min 4 Leg ⊓ has_part max 4 Leg

Punning

As pointed out multiple times, description logics retain decidability by disal-
lowing meta modelling and redefinition of meta logical symbols that are part
of the vocabulary of the language itself. In practice, this means that the sets of
names for the vocabulary, classes, properties and individuals are mutually dis-
joint (see Section 2.5.1). OWL 2 drops this requirement, but obtains the same
effect by explicitly marking the proper interpretation for each occurrence of a
name: names are given a contextual semantics, c.f. Motik (2007). This means that
names can be treated as any or all of these types, e.g. the meaning of a name
as class is in no way affected by the meaning of a name as individual. This
trick is called punning, wordplay. Although the interpretation of a name may
vary, the name is still considered to denote the same entity. Punning enables
straightforward meta modelling without the impact on decidability that RDF
and OWL Full modelling have. Because of interaction with the semantics of
OWL Full, punning is not allowed between data and object properties.

Publishing and Metadata

The support for metadata and annotation of ontologies in OWL 1 was both
under specified and limited. These limitations are largely the result from a lack
of experience in how OWL ontologies are used by various users and systems.
A few years onwards, this experience is present and allows OWL 2 to embody
a more comprehensive view on annotations and metadata.

Firstly, OWL 1 supports the standard rdfs:label and rdfs:comment proper-
ties to respectively give meaningful names and attach descriptions to classes,
properties and individuals. These properties are interpreted as owl:Annotation
Property, a special type of property that does not carry any semantics in DL,
but is interpreted as rdf:Property under OWL Full semantics. Users are free to
define additional annotation properties, but their use is severely limited in DL.
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Annotation properties cannot be used in class restrictions, e.g. to define the set
of all persons with more than one rdfs:label name. And they cannot be used on
class restrictions either. Especially this last restriction was considered an unne-
cessary shortcoming, and OWL 2 DL extends OWL with axiom annotations, that
is any axiom (such as a class restriction) can be annotated.

Furthermore, OWL 2 extends the annotation system with rdfs:subPropertyOf
relations, and the specification of domain and range for annotation properties.
Under DL semantics these do not carry semantics, but the extension allows a
larger portion of OWL Full ontologies to be valid in OWL 2 DL as well. Ways
are currently being investigated to allow rich annotations which can be used to
attach information to axioms that is interpretable by extensions of OWL reason-
ers.36 For instance, PRONTO37 extends the Pellet reasoner with a probabilistic
reasoning engine that uses annotations on rdfs:subClassOf to assert the probab-
ility of that relation to hold between two classes.

Another area where OWL 1 was significantly underdeveloped is its means
to resolve owl:import relations between ontologies. In OWL 1, the owl:import
property is simply defined as a transitive property that holds between two
ontologies, i.e. the domain and range of owl:import is owl:Ontology. How-
ever, because the specification is silent on how ontologies are to be identified
on the web, there is no standard means by which the import mechanism can
be used. This weak definition was a relatively late addition to the language,
resulting from a compromise between the ontology-as-theory and ontology-
as-document perspectives. Regardless of its ambiguous definition, it turned
out that this owl:import property was widely used. The OWL 2 specification
(Motik et al., 2009) is therefore much more explicit in this respect, and recom-
mends a method that combines the imports mechanism with simple version-
ing. OWL 1 defines several ontology properties for versioning (owl:priorVersion,
owl:backwardCompatibleWith and owl:incompatibleWith) but again, these do not
have a prescribed normative, nor recommended, effect on the semantics of im-
ports. Because there was no recipe for importing a particular version of an
ontology, each OWL tool used its own particular way to deal with versions
and perform resolution of ontology URI’s to ontology documents.

In a nutshell, the mechanism in OWL 2 works as follows. If an OWL 2
ontology imports another ontology, this is done from the URL dereferenced
(in the standard way) by the URI value of the owl:imports property. The im-
ported ontology should have either that URI as the value of its ontology URI
(i.e. the URI of the owl:Ontology element), or as the value of its owl:versionInfo
property. Because user agents, such as ontology editing tools may specify their
own method for resolving URI’s to locations, the ontologies need not necessar-
ily be published on the web, but may be accessed from ontology repositories
or a local file system. If an ontology is imported by another ontology, then
its import closure becomes part of the import closure of the importing onto-
logy. The axiom closure of an ontology is the smallest set that contains all
axioms from all ontologies in its import closure.38 The versioning properties
from OWL 1 may be used by user agents to raise a flag when e.g. the value
of an owl:incompatibleWith property corresponds with a owl:versionInfo or onto-

36See http://www.w3.org/2007/OWL/wiki/Annotation_System
37See http://clarkparsia.com/weblog/2007/09/27/introducing-pronto/
38See also definitions 5.4.2 and 5.4.3 in Section 5.4 for a more formal discussion.

http://www.w3.org/2007/OWL/wiki/Annotation_System
http://clarkparsia.com/weblog/2007/09/27/introducing-pronto/
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Figure 3.4: OWL 1 species vs. OWL 2 Profiles

logy URI.

Profiles

The OWL 2 specification includes a number of so-called profiles, some of these
are well-known tractable subsets of the OWL 2 DL specification, others are
more expressive, but do not have the full semantics of OWL 2 Full (Cuenca
Grau et al., 2009). The motivation for providing these profiles is that many
existing ontologies tend to use only a particular subset of the language con-
structs available in DL; and significant increase of reasoner performance can
be achieved through reasoning using a less expressive language. It is thought
that a standard library of logical profiles with a particularly likeable tradeoff
between expressiveness and computational complexity can overcome some of
the problems experienced when defining the OWL 1 Lite version. In particular
the profiles are:

• restricted by syntax. The semantics of a profile’s syntax is provided by
the OWL 2 DL specification.

• defined by logics that can handle at least some interesting inference ser-
vice in polynomial time with respect to either:

– the number of facts in the ontology, or

– the size of the ontology as a whole.

This section gives a brief overview of the profiles defined in OWL 2 and
their typical application areas, see Figure 3.4.39

OWL 2 EL The EL profile, based on the EL++ DL introduced in Baader et al.
(2005), is an extension of the EL description logic. Its primary strength lies in

39For an up-to-date overview, see http://www.w3.org/2007/OWL/wiki/Profiles

http://www.w3.org/2007/OWL/wiki/Profiles
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the ability to reason in polytime on ontologies with large TBoxes, and was de-
signed to cover the expressive power of several existing large-scale ontologies,
such as

SNOMED-CTr

is a large-scale commercial ontology that defines the international stand-
ardised terminology of the IHTSDO,40 which is used in the health care
systems of both the US and the UK. It consists of about 500k named class
definitions.41

Gene Ontology
is an ontology of 25 thousand terms related to genes and gene proper-
ties.42

GALEN
About 95% of this closely interlinked multi-lingual ontology of medical
terms is covered by EL++. The GALEN ontology contains about a thou-
sand class definitions.43

Where EL supports conjunction and existential restrictions, EL + + extends
this with nominals and role inclusions. It is lightweight and supports sound
and complete reasoning in polynomial time. The most significant difference
with OWL 2 DL (SROIQ) is that it drops the owl:allValuesFrom restriction,
though it does support rdfs:range restrictions on properties, which can have
a similar effect. EL+ + is not a profile of OWL 1 DL as it supports the complex
role inclusion axioms of OWL 2, and it is more expressive than OWL 1 Lite in
that it allows for existential owl:someValuesFrom where OWL 1 Lite doesn’t.

OWL 2 QL Reasoners developed for OWL DL 1.0 and 1.1 are optimised for
reasoning on TBox axioms, and are relatively inefficient when dealing with
ontologies that have relatively uncomplicated class definitions, but contain a
large number of ABox assertions. The QL profile of OWL 2 was developed to
efficiently handle query answering on such ontologies, and adopts technolo-
gies form relational database management. It is based on the DL-Lite descrip-
tion logic of Calvanese et al. (2005). By itself DL-Lite is a very restricted a pro-
file of both OWL 2 DL and OWL 1 DL but the QL fragment of OWL 2 extends
DL-Lite with more expressive features such as the property inclusion axioms,
i.e. owl:subPropertyOf, and functional and inverse-functional object properties
of OWL 1. However, it also includes the top and bottom roles of OWL 2, which
adds expressiveness beyond that of OWL 1 DL.

OWL 2 RL The OWL 2 RL profile is based on so-called Description Logic
Programs (Grosof et al., 2003), which is a subset of OWL DL 1.0 and the Horn
profile of First Order Logic (FOL) (see Figure 3.5). DLP enables the interaction

40International Health Terminology Standards Development Organisation, see http://www.

ihtsdo.org
41Systematized Nomenclature of Medicine, Clinical Terms, see http://www.snomed.org
42See http://www.geneontology.org/
43Generalised Architecture for Languages, Encyclopaedias and Nomenclatures in medicine, see

http://www.openclinical.org/prj_galen.html

http://www.ihtsdo.org
http://www.ihtsdo.org
http://www.snomed.org
http://www.geneontology.org/
http://www.openclinical.org/prj_galen.html
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Figure 3.5: The DLP profile, adapted from Grosof et al. (2003)

between DL and rules44, and effectively allows knowledge engineers to build
rules ‘on top’ of ontologies and vice versa. DLP axioms can be translated to
Horn clauses in a standard way. Nonetheless, the mapping is to some extent
syntactic as OWL DL reasoners adopt monotonicity, and adopt the open world
assumption, whereas logic programming engines use closed world reasoning
and allow non-monotonicity.

The RL profile is a syntactic fragment of OWL 2 DL, but differs from the
QL and EL profiles in that its semantics is partially given by a set of rules that
extend the RDFS interpretation of valid RDF graphs of this profile. All entail-
ments of OWL 2 DL reasoner over this fragment will be trivially sound and
complete, but an OWL Full (or RDFS) reasoner will additionally have to im-
plement the rules to ensure soundness. The OWL Full/RDFS interpretation is
an extension of OWL 2 RL that was originally developed by Oracle45 which,
similar to QL, enables efficient OWL reasoning on top of a relational database.
A forward-chaining reasoner for this profile has been implemented as part of
Oracle 11g. The primary rationale behind the development of OWL 2 RL Full
is that existing DL reasoners (Pellet, KAON2) cannot handle reasoning on the
often quite substantial amount of entries in databases.

3.6 Discussion

The development of the Semantic Web has lead to a number of technologies
that, in conjunction, constitute a balanced, layered approach for representing
knowledge on the web (cf. Figure 3.1). Despite some initial problems due to
its unclear and non-standard semantics, RDFS has proved to be a solid founda-

44As defined in RuleML, see http://www.ruleml.org, and now RIF, the Rule Interchange
Format, http://www.w3.org/2005/rules/wiki/RIF_Working_Group

45Also known as OWL Prime, or RDFS 3.0, see http://www.oracle.com/technology/

tech/semantic_technologies/pdf/semantic11g_dataint_twp.pdf.

http://www.ruleml.org
http://www.w3.org/2005/rules/wiki/RIF_Working_Group
http://www.oracle.com/technology/tech/semantic_technologies/pdf/semantic11g_dataint_twp.pdf
http://www.oracle.com/technology/tech/semantic_technologies/pdf/semantic11g_dataint_twp.pdf
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Figure 3.6: Diamond vs. tree model

tion for the now standard representation language OWL. The representation of
knowledge on the web posed several requirements for this language in addi-
tion to those outlined in Chapter 2, with respect to both semantics and syntax.
On the one hand, compatibility of its syntax and semantics with the lower lay-
ers in the cake, RDF and RDFS, had to be ensured. On the other hand, it should
fit the tradition in knowledge representation, and description logics in partic-
ular. Inference on the axioms in ontologies expressed in OWL is monotonic to
remain unaffected by the addition of new information. OWL therefore adopts
the open world assumption. Lastly, efficient algorithms for the language have
been shown to exist, i.e. it is decidable, and have been implemented in several
reasoners.

The above aspects of the web ontology language are a consequence of the
way it deals with several trade-offs (Horrocks et al., 2003). The most import-
ant of these is perhaps the one between decidability and expressiveness. In this
respect, the development of OWL has been, and still is a cautious one: new
features are only added to the language provided that some suitably efficient
algorithm is known. Decidability of OWL, as a fragment of first order logic,
was therefore only possible by sacrificing expressiveness.

The most prominent hiatus in expressiveness lies exactly where rule based
formalisms find their strength. As most decidable description logics, SROIQ
has the tree-model property, i.e. every concept in the logic has a model only if
it has a tree-shaped model. In a tree-shaped model the interpretation of prop-
erties defines a tree shaped directed graph. In its simplest form, the problem is
that class descriptions cannot be used to distinguish between the two patterns
of individuals in Figure 3.6, i.e. a class description cannot enforce the exist-
ence of an owl:sameAs relation between individuals i4 and i5. In short this also
means that defining the pattern of Figure 7.4 is theoretically impossible in this
language.

Although several decidable fragments of logic programming languages such
as Datalog exist that can express diamond-shaped models, these are exten-
sions of first order logic which operate under the closed world assumption
and thus do not meet the requirement of monotonicity. Furthermore, the de-
velopment of web-based rule languages has proven to be slow going because
of the enormous range of different rule-based languages on the market today.
After its start in 2005, the Rule Interchange Format (RIF) working group has
only released its first public working drafts in 2008 (including a specification
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of its interoperability with OWL).46

In general it can be said that any knowledge representation language inten-
ded to be used for reasoning necessarily must find a balance between express-
iveness and computational complexity: the trade-off is inevitable. In Chapter 7
I discuss the theoretical considerations and practical limitations of this trade-
off in more detail. However, whether what can be expressed is sufficient or not
depends on what should be represented.

Despite the occasional drop of the ‘O’ word, inevitable in discussing a web
ontology language, this chapter steered clear of any of the pitfalls surround-
ing the term ‘ontology’. Although OWL was presented as a web-based know-
ledge representation language, the fact that it is called an ontology language
is not immediately obvious. The next chapters approach this confusion head-
on. Chapter 4 elucidates the different interpretations of the term (and there
are a couple), leading to the idea of an ontology as knowledge representation
artefact that can be built. Nonetheless, an ontology remains a special breed,
which becomes evident in the discussion of the issues surrounding ontology
construction in Chapter 5.

46See http://www.w3.org/2005/rules/wiki/RIF_Working_Group.

http://www.w3.org/2005/rules/wiki/RIF_Working_Group


Chapter 4

Ontologies

“We now begin the science of the properties of all things in gen-
eral, which is called ontology. (. . . ) One easily comprehends that
it will contain nothing but all basic concepts and basic proposi-
tions of our a priory cognition in general: for if it is to consider
the properties of all things, then is has as an object nothing but a
thing in general, i.e. every object of thought, thus no determinate
object.”

M. Immanuel Kant (1782–1783)

4.1 Introduction

In Chapter 2, the term ‘ontology’ was introduced as a moniker for the domain
theory of an expert system (Davis et al., 1993, and Section 2.3.2). The func-
tional approach of Levesque (1984) brought us to consider description logics
languages as ideal candidates for the representation of these domain theories
(Section 2.5.1), and Chapter 3 described a particular member of this language
family, the Web Ontology Language, for representing knowledge on the Se-
mantic Web.

For the sake of simplicity, we assumed that the notions of domain theory
and ontology stand in direct correspondence. However, this is not the case and
despite its success, the term ‘ontology’ has remained a rather ungainly char-
acterisation of the things it is used to denote. A large number of academic
publications revolve around a particular ontology, some ontology language, a
methodology for ontology building or a discussion of different kinds of ontolo-
gies. An invariably significant portion of these papers include some definition
of what (an) ontology is. Most cited in this context is the definition of Gruber
(1993, 1994):

66
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“An ontology is an explicit specification of a conceptualisation.”
Gruber (1994)

The apparent convergence between different fields in AI on what an onto-
logy is, does not reach very far beyond the superficiality of Gruber’s definition.
Arguably, taken on its own, a definition is not very helpful. In fact, there are
uncountable alternative definitions of ontology, that are equally uninformat-
ive when taken out of context (cf. Section 4.4). The problem is, definitions are
rather imprecise – e.g. what then is a conceptualisation? – and hide the ra-
tionale and perspective that underpin the definition. Perhaps for this reason,
the definition of ontology as proposed by one researcher is often subject to
heavy criticism from others who have a different background. Definitions can
be widely divergent, and ontologies can range from lightweight textual de-
scriptions of some terms to highly formal specifications of philosophical prim-
itives.

It is not wholly inconceivable that the longstanding and still prevalent cus-
tom of including Gruber’s definition in scholarly articles is a serious indication
that we still don’t really know what an ontology is. Perhaps we don’t want to know,
or at least keep up the appearance that we know what we are doing. As AI is
very much an interdisciplinary field, this rather careless attitude has a detri-
mental effect on the overall quality of ‘ontologies’ produced in the field – at
least when seen from the knowledge representation perspective of the preced-
ing chapters.

4.2 Ontologies as Artefacts

McCarthy (1980) first borrowed the term ‘ontology’ from philosophy to refer
to the things that exist in a description of (all) commonsense knowledge. The
perspective of philosophy fit well with McCarthy’s position that knowledge
in an intelligent agent should be based on a small number of principles (see
Section 2.2.1). Nonetheless, the term remained only spuriously used in AI until
it was adopted by the knowledge acquisition community. And this time, it
had quite a different ring to it. No longer it was used to refer to the theory
of existence, but rather as reflection of the building blocks of a domain theory:
concepts. Ontologies soon grew into knowledge representation artefacts in their
own right.1

As we have seen in Chapter 2, separating problem solving knowledge from
domain knowledge in knowledge based systems has proven to be a fruitful
means to circumvent the interaction problem of Bylander and Chandrasekaran
(1987) and improve reusability of knowledge components. Originally, this sep-
aration was not intended to exist physically inside a knowledge based sys-
tem, but rather, the two types should be modelled separately. Because a domain
model constrains that which exists for a knowledge based system and what it
can reason over, it can be said to capture an ontology (Davis et al., 1993). In this

1In the following I will use the term Ontology, with a capital ‘O’, to denote the philosophical
discipline, and ontology to refer to a (formal) construct reflecting some ontological commitments.
The word ‘ontological’ in that sense means ‘pertaining to existence’; an ontological commitment is a
commitment to the existence of something, ontological status is some degree of certainty by which
an entity is thought to exist.
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view, reflected by the definitions of Gruber (1994) and Schreiber et al. (1995),
an ontology is part of the specification of a knowledge based system:

An ontology is an explicit, partial specification of a conceptualisation that is ex-
pressible as a meta-level viewpoint on a set of possible domain theories for the
purpose of modular design, redesign and reuse of knowledge-intensive system
components.

Schreiber et al. (1995)

Initially ontologies were merely a novel term for the specification of do-
main knowledge in the form of documentation, schematic diagrams and tex-
tual descriptions akin to specifications in software engineering. It is this type
of specification that Gruber meant. To emphasise this perspective, he referred
to the specification of ontologies as ontology engineering.

Schreiber et al. and Gruber consider the ontology as a necessary step in
the design of a system; it can be said to be implemented in a system. In exactly
the same way that problem solving methods are abstract reusable descriptions
of reasoning, an ontology enables reuse by providing an abstract description of
some domain. Ontologies can be consulted when selecting a ‘knowledge com-
ponent’ that implements some required reasoning services, or when develop-
ing a new system or component that re-implements that body of knowledge.

Furthermore, an ontology can help guide knowledge acquisition for a do-
main by providing a conceptual ‘coat rack’ to which new knowledge can be ad-
ded. To give an example, a general expert system for medical diagnosis needs
to implement (at a minimum) both the standard diagnosis PSM of Figure 2.9
and an ontology of the human physiology. A more specialised expert system
could implement a more specific diagnosis PSM, e.g. a causal-dependency
based approach (Bredeweg, 1994), or implement a liver disease ontology that
extends the physiology ontology. Both the ontologies and the PSMs are not
part of the system itself, but belong to its specification. A knowledge compon-
ent that implements an ontology can be said to commit to that ontology. And
different components that commit to the same ontology are more compatible
than those committing to distinct ontologies.

The specification perspective on knowledge gradually grew in importance
and it was soon recognised that the ontology – as rather abstract specification
which is not part of the system itself – can also serve as a means to commu-
nicate the expertise of not just components, but of a system as a whole. It en-
ables knowledge sharing across both systems and between systems and people
(Neches et al., 1991; Uschold, 1996).

In fact, the techniques of knowledge acquisition were increasingly applied
to share knowledge between different groups of people: as techniques for
knowledge management in organisations (van Heijst et al., 1997; Schreiber et al.,
2000). The notions of task decomposition and problem solving methods were
very useful in the elicitation of organisational goals and business processes.
Domain theories could capture the individual expert knowledge of employees,
and thereby chart the distribution of expertise over a workforce. This overview
was used to signal lacunae, mismatches and overlap in expertise of both per-
sons and organisational units. The elicitation and alignment of domain theories
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as a shared vocabulary was deemed an especially powerful tool for improving
the cohesion and co-operation within and between organisations.

Gruber (1993) takes very much the position that ontologies are essentially
about sharing conceptualisations:

Ontologies are agreements about shared conceptualisations. Shared conceptu-
alisations include conceptual frameworks for modelling domain knowledge;
content-specific protocols for communication among inter-operating agents;
and agreements about the representation of particular domain theories.

Gruber (1993)

Ontology is thus abstracted away from its initial purpose in knowledge ac-
quisition, and is more about defining some commonly agreed upon vocabu-
lary of terms for the purposes of standardisation. Rather than what one might
initially expect, this more abstract view on ontologies puts a lot more weight
on their development process and methodology. Anyone who has ever been
involved in a standardisation committee will know that the interplay between
different parties, with different interests can make the development of the stand-
ard a cumbersome process. It requires one to be a lot more explicit as to what
the intended (or even allowed) use of an ontology is. A non-standard use of
some concept definition may influence its interpretation in such a way that it
no longer complies with the intended meaning of a term. If an ontology really
is about the sharing of a standardised vocabulary, some rules need to be set out
that prevent misuse:

An ontology defines the basic terms and relations comprising the vocabulary of
a topic area as well as the rules for combining terms and relations to define
extensions to the vocabulary.

Neches et al. (1991)

The emphasis on sharing and standardisation sparked interest in three in-
terdependent directions: to ensure quality through a methodological foothold,
to enable the physical sharing of ontologies and to facilitate (formal) specifica-
tion (Neches et al., 1991). The growing importance of ontologies introduced a
need for quality assurance; to safeguard extensibility and shareability by for-
mulating a methodology that enforces general design principles and ensures a
repeatable development process (see Chapter 5).

Commitment to a shared vocabulary is only possible if the vocabulary itself
can be physically shared as well: ontologies should be portable. Portability is
ensured by using a common specification language. Such a language provides
a syntactic entity that can be manipulated, copied and referred to. The ONTO-
LINGUA system of (Gruber, 1993; Farquhar et al., 1997) is an online editor and
library of ontologies, similar to the library of problem solving methods of e.g.
Breuker (1994, 1997), that supports the storage of “ontologies that are portable
over representation systems” (Gruber, 1993, p.1). Although there is no pre-
scribed level of formality of vocabulary specifications (Uschold, 1996, p.6), dir-
ect ontology sharing between systems requires at least a structured language
with clear semantics. In particular where knowledge modelling ontologies are
concerned (van Heijst et al., 1997).
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It was clear that a structured specification language for ontologies would
increase their portability. However, the purpose of the specification turned out
to play an important role in determining what a useful specification is.

Knowledge Representation Ontologies

The knowledge representation community took the specification to mean a
formal specification that could be used to constrain valid implementations of
the ontology. A formal language can be used to ensure internal consistency of
vocabulary definitions in the ontology; it may sanction proper extensions – in-
correct extensions of the ontology are inconsistent; and opens the door to auto-
matic compliance checking of implemented knowledge based systems – does the
system adequately implement the ontology?

Ontologies in ONTOLINGUA were represented using KIF (Genesereth and
Fikes, 1992), a formal, highly expressive language for the explicit representa-
tion of concepts and relations. It is purely meant as an inter lingua and does
not itself support standard inferencing. ONTOLINGUA could directly translate
from and to several other representation languages, and supported interaction
with dedicated knowledge editors such as Protéǵe using the Open Knowledge
Base Connectivity language (OKBC, Chaudhri et al. (1998)). OKBC was an
API2 akin to the contemporary DIG specification3 for exchanging knowledge
bases between a repository and an editor, rather than a knowledge represent-
ation language in its own right. Contrary to KIF, OKBC is a language with
relatively poor expressiveness.

A language such as KIF can only be used as interchange between relatively
compatible knowledge representation formalisms. If some construct from the
source language is not available in the target language, or when there is di-
vergence with respect to semantics, translation cannot occur unattended (See
Section 5.4). These problems were partially alleviated by the built in Frame On-
tology of ONTOLINGUA, a representation ontology specified in KIF that defined
knowledge representation constructs commonly found in frame-based and ob-
ject oriented systems. Translation between different languages was only sup-
ported through the Frame Ontology. This adoption of the frame language-style
of knowledge representation for representing ontologies was perhaps an obvi-
ous step, but an influential one at that. Although Gruber presents the Frame
Ontology as a mere convenience for ontology engineers over standard predic-
ate calculus, it soon became the default paradigm for specifying AI ontologies.

The Knowledge Representation System Specification of Patel-Schneider and
Swartout (1993, KRSS) took this one step further by enforcing a commitment
to the frame paradigm. KRSS was developed to establish a common ground
between frame-based KL-ONE like knowledge representation languages such
as CLASSIC (Brachman et al., 1991) and LOOM (MacGregor and Bates, 1987).
Instead of an inter lingua, KRSS is intended as standard language for the dir-
ect exchange of knowledge representations between such systems. Like KIF
KRSS has its own Lisp-style syntax, and was based on the description logics
language of e.g. Baader et al. (1991), developed to extend KL-One’s formal

basis for terminological knowledge representation languages (Baader et al.,

2API: Application Programming Interface
3DIG: DL Implementation Group, see http://dl.kr.org/.

http://dl.kr.org/
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2003, and Section 2.5.1). In this view, the DL language family was thus not
just meant for terminological knowledge representation, but for ontology rep-
resentation as well.

Ontologies specified in DL are knowledge representations and can be dir-
ectly used as knowledge components. At first sight this seems to conflict with
the idea that an ontology should be part of the knowledge level specification of
a knowledge based system (c.f the quote of Schreiber et al. (1995) on page 67).
However, the notion of an ontology as knowledge base does not necessarily
imply that it should be incorporated in a knowledge based system as is.4 The
knowledge acquisition community was well aware of the developments with
respect to description logics, and these languages were certainly not shunned
by the more formal minded.

Knowledge Management Ontologies

The knowledge acquisition and knowledge management communities, on the
other hand, emphasised a software engineering perspective and adopted the
schematic diagrams of object-oriented modelling and design, and later the in-
dustry standard Unified Modelling Language (UML), to express and specify onto-
logies. In this view, ontologies are primarily meant for human consumption as
part of the design of large scale systems. The CommonKADS methodology used
UML-like diagrams extensively for describing task decompositions, problem
solving methods and ontologies alike (Schreiber et al., 2000). This approach has
been very successful, as for the first time expertise within organisations could
be charted and organised in an intuitive manner. The influence of knowledge
management during the nineties has certainly contributed to the increasing
popularity of ontologies to describe the domain knowledge of experts.

The Conceptual Modelling Language of Schreiber et al. (1994, CML) and
(ML)2 (van Harmelen and Balder, 1992) were proposals for structured lan-
guages that could be used for the specification of CommonKADS models. Con-
trary to (ML)2, CML did not have a formal semantics, but only provided a
structured textual notation and a diagrammatic notation for concepts. How-
ever, as knowledge management does not require a full specification of an
ontology and ontologies could well be just lists of agreed upon keywords or
hierarchies of terms, these languages were only spuriously used.

An important application area for knowledge management is to help organ-
isations deal with the enormous amount of information stored across computer
systems. At the end of the nineties, ontologies started to become used to phys-
ically index the information within organisations. Employees were equipped
with user profiles that expressed their area of expertise in terms of an ontology.
Relevant information that matches the profile could then be brought to the at-
tention of the employee. Because indexing documents by hand is an arduous
task, data mining and natural language processing technologies were applied
to perform automatic ontology extraction and ontology learning.

4In fact, there are several reasons why this is can be technically problematic, cf. Section 7.2
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Ontology Meets the Web

Ontologies were increasingly specified using specialised ontology develop-
ment tools. Knowledge acquisition tools such as Protégé (Puerta et al., 1992)
were adapted for the specification and documentation of taxonomies. As a
result, the language in which an ontology was expressed depended more and
more on tools. Also, automatically extracted knowledge management ontolo-
gies were stored in relatively closed legacy database systems. This turned out
to be a significant impediment to reuse, especially considering the growing
need for information exchange between distributed information sources over
the web.

Most existing initiatives to develop an interchange language for ontologies
preceded the development of the web. They were based on the (then prevail-
ing) conception of the web as a relatively slow, but huge local area network,
and not the efficient, social, and uncontrollable means for human computer
interaction it is today. The growing interest in ontologies sparked a renewed
interest in interchange languages, in particular given the possibilities of a new,
versatile syntax offered by XML. The SHOE language (Heflin et al., 1999) can
be regarded in this light: a simple, frame-based syntactic interchange language
for ontologies. Similar lightweight approaches are RDFS and the current SKOS.
The DAML-ONT and OIL languages, on the other hand, were more directly in-
fluenced by the knowledge representation perspective on ontologies.

The DAML+OIL member submission to the W3C5 in 2001 was in many
ways a package deal that could not be scorned. It offered a full-blown know-
ledge representation language in the guise of a web-based ontology exchange
language. Berners-Lee (1999)’s ideal of a Semantic Web was brought a sig-
nificant step closer, and once OWL became a W3C recommendation in 2004
it became the de facto representation language for ontologies. However, for
those primarily interested in the knowledge management aspect of ontologies,
the resulting OWL language was somewhat like a Trojan horse: a relatively
heavyweight formal language sneaked in via the back door.

Nonetheless, the more informal use of ontologies persists until today, such
as in the widespread use of folksonomies, and – quite detached from the web –
as standard vocabularies for governments and communities of practice. Many
of these lightweight knowledge management ontologies are represented using
the relatively inexpressive RDFS or SKOS, but a surprisingly large number are
in OWL Full as well (though often by accident, Wang and Parsia (2007)).

Since McCarthy (1980) and Davis et al. (1993) borrowed the term ‘ontology’
from philosophy, the interpretation of the term in AI has shifted from an essen-
tial part of the specification of knowledge based systems, to standard vocab-
ularies and full-blown terminological knowledge bases on the web, or even –
as we did in Chapter 3 – any OWL file. Nonetheless, not all has been said,
as philosophy certainly did not stand by idly while a centuries-old tradition
was hijacked by a bunch of computer enthusiasts. The next section describes
Ontology as conceived of in philosophy, and Section 4.4 discusses the main
differences between the the two views.

5See http://www.w3.org/Submission/2001/12/

http://www.w3.org/Submission/2001/12/
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4.3 Ontology in Philosophy

In philosophy, the term Ontology is used in the context of the analysis of the
fundamental building blocks of reality, the metaphysical study of existence by
first principles: what makes that some thing exists, and how can we ascertain
the existence of some thing? As Leibniz put it:

“Ontology or the science of something and of nothing, of being and not-being,
of the thing and the mode of the thing, of substance and accident.”

Gottfried W. Leibniz, in (Leibniz, 1903, p.512)

Ontology thus concerns the top-down deconstruction of reality as we per-
ceive it: eliminate its accidental appearance and reduce it to its very bare bones.
If we look at Kant’s description of the ‘science of ontology’, we can conclude
that the method adopted in philosophical ontology is to focus primarily on
those things objects in the world have in common:

“. . . ontology, the science, namely, which is concerned with the more general
properties of all things.”

Immanuel Kant, in Kant (1997)

It is the commonalities (and disparities) that are the subject of ontological
study, and which are used to construct a comprehensive representation of real-
ity. Important also is that it is the study of general properties that all things
have in common, and not of ad-hoc categories. It identifies elements in general
which can be applied to account for differences in particular. Ontology oper-
ates on a meta level with respect to the things in the domain of discourse. For
example, instead of studying the properties that make physical entities differ
from mental entities, ontology studies what properties are by themselves. This
in line with Aristotle’s description of Ontology, which, in his sense, tries to an-
swer the question “What is being?”, or as Guarino (1997) rephrases it, “What
are the features common to all beings?”:

Ontology is the science of being as such: unlike the other sciences, each of which
investigates a class of beings and their determinations. Ontology regards “all
the species of being qua being and the attributes which belong to it qua being”.

Aristotle, Metaphysics, IV, 1, from Guarino (1997)

Instead of specifying a vocabulary, Ontology thus tries to pinpoint the vocab-
ulary used to describe things in the world; it usually adopts realism, i.e. the be-
lief that reality exists independently of human observers. It assumes (or even
requires) a direct correspondence between the elements in the ontology and
entities ‘out there’; and is focused at the primitives of being. Consequently, an
ontology is to capture directly the domain of discourse.6 The high level of ab-
straction enables a philosopher to reason a priori with respect to the elements

6Usually life, the universe and everything
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of some ontological theory. These elements, namely, are considered primitives
of human thought and reason.

Of course, the results of this study of existence needs to precipitate in some
way; it is unavoidable that ontological research results in an entity embodying
some ‘ontology’. Formal Ontology is a branch of philosophy that addresses
this issue by extending Ontology in two ways (Guarino, 1997), i.e. to:

• Capture ontological theory in a formal language, i.e. first order logic, and

• Study the forms and modes of being

Seen in this light, it is understandable that to McCarthy using the term ‘on-
tology’ was quite natural. His goal of an ontology as formal representation
based on a fixed set of basic principles appears to almost seamlessly corres-
pond to the meaning ascribed to the term in formal Ontology. But the knife
cuts both ways: the commitment to a formal specification of an ‘ontology’ sub-
mits formal Ontology to the same restrictions as knowledge representation in
AI: the syntactic form of an ontology influences the quality of an ontology as a
semantic entity (Guarino and Giaretta, 1995).

4.3.1 Problems in Formal Ontology: Semantics and Syntax

The acknowledgement that an ontology can never be untainted by formalism
and design choices is perhaps the single most prominent difference between
the approaches in philosophy and AI. As discussed in Section 2.4.1, the separ-
ation of knowledge types was introduced in the first place to remediate known
hurdles such as the interaction problem and the knowledge acquisition bottle-
neck. Although an ontology was conceived as a knowledge level specification
of the domain theory of a knowledge-based system (Davis et al., 1993), it was
well understood that even this trick would not shield the ontology as such from
its context in knowledge based systems.

For a long time, this dependency between representation and language was
deemed of no relevance for philosophy, as Ontology was expressed in the tradi-
tion of e.g. Leibniz using the “universal language of rational thought”: logic.7

Nonetheless, there even were philosophical arguments against a purely logical
approach. According to Smith (1978), for a formal ontologist, even the use of
first order logic to precisely and accurately define philosophical convictions
poses a threat. The trade-off Smith sketches is between overshooting, and pos-
sibly allowing entities that have limited ontological status, and possibly missing
out on important entities, which would diminish the ontological adequacy of a
theory as a whole.

The former solution is of course regarded unacceptable by puritan realists.
Namely, an ontology that commits to the existence of entities that do not exist
is fundamentally flawed. On the other hand, Smith argues that early formal
philosophy was caught in a ‘perversion’ of Occham’s razor. His maxim to not
multiply entities without necessity, was misapplied as a much stricter practice:
not to add entities wherever possible. It is furthermore fuelled by a combination
of reductionism and pragmatism as in e.g. Frege’s work where philosophical

7Note that although the current language of choice is first order logic, Leibniz’ view was primar-
ily computational.
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progress is measured “by the degree to which one can ‘explain away’ appar-
ent philosophical givens in terms of less controversial entities”. According to
Smith, this perversion leads to a simplification of the world – the subject matter
of Ontology. Not as an inevitable by-product of the use of a formal language,
but rather due to the application of an overly simple mathematical formalisa-
tion. For, what evidence is there to expect that the logical constructs devised
by Frege to explain and define mathematical theory are equally well suited to
capture ontological theory?

Smith illustrates this practice by positing a school of thought by the name
of ‘fantology’, the idea that ontological form corresponds to one and two-placed
predicates of the form Fa and Rab (Smith, 2005). This view confounds the first
role of formal Ontology – to capture ontological theory in a formal language
– with the study of ‘forms of being’, by equating ontological form to logical
form. Arguably this is problematic, as this conflation allows the application
of common operators of logic such as the Boolean and and or, to ontological
categories: ontological truth becomes equivalent to logical truth.

In this conception, the predicate F carries the meaning, whereas the sub-
ject a is a ‘mere meaningless name, a matter of pure denotation’ (Smith, 2005).
Although nothing in logic prevents us to ascribe meaning to the subject of a
predicate, the prevailing philosophical interpretation is that they refer only
to individual objects. Furthermore, the predicates themselves are not ontolo-
gically neutral (Smith, 2004). For example, the relations is_narrower_than and
part_of are certainly not of the same type. Where the former expresses a rela-
tion between meanings, the latter expresses a structural tie between universals.

Smith argues for a system where not the predicates, but indeed the subjects
of those predicates carry meaning. The predicates themselves ‘do not repres-
ent’, but rather are what link together variable and constant terms. In this
proposal Smith eliminates unary predicates altogether, and restricts the num-
ber of allowed relational predicates to a fixed set, containing amongst others
subsumption, parthood and dependency relations. A restriction that was also
advocated by Breuker and Wielinga (1987). Recall that in the 1970’s semantic
networks were criticised because their structure was too generic and semantic-
ally unclear (cf. Section 2.2.3). The solution was to develop languages that
contained a fixed set of knowledge structuring primitives. Though given by
different reasons, the proposal by Smith is in fact analogous to this solution.

Guarino (1994) takes a different approach, and proposes to limit the scope
of predicates by formulating semantic constraints. These can be used to ex-
press the difference between e.g. sortals and non sortals, i.e. predicates that are
substantial, e.g. whether some entity is an apple, apple(x), and those that ex-
press a mere characterisation, such as red(x).8 This way, it is thought, a rigour-
ous ontological foundation of the primitives in some knowledge representation
language can guarantee a consistent interpretation of theories across different
domains.

However, from a knowledge representation perspective, it is unclear how
such a priori distinction between predicates on entities is possible. Or at least,
how it is different from any other restriction posed in a knowledge base itself
– and not in an ontological layer incorporated in the representation language.

8Guarino (1994) also introduces rigidity. See the discussion on the ONTOCLEAN methodology
in Section 5.5.1 for a more in depth discussion of this notion.
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Whether some predication of an entity meets its formal ontological require-
ment can only be checked against the actual entity in the domain, which is not
formally specified other than by means of the predication itself. For instance,
there is nothing ‘in’ the predicate red that precludes its interpretation as sub-
stantial: does red(x) state that x has the property of being red, or that x is the
colour red?

In summary, the specification language used in formal Ontology turns out
not to be ontologically neutral, but rather has to be used with care. This can
be achieved either by having its predicates quantify over parts of the ontology,
instead of individuals, or by distinguishing different ontological categories of
predicates.

4.4 Two Kinds of Ontologies

As said in Section 4.2, use of the term ‘ontology’ by the knowledge acquisition
and representation community did not go unnoticed in formal Ontology. The
wider adoption of the term, until then private to a small community, sparked
concern as to the place of Ontology in knowledge representation. While in
knowledge acquisition, ontology construction was an important but prelimin-
ary step in knowledge based systems development, and knowledge manage-
ment even posed the ability of ontology extraction, formal ontologists naturally
saw a more prominent role.

Guarino (1994) made efforts to integrate formal Ontology with the notion of
knowledge representation languages. He argues for an ontological level on top
of Brachman’s epistemological level. Where the epistemological level provides
structure, the ontological level is to constrain the meaning of primitives in a
knowledge representation language. Guarino criticises the neutrality of know-
ledge representation formalisms as regards their ontological commitment. In
his view, structured representation languages such as KL-ONE cannot be “dis-
tinguished from their ‘flat’ first-order equivalents” without making the ontolo-
gical commitments underlying their structure explicit. It should be made clear
what it ‘means’ to interpret binary predicates as roles, and unary predicates as
concepts:9

At the ontological level, knowledge primitives satisfy formal meaning postu-
lates, which restrict the interpretation of a logical theory on the basis of formal
ontology, intended as a theory of a priori distinctions.

(Guarino, 1994, p.444)

Serious efforts to reconcile ontology in AI with its older and wiser name-
sake were of course welcomed by the knowledge acquisition community, but
quite often with a sense of bemusement. For the theoretical considerations
brought to bear by the likes of Smith and Guarino seem to be of no direct
practical relevance in the development of knowledge-based systems, let alone
knowledge management. And furthermore, the naive notion of (formal) onto-
logy as a direct reflection of reality was somewhat smirked at by a field that

9Ontologies that specify the commitment of a formal representation language are usually called
representation ontologies (van Heijst et al., 1997).
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had been struggling with that very same relation between representation and
reality for over twenty years. On the other hand, the use of “ontology”, as
merely a convenient moniker of some part of a specification in knowledge ac-
quisition methodologies was perceived as rather careless by formal ontologists
for which the ontology itself is the primary goal.

The relative positions can be summarised as follows:

• Philosophy’s main criticism concerned the lack of theoretical philosoph-
ical rigour underlying the content of ontologies in AI: domain theories are
very often philosophically naive.

• AI, on the other hand, (silently) criticised philosophy’s disregard of the
fundamental problems in knowledge acquisition and representation, such
as the interplay between language and representation, and the interac-
tion problem (Bylander and Chandrasekaran, 1987). AI ontologies are
meant to be used for reasoning in the context of very mundane problem
solving tasks where overly theoretical conceptions are more likely to be a
burden than a help.

The apparent incompatibility between principled philosophical and theor-
etically ‘loose’ AI conceptions of ontology has in fact quite often led to heated
debates about a proper definition: a definition that would be compatible with
both perspectives and one that could reconcile the positions. There have been
several attempts, primarily by Guarino and Giaretta (1995); Guarino (1998) to
come to such uniform definition.

One source of confusion has been that originally, both interpretations were
vague as to whether an ontology is the specification itself or that which is spe-
cified. In philosophy this was characterised by disregard of the formalism, and
in AI by imprecise usage of the term itself. This initial indecisiveness was
settled by the well known definition of Gruber (1993, 1994) (see Section 4.1),
which distinguishes the ontology, as specification, from that which it specifies,
the ‘conceptualisation’ (Genesereth and Nilsson, 1987). Surely we can concep-
tualise, or understand, the world in many different ways. An ontology cap-
tures a commitment to those parts of a conceptualisation that we deem to ex-
ist in reality. This conceptualisation is a priori inaccessible: it only exists “in
someone’s head” (Uschold, 1996). The explicit specification of a conceptual-
isation is therefore just as subject to the knowledge acquisition bottleneck as
other forms of knowledge representation, and it was consequently acknow-
ledged that a conceptualisation can only be approximated:

An ontology is an explicit account or representation of some part of a conceptu-
alisation.

Uschold (1996), adapted from Guarino and Giaretta (1995)

Taken in this light, Ontology, as the philosophical discipline, endeavours
to approximate the a priori conceptualisation that underlies the structure of
reality. However, in the context of knowledge-based systems, the notion of on-
tology is clearly ‘disconnected’ from reality: the conceptualisation being spe-
cified is that shared by one or more experts. No claim is made as to the real
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Figure 4.1: Ontological relations in Realism

existence of elements in the ontology. The ontology specifies that which a sys-
tem ‘knows’ about:

An (AI-) ontology is a theory of what entities can exist in the mind of a know-
ledgeable agent.

Wielinga and Schreiber (1993)

In other words, the ontology prescribes what entities can be distinguished,
or rather individuated inside a knowledge base: an ontology encompasses its
generic concepts. Recall the relation between a knowledge representation and
entities in reality in Brachman’s meaning triangle of Figure 2.4.10 Admittedly,
both generic and individual concepts in a knowledge representation can be
related to some entity (individual object) in reality through instantiation and
denotation, respectively. It is the ontological status and strength of these re-
lations as to which philosophy and AI differ. Firstly, in AI, denotation is a
correspondence relation between a concept in a knowledge base and some en-
tity in reality. It is generally true that an individual will only be asserted into a
knowledge base given some corresponding entity, but this is not enforced. In
fact, individuals are often asserted for purely practical reasons, as mere data-
base keys. Secondly, instantiation of a generic concept by an entity is an even
weaker relation in the ontological sense: the entity merely exemplifies the gen-
eric concept.

These are considerable weaker versions of their philosophical interpreta-
tions, especially in comparison to the position of realism. Realism holds the
existence of universals, properties such as ‘’being an apple’ that hold in multiple
places, or rather are instantiated by multiple particulars. Using KR wording,
realism essentially adopts the stance that reality contains properties (entities)
denoted by generic concepts (see Figure 4.1). As AI makes no such claims, pro-
posals for definitions of ‘ontology’ are often accused of adopting the opposite
position of nominalism, which holds that universals only hold as names.

However, this is a false accusation as has been made clear by more philo-
sophically aware AI researchers. For instance, Genesereth and Nilsson (1987)
who coined the word ‘conceptualisation’ on which Gruber’s definition is based,

10Keep in mind that Brachman did not distinguish symbol level and knowledge level represent-
ation.
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explicitly state that no attention has been paid to the question whether the ob-
jects in a conceptualisation really exist. They do not adopt realism nor nomin-
alism:

“conceptualisations are our inventions, and their justification is based solely on
their utility. This lack of commitment indicates the essential ontological promis-
cuity of AI: any conceptualisation of the world is accommodated, and we seek
those that are useful for our purposes.”

(Genesereth and Nilsson, 1987)11

The keyword here is ‘utility’. Philosophical ontologies are not intended to
be used in the operational sense of the word. They are not intended to be a
part of some knowledge based system, but rather reflect a formal commitment
to some philosophical theory. It raises the question as to whether the notions
of philosophical and AI ontology are compatible: can a philosophical ontology
be used in practice? This assumption is often implicit in philosophically in-
spired formal ontologies (Grenon, 2003; Masolo et al., 2003). But, as discussed
in Chapter 6 it may not always hold (Hoekstra et al., 2007, 2008).

4.5 Discussion

The mixture of philosophical and knowledge representation perspectives in-
volves a trade off between an ontology as knowledge representation artefact and
as theory of existence. According to the first view, the quality of an ontology
does not relate to philosophical adequacy, but rather to its suitability to play
a role in problem solving (Genesereth and Nilsson, 1987) and knowledge re-
use. The design choices inherent in the knowledge based system determine
what the ontology contains, and no particular restrictions hold as to its shape
or form. The main requirement is that the ontology should adequately capture
the system’s domain theory and be neutral with respect to its control know-
ledge (Chapter 2).

The philosophical perspective, on the other hand, poses additional restric-
tions on the content of ontologies. First off, it is clear that the purely philosoph-
ical view of Formal Ontology cannot easily be reconciled with the knowledge
representation view because where the former sees language primitives as the
primitives of existence – extending an ontology equates to extending the lan-
guage – the latter restricts language primitives based on pragmatic, epistemo-
logical and computational considerations (Levesque and Brachman, 1985, and
Section 2.5.1). The discrepancy between the two views is evident in e.g. Bera
and Wand (2004)’s refutation of OWL as ontology language. As discussed in
the preceding chapters, this is the price one has to pay for the practical applic-
ation of ontologies in reasoning.

The development of ontology representation languages inspired the use
of ontologies as a readily available resource for knowledge based reasoning.
These knowledge representation ontologies are specified using their own carefully
crafted representation language (OWL DL), and inference is supported by high-
ly optimised reasoners. The ontological perspective is partly ensured by adopt-
ing the DL paradigm as it only sanctions inference that is ontologically relev-
ant: consistency checking of axioms in the ontology, classification of concepts as



4.5. Discussion 80

belonging to more generic categories, and instance checking of individuals as
denoting instances of some concept. This way, the semantics of the language
makes the representation of an ontology correspond more directly to an expli-
cit set of ontological commitments: the ontology cannot commit to more than
what is inferred by the reasoner (cf, Davis et al. (1993) and Section 2.3.3).

Despite their importance, these are mere preconditions for the development
and use of good quality ontologies: two OWL axioms do not make an ontology.
Calling any domain theory an ontology does not do justice to the claim that
underlies the adoption of the term in the first place: the ontology expresses
a theory of existence. Of course, Davis et al. are entirely right in stating that
a knowledge representation is “a set of ontological commitments” (Davis et al.,
1993, p.3), but it expresses other commitments as well. For instance, Clancey
(1983) identified causal rules as part of the domain theory of MYCIN (see Sec-
tion 2.3.2). Though certainly not part of the application’s control knowledge,
causal rules reflect an epistemological rather than ontological perspective. The
distinction between the two is discussed in more detail in Section 5.5.2.

Because the quality of ontologies depends on subtle, and competing re-
quirements, their development is a delicate task that involves a large number of
important decisions. Decisions that carry additional weight when considered
in the light of knowledge sharing and reuse. Of course, an ontology engin-
eer needs to decide not only which concepts and relations to include, but also
the level of detail in which they are defined. Furthermore, every definition
should adequately cover the intended meaning of a concept: the traditional
knowledge acquisition bottleneck (Feigenbaum, 1980).12

This chapter presented an overview of the different conceptions regarding
what ‘an ontology’ is. It distinguishes three views:

• Knowledge Management Ontologies are (structured) vocabularies developed
for sharing and reuse of information within organisations. Languages
suitable for representing these ontologies can be lightweight, as no (ex-
pressive) reasoning is required. Examples are RDF/RDFS, SKOS, UML
or Topic Maps.

• Knowledge Representation Ontologies are reusable terminological knowledge
representations that specify the part of a domain theory that directly re-
flects its ontological commitment. Languages suitable for representing
these ontologies incorporate a trade-off between expressiveness and de-
cidability, to support ontology-based reasoning services within knowledge-
based applications. Examples are description logics, and most notably
OWL DL.13

• Formal Ontologies are formal specifications of an ontological theory in
philosophy. Languages suitable for representing these ontologies are
highly expressive and involve a minimal ontological bias as regards their
language primitives, such as first-order logic.

12The knowledge acquisition bottleneck is often misunderstood as the high threshold in effort
before knowledge representation starts to pays off, and practical reasoning problems can be solved.
However, in Feigenbaum’s original reading it rather refers to the general difficulty of correctly
extracting expert knowledge into a knowledge base, see Section 2.4.1 on page 29.

13Note that some methodologies, e.g. van Heijst et al. (1997) use the term ‘representation onto-
logy’ to refer to an ontology that defines the primitives of a knowledge representation language.
This is not what is intended here.
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Although the ontology types and languages do not correspond directly,
confusion may arise when one of the language paradigms is applied in the
representation of a different ontology type. The following chapter outlines re-
quirements and methodological guidelines for the construction of ontologies
needed to ensure both their reusability and ontological nature. Chapter 6 de-
scribes the construction of a core ontology for the legal domain that aims to
maximise these factors.



Chapter 5

Ontology Engineering

A common mistake that people make when trying to design
something completely foolproof is to underestimate the ingenu-
ity of complete fools.

Douglas Adams

5.1 Introduction

Over the years several design principles have been cast in ontology engineer-
ing methodologies to improve the quality of ontology development. And for-
tunately, ontologies are not necessarily drafted from scratch. The widespread
availability of ontologies on the web has opened the door to the adoption of
pre-existing general ontologies. By providing an initial structure and a set of
basic concepts and relations, these ontologies can be a valuable jump start for
more specific ontology development.

On the other hand, an ontology is not just any terminological knowledge
base, but rather embodies a specific definitional perspective. Where the repres-
entation of terminological knowledge is based on Minsky’s notion of a frame
– concepts are defined by the typical context in which they occur – an on-
tology refines this notion and needs to distinguish between the inherent and
accidental properties of concepts (Breuker and Hoekstra, 2004c; Guarino and
Welty, 2002; Bodenreider et al., 2004). Although a typical property such as
‘position’ is clearly relevant from a knowledge engineering perspective, onto-
logically speaking it is usually a side issue: changing the position of an object
does not make it intrinsically different. This epistemological promiscuity of ter-
minological knowledge representation has led to the formulation of several
design principles, such as in ONTOCLEAN (Guarino and Welty, 2002, 2004) and
in Breuker and Hoekstra (2004c); Breuker et al. (2004); Hoekstra et al. (2008).

82
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A more recent development is the identification of design patterns that are
meant to overcome some of the limitations in the reuse of existing ontologies
and the application of design principles. Where the former are frequently quite
large and heavyweight, and are therefore hard to mould and extend to a us-
able domain ontology, the latter are quite abstract and difficult to translate into
concrete definitions in the ontology. Design patterns offer a middle ground
between the two, where the methodological principles are made concrete in
manageable ‘bite-sized’ chunks (Gangemi, 2005, a.o.). Furthermore, these pat-
terns can assist in tackling problems related to the ontology representation lan-
guage of choice (Hoekstra and Breuker, 2008, a.o.).

This chapter gives an overview of each of these four approaches and dis-
cusses their strong points and weaknesses.

5.2 Criteria and Methodology

During the mid-nineties, experience in several large scale ontologies led to a
widespread consensus that the ontology engineering field was in need of meth-
odological grounding. Independently, the design principles and experience of
several ontology efforts were put to paper. Most influential, in this respect are
the experiences of the TOVE (Grüninger and Fox, 1995, TOronto Virtual En-
terprise) and Enterprise ontologies (Uschold and King, 1995). Both ontologies
were developed to enable the specification and sharing of descriptions of busi-
ness processes. On the basis of experiences in ontology development for the
Ontolingua system in Gruber (1993), Gruber identified a trade off between five
design criteria (Gruber, 1994):

Clarity
An ontology should effectively communicate the intended meaning of
defined terms. Definitions should be objective, formal (if possible), and
documented with natural language.

Coherence
An ontology should sanction inferences that are consistent with the defin-
itions.

Extensibility
An ontology should be structured such that it can be extended and spe-
cialised monotonically, i.e. without needing to change the ontology itself.

Minimal encoding bias
The conceptualisation should be specified at the knowledge level, without
depending on a particular symbol level encoding, e.g. constructions for
convenience of notation or implementation.

Minimal ontological commitment
An ontology should only enforce the minimal commitment necessary to
support the intended knowledge sharing activities.

The trade-off lies in the fact that these criteria cannot be considered inde-
pendently. The clarity and coherence of an ontology benefits from a formal
specification. But every formal specification involves an inherent concession
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Figure 5.1: Phases in the methodology of Uschold and Grüninger (1996)

with respect to the encoding bias of the language used. With the arrival of the
Semantic Web and OWL, most of these parameters have to some extent been
fixed (see Chapter 3).

Although use of OWL as ontology representation language involves a sig-
nificant commitment to a particular symbol level encoding, the encoding it-
self is designed for maximal clarity and coherence. Extensibility is ensured
through its open world assumption and imports mechanism, and since OWL
is currently the standard for sharing ontologies across the web, it is furthermore
likely that a commitment to this language facilitates rather than impedes shar-
ing. Nonetheless these design criteria are not automatically upheld once we
adopt the built-in restrictions of OWL: there is no silver bullet. The language
leaves a substantial amount of legroom at the conceptual level.

In Uschold (1996); Uschold and Grüninger (1996) experiences in developing
the TOVE and Enterprise ontologies were combined in a skeletal methodology
for ontology development that incorporates the principles set out by Gruber
(1994). Rather than as a precise step-by-step instruction for ontology devel-
opment, the methodology of Uschold (1996); Uschold and Grüninger (1996)
is illustrated in terms of its main characteristics (see Figure 5.1). First of all,
they advocate the description of a clear set of guidelines that govern the de-
velopment process as a whole. These guidelines may range from relatively
straightforward agreements, such as naming conventions, to the basic prin-
ciples of Gruber, and even to formal editorial voting procedures. A clear ex-
ample of the latter can be found in the OBO Foundry (Barry Smith, 2007); a co-
ordinated effort to develop and integrate multiple ontologies in the biomedical
domain.1 Changes to one of the ontologies in the foundry need to be accepted
by an editorial board, and possible overlaps between ontologies are solved via
arbitration. One of the points stressed by Uschold and Grüninger is to have
guidelines in place for the development of documentation during development.
It can be quite hard to reconstruct the reasons underlying a particular model-
ling decision, and having documentation in place at an early stage increases
the chance that similar problems are solved in a similar fashion.

1The Open Biomedical Ontologies Foundry (OBO Foundry) is freely accessible online, see
http://obofoundry.org.

http://obofoundry.org
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In the second phase, purpose and scope of the ontology are identified. Hav-
ing a clear understanding of why the ontology is developed, its possible use
and users, gives a handle on the design decisions necessary in consecutive
phases. Grüninger and Fox (1995) advocate the description of motivating scen-
arios that explain possible use of the ontology and use these to formulate a set
of competency questions that should be answerable given the terminology to
be defined in the ontology. The purpose of an ontology should not be conflated
with the task-dependence of knowledge based system development. In prin-
ciple an ontology does not sanction a particular use of its contents, but it may
be designed to fit a purpose as a whole, i.e. how the ontology is used in relation
to other knowledge components. The scope of an ontology is its maximal po-
tential coverage in a domain, that is all knowledge inferable from its axioms.
Scope therefore only partly relates to the size of the ontology.

Ontology building is the next phase and consists of an interplay between
three closely related tasks: capture, coding and integration. Ontology capture
is the identification of key concepts and relations, the production of precise
definitions in natural language, and the important task of choosing the proper
term to refer to these ontology elements. Natural language definitions are in
fact the primary source of documentation for people unacquainted with the
resulting ontology. Ontology browsers such as Ontolingua and the more re-
cent TONES Repository browser,2 as well as the mainstream ontology editors
Protégé and TopBraid present axioms and local annotations in the same view.

Once the main concepts and relations have been identified and described,
they are to be represented in some language. Ontology coding thus naturally
involves a commitment to a particular knowledge representation formalism; a
commitment that needs to be well motivated because the level of formality has
a direct effect on the diligence required of the ontology engineer. The choice
for a particular knowledge representation language involves two important
commitments (see Chapter 4):

• A direct ontological commitment to the structure imposed on the world
by the primitives and semantics of that language, and secondly,

• a more formal definition of a concept implies a stronger commitment to a
particular interpretation.

The most suitable level of formality is determined by the purpose of the
ontology. A knowledge representation ontology that is to play a part in reason-
ing requires a more limited formal language than a formal ontology in philo-
sophy, see Section 4.2. Similarly, a knowledge management ontology that is
merely used to annotate resources for the purposes of lightweight information
retrieval inspires less concern for logical consequence, but still calls for ma-
chine interpretability. The developer of an ontology that merely expresses an
agreed upon vocabulary to be used within a community of practice might even
skip the coding step entirely and suffice with a list of definitions in natural lan-
guage only. For example, it may not be very useful for languages such as the
Dublin Core metadata initiative3, FOAF4 and RSS5 to include exact ontologic-

2See http://owl.cs.manchester.ac.uk/repository/browser
3See http://dublincore.org/documents/dces/
4Friend Of A Friend, see http://www.foaf-project.org/
5RDF Site Summary, see http://en.wikipedia.org/wiki/RSS_(file_format). RSS

currently has various dialects.

http://owl.cs.manchester.ac.uk/repository/browser
http://dublincore.org/documents/dces/
http://www.foaf-project.org/
http://en.wikipedia.org/wiki/RSS_(file_format)
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ally concise, rigourous formal definition of the exact meaning of concepts such
as ‘author’, ‘friend’ or ‘news’. On the other hand, a formally specified biomed-
ical ontology may be used in conjunction with a standard reasoning engine to
automatically classify proteins into functional classes (cf. Section 7.4).

The third task in the building phase is to take advantage of knowledge re-
use by integrating the ontology with already existing ontologies. A natural
step, it may seem, but in practice this can be quite demanding. First of all, it
requires a thorough understanding of the imported ontology. This is because
importing another ontology does put a strain on the principle of minimal on-
tological commitment: it may significantly extend the size of your ontology.
The mere fact that some other ontology contains a proper definition of some
concept that is within scope, is often not enough reason to include it. Are the
other concepts in the imported ontology within scope, and does the imported
ontology support our purpose? It should be clear what the assumptions under-
lying the other ontology are. Secondly, if formally specified, the imported onto-
logy must at least be formally compatible with the knowledge representation
formalism selected in the coding task. Arguably, as Uschold and Grüninger
(1996) point out, the three tasks should not be performed in sequence. The
choice for a particular formalism in part depends on the availability of suitably
specified other ontologies.

In the final phase the ontology is evaluated with respect to the requirements
specified earlier. If a formal language is used, the competency questions can
be reformulated in this language to check compliance and coverage. Secondly,
if deviations from the initial outset become clear, it should be checked whether
these are well motivated.

5.2.1 A Social Activity?

Most methodologies followed in the footsteps of earlier experiences in know-
ledge acquisition, such as the CommonKADS approach of Schreiber et al. (2000).
The methodologies of Uschold and King (1995); Fernández et al. (1997) in-
variably adopt a typical knowledge acquisition approach aimed at maximising
coverage. Expert interviews, brainstorming sessions and text analysis are used
to gather as much information about the domain as possible. This information
is then used as the resource material for the actual construction of the ontology.

However, inspiration to reach a mature ontology engineering methodology
was sought in adjacent engineering fields in computer science as well. The
METHONTOLOGY methodology of Fernández et al. (1997); Fernández-López
and Gómez-Pérez (2002) incorporated best practices from software engineer-
ing methodologies. In particular, Fernández-López and Gómez-Pérez (2002)
regard ontology engineering as a software development process, and intro-
duces the notion of an ontology development lifecycle: rather than building on-
tologies from scratch, it emphasises development as a continuous refactoring
of already existing ontologies.

When Gruber formulated his criteria, the most prominent use case for on-
tologies was the ability to share and reuse knowledge across both systems and
communities. The prevalent expectation was therefore that ontologies would
be large scale and built by many different people in concert. Since ontologies are
intended to capture a shared view on some domain, their development is much
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akin to a process of standardisation. According to this view, ontology specifica-
tion is about reaching consensus on the meaning of terms; it is a social activity.

Considering some of the most prominent ontologies we see today, this ex-
pectation is only partially fulfilled. A first observation is that ontologies vary
widely on the scale of the standardisation involved. On the one hand we can
distinguish ontologies that are the result of large scale standardisation efforts.
On the other hand, most ontologies currently available are relatively small, or
the result of an academic exercise of only a few people. Secondly, formal onto-
logies used and developed by larger communities appear to exist only for sci-
entific domains. The obvious examples that come to mind here are the efforts in
the life sciences mentioned earlier, such as SNOMED, the Gene Ontology and
GALEN. This is not very surprising as (like ontology) science is all about prim-
itives; about discerning entities in reality by sometimes literally splitting them
up into smaller bits. Both Mendeleev’s periodic table of chemical elements and
the Linnaean taxonomy of species are some of the earliest ontologies and were
developed to capture, or rather facilitate the expression of a scientific theory.

It is hard to find a large scale ontology that is the result of a community
effort. General ontologies, such as the Basic Formal Ontology (BFO, Grenon
(2003)), the Descriptive Ontology for Linguistic and Cognitive Engineering
(DOLCE, Masolo et al. (2003)), Sowa’s top ontology (Sowa, 2000) and the LKIF
Core Ontology of Basic Legal Concepts (Breuker et al., 2007; Hoekstra et al.,
2007, this volume) share a formal characterisation but were specified by only a
small number of people.

The Standard Upper Ontology (SUO)6 of the IEEE is perhaps the only ex-
ample of a community-driven ontology building building effort aimed at a
formal characterisation of a broad range of concepts, even though its strong
points lie in predominantly physical domains as engineering and physics. Un-
fortunately, its development stalled when the working group was unable to
resolve several hot issues via the mailing list. At the heart of this debate lay
the proposal for a Standard Upper Merged Ontology7 (SUMO) by Niles and
Pease (2001), who had gathered several existing proposals (e.g. the top onto-
logy of Sowa) into a single framework. Unfortunately, SUMO was rejected as
a consensus ontology, and recast as Suggested Upper Merged Ontology, again
developed by only a handful of people.

Surprisingly enough, the same holds for some of the most popular stand-
ard vocabularies used across the web today. FOAF, Dublin Core and RSS were
initially specified by a small group of people. Although they tend to be lim-
ited in scope and have relatively lightweight semantics, their development as
standards only happened after they were already adopted by scores of users.
Because of this, the specification of e.g. revisions to Dublin Core were a com-
munity effort: several parties had built-up a vested interest in the language.
The result is a collaborative process which is just as slow going and burden-
some as was the development of the infinitely more rigourous and extensive
SUO.

6See http://suo.ieee.org/
7See http://www.ontologyportal.org/

http://suo.ieee.org/
http://www.ontologyportal.org/
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On Weak Hearted Surgeons

To recapitulate, the emphasis on standardisation did not have the expected
result. True, several ontologies are currently used as standard vocabularies,
but these were not developed through a process of standardisation, rather they
were adopted as standards or reflect an already existing standard. It is further-
more unclear whether ontology engineering as social activity has any benefi-
cial effect on the quality of the resulting ontology. Are ontologies based on
consensus ‘better’ ontologies? Experience shows that this is not necessarily the
case, if only because different parties may not even agree on the purpose of
the ontology. For instance, if the ontology is to “facilitate knowledge exchange
between applications” this may be interpreted as “the ontology should cover
the knowledge expressed by my application” by individual contributors. The
result is that politics get in the way of quality, and definitions are tweaked for
the sake of consensus. This is evident in e.g. FOAF which includes a wide
range of properties to refer to the name of persons: foaf:name, foaf:givenname,
foaf:firstName, foaf:family_name and foaf:surname. But it was also what even-
tually stopped SUO progress; a consensus ontology was drafted which was
deemed unacceptable by some on theoretical grounds.

A second impediment to ontology construction as social activity, is that con-
trary to standardisation in general, we are not dealing with a level playing
field. The formal definition of terms is often quite technical, which means that
not every interested party can fully participate in the definition process. Who
would like to confront a subject matter experts with the intricacies of the in-
teraction between global domain and range restrictions and existential restric-
tions on classes? Furthermore, the activity is otherwise constrained as well: a
formal representation language typically puts limitations on what can be ex-
pressed, the most general restriction being consistency. For a long time it was
held that ontology engineering required ontologies to be specified at the know-
ledge level, rather than directly in a representation formalism. Of course, the
knowledge management view of ontology is compatible with this perspective,
and most ontology engineering methodologies do not really pay much atten-
tion to this language bias. However, they do take into account the effects of
order dependence in taxonomy construction.

5.3 Categories and Structure

Building an ontology starts from a general idea of its purpose and scope. The
way in which this overview is translated into a concrete set of concept defini-
tions is not trivial. In particular, the process is order dependent and traditional
top-down and bottom-up approaches introduce a bias. Working top-down by
starting with a set of general terms, as traditionally practised in metaphysics,
risks imprecision or rework: more specific concepts may not directly fit the
general ones and provide an almost unlimited source for revisions to the top
level. On the other hand, naïve bottom-up specification risks the definition of
many detailed concepts that turn out to be unimportant, or incompatible at a
later stage.

Hayes (1985) proposes an approach to the development of a large-scale
knowledge base of naive physics. He rejects top-down construction in favour
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Superordinate Animal Furniture
Basic level Dog Chair

Subordinate Retriever Rocker

Table 5.1: Examples of basic-level concepts (Lakoff, 1987, p.46).

of the identification of relatively independent clusters of closely related con-
cepts. This allows one to break free of the often demanding rigour of taxonomic
relations that inevitably forms the backbone of any ontology. By constraining
(initial) development to clusters, the various – often competing – requirements
for the ontology are easier to manage. Clusters can be integrated at a later
stage, or used in varying combinations allowing for greater flexibility than
monolithic ontologies. The idea of clustering information was later adopted
and refined by Uschold and King (1995), who propose a middle-out approach
where construction proceeds up and downwards from a relatively small set
of basic notions. These basic notions are grouped into clusters, and should be
defined before moving on to more abstract and more specific terms.

5.3.1 A Basic Level?

The notion of this basic level follows the theory of categorisation in human cog-
nition of Lakoff (1987). It is based on the idea that certain concepts are not
merely understood intellectually; rather, they are pre-conceptual, used automat-
ically, unconsciously, and without noticeable effort as part of normal function-
ing. This functional embodiment means that concepts used in this way have a
different, and more important psychological status than those that are only
thought about consciously. Basic level concepts are functionally and epistem-
ologically primary with respect to (amongst others) knowledge organisation,
ease of cognitive processing and ease of linguistic expression. This basic-level
primacy makes that we generally use categories at this level to compose more
complex and specific categories, and can create more general categories by ex-
plaining their differences and correspondences. In other words, categories are
organised so that the categories that are cognitively basic are ‘in the middle’ of
a taxonomy. Generalisation proceeds ‘upwards’ from this basic level and spe-
cialisation proceeds ‘downwards’ (see Table 5.1). In fact, the basic level tran-
scends multiple levels of abstraction, e.g. ‘bird’ is basic where ‘mammal’ isn’t.
Research in linguistics, most notably Ogden (1930)’s Basic English – the inspira-
tion for Orwell’s fictional language Newspeak in his novel ‘1984’ – has indicated
that this holds for words as well: about 90 percent of the English vocabulary
can be meaningfully described using the other 10 percent; some 840 words.

This seems quite a sensible approach: it is easy to see how basic level con-
cepts can be used as cognitive primitives for expressing more general and spe-
cific concepts. A basic level concept indicates the most prominent characterist-
ics of a specific concept as in ‘A retriever is a dog that is bred to retrieve game
for a hunter’, and can be used as prototypical examples in the definition of
more general concepts: ‘Animals are dogs, cats, mice, birds, . . . ’.

Lakoff’s basic categories give us intuitive building blocks to derive and
cluster more complex notions. They carry a lot of weight and form the con-
ceptual foundation of an ontology. However, the primitive, pre-conceptual
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endless loop, n. See loop, endless.
loop, endless, n. See endless loop.

Table 5.2: The difficulty to define basic concepts, from Pinker (2007, p.12).

nature of the basic level means that representing basic categories themselves is
certainly not as straightforward. Our knowledge of basic concepts such as dog,
chair, hammer, father is largely implicit and hard to break down into smaller
components, exactly because they are primitive.

Consider the following definitions (taken largely from Wikipedia):

• A dog is an animal that has four legs and barks. Animals are dogs, cats,
mice, birds. . . . A leg is something you use to walk with. Barking is the
sound dogs make.

• A chair is a kind of furniture for sitting, consisting of a back, and some-
times arm rests, commonly for use by one person. Chairs also often have
four legs to support the seat raised above the floor.8 Seat can refer to chair.9

A back is something you can lean against. An arm rest is something you
can rest your arm on while sitting.

• Father is defined as a male parent of an offspring.10 A parent is a father
or mother; one who sires or gives birth to and/or nurtures and raises an
offspring. 11

• A hammer is a tool meant to deliver blows to an object. The most common
uses are for driving nails, fitting parts, and breaking up objects.12 [. . . ]
a nail is a pin-shaped, sharp object of hard metal, typically steel, used
as a fastener. [. . . ] Nails are typically driven into the workpiece by a
hammer.13

It seems that the more basic a concept is, the harder it is to cast its descrip-
tion in terms of other concepts (cf. the quote from Pinker (2007) in Table 5.2).
Often definitions of basic concepts will be self-referential and form a tautolo-
gical trap from which it is very hard to escape. We have seen in Chapter 3
that the definition of a concept in knowledge representation languages such as
OWL can only be expressed as (restrictions on) relations with other concepts.
This means that, inevitably, the meaning of a concept is determined by context.
The basic level theorem does not take this into account. Although basic con-
cepts are perceived as primitive, they too can only be defined in this manner:
that is, either in terms of other basic concepts or (inevitably) by reference to
more generic or specific concepts.

The main problem of traditional top-down and bottom-up approaches was
that the commitment to a set of generic or specific concepts introduces a bias
that may lead to an ill fit between the resulting ontology and the intended

8From http://en.wikipedia.org/wiki/Chair
9http://en.wikipedia.org/wiki/Seat

10From http://en.wikipedia.org/wiki/Father
11From http://en.wikipedia.org/wiki/Mother
12From http://en.wikipedia.org/wiki/Hammer
13From http://en.wikipedia.org/wiki/Nail

http://en.wikipedia.org/wiki/Chair
http://en.wikipedia.org/wiki/Father
http://en.wikipedia.org/wiki/Mother
http://en.wikipedia.org/wiki/Hammer
http://en.wikipedia.org/wiki/Nail
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representation. But it turns out that this drawback is only partially lifted by
the middle-out approach. Basic level concepts introduce a similar bias as they
too can only be defined in context with other concepts. This context is largely
implicit and inaccessible because of the cognitive primitive nature of the basic
level.

In short, basic concepts cannot be defined prior to other concepts as the
middle-out approach suggests. It is rather the other way around. Basic level
concepts give a ‘feel’ of relatedness and context. They are an ideal entry point
to carve up the domain into relatively independent clusters, and play an im-
portant role in the definition of less basic notions. Lakoff’s basic concepts
should therefore be seen as being at the core of Schank and Abelson’s scripts
and Minsky’s frames (Section 2.2.4). Regarded as independent entities they are
atomic. They do not carry any meaning, but rather function as meaning pro-
viders to surrounding notions. Their own meaning, however, can only really
emerge through their use in other definitions.

5.3.2 Beyond Categories

To be frank, this is as far as ontology engineering methodologies go. They
do not really venture beyond well-meant, but gratuitous advice such as ‘be
sure of what you want before you start’, ‘document your decisions well, you
might forget them later’ and ‘if the problem is too big, chop it up into smaller
chunks’. The decomposition into various phases therefore plays the role of the
user manual no-one ever reads.

Admittedly, several suggestions are genuinely helpful and convey a deeper
understanding of what knowledge engineering entails. Ontology engineer-
ing is often called an art or craft, rather than a science or proper engineer-
ing field such as mechanical engineering or software engineering (Fernández-
López and Gómez-Pérez, 2002). Although this claim is often cited, it is never
really substantiated. What it does hint at, however, is that somewhere along the
line something magical happens. Apparently some inaccessible mental skill
only found in an experienced knowledge engineer can turn some bit of know-
ledge into an adequate representation. The adoption of Lakoff’s basic level
by Uschold and King was a conscious move to apply insights from cognitive
science to lay bare a part of this process.

We have seen that basic level concepts can help in the formation of clusters
and the construction of definitions of non basic concepts without the strait-
jacket of top-down and anarchy of bottom-up development. However, there is
no methodological support for the way in which the definitions in an ontology
are specified in practice. Ontology construction is to proceed ‘upward’ and
‘downward’ from the basic level, but how?

5.4 Ontology Integration

Ontologies are rarely constructed without at least a pre-existing conception
of that which is to be represented. They can be meant to directly express an
existing theory, as we have seen in the biomedical domain, or capture some
body of expert knowledge. Even in the least restricted case, where an ontology
is meant to represent common knowledge, that which is to be represented is
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Figure 5.2: Dimensions in ontology reuse

relatively well understood. Nonetheless, ontology development is hard, for
how to reliably translate our knowledge into a set of formal axioms?

As discussed, one of the main roles of ontologies is to ease knowledge ac-
quisition by providing readily usable concept definitions. The same bootstrap
can be applied to ontology development itself; existing ontologies can be a vi-
able resource for ontology construction in the form of predefined concepts and
relations. These definitions convey ontological commitments that capture im-
portant ontological choices (Masolo et al., 2003). When these choices are in
concert with our requirements, adopting and extending an existing ontology
relieves us from the burden of micromanaging these choices ourselves.

One solution is thus to rely on an already existing ontology to provide ini-
tial structure: the use of a more general ontology to support knowledge ac-
quisition. This is in fact partly addressed in the ontology integration step of
Uschold (1996); Uschold and Grüninger (1996). Reusing and extending an ex-
isting ontology solves the structure problem of blank slate ontology develop-
ment as the existing ontology can be used as a coat rack for new concept defini-
tions (Schreiber et al., 1995).

Klein (2001) gives an overview of several issues related to ontology reuse
and distinguishes between ontology integration, where two or more ontologies
are combined into a single new ontology, and reuse where the ontologies are
kept separate. Both approaches require the ontologies to be aligned; the con-
cepts and relations that are semantically close should be related via equival-
ence and subsumption relations. Since Klein focuses on methods to combine
multiple already existing ontologies, this alignment may involve significant
modification to the ontologies involved in case they overlap. However, it is
not uncommon to modify a source ontology in its reuse as basis for an entirely
new ontology. For instance, Pinto and Martins (2000) stress a thorough evalu-
ation of candidates for reuse, and see the modification of those ontologies on
the basis of this evaluation as an integral part of ontology development.

Modifications can be necessary if the combination of ontologies results in a
heterogeneous system where mismatches may exist at either the language level



5.4. Ontology Integration 93

or the ontological or semantic level (Klein, 2001; Visser et al., 1997). Where the
former concern incompatibility with respect to how concepts and relations can
be defined, the latter signals differences in the ontological assumptions about
the represented domain. Language level mismatches are not merely syntactic,
such as in the incompatibility of the KRSS lisp-style syntax with the RDF/XML
syntax of OWL, but may be more fundamentally related to the expressiveness
of different languages (Chalupsky, 2000). Since a knowledge representation
formalism can be uniquely identified by its position in the traditional trade-off
between expressiveness and tractability identified by Levesque and Brachman
(1987),14 the alignment of two representations in different languages invari-
ably involves either choosing one position over the other, or finding a common
middle-ground. In the worst case, when translating to a less expressive lan-
guage this will lead to loss of information. Translating to a more expressive
language is less problematic, but will nevertheless require mapping and re-
writing of many knowledge representation idioms. However, in many cases
the languages overlap; e.g. one language may be more expressive in one area
and sport qualified cardinality restrictions, where the other does not do so, but
allows for property chain inclusion axioms.

Semantic mismatches are more subtle, and are sometimes even the main
reason for starting the alignment. For instance when two ontologies differ in
coverage and granularity, their conjunction will increase both.15 Ontologies
may also differ in their ontological stance (Masolo et al., 2003), e.g. choosing
a 4D over a 3D perspective on identity persistence through time (Haslanger,
2003), or with respect to more practical modelling paradigm and conventions
(Chalupsky, 2000), such as interval versus point-based representation of time,
or representing property values as constants or datatype values. Resolving
mismatches between ontologies can to some extent be facilitated using tech-
niques for (semi) automatic ontology merging and alignment, such as in the
PROMPT system of Noy and Musen (2000).16

Although the problem of integrating existing ontologies is more intricate
than direct ontology reuse for the development of a new ontology, the pos-
sible mismatches give insight in the kinds of things one should look for when
choosing a suitable candidate for reuse. This choice thus depends, besides on
its overall quality, on four suitability factors: domain coverage of the ontology,
its level of abstraction and granularity, its representation language and the level of
formality. Figure 5.2 shows the interaction between these factors.

Domain coverage corresponds to the breadth of the reused ontology. Defin-
itions in an ontology are reused by linking into its structure: axioms in the new
ontology are expressed in terms of the existing vocabulary. If the domain cov-
erage of the reused ontology is sufficient, all new definitions can be connected
in this a way. Limitations in coverage require either one of two measures: the
addition of a new concept at a higher level of abstraction, or the reuse of an-
other ontology that does provide the necessary definition. Both solutions are
not without problems. First of all, extending the new ontology with more
general concepts violates the principle of stratification, the idea that different
levels of abstraction should be separate, and reuse should accumulate in lay-

14See also Section 3.4
15This holds especially when constructing an entirely new ontology, as it does not (yet) have

coverage or granularity.
16See Klein (2001) for a comprehensive overview.
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Figure 5.3: Ontology types based on van Heijst et al. (1997)

ers. Adding generic concepts to the new ontology may lead to a necessity
to augment already existing concept definitions in the reused ontology. For
instance, adding the common abstract notions of ‘occurrent’ and ‘continuant’
when reusing an ontology that does not make this distinction requires disjoint-
ness axioms between existing concepts. This may be quite sensible from the
standpoint of direct reuse, but breaks compatibility with other ontologies that
reuse the same ontology. Secondly, extending coverage by reusing another on-
tology is only feasible in case both reused ontologies are aligned with each
other.

A typical way in which the coverage of ontologies is maximised is by in-
creasing its level of abstraction. It would thus seem that very general ontolo-
gies are ideal candidates for reuse. Nonetheless, a higher level of abstraction
increases the gap between concept definitions in the reused ontology and the
level at which new concepts are ideally defined. Reusing an abstract ontology
means that the concepts it defines provide little direct structure for new concept
definitions. It thus requires extra work to bridge this gap.

Lastly, if the ontology is specified in a suitable representation language, the
inheritance of properties and other implicit knowledge can be used to check
not only consistency but also the extra-logical quality of the ontology exten-
sion: whether what is derived about new classes and properties makes sense
(Section 5.2). Note that a more formal representation language has only a par-
tial effect on level of formality. An ontology in OWL 2 DL that specifies only
named classes and subclass axioms is in fact only in the AL fragment of DL,
whereas an ontology in the same language that uses some of its more express-
ive features may be in full SROIQ(D). Corresponding representation lan-
guages signal compatibility of inference – inferences on definitions in the re-
used ontology propagate to new definitions – whereas a higher level of form-
ality increases the number of inferences, and thus usability, but also constrains
coverage to only those domains compatible with its entailments.

5.4.1 Types of Ontologies: Limits to Reuse

Ontology reuse received quite a lot of attention, most notably in the construc-
tion of ontology libraries (Breuker and Van De Velde, 1994; van Heijst et al.,
1997). Rather than by purpose – as in Chapter 4 – van Heijst et al. distinguishes
ontology types by the level of abstraction of their content (See Figure 5.3). This
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categorisation was based on the idea that the possibility for ontology reuse is
influenced by the level of domain-dependence of the ontology.

van Heijst et al. (1997); Valente and Breuker (1996) distinguish five types
of ontologies that provide a layered approach to reuse, and signal compatib-
ility between knowledge based systems. A top ontology specifies highly gen-
eric categories and relations that are relevant to all domains. Generic ontolo-
gies specify general notions that are applicable across multiple domains, such
as time, space, causality etc. A core ontology is a general ontology of applica-
tion domains such as law, medicine and biology, and specifies a minimal set
of concepts needed to describe entities in the domain. Domain ontologies spe-
cify the conceptualisation of a particular domain. Examples are the Linnaean
taxonomy of species or an ontology of vehicles. An application ontology is an
ontology that captures the ontological commitments of a single application. In
this list, the representation ontology, of which the Frame Ontology is an ex-
ample, is the odd-one out as it operates at a meta level with respect to concepts
in an ontology (Section 4.4).

The distinction between these types is given by a theoretical consideration
to organise the ontologies in an ontology library in a modular fashion and at
strictly separate levels of abstraction. For instance, the core ontology type was
initially proposed by van Heijst et al. (1997) as a means to better index domain
ontologies stored in the library. Similarly, the specification of an application on-
tology is a fixed step in the CommonKADS methodology for knowledge based
systems development (Schreiber et al., 2000): a domain ontology is refined into
an application specific ontology, which is then implemented in a knowledge
based system. Although a similar modular organisation can be found in ON-
TOLINGUA, and more recently in the strict editorial process in OBO Foundry,
the distinction is artificial. In practice ontologies rarely fit neatly into one of
the categories. Contemporary ontologies can be roughly distinguished as uni-
fied, foundational, core or domain ontologies (Figure 5.4). Each of these ontology
types holds a different position with respect to the trade off between the factors
of coverage, abstractness and level of formality.

Unified Ontologies

Unified ontologies are ontologies that aim to present a ‘grand unifying theory’;
they cover both highly abstract as well as concrete concepts from a wide range
of domains. Perhaps the most typical unified ontology is the SENSUS onto-
logy of Swartout et al. (1996), which was developed explicitly with the purpose
of reuse in mind. It is a large (50k) skeletal ontology with a broad coverage,
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and contains both abstract and relatively concrete concepts from a variety of
sources. Swartout et al. (1996) describe a general methodology where onto-
logy construction should proceed by selecting and refining relevant parts of
the SENSUS ontology. This way, it was thought, one could avoid “stovepipe”
ontologies that can be extended vertically, i.e. along the specific-generic axis,
but not horizontally, across domains.

However, formal definitions would impose interpretations on concepts that
constrain their usability. For this reason, the ontology was relatively light-
weight to maximise domain coverage, it is a knowledge management ontology.
The Wordnet system of Miller (1990), which was in fact part of SENSUS, is of-
ten used in a similar way to populate ontologies. In the end, SENSUS did have
some utility as source of inspiration for more specific ontologies, but could not
enforce particular inference nor guarantee consistency between its different ex-
tensions. Another example of a unified ontology is the CYC ontology of Lenat
et al. (1990); Lenat (1995), which is discussed in more detail in Section 6.2.1. In
contrast to the SENSUS ontology, CYC is specified using an expressive formal
language.

Concluding, unified ontologies are not the most suitable for direct reuse.
When lightweight they provide little guidance in defining new concepts, and
when rigourously formal their broad coverage introduces significant compu-
tational overhead.

Foundational Ontologies

Foundational ontologies or upper ontologies, are hybrid ontologies that com-
bine top ontologies with the description level of a representation ontology.
They have a philosophical disposition and focus on the basic categories of ex-
istence. Examples are SUO/SUMO (Niles and Pease, 2001), DOLCE (Masolo
et al., 2003), BFO (Grenon, 2003) and the General Formal Ontology (Herre et al.,
2006).17 The foundational ontology ascribes to a role similar to that of unified
ontologies in that it is aimed at coverage of a broad range of domains. Found-
ational ontologies find their roots in the philosophical discipline of formal On-
tology.18 In fact, most philosophical ontologies are foundational.

Contrary to unified ontologies, foundational ontologies are based on the
stance that ‘abstract is more’: their applicability to a multitude of domains is
ensured by defining general, abstract notions rather than by the direct inclu-
sion of a large number of relatively specific concepts. Although the founda-
tional approach ensures rigorous ontological definitions and broad coverage,
this comes at a cost. First of all, it is to be expected that the rather abstract
nature of foundational ontologies makes them less suitable candidates for know-
ledge acquisition support in the development of concrete domain ontologies.
For instance, the developer of a domain ontology of pet animals has little to
gain from such philosophically inspired classes as a:FiatObjectPart and a:Generic-
allyDependentContinuant in BFO. The distance between concepts in the founda-
tional ontology and concrete domain concepts is just too big (cf. Figure 5.2).

17Note that although DOLCE was not initially developed as foundational ontology, it is often
used as such. See Chapter 6.

18SUMO is an exception to the rule, as it only partly relies on the top ontology of Sowa (2000)
and provides relatively concrete definitions in the physical domain.
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A related issue is that reasoning over the top level categories in founda-
tional ontologies may not necessarily have a direct bearing on practical reas-
oning problems because of a possible proliferation of inferences over abstract
categories. Furthermore, their philosophical disposition makes that they are
traditionally specified in a form of first order logic, and define meta-level cat-
egories at the ontological level of Guarino (1994). Although OWL compatible
versions are sometimes available, the limited expressiveness of this language
means that such versions are ontologically less strict, and are not entirely faith-
ful to the full ontology.

Core and Domain Ontologies

Core ontologies balance coverage and abstractness by restricting the scope to
a particular area of expertise. Examples of such ontologies are the LRI-Core
and LKIF Core ontologies of Breuker and Hoekstra (2004a); Breuker (2004) and
Breuker et al. (2007); Hoekstra et al. (2008, this volume) respectively, the Core
Legal Ontology and Fishery Ontology of respectively Gangemi et al. (2005) and
Gangemi et al. (2004), and more domain independent ontologies such as the
COBRA ontology of business processes analysis (Pedrinaci et al., 2008), or for
information integration (Doerr et al., 2003). Although the scope restriction lim-
its the possible situations in which core ontologies can be used, it has several
advantages. A core ontology is more likely to provide definitions of concrete
concepts which are more intuitive candidates for reuse, and can sanction more
relevant inference.

On the other hand, the concreteness of core ontologies is not a necessary
given. Because important domains such as Law and Medicine are highly spe-
cialised and theoretical, they include very abstract concepts one does not read-
ily find in generic ontologies. Examples are the legal ontologies of Mommers
(2002); Lehmann (2003); Rubino et al. (2006) that reflect stances in legal theory
and cover such abstract concepts as rights, duties, liability and legal causation
(see also Chapter 6).

Domain ontologies extend core (or foundational) ontologies with more con-
crete categories that are of direct relevance to inference in a specific domain.
To give an example, the Fishery Ontology of Gangemi et al. (2004) is an ex-
tension of the DOLCE ontology and defines such concepts as Fishing_Area,
Aquatic_Organism and Catching_Method that can be refined to Aberdeen_Bank,
Herring and Pelagic_Trawling in a domain ontology on North Sea fishing. Sim-
ilarly, a domain ontology of criminal law would introduce subclasses of Crime
specific to a particular jurisdiction and iterate specific felonies and misdemean-
ours such as Manslaughter and Petty_Theft.

5.4.2 Safe Reuse

It can be necessary to reduce the expressiveness of a reused ontology for it to fit
a different, more restricted knowledge representation formalism. This practice
is often seen in cases where foundational ontologies are applied in a Semantic
Web context. For instance, in the SWIntO ontology of Oberle et al. (2007)19,
which is a combination of SUMO and DOLCE, the expressiveness of SUMO

19SWIntO: SmartWeb Integrated Ontology
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is constrained by stripping it of most (if not all) of its axioms, leaving only a
bare-bone subsumption hierarchy. However, this weakens the role of an onto-
logy as source for ontological choices and design patterns as any modification
of an ontology compromises the commitment of the ontology to its original
conceptualisation.

To illustrate this point, consider an ontology as a set of ontological com-
mitments. These commitments are comprised of a set of (non-logical) symbols
representing the entities the ontology claims to exist, the signature of the onto-
logy, and a set of ontological statements about these entities.20 A difference in
either of these sets of commitments makes a different claim about reality – or
what can exist in a knowledge base – and thus denotes a different ontology.

Removing a symbol or statement means that what is reused is no longer
the original ontology, but rather a scaled-down version. Because in that case,
no direct match of the ontological commitments of the source ontology and the
new ontology can be established, this practice compromises the purpose of on-
tology reuse. Namely, to ensure compatibility between the different ontologies
that reuse and commit to the same, more general ontology (Gruber, 1994). This
traditional reuse is only possible by full formal reuse as opposed to informal
reuse:

Definition 5.4.1 (Informal Reuse) The informal reuse of one ontology O′ by an-
other ontology O requires (at the least) some syntactic correspondence between the
presence of named entities in the signatures of both ontologies: Sig(O) ∩ Sig(O′) 6= ∅.

In other words, informal reuse does not imply a formal commitment to the
theory expressed by the reused ontology: the commitment exists only with re-
spect to part of the signature of the reused ontology, and cannot be established
through formal means. Of course, informal reuse can range from a very loose
correspondence to a tight integration. Informal reuse can still be quite rigorous
and close to the original interpretation by a commitment to other than formal
requirements, such as a specification in natural language.

For a more formal notion of reuse, we further restrict the definition of reuse
by adopting an imports paradigm: the reusing ontology should ‘import’ all
ontological commitments of the reused ontology. Ontology import is generally
defined using two closure axioms (Motik et al., 2009):21

Definition 5.4.2 (Imports Closure) The transitive imports closure of an ontology
O consists of O and any ontology that O imports.

Definition 5.4.3 (Axiom Closure) The axiom closure O∪ of some ontology O is
defined as the smallest set that contains all axioms from each ontology O′ in the im-
ports closure of O.

These closures are syntactic constructs that gather together the set of all ax-
ioms, formal ontological statements, that express an ontology’s commitments.

20Formally, the signature of an ontology is the set of all non-logical symbols, i.e. all entities in
the ontology excluding the symbols of the knowledge representation language and sentences over
the non-logical symbols. Note that ontologies specified in a non-formal language can be said to
have a similar signature, albeit not as explicit.

21Though these definitions lie at the heart of OWL 2’s import mechanism (Section 3.5.2), they
are not necessarily particular to that language.
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Figure 5.5: Relation between entailments in full and partial formal reuse

The partial semi formal reuse of e.g. SUMO by SWIntO, i.e. the commitment to
just the taxonomic hierarchy of SUMO without considering its complex class
axioms and properties, can be expressed in terms of these closures in a straight-
forward manner:

Definition 5.4.4 (Semi Formal Reuse) An ontology O′ is reused by ontology O
through partial semi formal reuse if the intersection of the axiom closures O′

∪
and

O∪ is non empty:

O′
∪
∩ O∪ 6= ∅

Full semi formal reuse is the case where the axiom closure O′
∪

is a subset of the
axiom closure of O∪:

O′
∪
⊆ O∪

Although this reuse ensures the inclusion in O of at least some axioms of
the reused ontology O′, it is only semi formal. Axioms are regarded as distinct
syntactic entities, without taking their semantics into account. However, the ax-
ioms of different ontologies may interact, and cannot be considered separately.
Even in the case of full semi formal reuse, combining previously unrelated ax-
ioms can have surprising effects.

When some ontology Q is imported by an ontology P , the semantics of the
resulting axiom closure P∪ is determined by the union of the axioms P∪ =
P ∪ Q∪. Although P imports all axioms from Q∪ this is no guarantee that the
ontological commitments of P∪ are compatible with that of Q∪. The intention
of reuse is that axioms in P interact with the axioms in Q∪ in such a way that
in P∪ new entailments may hold for the axioms in P . However, the meaning of
terms in Q∪ may change as a consequence of the import as well (Cuenca Grau
et al., 2007).

For instance, consider the following axioms in Q:

Bird ⊑ has_part exactly 2 Wing

Penguin ⊑ Bird

Because of the first axiom, we can infer Penguin ⊑ has_part exactly 2 Wing:
because penguins are birds, they also have exactly two wings. Suppose that P
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imports Q and refines the definition of Bird with the axiom:

Bird ⊑ has_ability some Flying

Thus, where P entails that birds can fly, P∪ entails that birds can fly and
have two wings. However, this seemingly innocent (and useful) extension will
also allow us to infer that penguins can fly: Penguin ⊑ has_ability some Flying.
Without alteringQ directly, adding a single axiom in P has changed the mean-
ing of terms in the ontology: its ontological commitments in the context of P
differ from its explicit commitments.

Of course, it is easy to come up with more far reaching modifications to
Q, such as adding disjointness axioms or meta modelling. This is problematic
from a traditional reuse perspective, as some other ontology P ′ may reuse and
extend Q as well, and introduce yet other interactions with the axioms of Q:

Definition 5.4.5 (Ontology Interaction Problem) The ontology interaction prob-
lem is the general problem that if an ontology reuses another, its ontological commit-
ments may affect the commitments of the reused ontology and thereby undermine its
compatibility with other ontologies that reuse the same ontology.

How then to make sure that P and P ′ are compatible, and information ex-
change between two systems respectively committing to these ontologies will
be possible? It is clear that because of the syntactic nature of the axiom closure,
the union of two closures does not give us an orderly definition of reuse. At
the least, formal reuse of an ontology O′ by an ontology O should not affect
the original entailments of O′, and if any part O′′ ⊆ O′ is (for some reason) left
outside the axiom closure of O, its entailments should neither be affected by
O nor vice versa. In other words, any partial reuse of O′ may only ignore that
part O′′ that is wholly disconnected and irrelevant to the extension O.

Ghilardi et al. (2006) introduce a notion of safe reuse, direct formal reuse of
a signature in an ontology, based on the definition of conservative extension in
description logics:

Definition 5.4.6 (Conservative Extension) An ontologyO is an S-conservative ex-
tension of O1, if O1 ⊆ O and for every axiom α expressed using signature S, we have
O |= α iff O1 |= α. The ontology O is a conservative extension of O1 if O is an
S-conservative extension of O1 with respect to the signature of O1.

In other words, the axiom closure P∪ is only a conservative extension of
Q∪ if no axioms are implied by P∪ over symbols in the signature ofQ∪ that are
not also implied by Q∪ itself. This notion can be straightforwardly applied to
establish that in our case, P∪ is not conservative with respect to Q∪ because in
P∪ penguins can fly, and in Q∪ they cannot.

An ontology O is safe for a signature if no other ontologies O′ using that sig-
nature can exist for whichO∪O′ is not a conservative extension ofO′ (Cuenca
Grau et al., 2007). Unfortunately, Cuenca Grau et al. also show that determin-
ing whether some set of axioms (an ontology) is safe with respect to a signature
is undecidable for expressive description logics.

It is clear that formal reuse of an ontology must be complete with respect
to the logical consequences of axioms expressed in that ontology (Figure 5.5).
But not only must the reusing ontology be consistent with the source onto-
logy, it also should be a conservative extension. Note, however, that formal
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ontology reuse does not require the existence of an imports relation between
two ontologies, but rather ensures compatibility between their commitments.
Nor does formal reuse necessarily require a compatibility between the repres-
entation formalisms used by both ontologies, rather determining whether an
extension is conservative easily becomes undecidable for arbitrarily differing
knowledge representation languages.

Recently, several tools were developed to support partial formal reuse by
means of ontology module extraction Konev et al. (2008); Jimenez-Ruiz et al.
(2008). In this case, some ontology may O reuse part of the axioms in an onto-
logy O′ provided that it is safe with respect to the signature of the reused ax-
ioms. Module extraction is a process by which exactly those axioms that affect
the semantics of axioms in the reusing ontology are extracted to form a coher-
ent whole. Of course, this is only of practical use when the reused ontology has
limited density, i.e. when axioms in the ontology are relatively independent.
Furthermore, the safety ofOwith respect to the signature of axioms fromO′ for
expressive DLs can only be determined using locality conditions (Cuenca Grau
et al., 2007; Jimenez-Ruiz et al., 2008), or for languages that have favourable
properties (Konev et al., 2008).

5.4.3 Possibilities for Reuse

The previous section discusses the general problem of reusing knowledge ex-
pressed by some ontology. The original ideals of direct ontology reuse between
systems expressed by Gruber (1994) and others, seem to be only attainable
given the following restrictions:

Restriction of Non-Modification
Reused ontologies should not themselves be modified in any way.

Restriction of Formal Reuse
Ontological correspondence between systems can only be ensured if all
ontologies are expressed in a formal knowledge representation language.

Restriction of Compatibility
Formal languages used to express the ontologies that share ontological
commitments for the purpose of knowledge reuse, should be compatible
in such a way that the entailments of one ontology can be checked for
consistency with any of the other ontologies.

Restriction of Complete Reuse
A reusing ontology should directly import the ontological commitments
of the (part of the) reused ontology it commits to, i.e. it should import
both its signature and ontological statements.

Restriction of Safe Reuse
A reusing ontology should at least be a conservative extension of the re-
used ontology, and it should ideally be safe with respect to the signature
of the axioms it reuses.

Given these restrictions, we have an extra, formal tool for assessing the
suitability of ontologies for reuse that augments the more conceptual consider-
ations discussed in Section 5.4.1, and the distinction between knowledge man-
agement, representation and formal ontologies of Chapter 4. Table 5.3 shows
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Type Purpose Level Meta Expressiveness

Unified KM/KR abstract/concrete yes/mixed FOL, informal, restricted
Foundational FO abstract yes FOL
Core KR/FO abstract/concrete no FOL, restricted
Domain KM/KR concrete no restricted

Table 5.3: Characteristics of ontology types and purposes

some of the typical characteristics of the types of ontologies introduced in that
section. Unified ontologies operate at both abstract and concrete levels of de-
scription, involve meta modelling and are expressed using languages of vary-
ing expressiveness. Foundational ontologies are limited to the definition of
abstract notions using (variants of) first order logic (FOL) at a meta level. Some
have versions expressed using a more restricted language. Core ontologies do
not use meta modelling in the definition of concepts, and mix abstract and con-
crete levels of description. They are usually, but not always represented using
the restricted expressiveness of knowledge representation languages. Domain
ontologies offer the most concrete concept definitions in languages of restricted
expressiveness.

The use of different formal languages reflects the difference between an ab-
stract more philosophically inspired perspective and the concrete practical per-
spective of knowledge engineering. In Section 4.4 this distinction was already
discussed in more detail. The necessity of formal reuse shows a discontinu-
ity in the layered approach for reuse aspired to by Valente and Breuker (1996);
van Heijst et al. (1997); Schreiber et al. (2000): abstract and concrete ontologies
do not connect. Foundational ontologies can only be reused by ontologies at a
concrete level if they use the same expressive formalism. However, expressive
languages such as KIF and CommonLogic are generally undecidable and no
formal nor pragmatic means to ensure safe reuse are available.22 In part this is
overcome by the availability of variants of foundational ontologies in restric-
ted, decidable languages, but these do not capture the full set of ontological
commitments of the original.

5.5 Ontological Principles

Besides being a jump start in the form of a conceptual coat rack, the reason
for reusing some ontology during ontology construction is the inclusion and
adoption of its ontological choices. If these choices are explicit in the form of
ontological commitments of the reused ontology, they can be directly applied
in the construction of new concept definitions. Where the reused ontology is
sufficiently dense in its definitions, it may function as a mould that prevents the
ontology engineer from inadvertently constructing ontological oddities. How-
ever, as discussed the previous section, the direct reuse of pre existing onto-
logies is subject to several limitations. Furthermore, although formal ontolo-
gical commitments may make the ontological choices explicit, it can be quite
difficult to extract, and reverse engineer these choices from a bag of axioms ex-
pressed using a complex formal language. It may therefore pay to improve the
accessibility of ontological choices by making explicit some of the principles

22CommonLogic allows for the specification of decidable dialects.
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underlying the construction of ontologies. These ontological principles can then
be applied as extra methodological guidelines during ontology construction.
Where the design criteria of Gruber (1994) pose requirements for the ontology
as a whole, ontological principles provide guidance in the representation of an
entity as belonging to a fundamental category, i.e. what kind of entity it is, or
as to which aspects of that entity are of ontological relevance.

5.5.1 OntoClean

Perhaps the most influential set of ontological principles can be found in the
ONTOCLEAN methodology of Guarino and Welty (2002, 2004). ONTOCLEAN

is a methodology for evaluating “the ontological adequacy of taxonomic rela-
tionships” and can be applied both while building a new ontology, or in its
post hoc evaluation. It aims to provide a formal framework and vocabulary
for justifying why a particular way of structuring a taxonomy is better than an-
other. Central to the ONTOCLEAN methodology are the notions of essence and
rigidity on the one hand, and identity and unity on the other. Once these notions
are applied to two classes, they can assist to determine whether a subsumption
relation between the two classes may hold.23

Class membership of some entity is essential to that entity if the entity could
not exist were it not for being an instance of that class. For example, it is essen-
tial for human beings to have a mind: every human being must always be an
instance of the class of things that have a mind. In fact, whether the class mem-
bership of an entity is essential depends on membership of other classes. Note
that in the example, essence is conditional on class membership of the human
class. For some classes this dependency is stronger than for others, and reflects
its rigidity. All entities that are member of a rigid class depend on that class for
their existence. The class membership is essential to those entities, and they
can only cease to be a member of the class by ceasing to exist. A rigid class has
only members that depend on it in this way. For instance, a naive representa-
tion may hold that having a mind is rigid, but that would mean that we would
hear a distinct metaphysical ‘puff ’ whenever someone lost his mind, metaphor-
ically speaking that is. Instances of the human class, on the other hand, do rely
heavily on being a human for upholding their existence and it is therefore more
appropriate case of rigidity: it is essential for all humans to be human beings.
The rigidity of a class is the consequence of an ontological choice by the onto-
logy engineer and thus reflects an important ontological commitment.

Non rigid classes can be inessential to some of their instances, they are semi-
rigid, or not essential to any of their instances. Classes of the latter category are
anti-rigid, typical examples of which are roles and functions such as the classes
student and hammer: there is not a student that ceases to exist upon gradu-
ation. Here again, the example seems obvious, but the developer of an on-
tology for a library system may well want to automatically terminate library
membership for graduates: a case where the rigidity of studentship is defend-
able.

A useful perspective to determine the rigidity of some class is the degree
to which class membership is ontologically subjective or objective (Searle, 1995,

23The ONTOCLEAN papers use the logico-philosophical meaning of the term ‘property’ through-
out. As this meaning differs substantially from the way in which the term is used in knowledge
representation languages, the description of ONTOCLEAN will use standard KR vocabulary.
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and Section 7.3). Where the existence of subjective entities depends on being
felt by subjects (i.e. people), ontologically objective entities exist independently
of any perceiver or mental state. This distinction helps to recognise features
intrinsic to nature, and those relative to the intentionality of observers. Describing
an object as a hammer specifies a feature of the object that is observer relative,
whereas the existence of the physical object does not depend on any attitudes
we may take toward it. Observer relative features are therefore ontologically
subjective, and classes defined by such features are generally anti-rigid.

Deciding whether a class is essential, rigid, semi-rigid or anti-rigid in the
ONTOCLEAN methodology thus puts the burden on the ontology engineer to
contemplate all possible uses of the ontology. According to the methodology,
the ontological commitments should be made explicit by marking elements in
the ontology by means of a meta-property. This meta-property can then signal
allowed use of the classes defined in the ontology. One restriction, for instance,
is that rigid classes cannot be the subclass of anti-rigid classes and vice versa:
the student class is therefore not a subclass of human.

Another important notion in the methodology is that of identity: how can
we establish whether two entities are the same? Equality of entities is determ-
ined by means of identity criteria, and conversely if equality between entities is
asserted, the identity criteria must necessarily hold. At first sight this seems
very similar to the notion of essence, e.g. how in DL individuals are determ-
ined to belong to a class (See a.o. Section 7.2). However, the emphasis here
lies on the properties that two individuals must have for them to be the same
individual, e.g. for an owl:sameAs relation to hold between them. Guarino and
Welty (2004) give the example of the relation between a duration and interval
class. A sentence such as “All time intervals are time durations” does not en-
tail that duration subsumes interval, as two intervals that have the same length
are not necessarily the same, whereas two durations with the same length are.
Although the same conclusion can be reached by giving a more conceptual
account, i.e. the duration is the length of the interval, explicitly marking prop-
erties of classes as carrying identity criteria can be very useful to ensure innoc-
uous reuse.

An example of an identity criterion is the inverse functional property type
of OWL, which allows us to infer that two individuals are the same when they
are related to the same individual via that property. For instance, two indi-
viduals that have the same social security number, must be the same person.
Although a knowledge representation formalism may provide rather little in
the way of built-in constructs for expressing identity criteria, these criteria can
still be very useful in determining, or rather disqualifying, subsumption rela-
tions between classes.

The third notion, unity, refers to the property of entities as being wholes that
are composed of parts (that may themselves be wholes). Unity can be used
to differentiate different classes based on their mereological properties. For
instance, water does not generally have parts (it carries anti-unity), whereas
oceans do. As a rule, categories referred to using mass nouns do not carry
unity, and categories that do are named by count nouns. Unity can be ensured
by any of the traditional types of mereological relations, such as functional
decomposition, spatial configuration, topology etc.. Subsumption between
classes is valid only if their unity criteria are compatible: whether a class carries
unity, anti-unity or no unity is inherited to its subclasses.
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Formal Evaluation

The ONTOCLEAN methodology provides a formal framework for evaluating
ontologies. It is instrumental in the formal elicitation of the ontological de-
cisions underlying subsumption relations. Annotating classes with meta prop-
erties allows for automatic evaluation of the taxonomic relations in the onto-
logy, i.e. if a class C subsumes C’ then:

• If C is anti-rigid, then C’ is anti-rigid: all students, be they lazy or overzeal-
ous can graduate without ceasing to exist.

• If C carries some identity criterion, then C’ must carry the same criterion:
if organisms can be uniquely identified by their DNA, then any homo
sapiens, canis familiaris, limax maximus and amoeba proteus can be as
well.

• If C carries some unity criterion, then C’ must carry the same unity cri-
terion: if a table consists of physical parts that enable its function in
providing a level surface on which objects can be placed, then all tables
do.

• If C has anti-unity, then C’ must also have anti-unity: if water does not
have parts, then potable water doesn’t either.

Meta properties are not just helpful when evaluating an ontology or con-
structing a new ontology. They can be used to put additional constraints on
the validity of ontology reuse, provided that both the new and the reused on-
tology are annotated. However, the annotations are meta statements over ax-
ioms in the ontology and are not part of their semantics. Though formal, they
cannot be used in the same way as the definition for conservative extensions
to solve the ontology interaction problem (definitions 5.4.6 and 5.4.5, respect-
ively). Rector (2003) recognised the two approaches as complementary parts
of a two-step normalisation: ontological and implementation normalisation.

A limitation of the ONTOCLEAN methodology is that the distinctions it ad-
vocates, though inspired by philosophy, are an abstraction of established prac-
tices in knowledge engineering. For instance, the notion of anti-rigidity reflects
a meta-theory of the distinction between roles and role-players (Steimann, 2000;
Masolo et al., 2004), properties that are always attributed to some entity (cf. Sec-
tion 6.3.2, Section 7.3.2). They reflect things an entity can have or play. Similarly,
the notion of unity stands in direct correspondence to the distinction between
objects and the substances they are made of.

Guarino and Welty are careful to avoid presenting ONTOCLEAN as a tra-
ditional methodology that provide guidelines for taking modelling decisions,
rather the meta-properties are purely metadata that signal a particular onto-
logical position with respect to some category. Though making these meta-
properties explicit helps to communicate design decisions, the rationale for
making these decisions is lost. In fact, because these meta-properties are de-
rived from more concrete distinctions it begs the question whether the ON-
TOCLEAN approach gives more solid footing for an ontology engineer than a
concrete guideline would.



5.5. Ontological Principles 106

Furthermore, that meta properties are enforced down the subsumption hier-
archy holds for other properties as well, and is provided ‘for free’ by any ser-
ious knowledge representation language. That an ontology engineer needs to
take this inheritance into account is indeed a source of many modelling errors,
but is not particular to the meta-properties of the ONTOCLEAN approach.

5.5.2 Frameworks and Ontologies

The ONTOCLEAN methodology sprouted from a need to provide a means to
evaluate the correctness of taxonomic relations, but is silent where it concerns
the appropriateness of categories included in the ontology. In ontology repres-
entation languages such as OWL, the distinction between ‘ontology’ and ac-
tual situations coincides with the contrast between terminological knowledge
and assertional knowledge: classes in the TBox and individuals in the ABox.
However, this distinction is not concise enough to separate proper ontological
categories from other, general terminological knowledge. In fact, not all con-
cepts are suited for inclusion in an ontology, and in several papers we advocate
a distinction between ontologies and so-called frameworks (Breuker and Hoek-
stra, 2004c; Breuker et al., 2007; Hoekstra et al., 2007, 2008).

As a rule, terminological knowledge is generic knowledge while assertional
knowledge describes some state of affairs. These states can be generalised to
patterns typical to particular kinds of situations. To be sure, if some pattern re-
occurs and has a justifiable structure, it might evidently pay to store this struc-
ture as generic description. For instance, it may capture a predictable course of
events. The combination of the situations and events related to eating in a res-
taurant is a typical example, and served in the Seventies to illustrate the notion
of knowledge represented by scripts or ‘frames’ (Schank and Abelson, 1977;
Minsky, 1975, respectively). A representation of this kind of generic know-
ledge, which is indeed terminological, is not an ontology.

Frameworks have a different structure than ontologies and capture system-
atic co-occurrence of the structural relations something has with other things.
They describe such things as how activities are causally or intentionally re-
lated, or how objects are spatially and functionally configured: frameworks
are primarily defined through unity criteria. Ontologies, on the other hand,
define what things are in and of themselves and emphasise the essential, in-
trinsic properties of entities. Arguably, at a formal level the two are indistin-
guishable: every class in OWL is defined in relation to other classes, it cannot
be otherwise. The distinction between frameworks and ontologies is therefore
conceptual and does not coincide with the attributes of representation formal-
isms. For this reason, to keep an ontology free from contextual knowledge, we
need to distinguish between those relations that make what a concept is and
relations that place a concept in a particular frame of reference. For sure, the
ontological definition of a concept is dependent on its context within the struc-
ture of the ontology, but it should be impartial to the context of its instances.

Take for example a hammer, its composition of head and shaft is not by ac-
cident: it is this particular combination that allows the hammer to be used ‘as
a hammer’. However, the mereological relation between the hammer as ob-
ject, and its composites is not part of its ontological definition. Many different
kinds of hammers exist, e.g. sledgehammers, mallets, conveniently shaped
stones etc., each of which differs ever so slightly in the nature of its composites
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and the relations between them. But they are all hammers. It is therefore only
the function of the hammer as an instrument that defines what a hammer is,
its mereological properties are merely circumstantial evidence. Searle (1995)
stressed that the hammer-as-such cannot be substituted with the hammer-as-
object; whether some object is a hammer is a social fact and depends on an
attribution of the hammer function given a context of use. This attribution pin-
points exactly the conceptual difference between ontologies and frameworks.
Where frameworks may incorporate the context in which this attribution holds
by default and thus (over) generalise the typical physical features of a hammer-
as-object to the hammer-as-such, ontologies should maintain an explicit dis-
tinction between the two.

From a methodological point of view, this allows us to introduce a rule of
thumb: a combination of concepts and relations, as in e.g. a class restriction,
is only to be considered part of an ontology when this particular combination
is either systematic and independent of context, or when it makes the con-
text explicit. A possible second consideration is inspired by the limitations
imposed on admissible structures by the knowledge representation formalism.
Of course this is a rather practical consideration, but nonetheless useful when
considering the widespread use of OWL. If the primary task of ontology is to
describe what things are, then a representation formalism specifically tailored
to classification can be a fair benchmark for determining whether the kind of
knowledge you want to express should be considered part of ontology or not.
Given the limited expressiveness of OWL DL, especially because of its tree-
model property (Motik et al., 2005), many frameworks are more easily repres-
ented using a rule formalism as they often require the use of variables. In fact,
as we show in Hoekstra and Breuker (2008) and Section 7.2, OWL can be used
to represent non-tree like structures commonly found in frameworks but only
in a very round-about and non-intuitive manner. Furthermore, epistemological
frameworks may define epistemic roles which can only be applied by reasoning
architectures that go beyond the services provided by OWL DL reasoners (e.g.
when they require meta-level reasoning). The limitations of OWL thus indic-
ate a correlation between the conceptual distinction and representation formal-
isms. However, the two perspectives should not be confounded. Frameworks
belong to the T-Box of any knowledge representation system, independent of
whether it is based on a DL formalism or not.

We can distinguish three kinds of frameworks:

Situational frameworks

Situational frameworks are most characteristic for the notion of framework in
general, because of the strong emphasis on context and teleology they share
with frames and scripts (Minsky, 1975; Schank and Abelson, 1977). They are
the stereotypical structures we use as plans for achieving our goals given some
recurrent context, such as making coffee. These plans are not necessarily private
to a single agent, and may involve transactions in which more than one actor
participates. For instance, the definition of Eating-in-a-restaurant24 is a structure
consisting mainly of dependencies between the actions of clients and service
personnel.

24In the following all concepts will start with a capital letter, properties and relations will not
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Another notable characteristic of situational frameworks is that they are
not subclasses of the goal directed actions they describe. For instance, Eating-
in-a-restaurant is not a natural sub-class of Eating but rather refers to a typical
model of this action in the situational context of a restaurant. Furthermore, it
usually does not make sense to define subclass relations between situational
frameworks themselves. Although we can easily envisage a proliferation of all
possible contexts of eating – Eating-at-home, Eating-with-family, etc. — but does
eating in a French restaurant fundamentally differ from eating in a restaurant
in general? (Bodenreider et al., 2004; Breuker and Hoekstra, 2004a).

From a legal perspective, situational frameworks can be imposed on actual
situations through articles of procedural (‘formal’) law. Although the stereo-
typical plans given in by custom, and the prescribed plans of law differ in their
justification – rationality vs. authority – their representation is largely analog-
ous. Similarly, legal norms combine generic situation descriptions with some
specific state or action, where the description is qualified by a deontic term. For
instance, the norm that “vehicles should keep to the right of the road” states
that the situation in which a vehicle keeps to the right is obliged.

In short, situational frameworks are a fundamental part of the way in which
we makes sense of the world, and play a prominent role in problem solving.

Mereological frameworks

Most entities, and objects and processes in particular, can be decomposed into
several parts: they are composites. As we have seen in the hammer example,
it can be tempting to incorporate a mereological view in the definition of a
concept. A typical example is the definition of Car as having at least three,
and usually four wheels, and at least one motor. However, a full structural de-
scription of a concept’s parts and connections goes beyond what it essentially
is. Cars are designed with a specific function in mind, and although there are
certainly some constraints on its physical properties relevant to its definition,
these are limited to those constraints actually necessary for fulfilling that func-
tion. Concept descriptions that do iterate over all or most parts of the concept
are mereological frameworks, and can appear under a large diversity of names:
structural models, configurations, designs, etc. Mereological frameworks play
a major role in qualitative reasoning systems (see e.g. Davis (1984); Hamscher
et al. (1992)).

Arguably, the line between the mereological framework and ontological
definition of a term is sometimes very thin. For instance, if we want to de-
scribe a bicycle as distinct from a tricycle, it is necessary to use the cardinality
of the wheels as defining properties as these are central to the nature of the bi-
cycle. On the other hand, the number of branches a tree might have hardly
provides any information as to what a tree is.

Epistemological frameworks

Inference in knowledge based reasoning does not happen in isolation. It is part
of a larger structure of interdependencies between steps in a reasoning process:
arriving at new information, given some initial situation. Epistemology is the
study of how valid knowledge can be obtained from facts. Generic description
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Figure 5.6: Ontology of reasoning terms vs. a framework for reasoning
(Breuker and Hoekstra, 2004a)

of reasoning processes are thus epistemological frameworks that focus on the epi-
stemological status of knowledge: the use of knowledge in reasoning, e.g. as
hypothesis or conclusion (Breuker and Hoekstra, 2004c).

What sets the epistemological framework apart from mereological frame-
works is its characteristic specification of dependencies between the distinct
steps in a reasoning methodology. A typical example are the problem solving
methods (PSM) discussed in Section 2.4.1 that are found in libraries of problem
solving components (Breuker and Van De Velde, 1994; Motta, 1999; Schreiber
et al., 2000). For instance, a problem solving method is not just a break-down
of the mereological structure of some problem, but specifies control over the
inferences it contains, such as the assessment of success or failure in attaining
a sub goal. They invariably have at least two components: some method for
selecting or generating potential solutions (hypotheses), and a method for test-
ing whether the solutions hold. Whether a solution holds depends on whether
it satisfies all requirements, or whether it corresponds with, explains, empirical
data.

Figure 5.6 shows how an ontology of problem solving differs in perspect-
ive from a problem solving method described as epistemological framework.
Although the concepts inference and PSM occur in both, the structure in which
they are placed is decidedly different, as is also demonstrated by their sub
categories. The epistemological framework has a mereological structure com-
bined with sequential dependencies between its parts, the ontology is a sub-
sumption hierarchy. To give a further illustration of the difference, consider
the following action a:

“Colonel Mustard kills Dr. Black in the conservatory, with the can-
dlestick.”

In a game of Cluedo awill typically occur first as hypothesis, before it may or
may not be accepted as conclusion (Colonel Mustard actually did kill Dr. Black).
Being a hypothesis is therefore not essential to a, and in fact it never is: the hy-
pothesis class is anti-rigid. Conversely the content of a hypothesis is not onto-
logically relevant to the concept itself; that a is a different hypothesis from say
“The candlestick has a huge dent in it” is only particular to the two individual
hypotheses, but does not change what a hypothesis is. Similar to the Eating-in-
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a-restaurant situation, the relevance of an a-hypothesis class is dependent on the
epistemological context of a particular problem: whodunnit?

Ontology versus Epistemology In general, the categories of epistemological
frameworks can be defined in ontologies, provided that their definition is onto-
logical: in Chapter 2 we have seen ample reason for keeping a strict separation
between task dependent knowledge and domain knowledge, cf. the interac-
tion problem of Bylander and Chandrasekaran (1987). Nonetheless, Boden-
reider et al. (2004) discuss several other cases where (medical) ontologies are
interspersed with epistemological categories of a different kind:

• Terms containing classification criteria, i.e. categories distinguished ac-
cording to the way information is gathered to classify a particular in-
stance as belonging to the category, e.g. Murderer, convicted by jury trial
versus Murderer, convicted by bench trial. Although such information may
be useful in justifying the conclusions of a knowledge based system, it
does not constitute an ontological category.

• Terms reflecting detectability, modality and vagueness, e.g. asymptomatic
diseases, that are detected without the patient displaying its symptoms.
This information does not constitute a new ontological category, i.e. the
treatment of an asymptomatic disease is the same as for symptomatic
diseases.

• Terms created in order to obtain a complete partition of a given domain,
such as car, lorry, bicycle, other vehicles. Often such bin-concepts are intro-
duced because of a database perspective, where all categories need to be
explicitly named.

• Terms reflecting mere fiat boundaries, e.g. a person of average height will
have a different height in Asia than in Europe.

From a philosophical perspective the practice of having epistemologically
loaded categories is problematic as these are decidedly non-ontological and
do not correspond to categories of entities in reality. Knowledge represent-
ation ontologies are less scrupulous with regard to the ontological status of
their definitions, and often some concessions will need to be made to facilit-
ate the implementation of the ontology in a practical implementation (e.g. in
application ontologies). However, epistemological promiscuity of categories is
problematic as they are defined within the context of some shared epistemo-
logical framework or task. For instance, a category of asymptomatic diseases
is only of relevance in the context of medical diagnosis, not in their treatment.
And different trial procedures are mainly relevant when comparing different
legal systems, but not when establishing a sentence.
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Alles Vergängliche ist nur ein Gleichnis

J.W. Goethe, Faust II, 1832

5.6 Design Patterns

Most of the requirements and principles of the preceding sections pertain to
what van Heijst et al. (1997) called knowledge modelling (Section 2.4.1): they are
largely conceptual and independent of the language in which the ontology is
eventually specified. However, a formally specified ontology is a design model,
where the design is subject to design principles that guide the expression of the
conceptual model in a formal language. As pointed out in Section 4.2, the
language of choice for knowledge engineering ontologies that are to be shared
on the web is the tailor made description logics formalism of OWL DL.

Knowledge modelling and design are not independent. Firstly, the choice
of a representation language, and in particular its expressiveness, determines
which (kinds of) ontologies can be reused. And secondly, safe reuse cannot be
defined without reference to the language in which either ontology is represen-
ted. In both cases, the expressiveness of the ontology representation language
is key, and in fact has a significant impact on what parts of the ontology as
conceptual model can be formalised. In particular, the trade-off between ex-
pressiveness on the one hand and decidability and computational efficiency on
the other played an important role in the specification of OWL DL (Levesque
and Brachman, 1987, and Section 4.2). This technical trade-off is reflected by
an ontological trade-off:

• not all ontologically relevant features can always be represented in OWL
DL, and

• some features can be represented in multiple ways, each with its own
benefits.

The encoding of an ontology is thus not just the result of several ontological
choices, but also of design decisions. The requirements we reviewed so far do
not directly support this process. For sure, it is the reuse of pre existing on-
tologies that lifts some of this burden. Not only does it provide off-the-shelve
concepts and properties, but these convey insight in the decisions underlying
the design of the ontology as well. The parallel with ontological choices has
not gone unnoticed, and akin to the ontological principles of the previous sec-
tion, the design decisions underlying several ontologies can be extracted as
ontology design patterns:

Definition 5.6.1 (Design Pattern) A design pattern is an archetypical solution to
a design problem given a certain context.
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5.6.1 Patterns and Metaphors

Ontological definitions of concepts in a formal language do not differ much
from descriptions of terms in natural language. In both cases an expression is
constructed by combining symbols according to grammatical rules. The role
of design patterns in ontologies can be made clear by analogy to the use of
grammatical patterns in meaning construction. In fact, the way in which we
combine words in linguistic expressions hints at the existence of several fun-
damental concepts in thought, and follows basic, cognitive rules (Pinker, 2007).
One of the examples Pinker gives to support this hypothesis is the atypical be-
haviour of some verbs in the dative form. While most transitive verbs can
be used both in a propositional dative form (subject-verb-’to’-recipient) and a
double-object form (subject-verb-recipient-thing), this cannot be extracted to a
general rule. For instance, whereas we can say:

• ‘Give a muffin to a moose’

• ‘Give a moose a muffin’

we cannot say:

• ‘Biff drove the car to Chicago’

• ‘Biff drove Chicago the car’

or, alternatively:

• ‘Sal gave Jason a headache’

• ‘Sal gave a headache to Jason’

Idiosyncrasies such as this indicate that the two constructions are not syn-
onymous, but in fact follow differing underlying patterns. Whereas the pro-
positional dative matches the pattern “cause to go”, as in ‘cause a muffin to go
to a moose’, the double-object dative matches “cause to have”, as in ‘cause a
moose to have a muffin’. A plethora of other constructions such as these exists.
For example, to indicate a distinction between direct and indirect causation as
in ‘dimming the lights’ when sliding a switch and ‘making the lights dim’ when
turning on the toaster. It is these patterns that are used to construct metaphors
such as the container metaphor of Section 5.6.3 or a conduit metaphor where
ideas are things, knowing is having, communicating is sending and language
is the package:

We gather our ideas put them into words, and if our verbiage is not empty or
hollow, we might get these ideas across to a listener, who can unpack our words
to extract their content.

(Pinker, 2007, p.60)

According to Pinker, the basic concepts in a language of thought corres-
pond to the kinds of concepts that fit the slots of grammatical constructions.
The grammar rules of language reflect the structure of our conceptualisation
of the world around us. It shows the restrictions on the ways in which we
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can combine concepts to create meaningful categories. This is not the place to
discuss whether or not Pinker’s basic concepts are ontologically relevant (cf.
Chapter 6), rather what is important here is that the position of some term in a
sentence is indicative of its meaning, and the general category it belongs to.

We have seen that linguistic expressions follow patterns that can be re-
applied to new circumstances to create new meaning. These patterns are design
patterns, and depending on which pattern we apply, we create a different mean-
ing or shift emphasis. However, not every pattern is applicable to just any
term. In Pinker’s example, the applicability of some grammatical pattern to
a term is determined by an (in)compatibility between that which a pattern is
meant to express about it, and the meaning of the word. As we will see, design
patterns in knowledge representation and ontology development pose similar
restrictions

5.6.2 Patterns in Ontology Engineering

Presutti et al. (2008) give a comprehensive overview of design patterns in onto-
logy engineering and discuss a wide range of patterns. Though related to on-
tology engineering, not all of these capture design decisions. For instance, the
definition is used to specify presentation patterns (naming conventions), docu-
mentation best practices (annotating classes), patterns for ontology decompos-
ition, mappings between ontology vocabularies (e.g. SKOS to OWL), norm-
alisation macros (asserting inferred information), and even grammar rules for
translating natural language sentences into OWL axioms.

Their definition of ontology design pattern is influenced by its epistemolo-
gical role as data structure in the specification of design patterns in an online
library. For this application, it is useful to view a engineering design pattern as
reification of the relation between a design schema (and its elements), and its
possible implementations (and their elements):

Definition 5.6.2 (Ontology Engineering Design Pattern (Presutti et al., 2008))
An ontology design pattern is a modelling solution to solve a recurrent ontology
design problem. It is an information object that expresses a design pattern schema
or skin. A schema can only be satisfied by a design solution, which is a particu-
lar combination of ontology elements that fulfil certain element roles defined by the
design pattern.

Using this definition, patterns and their solutions can be properly indexed
and documented. Furthermore, the definition is cast in terms of the DOLCE
Ultra light ontology and the Descriptions & Situations extension of Gangemi
and Mika (2003), which gives it a grounding in a larger foundational onto-
logy. Nonetheless, the fact that the definition presents a design pattern as a
reification obscures the reason why a solution ‘satisfies’ a schema. Especially
since the ontological relevance of an individual design pattern relies on this
relation, a proper definition should specify how this relevance can be assessed.
This assessment should not rely on an explicitly asserted relation with con-
crete implementations. It seems that ontologically relevant design patterns are
themselves the generic ‘pieces’ of a formal specification that can be applied, or
implemented by an ontology.



5.6. Design Patterns 114

5.6.3 Knowledge Patterns

Design patterns are not just generic descriptions that can be inherited over a
subsumption hierarchy (Clark et al., 2000). The application of a design pattern
in a concrete case is a source of inference when it applies to multiple aspects
of the case. Clark et al. give a logic programming example of a container pat-
tern that is used to express the capacity of a computer: “the computer contains
memory” Arguably the term ‘capacity’ is ambiguous and may refer to a vari-
ety of measurable attributes of the computer, e.g. internal memory, hard disk
space, or the number of expansion slots. Querying a DL knowledge base that
applies the pattern in a straightforward way will return all possible capacities.

One solution is to parameterise the pattern by requiring the capacity to be
of a certain type. Clark et al. reject this solution on the grounds that parsi-
mony may be even further compromised when more distinctions are necessary,
such as between physical and metaphysical containment (“the computer con-
tains information”). In short, to ensure applicability to a broad range of cases
a design pattern will need to explicitly include all possible dimensions along
which its cases may differ. Such patterns will be overly complex and include a
domain dependent bias: they cannot be applied freely to new cases.

The conclusion is that although it may seem that a subsumption relation
holds between the container and a computer, this is incorrect. Rather, a com-
puter can be modelled as a container: we apply a container metaphor. Clark
et al. (2000) define a knowledge pattern as a theory whose axioms are not part of
the knowledge base that implements it. The implementation of such a pattern
occurs by importing its axioms, and mapping the symbols of the implementa-
tion to symbols in the pattern’s signature. This mapping is given by a morphism
that maps every non-logical symbol in the pattern to a corresponding symbol
in the knowledge base. For instance, we can define Free_Space as that capacity
of a Container that is not occupied:

Free_Space ⊑ Capacity ⊓ capacity_of some Container ⊓ not Occupied

Container ⊑ free_space some Free_Space

free_space ⊑ capacity_of−

This allows us to query the value of the free_space property to retrieve the free
space of any container. By applying the morphismm:

m = {(Container,Computer), (Free_Space,Available_RAM),

(Capacity,RAM_Size), (Occupied,Used_RAM),

(free_space, available_ram)}

we can construct the analogous definitions for Available_RAM and Computer:

Available_RAM ⊑ RAM_Size ⊓ capacity_of some Computer ⊓ not Used_Ram

Computer ⊑ available_ram some Available_RAM

available_ram ⊑ capacity_of−

Similar morphisms can be defined that map e.g. Free_Space onto Free_Slots or
Free_Harddisk_Space etc.
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Figure 5.7: The mapping between ontology design pattern P and its imple-
mentation in ontology O

The definition of knowledge pattern circumvents the limitations of pattern
implementation based solely on subsumption, and introduces a weaker map-
ping function to connect patterns to their implementation. Nonetheless, know-
ledge patterns are rather restrictive in that both the pattern and the mapping
are required to be external to the knowledge base.

5.6.4 Ontology Design Patterns

Viewing ontology design patterns as knowledge patterns allows for a formal
evaluation of pattern implementation in ontologies. In this section I formalise
and extend the most salient patterns of Presutti et al. (2008), and scrutinise
them with respect to the reuse criteria discussed in Section 5.4.2. I define an
ontology design pattern as a knowledge pattern that captures an ontological
theory and can be implemented in other ontologies:

Definition 5.6.3 (Ontology Design Pattern) An ontology design pattern is an
ontologyP that is said to be implemented in an ontologyO iff a mapping functionM
specified by a signature morphism exists between the signatures Sig(P) and Sig(O)
that for all axioms α ∈ P it holds that O |=M(Sig(α), α), whereM(Sig(α), α) is the
set of axioms produced by applyingM to α and its signature.

Figure 5.7 shows how a design pattern P is mapped onto ontologyO. Note
however, that like knowledge patterns, this definition does not strictly require
a bijective mapping between pattern and implementation. A symbol from the
signature ofOmay occur an arbitrary number of times in the mappingM , and
not all symbols from O must be mapped onto the signature of P (although all
those from P must). Furthermore, it can be useful to weaken the definition of
knowledge pattern to allow the mapping to be defined as axioms in O. This
way, the implementation relation does neither require nor preclude the use of
subsumption relations to map the pattern ontology P to relevant parts of O.
Although this leaves room for some of the ambiguities Clark et al.’s definition
is meant to circumvent, it allows for a straightforward implementation of the
pattern in cases where the ambiguity does not hurt.
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Presutti et al. (2008) distinguish content patterns and logical design patterns.
Content patterns are in fact small ontologies, the reusability of which is ad-
vanced by explicit documentation of their design rationale and best practices.
Gangemi (2005); Presutti et al. (2008) propose the development of a library of
such content patterns that can be used as building blocks in ontology design.
Logical design patterns are specified at a meta-level and implemented by in-
stantiation. Axioms in the implementation are typed according to the meta-
categories defined by the pattern.

Content patterns are defined as restriction on the knowledge pattern of
Clark et al. (2000), on which definition 5.6.3 is based. Rather than a free map-
ping relation between pattern and ontology, an implementation of a content
pattern should preserve downward taxonomic ordering. The signature of the con-
tent pattern is mapped only to symbols that are subsumed by symbols of the
pattern. Presutti et al. (2008) do not give formal definitions of pattern imple-
mentation, but the gist of their proposal can be captured by an adaptation of
definition 5.6.3:

Definition 5.6.4 (Content Pattern) A content ontology design pattern is an on-
tology Pc that is said to be implemented in an ontology O iff Pc is implemented as
ontology design pattern in O, and if Pc were in its axiom closure (i.e. Pc ⊆ O∪) then
for all axioms α ∈ Pc it would additionally hold thatM(Sig(α), α) ⊑ α in O.

In other words, the axioms in O returned by the mapping functionM applied
to α and its signature must be subsumed by α.

If an ontology design pattern is itself an ontology, this raises the important
question what its ontological status is. For instance, should a naive implement-
ation of a pattern were P is imported and extended by O using standard OWL
constructs meet the same safety requirements as normal ontology reuse? It is
clear that the additional restriction on the implementation of a pattern posed
by definition 5.6.4 makes that, though actual reuse of the pattern as ontology is
not required, it still must be a conservative extension (definition 5.4.6). Con-
sequently we can apply the criteria of a.o. Ghilardi et al. (2006); Cuenca Grau
et al. (2007) to the unionPc∪O∪ to determine whetherO is a safe implementation
of content pattern Pc.

Because of their meta level character, logical design patterns are a differ-
ent breed and have a more structural character. In Presutti et al. (2008), logical
patterns are logical meta theories. To illustrate this, consider the top level cat-
egories of OWL itself. These are the language constructs that enable the spe-
cification of any valid OWL ontology. Logical patterns work in the same way;
they define the meta classes and reified relations that specify valid implement-
ations of the pattern. To give a formal definition:

Definition 5.6.5 (Logical Pattern) A logical pattern is an ontology Pl that is said
to be implemented in an ontologyO iff there exists a set of axiomsQ such thatQ ⊆ O
and it holds that Pl |= Q.

The part of an ontology that implements a logical pattern should be a valid
model of the pattern. Logical patterns expressed in OWL cannot be enforced
using a description logics classifier; they are limited to OWL Full (cf. Sec-
tion 3.3.2). In other words, the correctness and safeness of a logical pattern
implementation cannot be ensured. Furthermore, implementing meta level
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statements is not structure preserving; a valid implementation does not need to
have the same structure as the pattern it implements. The reason is that where
axioms in content patterns are imported, copied or extended, axioms in logical
patterns are instantiated.

Design patterns are not always explicitly specified as a formal theory. They
are rather described as step-by-step procedures larded with stereotypical ex-
amples. For instance, the procedures for specifying value partitions (Rector
et al., 2004; Rector, 2005), imitating N-ary relations (Noy and Rector, 2006),
classes as values (Noy, 2005), transitive propagation (Seidenberg and Rector,
2006), sequences (Drummond et al., 2006) and structured objects (Motik et al.
(2007a); Hoekstra and Breuker (2008) and Chapter 7). Largely, these proced-
ures are not intended as ontological commitment – they do not refer to entities
in reality – but are rather meant to describe how certain structures can be ap-
proximated that cannot be directly expressed in OWL.

If we take definition 5.6.5 at face value, the patterns described by such pro-
cedures would only count as logical pattern when formalised as a meta theory.
However, given the limitations of meta theories in OWL, and the generality of
examples in pattern descriptions, the utility of a strict logical pattern does not
necessarily transcend that of less formal patterns. What sets the patterns de-
scribed above apart from content patterns, is that the mapping between pattern
and implementation is not subject to ontological restrictions. It does not as-
sume an ontological relation (e.g. subsumption) between the symbols in either
signature, but merely ensures the transposition of the structure of the pattern
to categories in the implementation. We can therefore introduce a third type of
pattern, not described in Presutti et al. (2008), which is neither a content pattern
nor a logical pattern.:

Definition 5.6.6 (Structure Pattern) A structure pattern is an ontology design pat-
tern for which the mapping function M is bijective, and no semantic requirements
hold as regards the relation between elements in the pattern and its implementation.

Because of the allowed ontological disconnect between structure patterns
and implementing ontologies, their implementation does not explicitly involve
an ontological commitment. However, it may incorporate an epistemological
commitment of the type identified by Bodenreider et al. (2004). Structure pat-
tern implementations signal an intended interpretation for that part of the on-
tology. For instance, an OWL implementation of the N-ary relation pattern of
Noy and Rector (2006) signals that even though it is not an N-ary relation ac-
cording to the OWL semantics, it should be interpreted as such. This works in
exactly the same way that the presence of OWL constructs signal the applicab-
ility of OWL semantics.

The epistemological nature of structure patterns is not a given, and can be
said to decrease when their intended interpretation is more closely approxim-
ated by the standard semantics of their implementation. For example, where
the intended and actual semantics of the patterns in Rector (2005); Seidenberg
and Rector (2006) coincide, and those of Drummond et al. (2006); Hoekstra and
Breuker (2008) are close approximations, the patterns of Noy (2005); Noy and
Rector (2006) make more conservative claims.

Although it is certainly true that some of these patterns are motivated main-
ly by epistemological objectives, and do not have explicit ontological commit-
ments, they do convey a certain ontological message. Design patterns may
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transpose the stereotypical structure of ontological categories to new domains.
In other words, the implementation of a structure pattern can still constitute a
metaphor, but this depends on the strength of the ontological relation between
a pattern and its implementation. Rather than complete downward taxonomic
ordering as in content patterns, metaphoric use of a structure pattern depends
on the reuse of relations between categories:

Definition 5.6.7 (Metaphoric Use) The metaphoric use of a structure pattern Ps
in ontology O requires that O implements Ps, and that if Ps is in the axiom closure
of O (i.e. Ps ⊆ O∪) then for all axioms α ∈ Ps it would additionally hold that for its
properties ps ∈ Sig(α) and each corresponding property p ∈ Sig(M(Sig(α), α)) it
holds that that p ⊑ ps in O.

Metaphoric use of a structure pattern thus requires that the properties of
an implementing ontology are at least (conceptually) subproperties of corres-
ponding properties in the pattern. Where the implementation of content pat-
terns requires a subsumption relation between all elements of the signature.
To illustrate the difference, the conduit metaphor from Pinker (2007) in Sec-
tion 5.6.1 cannot be implemented as content pattern, but can be a metaphoric
use of a structure pattern. For instance, the former requires words to literally be
containers for ideas, and the latter merely signals a connotation. The relational
character of metaphoric use corresponds to the role of verbs in natural lan-
guage metaphors (Pinker, 2007), and the prototypical representation of verbs
as properties (Brachman et al., 1991).

5.7 Discussion

In this chapter, I discussed general methodological guidelines for ontology de-
velopment, emphasised the middle-out approach for constructing an ontology
and gave a characterisation of different types of ontologies available for reuse.
Section 5.4.2 described the technical restrictions we need to impose to guar-
antee safe reuse, without compromising the ontological commitments of the
reused ontology. In Section 5.5, these technical considerations are augmented
with a means to make explicit part of these ontological commitments, that can
be used to ensure conceptually sound extensions. The notion of framework, and
in particular the epistemological framework, allows us to separate ontological
categories from other terminological knowledge. Design patterns allow us to
express partial ontological theories that can be transposed and used as meta-
phors.

Most, if not all of these considerations are given by the ideal of ontology
sharing and reuse. Indeed, all theoretical and philosophical notions aside,
someone who uses the DL semantics of OWL to build just terminological know-
ledge bases may not heed these requirements. Nonetheless, once a knowledge
base is available on the web it will inevitably be evaluated on its merits as
reusable knowledge source. Ontologies are not ‘just’ terminological knowledge
bases, a view that is emphasised by the wide range of guidelines, requirements
and resources outlined in this chapter. Ontology development remains an art,
and no a priori guidelines exist that can ensure the quality of the result. Non-
etheless, the emphasis on an ontological perspective of Section 5.5, the reuse
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of existing ontologies described in Section 5.4 and the restrictions on reuse and
design patterns of Section 5.6 and Section 5.4.2 are important constraints on on-
tology development. Although these constraints are not sufficient, they are the
necessary conditions for quality ontologies, and perhaps give a better flavour of
what an ontology is than any definition – let alone Gruber’s – could.

The next chapter shows how the principles outlined in this chapter are ap-
plied in the construction of a common-sense based core ontology for law: the
LKIF Core ontology. In Chapter 7 several important design patterns adopted
in this ontology are highlighted and discussed in more detail.



Chapter 6

Commonsense Ontology

6.1 Introduction

In many ways, the corpus of legal information available today is the world
wide web’s little sister, at least qua structure (Hoekstra, 2008).1 It consists of a
huge volume of heterogeneous, but closely inter-linked documents. These doc-
uments are increasingly being made available in digital form as part of public
accessibility projects by governments.2 However, a major difference is that the
relations between legal texts are typically expressed in natural language only.
Also, these references are not always absolute, typically point to parts of doc-
uments, and often import an externally defined meaning of a term (de Maat
et al., 2008; de Maat et al., 2006). Consolidation of such semantic references
into a single representation introduces a significant maintenance issue, as legal
texts are very dynamic and undergo change independently from each other.
In fact, the meaning of terms in law imposes an ordering on entities in reality
that can change over time, but stays applicable to older cases. In short, law ad-
opts an intricate versioning scheme (Boer et al., 2004a,b; Klarman et al., 2008).
The MetaLex/CEN3 XML standard for legislative sources provides an XML
schema for representing the structure and dynamics of legal texts (Boer et al.,
2007c, 2002).

A semantic representation – be it for the purpose lightweight annotation,
consistency checking or legal knowledge based reasoning (planning, assess-
ment) – should take the dynamic and structural properties of legal texts into ac-
count. This is most directly reflected in the principle of traceability: any repres-
entation of some legal text should be traceable to its original source; it should
be isomorphic (Bench-Capon and Coenen, 1991). A representation of some (part
of) legislation is dependent on that legislation, and is therefore essentially al-

1This chapter is a revised version of a series of papers on the LKIF Core ontology written to-
gether with Joost Breuker and Alexander Boer (Breuker et al., 2006, 2007; Hoekstra et al., 2007,
2008).

2An example is the portal of the Dutch government http://www.wetten.nl that discloses
currently active legislation

3CEN is the European Committee for Standardisation, See http://www.metalex.eu, http:
//legacy.metalex.eu and http://www.cen.eu
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ways an annotation on that text. This view is central to e.g. the structure blocks of
van Engers and Glassée (2001), where the UML/OCL representation of struc-
tural elements in legislation is organised in corresponding UML packages.4

The MetaLex/CEN initiative provides a standard transformation of XML
encoded legal texts to RDF/XML. More elaborate, formal representations of
the contents of the texts in OWL are then related to this RDF representation.
A relatively uncharted application area for this approach is that of compliance,
where the business processes of organisations (businesses and governments
alike) need to be aligned with respect to some body of regulations. An addi-
tional requirement of the legal domain is that definitions of concepts should be
represented in such a way that their semantic interpretation mimics the struc-
ture and applicability of the texts. This includes means to scope definitions with
respect to particular parts of a text, as in e.g. deeming provisions, regarding the
temporal validity of a text (Klarman et al., 2008), and concerning its jurisdiction
(Boer et al., 2005b, 2007b).

One could argue that such requirements indicate the need for knowledge
representation languages specific to law (as in e.g. deontic logics). However,
the legal field is in one respect wholly analogous to the web in that legal in-
formation is used and incorporated in a wide variety of systems, each using the
information in different ways. Also, the whole body of legal information is not
maintained by a single issuer, but rather by a significant number of authorities
that each publish, incorporate, extend, comply with, enforce and implement
regulations. Therefore, the requirements for knowledge representation on the
Semantic Web hold for representation of legal sources as well. Especially as
the information exchange between those parties can benefit enormously from a
well designed standard. This principle lies at the heart of the Legal Knowledge
Interchange Format (LKIF) that allows for the interchange of legal knowledge
between commercial vendors (Boer et al., 2007a,c).5

As an interchange format, one would expect LKIF to be a knowledge rep-
resentation language in its own right just as e.g. the KIF of Genesereth and
Fikes (1992) or its successor CommonLogic (ISO/IEC, 2007). However, LKIF
rather specifies a knowledge interchange architecture for alternative ways of
expressing different types of legal knowledge using three different representa-
tion paradigms. The first approach is characterised by the pragmatism of legal
knowledge based system vendors. Commercial representation languages are
typically rather inexpressive rule formalisms and constructed for the specific
purpose of supporting features of the vendor’s application suite (Gordon et al.,
2007b). The second paradigm is defined by a theoretical focus on the epistem-
ological status of knowledge as part of legal reasoning. In this view, a legal
knowledge representation language does not purport to provide definitions,
but rather characterises the use and manipulation of information to establish
and justify legal facts. Legal knowledge is interpreted as the knowledge of
reaching a legally valid conclusion. In LKIF, this strategic control knowledge
(Clancey, 1983; Breuker and Van De Velde, 1994; van Heijst et al., 1997) is cap-
tured by a defeasible rule formalism, and more prominently by a theory of

4OCL: the Object Constraint Language, see http://www.omg.org/technology/

documents/formal/ocl.htm.
5LKIF is developed as part of the Estrella project: European project for Standardized Transpar-

ent Representations in order to Extend Legal Accessibility (IST-2004-027655), see http://www.

estrellaproject.org

http://www.omg.org/technology/documents/formal/ocl.htm
http://www.omg.org/technology/documents/formal/ocl.htm
http://www.estrellaproject.org
http://www.estrellaproject.org
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argumentation (Boer et al., 2007a; Gordon et al., 2007a; Gordon, 2007).6

Where the second perspective emphasises epistemological status and legal
theory – i.e. it does not include an explicit domain theory – the third ap-
proach adopts the knowledge representation perspective outlined in the preced-
ing chapters. In this view, legal knowledge is characterised as that which is
reasoned with rather than a specification of legal reasoning itself. The former
can be expressed as a domain theory using the OWL DL knowledge represent-
ation formalism, while the latter is captured by meta components that imple-
ment problem solving methods over a monotonic DL knowledge base (Breuker
and Van De Velde, 1994), as in the knowledge system shells of Marcus (1988) or
Chandrasekaran and Johnson (1993). Typical legal reasoning tasks are legal
assessment, i.e. determining whether some case or situation is allowed or dis-
allowed given a system of normative statements, legal planning (Valente, 1995),
but also legal argumentation. However, the way in which these tasks are per-
formed is not necessarily particular to the legal domain. For instance, though
legal argumentation differs from argumentation in general in that it is adversarial
and takes place in court, the positing of arguments (hypotheses) and support
(proofs, findings) is central to any type of problem solving (cf. Breuker (1994);
Boer (2000), and Figure 2.9). The knowledge representation perspective allows
for an isomorphic representation of the contents of legal sources as annotation,
required for traceability and maintainability.

6.1.1 A Functional View

Clancey (1983) identified different types of rules involved in the medical do-
main theory of the MYCIN system (Section 2.3.2): identification, causal, world
fact and domain fact rules. Similarly, the domain theory of legal knowledge
based systems is not homogeneous either. Valente (1995); Valente and Breuker
(1995) give a general breakdown of the types of knowledge and their depend-
encies involved in the legal domain. Valente’s Functional Ontology of Law
(FOLaw) describes the legal system as an instrument to influence society and
reach certain social goals, i.e. it exists to fulfil a function. The legal system
can be viewed as a “social device operating within society and on society, and
whose main function is to regulate social behaviour” (Valente, 1995, p. 49).

Despite its name, FOLaw is not really an ontology at all, at least not in the
strict sense. It describes the categories of legal knowledge we can reason about,
i.e. the kinds of things one can ‘know’ in the legal domain and not the things
that ‘exist’. It is an epistemological framework, an ontology of the epistemology
of law, cf. (Breuker and Hoekstra, 2004c, and Section 5.5.2). FOLaw distin-
guishes seven types of knowledge: commonsense knowledge, world know-
ledge, normative knowledge, responsibility knowledge, meta-legal knowledge,
creative knowledge and reactive knowledge. Any legal knowledge based sys-
tem will incorporate at least one of these knowledge types. In fact, FOLaw does
not just have a functional perspective on the legal system itself, but on the dif-
ferent knowledge components within this system as well (Levesque, 1984, and
Section 2.4.1).

The most characteristic category of legal knowledge is normative knowledge.

6A reasoner for unfolding argumentation schemes is implemented as part of the Carneades
argument mapping system, http://carneades.berlios.de/.

http://carneades.berlios.de/
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Figure 6.1: The Funtional Ontology of Law

Normative knowledge reflects the regulatory nature of law, and has two func-
tions: prescribing behaviour, and defining a standard of comparison for social
reality. A norm expresses an idealisation: what ought to be the case (or to hap-
pen) according to the will of the agent that created the norm (Kelsen, 1991).
Meta-legal knowledge governs relations between norms, and is applied when
solving normative conflicts (Elhag et al., 1999), and determining the preference
ordering of norms (Boer, 2009). Legal principles such as lex specialis, lex superior
and lex posterior are types of meta-legal knowledge.

Because law governs the behaviour of agents in the world, it must contain
some description of this behaviour. The separation between the knowledge
used to describe the world and the normative knowledge was first explicitly
proposed in Breuker (1990), where this category was called world knowledge, or
the Legal Abstract Model (LAM). This model functions as an epistemological in-
terface between the legal system and social reality. World knowledge consists
of definitional knowledge and causal knowledge and defines legal concepts and
(causality) principles as abstractions of commonsense concepts. The know-
ledge needed to attribute responsibility given the legal (causal) interpretation
of some story or state of affairs, is characterised as responsibility knowledge.

The functional ontology of law describes the path along which a formal ac-
count travels as it is under consideration of the legal system (see Figure 6.1).
When an account ‘enters’ the legal system, it is enriched with legal vocabu-
lary, i.e. it is interpreted and legally qualified. The causal relations between
events described in the account are identified. This interpreted causal account
is then considered for norm violations, using some body of normative know-
ledge (rules, legislation, precedents), and liability is determined for agents
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(in)directly responsible for the violation or some harm. A reactive measure
is then taken on the basis of the outcome of this process.

6.1.2 Purpose

The FOLaw approach is reflected in various systems, such as the TRACS sys-
tem on traffic regulations of den Haan (1992, 1996), the ON-LINE legal inform-
ation server of (Valente, 1995; Valente and Breuker, 1999), and the MILE sys-
tem for legal assessment in the ship insurance domain developed within the
CLIME project (Winkels et al., 1998, 2002).7 In these systems, definitional and
normative knowledge were most prominently defined. In particular, the world
knowledge of the MILE system was represented as a domain ontology com-
prising 3377 concepts and 11897 relations (Boer et al., 2001). It covered about
15% of the regulations for ship classification of Bureau Veritas, a large insur-
ance firm in France, and all of the MARPOL I and II regulations for maritime
pollution.8 In all, the ontology had 8289 references to these legal sources. The
CLIME ontology was used by the MILE system for conceptual retrieval on the
body of regulations. Queries could be formulated in terms of concepts and
relations of the ontology. This set was then expanded using a finite state auto-
maton, and references to the regulations from this result set were presented
to the user. The rationale for a particular result was explained as a minimal
path from the concepts in the result set to the query set. Later, the ontology
was reused in a knowledge desktop environment that provided workflow direc-
ted document management support for insurance surveyors (Jansweijer et al.,
2001).

The way in which the CLIME ontology improved the accessibility of the
Bureau Veritas regulations was a typical knowledge management use. For in-
stance, the legal encoding tools (LET) editor that was used to build the onto-
logy offered typical management functionality, such as automatic indexing and
concept extraction (Boer et al., 2001).9 The ontology itself was relatively light-
weight; the language in which it was expressed supported a fixed set of five
relations and did not have formal semantics.10 A similar perspective on onto-
logy use is e.g. exemplified by the DALOS ontology of Agnoloni et al. (2009),
the intellectual property rights ontology IPROnto (Delgado and García, 2003),
and the ontology for the Iuriservice portal (Casellas et al., 2007).

However, the CLIME ontology was also the basis for incremental specific-
ation of normative knowledge. Concepts in the ontology were used directly
in the representation of norms. This proved to be a significant bootstrapping
mechanism, not just in development speed, but also as a backbone for calcu-
lating the exception structure of norms as given by the lex specialis principle
(Winkels et al., 1999). The legal assessment engine of MILE depended on infer-
ences over the domain knowledge in the CLIME ontology.

In a similar vein, the LKIF includes a core ontology (LKIF Core) that provides

7CLIME, Cooperative Legal Information Management and Explanation, Esprit Project EP25414
8See http://www.bureauveritas.com and http://www.imo.org/Conventions/

contents.asp?doc_id=678&topic_id=258.
9It was in fact experience in developing the LET that initiated the MetaLex initiative of Boer

et al. (2002).
10The five relations of CLIME were subsumption, part of, observable, measurable, related to and

their inverse.

http://www.bureauveritas.com
http://www.imo.org/Conventions/contents.asp?doc_id=678&topic_id=258
http://www.imo.org/Conventions/contents.asp?doc_id=678&topic_id=258
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a vocabulary and a set of standard definitions of concepts common to all legal
fields (Breuker et al., 2007; Hoekstra et al., 2007, 2008). In Breuker et al. (2007);
Hoekstra et al. (2007, 2008) we identified three main ways for a legal core onto-
logy to support information exchange in the setting of LKIF (cf. Valente (2005)).
First of all, the ontology can serve as a resource for special, legal inference.
Secondly, the definitions of terms in the ontology can facilitate knowledge ac-
quisition, a terminological framework can facilitate the exchange of knowledge
across multiple knowledge bases, and lastly it can be a basis for semantic an-
notation of legal information sources.

Resource for Special, Legal Inference Typical and abstract legal concepts
are often strongly interrelated and thereby provide the basis for computing
equivalencies, or paraphrases, and implications. For instance, by representing
an obligation as the opposite of a prohibition, a (legal) knowledge system can
make inferences that capture the notion that they are each others’ inverse. A
prohibition leaves all options open – except the one that is forbidden – while an
obligation is unavoidable when all its requirements, or conditions, are satisfied.
Although this implicit knowledge is relevant when reasoning with norms and
cases, it does not express the control knowledge of reasoning (as in problem
solving methods), but merely elicits the implications of declarative definitions.
Specialised legal inference can be based on definitions of concepts in an on-
tology: an inference engine can generate the implied consequences of explicit
concept definitions.

A classical example of specialised inference using the definitions in an on-
tology and a (general) inference engine is temporal reasoning based on Al-
len (1984)’s ontology of time (Section 6.3.1). To enable special inference, terms
should be highly interrelated and form a coherent cluster with little or no ex-
ternal dependencies (Hayes (1985), and Section 5.2). An example of such a
cluster in the legal domain is that of the terms that denote deontic qualifica-
tions. Clusters of this type are usually found at very high levels of abstraction.

Knowledge Acquisition Support The classical use of both top and core on-
tologies in knowledge representation is as a means to support knowledge ac-
quisition (Section 5.4). If well designed and explained, they provide an initial
structure to which domain terms can be attached as subclasses. Inheritance of
properties and other implicit knowledge can then be used to check not only
consistency, but also the extra-logical quality of the ontology: whether what is
derived (classes, properties) makes sense. The use of a core or top structure that
has well tested and evaluated implications, makes it easier to check whether
domain refinements are not only consistent, but also arrive at inferences that
correspond to what the knowledge engineer or user holds to be valid. The
knowledge acquisition support of ontologies is not restricted to just ontological
or even terminological knowledge. For instance, the incremental specification
of normative knowledge in the CLIME ontology is an example where an onto-
logy aids in the knowledge acquisition of non terminological knowledge.

Preventing Loss in Translation A legal ontology can play an important role
in the translation of existing legal knowledge bases to other representation
formats. In particular when these knowledge bases are converted into LKIF
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as the basis for articulate knowledge serving. Similar to a translation between
different natural languages, a formal, ‘syntactic’ translation may clash with the
semantics implied by the original knowledge representation. An ontology, as
representation of the semantics of terms, allows us to keep track of the use of
terms across multiple knowledge bases.

Resource for Semantic Annotation The semantic annotation of legal sources,
such as regulations and jurisprudence is an important contribution to the ac-
cessibility and maintainability of these sources. First of all, an ontology can be
a source for information retrieval, such as e.g. the CLIME ontology. Secondly,
the status of an officially sanctioned legal text is primarily determined by its
relation to other legal texts (Boer et al., 2004a). This status can be made explicit
by expressing it using ontologically defined relations. In fact, these relations
do not just hold between the texts themselves, but between the formal repres-
entations of their content as well (Klarman et al., 2008).

Besides the general requirements for knowledge representation ontologies out-
lined in the preceding chapters, the ontology is to contain a core set of defini-
tions for describing specific legal terms. We have seen that law can be viewed
as an instrument used by the legal and political system to identify and control
situations and events in social interaction (Valente, 1995). By far the bulk of
social situations, be it in our family life, at work, related to transport, prop-
erty, crime, etc. is not described in specialised technical terms: their meaning
is part of common sense. For instance, the conflicts and problems brought to
court – legal cases – are initially described using common sense terms, and are
gradually translated into legal technical terminology in the process of coming
to a decision. For this legal qualification to be possible, the gap between the
vocabulary of a case and legal terminology needs to be bridged (Winkels and
de Bruijn, 1996). The possibility of legal qualification in general – by legal pro-
fessionals – is a strong indication that the vocabularies of legal knowledge and
common sense are not disjoint. Legal terminology can be reduced to the actual
societal events and states governed by law. In other words, the basic categories
of the LKIF ontology should reflect Valente’s view that legal world knowledge
is an abstraction of common sense.

A third requirement for LKIF is given by the ideal of the Semantic Web to
achieve understanding both between web services and between human users
(Chapter 3). In fact, a commonsense perspective is also applicable to any ser-
ious endeavour towards a Semantic Web. As the the web is about the most
diverse information source we know today, a common sense oriented ontology
would certainly be an important first step to more uniform web-based know-
ledge representation. Conversely, as hinted at in the introduction, the distri-
bution of legal information across various strongly interconnected sources is a
demanding use case for semantic web technology (Hoekstra, 2008). An import-
ant requirement is therefore that the LKIF core ontology should be represented
using the DL profile of OWL.

The following sections describe the theoretical and methodological frame-
work against which the LKIF core ontology has been developed. Section 6.2.1
discusses the perspective used in its construction in relation to five other onto-
logies. The methodology used to construct the LKIF ontology is discussed in
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Section 5.2. Section 6.3 introduces the modules and most important concepts
of LKIF Core.

6.2 Developing a Core Ontology

Given a commonsense perspective, it is expected that (at least parts of) exist-
ing ontologies would be reusable. Either as a source of inspiration or for the
purpose of full formal reuse of definitions. This would hold in particular for
top ontologies that include legal terms, as for instance listed in Casanovas et al.
(2006). Unfortunately, it turned out that the amount of reuse and inspiration
was rather limited. Not only do existing ontologies diverge on the approach,
coverage and knowledge representation language used; those ontologies that
do claim a common sense or similar perspective differ in their conception as to
what such a perspective means.

6.2.1 Ontology Integration

This section evaluates several of the foundational and core ontologies intro-
duced in Section 5.4.1 with respect to a potential contribution to LKIF Core.
The main requirement is their suitability to enable the primary roles of the
LKIF ontology outlined in the previous section. We pay specific attention to
their definition of commonsense and legal terms, and possibilities for safe re-
use (Section 5.4.2).

Suggested Upper Merged Ontology

The SUMO ontology of Niles and Pease (2001) brings together insights from
engineering, philosophy, and information science. It provides definitions for
general purpose terms, is intended as a unifying framework for more specific
domain level ontologies. As a starting point for a legal core ontology SUMO
has several drawbacks. First of all, it does not readily provide definitions of
terms relevant to the legal field – e.g. its coverage of mental and social entit-
ies is limited. Because of the way in which SUMO is constructed, it has a bias
towards more abstract and theoretical insights coming from engineering and
philosophy. Although it is non-revisionist, as in e.g. the distinction between
objects and processes, it does not have a real commonsense basis. Further-
more, as discussed in Section 5.4.1 SUMO is a foundational ontology and uses
meta modelling, such as in the definitions of classes, binary relations and sets.
As SUMO is represented in the expressive language KIF, and more recently
CommonLogic, this practice is not fundamentally problematic. However, it
means that safe reuse of SUMO definitions in the construction of an OWL DL
ontology is not possible.

Descriptive Ontology for Linguistic and Cognitive Engineering

DOLCE is part of the WonderWeb library of foundational ontologies, cf. Masolo
et al. (2003); Gangemi et al. (2002). It was meant as a reference point for the
other ontologies in the library, to make explicit the differing rationale and al-
ternatives underlying the ontological choices of each ontology. Rather than a
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coherent set of ontological commitments, it captures a range of alternatives.
This way, the library would form a network of different but systematically re-
lated ontology modules. The relation between an ontology, available in the lib-
rary, and the DOLCE ontology expresses its ontological commitment to partic-
ular ontological options. DOLCE was therefore never presented as the founda-
tional ontology it is currently regarded as, but it has been successfully used as
such in a large number of projects.

DOLCE is very much an ontology in the philosophical tradition, and differs
from the knowledge representation perspective in two significant ways. Firstly,
its perspective is philosophical with respect to its content, i.e. it is aimed to dir-
ectly represent reality. And secondly, it is subject to the epistemological promis-
cuity of philosophical ontology because it is rather an extension of the know-
ledge representation formalism at the ontological level (Guarino, 1994), than a
model expressed using that formalism. The meta-level character of DOLCE
means that the ontology is not a representation of knowledge, but of the terms
used to describe knowledge – in the same way that the constructs of OWL are.
Like SUMO, DOLCE was originally specified in first order logic and the highly
expressive KIF language. Its OWL DL representation (DOLCE-Lite) is more re-
strictive, e.g. it does not consider temporal indexing and relation composition.

The DOLCE ontology is descriptive, and is based on the stance that “the
surface structure of natural language and human cognition”11 is ontologically
relevant. It is argued that this perspective results in an ontology that captures
cognitive artefacts more or less depending on human perception, cultural im-
prints and social conventions, and not deep philosophical insights of Onto-
logy. DOLCE thus claims an approach that fits more with a commonsense
perspective than the science perspective of SUMO. However, the suggestion
that this surface structure has any bearing on common sense is not based on
evidence. Rather, the methodological commitment to the surface structure of
language and cognition almost inevitably resulted in an intricate framework
of theoretical notions needed to encompass the idiosyncrasies of human lan-
guage use. Alternatively, rather than constructing an ontology by studying
reality through the kinds of categories implicit in natural language, a prag-
matic approach based more directly on the conceptualisation of reality we use
and live by in our daily routine is more appropriate (Breuker and Hoekstra,
2004a; Hoekstra et al., 2008, and Section 6.2.2).

Core Legal Ontology

Over the years, DOLCE has been extended in several ways. DOLCE+ is the
extension of DOLCE with a theory on descriptions and situations (also called
D&S, Gangemi and Mika (2003)). CLO, the Core Legal Ontology (Gangemi
et al., 2005) extends DOLCE+ even further and defines legal concepts and re-
lations based on its formal properties. CLO was designed to support both the
definition of domain ontologies, a juridical Wordnet, and the design of legal
decision support systems. To a large extent these goals correspond with the
requirements of the LKIF ontology.

CLO conceives the legal world as a description of social reality, an ideal view
of the behaviour of a social group. It builds on the D&S distinction between

11Emphasis by the authors, Masolo et al. (2003)
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descriptions, and situations. Examples of legal descriptions, or conceptualisations,
are the contents of laws, norms, and crime types. These descriptions constrain
legal situations, i.e. legal facts of cases, such as legal, relevant non-legal and
juridical states of affairs. Every legal description classifies a state of affairs. More
precisely, a legal description is the reification of a theory that formalises the
content of a norm, or a bundle of norms. A legal case is the reification of a state
of affairs that is a logical model of that theory. A description is satisfied by a
situation when at least some entity in the situation is classified by at least some
concept in the description. Classification in CLO is thus not DL classification,
and it is unclear as to what extent the two interpretations are compatible.

As described earlier, the legal system as description, or rather prescription,
of reality is not new, cf. Valente (1995, others). However, the CLO distinction
between descriptions and situations is rather one dimensional in that it does
not commit to an ontological view of the kinds of descriptions involved. In line
with the DOLCE ontology, it confounds the distinction between representation
and the represented with representation and reality. Although it introduces new
levels of abstraction by reification, it does not provide ontological categories
that can be used to describe the knowledge at these levels. In a language that
itself can be conceived as providing the means to construct descriptions of real-
ity (situations), such as OWL DL, it is unclear what the epistemological status
of the classes ‘description’ and ‘situation’ themselves is. For instance, what is
the difference between an individual description being classified-in-the-OWL-
sense as some description class, and a situation class being classified-in-the-
CLO-sense by that same description?

As CLO relies on a subset of DOLCE for the definition of elements of situ-
ations, it is subject to the same criticism with respect to its commonsense per-
spective. Moreover, the lack of ontological commitment at the level of descrip-
tions undermines its suitability for knowledge acquisition support in a legal
setting as well. Although for sure a norm can be described as some descrip-
tion of a situation, it is not the norm-as-description that uniquely characterises
what a norm is. This holds especially for less obvious ‘descriptions’ (in CLO
terms), as e.g. damage or right of way.

CYC

CYC is a huge unified ontology of commonsense concepts (Lenat et al., 1990;
Lenat, 1995). Although the project has started as early as 1984, its general set-
up corresponds to that of later large scale ontology efforts. The main motiv-
ation for the Cyc Project was that all software programs would benefit from
the availability of commonsense knowledge. This idea is not new, and was ac-
knowledged in the early years of AI: “A program has common sense if it auto-
matically deduces for itself a sufficiently wide class of immediate consequences
of anything it is told and what it already knows” (McCarthy, 1959, p.2).

The idea is that, when enough commonsense knowledge is represented,
and a certain threshold is reached, a quantum-leap (“The Singularity”)12 would
enable CYC to expand its knowledge through guided learning (as a human
child would). This theory is in line with Minsky’s ideas about how computers
can become intelligent beings: add enormous amounts of commonsense know-

12Indeed, CYC is a much-hyped project, and has received a lot of criticism because of it.
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ledge (Minsky, 1982, 1984). This basic knowledge about the workings of the
world would finally allow you to send the kid to school. With currently over
300K concepts, the knowledge base seems well under way in reaching this
threshold, however we still have to see the first results.13

The upper part of the CYC ontology is claimed to express a commonsense
view and indeed it is more concrete than either SUMO or DOLCE. On the other
hand, from a methodological point of view, the CYC approach is not very satis-
factory either. Technically, CYC qualifies rather as a terminological knowledge
base than as an ontology proper.14 Instead of a meticulous study of the actual
workings of the world, as in SUMO, or the surface structure of language and
cognition, as in DOLCE, it seems the approach followed is to have a bunch of
knowledge engineers simply put everything they know into the CYCL form-
alism.15 This procedure results in a large portion of the knowledge base being
decidedly non-ontological, but rather context dependent frameworks (see Sec-
tion 5.5.2).

Furthermore, CYC suffers from two more technical impediments for reuse.
Firstly, like SUMO and DOLCE, it is specified in the very expressive CYCL
representation language, which is based on first-order predicate calculus. Re-
cently a port of the publicly available OpenCYC effort has been made available
in OWL Full, but again, this does not cover the full semantics of the ontology.16

CYCL admits meta modelling, which indeed is used liberally throughout the
ontology – even more so than in DOLCE and SUMO. Secondly, the sheer size
of the knowledge base – as with most unified ontologies – introduces signific-
ant reasoning overhead for even the simplest tasks. As such, CYC seems more
suitable for direct inclusion in a knowledge based system than as a conceptual
coat rack for ontology development on the Semantic Web.

6.2.2 Ontology Reuse

Thus far, the ontologies we reviewed do not appear to meet the requirements
for the top structure of a legal core ontology. Although in the past few years the
ontologies underwent changes and extensions, these results are in line with the
outcome of an earlier review (Breuker and Hoekstra, 2004a). Firstly, the ontolo-
gies are specified at multiple (meta) levels of abstraction, using very expressive
languages, which limits possibilities for safe reuse.

Furthermore, in all three ontologies those concepts that are of relevance to
law are either scarce and under specified, or overly theoretical. In particular,
our requirement that a legal core ontology should be built on a commonsense
conception of reality is not met. Where a commonsense perspective is claimed,
it is not motivated, explained or substantiated. The common sense of CYC is in
fact common knowledge, or rather “human consensus reality knowledge” (Lenat
et al., 1990, p. 33), i.e. that knowledge of things most humans will concede to
exist in reality. In contrast, the DOLCE and SUMO ontologies do not commit

13The online game FACTory for teaching CYC is online at http://game.cyc.com.
14A random concept search just returned ‘Laurel Goodwin’, the acclaimed American actress

who played the memorable role of Yeoman J.M. Colt in the 1966 pilot of Star Trek. See http:

//sw.cyc.com/2006/07/27/cyc/LaurelGoodwin.
15See http://www.cyc.com/cycdoc/ref/cycl-syntax.html
16See http://www.opencyc.org for an online browser and http://www.cyc.com/2004/

06/04/cyc for the OWL Full version

http://game.cyc.com
http://sw.cyc.com/2006/07/27/cyc/LaurelGoodwin
http://sw.cyc.com/2006/07/27/cyc/LaurelGoodwin
http://www.cyc.com/cycdoc/ref/cycl-syntax.html
http://www.opencyc.org
http://www.cyc.com/2004/06/04/cyc
http://www.cyc.com/2004/06/04/cyc
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to the ontological relevance of human consensus, but rather aim to provide
an ontological grounding for all knowledge. They do this in two distinct ways.
SUMO is based on scientific knowledge of objective reality, and for DOLCE the
way in which we apply and consciously report our knowledge is ontologically
relevant.

Both approaches are generic enough to be the basis for an ontology that
describes our common sense, in the sense of common knowledge. However,
in our view, common sense refers not to some common body of knowledge
of reality, but rather to the commonality of the scope and detail of that know-
ledge as it manifests itself in individual persons: it is a level of description, much
akin to the basic level of Lakoff (1987) (see Section 5.2). Characteristic of this
level is not just the kind of things we commonly know, but more importantly,
the way in which this knowledge is structured. But for the last requirement,
a philosophical approach would be perfectly adequate. However, a common-
sense ontology should not be specified in highly specific, theoretical jargon, but
should rather have a commonsense structure of its own.

LRI Core

The review in Breuker and Hoekstra (2004a) motivated a decision to develop a
legal core ontology to support the development of ontologies for criminal law
in various European countries, as part of the e-Court project.17 This ontology,
LRI Core, was developed with a set of design goals similar to that of LKIF Core,
cf. Breuker and Hoekstra (2004c,a). What sets LRI Core apart from other onto-
logy efforts is that its definitions were aimed to be verifiable through empirical
research on how humans relate concepts in actual understanding of the world;
and not about revisionist views of how we should view the world as it actually
is (as e.g. in correct theories of the physical world) or as it makes up a parsimo-
nious view on reality (as e.g. in philosophical views on the main categories of
description).18 This kind of empirical evidence can range from cluster analysis
of semantic distance between terms, to neuro-psychological evidence.

Central to this effort is the view that common sense is rooted in a conceptu-
alisation that is at its heart the result of our evolution. This conceptualisation
is developed in order to deal with a dynamic and potentially dangerous en-
vironment. Our capacity to move, perceive and interact with reality has led to
increasingly complex cognitive representations. These representations range
from hard-wired abstraction in our perception system, such as the ability to
perceive straight lines and angles at a mere 2 neurones away from the retina,
via the inborn syntheses of perceptual input into basic properties, to – eventu-
ally – the representations accessible to conscious thought.

This range of increasingly abstract and complex representations of reality
defines an axis that indexes organisms in successive stages of evolutionary
development, e.g. from viruses and bacteria to multi-cell organisms, insects,
mammals, primates and finally homo sapiens. In other words, the compet-

17Electronic Court: Judicial IT-based Management. e-Court was a European 5th Framework
project, IST 2000-28199.

18For instance the classical distinction between abstract and concrete concepts in philosophy
does not fit well with human understanding of the dynamics of the world in terms of physical
causation, intention and life. The commonsense explanation of an event may involve all three
categories.
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encies of our genetic ancestors give insight in what the roots of our common
sense are. These roots may well be hidden too deep to be accessible to con-
scious thought and introspection. Nonetheless, on the basis of insights in cog-
nitive science we can make several basic distinctions that go well beyond a
mere hunch. As most are of relevance to the LKIF Core ontology as well, they
are briefly outlined below.

A Cognitive Science Perspective Given that the physical environment is rel-
atively stable – the notable exceptions being day-night cycles, changing weather
conditions and the occasional geological perturbation – the perceptual appar-
atus of most organisms is tuned to register the slightest change occurring against
this stable canvas. Of particular relevance is the ability to be aware of changes
induced by other organisms. Firstly, the presence of another organism may
present an opportunity for reproduction and sustaining metabolism (i.e. by eat-
ing). And secondly, their presence may signify a direct threat to an organisms’
existence. The result is a prominent distinction in cognition between ‘back-
ground’ and ‘foreground’ (Hobbs, 1995). In general our awareness is directed
to the discontinuity of change rather than spatial arrangements of objects or
historical continuity. The ability to perceive stability is enabled by episodic
memory, though it requires some conception of the physical constraints under-
lying this stability. An example is the general rule that physical objects keep
their position unless subjected to a change in the exertion of force. Changes
occur against the canvas of temporal and spatial positions, and the speed of a
change is indicative of whether it becomes foreground or remains in the back-
ground.

In LRI Core, the view that knowledge serves to interpret occurrences in the
world was reflected by a contrast between concepts on the one hand, and indi-
viduals and their occurrence (instance) on the other. Furthermore, the cognit-
ively primary distinction between static and dynamic elements in the (phys-
ical) world is reflected by differentiating objects and processes. Objects have
extensions in space where processes have extensions in time, but are contained
by objects. Processes reflect a causal explanation of change. The notions of
space and time do not just play a role as the extension of objects and processes
but can indicate positions as spatio-temporal referents. The spatio-temporal
position of of objects is not inherent: a change in position does not constitute a
change in an object.

Very recent – at least in evolutionary terms – mammals developed the abil-
ity to attribute intentions to other animals. Because of the intentional inter-
pretation of behaviour, change is no longer private to physical causation but
to the actions of other agents as well. Actions are always intentional “under
some description” (Davidson, 2001, ch.3): performing an action comes down
to the initiation of processes that bring about some intended change or state.19

Paradoxically enough, taking into account the mental state of other animals
precedes the ability to consciously reflect on our own mind. And although this
was long thought to be a skill exclusive to humans, it has been shown that our
next of kin – chimpanzees, bonobo’s – have self awareness as well.

19Note that this allows the same events to be not intentional under some other description. How-
ever, if we take the events to constitute an action, this is a description that presupposes intention-
ality.
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Because mental representation of other mental representations is a fairly
recent accomplishment, the models we construct reuse many parts of the con-
ceptualisation originally developed to deal with physical reality. We think and
speak of mental processes 20 and mental objects in the same terms we use to talk
about the physical world. In other words, these terms are metaphors of similar
physical notions. Some, i.e. Lakoff and Núñez (2000), even argue that the same
mechanism is used to construct the highly abstract notions of mathematics.

Social awareness and self awareness are the most important prerequisites
for complex social behaviour. First of all, they enhance the predictability of
our environment by allowing us to take the possible intentions of other agents
into consideration for planning and control. Secondly, it allows us to share
plans with other agents. Repeated execution of such co-operative plans can
render them institutionalised by a community. Plans make extensive use of
roles to specify expected or default behaviour. The ability to play a certain
role expresses a (recognised) competence, sometimes acknowledged as a social
‘position’. In LRI Core, roles played a central part in the construction of social
structures.

The LRI Core ontology distinguished four ‘worlds’:

1. A physical world, divided by processes and objects, each containing matter
and energy.

2. A mental world, containing mental objects and mental processes. The
mental world is connected to the physical world through actions, which
translate an intention into some physical change.

3. A social world, built from mental objects such as roles

4. An abstract world, which contains only formal, mathematical objects.

Because of its grounding in cognitive science and its explicit common sense
perspective, the characteristics of the LRI Core ontology are relatively similar
to those intended for the LKIF ontology – especially in comparison to the other
ontologies we discussed so far. And it is indeed true that it can in many ways
be seen as the direct precursor of the LKIF ontology.21

Nonetheless, the LRI Core ontology falls short in several important respects.
Though it is specified in OWL DL, most concepts in the ontology are under
specified. They are defined by subsumption relations, and are only sparsely
characterised using more complex class restriction. Furthermore, the distinc-
tion between the different worlds in LRI Core is fairly absolute, and no theory
is provided as to how they are connected and interact. Thirdly, apart from a re-
latively well-developed characterisation of roles, LRI Core is relatively under-
developed with respect to the mental world. For instance, it emphasises phys-
ical objects, processes, energy and substance while remaining rather sketchy
with respect to their mental counterparts. In part the limitations of LRI Core
can be ascribed to an unprincipled top down methodology (see Section 5.3).

Concluding, although the perspective and main distinctions of LRI Core
were used as inspiration in the construction of the LKIF ontology, it is not

20Also: mental actions, e.g. in (trying) to control one’s thoughts.
21This is not really surprising as there exists an overlap between the developers of LRI Core and

LKIF Core.
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# Importance Abstractness Legal Relevance

1 Law Deontic operator Civil law
2 Right Law Law
3 Jurisdiction Norm Legal consequence
4 Permission Obligative Right Legislation
5 Prohibition Permissive Right Obligation
6 Rule Power Right
7 Sanction Right Authority
8 Violation Rule Deontic operator
9 Power Time Duty
10 Duty Anancastic Rule Jurisdiction
11 Legal Position Existential Initiation Legal Fact
12 Norm Existential Termination Legal Person
13 Obligation Potestative Right Legal Position
14 Permissive Right Productive Char. Legal Procedure
15 Argument Absolute Obl. Right Liability

Table 6.1: Fifteen highest scoring terms for importance, abstractness, and legal
relevance.

simply a specialisation of LRI Core. Not only is it built from the ground up, the
methodology by which it is constructed forces a broader, more concrete, and
more rigorous definition of concepts and relations. First, the scope of the onto-
logy was determined by selecting a core set of basic concepts. These concepts
were organised in modules, and formed the basis for a middle-out construction
of the ontology.

6.2.3 Scope

The LKIF Core ontology is to provide a core set of definitions to be used across
the legal domain. Not only should these definitions be relevant to law, they
should exist at a level that allows for a more specific interpretation of terms
in sub domains of the field such as criminal or private law. Furthermore, a
focus on overly theoretical and abstract concepts impedes the connection to
common sense. In other words, we are looking for the basic concepts of law
(Lakoff, 1987, and Section 5.3.1) that allow us to construct the ontology in a
middle-out fashion (Uschold and King, 1995, and Section 5.3).

As discussed in Section 5.3.1, what concepts count as basic depends on the
expertise present in a community of practice. Where ‘manslaughter’ may be
basic to legal professionals, the average citizen is unlikely to be able to explain
how it is different from murder. To obtain an appropriate level of descrip-
tion, the basic concepts in the ontology should reflect the heterogeneity of its
prospective users. In Breuker et al. (2007) we identified three main groups of
users: citizens, legal professionals and legal scholars. Although legal professionals
use the legal vocabulary in a far more precise and careful way than laymen, for
most of these terms the extent of common understanding is sufficient to treat
their usage as analogous (Lame, 2004). Nonetheless, a number of basic terms,
such as ‘liability’ and ‘legal fact’, have a specific technical legal meaning.

Several representatives from every partner in the Estrella consortium, cov-
ering each of the three user groups were asked to supply their Top 20 of legal
concepts. These lists were combined with terms frequently occurring in literat-
ure such as jurisprudence and legal text-books. The resulting list comprised a
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# Legal vs. Commonsense Common vs. Specific

1 Perpetual injunction Absolute right
2 Cantonal Court Fact
3 Elements of claim Jurisdiction
4 Provisional rule Law
5 Solicitor Lawyer
6 Interlocutory injunction Obligation
7 Other directed norm Permission
. . . . . . . . .
242 Critical question Narcotics
243 Dialogue Pensioner
244 Dialogue type Veteran
245 Family Deformation
246 Criteria Genocide
247 Critical discussion Enthyememes
248 Mafia Mafia

Table 6.2: Top and bottom seven terms for legal vs. common sense and common
vs. specific legal term

grand total of about 250 terms. Users were asked to assess each term from this
list on five scales:

• the perceived level of abstraction,

• the perceived relevance for the legal domain,

• the degree to which a term is legal rather than common-sense,

• the degree to which a term is a common legal term (as opposed to a term
that is specific for some sub-domain of law),

• and the degree to which the expert thinks this term should be included in
the ontology.

The resulting scores were used to select an initial set of 50 terms plus sev-
eral reused from other ontologies (see Tables 6.1 and 6.2), and formed the basis
for the identification of clusters and the development of the LKIF Core onto-
logy. In the end, several technical terms were included in the ontology because
they capture an abstract meaning central to law (Sartor, 2006). Furthermore,
such terms provide structure to the relation between more generally under-
stood legal terms.

6.3 Ontology Modules

The preceding sections introduce the requirements for LKIF Core as a know-
ledge representation ontology for the legal domain. It is based on insights from
cognitive science and uses the well established middle-out methodology. With
these considerations in mind, the LKIF ontology was initially designed as a
collection of eight ontology modules: expression, norm, process, action, role, place,
time and mereology, cf. Breuker et al. (2006). This collection was later extended
with a top ontology and two more ontology modules (legal_action, legal_role),
see Figure 6.2 (Hoekstra et al., 2007; Breuker et al., 2007).22 Each of these mod-

22Version 1.0 of the ontology also included two frameworks (time_modification and rules) but
these are not discussed here.
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Figure 6.2: Dependencies between LKIF Core modules.

ules contains a relatively independent cluster of concepts that was represented
using OWL DL in a middle-out fashion: for each cluster the most central con-
cepts were represented first.23

The ontology modules are organised in three layers: the top level (Sec-
tion 6.3.1), the intentional level (Section 6.3.2) and the legal level (Section 6.3.3).
These layers correspond to the different stances one can adopt towards a do-
main of discourse, and are inspired by the work of Dennett (1987) and Searle
(1995). Dennett identified three stances we can adopt for explaining phenom-
ena in the world: the physical stance, used for explaining behaviour in terms of
of the laws of physics, the design stance, which assumes a system will behave
according to its design, and the intentional stance, which can be adopted to ex-
plain the behaviour of rational agents, with beliefs, desires and intentions. The
first two correspond roughly to the top level of LKIF Core, where the inten-
tional stance is captured by the intentional level:

“that feature of representations by which they are about something or directed
at something. Beliefs and desires are intentional in this sense because to have a
belief or desire we have to believe that such and such is the case or desire that
such and such be the case. Intentionality, so defined, has no special connection
with intending. Intending, for example, to go to the movies is just one kind of
intentionality among others.”

(Searle, 1995, p.7)

The LKIF ontology thus adds a legal layer, containing concepts that are
only sensible from a legal perspective. Accordingly, we represent social and
legal concepts as social constructs separate from the physical entities having
such imposition, e.g. persons are said to play roles and objects fulfil functions
(Searle, 1995).

This distinction does not hold for the layers as a whole: they should not be
confused with stratified meta levels. Each layer introduces a straightforward

23The ontology was developed using TopBraid Composer (http://www.
topbraidcomposer.com) and Protégé 4.0a (http://protege.stanford.edu).

http://www.topbraidcomposer.com
http://www.topbraidcomposer.com
http://protege.stanford.edu
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Figure 6.3: Place and Mereology related concepts.

extension of existing definitions. At each level, concepts are expressed in terms
of concepts defined at a higher level of abstraction, adding new organising
structures (such as properties) where necessary. However, module extension
does not follow the requirement of safe reuse (Section 5.4.2. As regards its on-
tological commitment the ontology should be regarded as a whole. This means
that safety of reuse of the ontology by third parties can only be assessed with
respect to the combination of all ontology modules. This methodology ensures
a modular set-up that improves reusability and allows extensions to commit
to the ontology at one of the levels, without compromising compatibility with
extensions that commit to a different level.

The following sections give a concise overview of the modules of LKIF Core
and their principal concepts. They do not provide exact OWL DL definitions of
these concepts but rather focuses on the necessary ingredients for a legal core
ontology. Several principal concept definitions are discussed in detail in the
next chapter.

6.3.1 First Things First: The top-level

The description of any legally relevant fact, event or situation requires a basic
conceptualisation of the context in which these occur: the backdrop, or canvas,
that is the physical world. Fundamental notions such as location, time, mere-
ology and change are indispensable in a description of even the simplest legal
account. The top level clusters of the ontology provide (primitive) definitions
of these notions, which are consequently used to define more intentional and
legal concepts in other modules. The most general categories of the LKIF onto-
logy are based on the distinction between ‘worlds’ of LRI Core. We distinguish
between mental, physical and abstract entities, and occurrences. Mental entit-
ies reside in the human mind, and only have a temporal extension. Physical
entities exist independent of human experience, and have a spatial extension
as well. Although these categories are superimposed on the concepts in the top
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level clusters, they were not directive in in their design.
Mereological relations allow us to define parts and wholes; they can be

used to express a systems-oriented view on concepts. Examples are functional
decompositions, and containment characteristic for many frameworks (Figure
6.3). Mereology lies at the basis of definitions for places and moments and in-
tervals in time. The ontology for places is based on the work of Donnelly (2005)
and adopts the Newtonian distinction between relative and absolute places. A
relative place is defined by reference to some thing; absolute places are part of
absolute space and have fixed spatial relations with other absolute places. A
Location_Complex is a set of places that share a common reference location, e.g.
the locations of all furniture in a room. See figure 6.3 for an overview of con-
cepts defined in the place module. Of the properties defined in this module,
meet is the most basic as it is used to define many other properties such as abut,
cover, coincide etc. See Breuker et al. (2007); Donnelly (2005) for a more in depth
discussion of these and other relations. Currently this module does not define
classes and properties that express direction and orientation.

Similar relations can be used to capture notions of time and duration. We
adopt the theory of time of Allen (1984); Allen and Ferguson (1994), and dis-
tinguish between the basic concepts of Interval and Moment. Intervals have an
extent (duration) and can contain other intervals and moments. Moments are
points in time, they are atomic and do not have a duration or contain other
temporal occurrences (see figure 6.4). Relations between these temporal occur-
rences can be used to express a timeline. Allen introduced the meet relation
to define two immediately adjacent temporal occurrences. To discern between
the temporal meets relation and its spatial counterpart (Donnelly, 2005), this
relation is called immediately_before. Where the spatial relation is unrestricted
with respect to direction, the temporal meet relation is directed and asymmet-
ric. It is used to define other temporal relations such as before, after, during.
Locations and temporal entities are used to define the extension of mental and
physical entities, e.g. the time when you had a thought, the location where you
parked your car. They are occurrences and do not have extensions themselves,
they are extensions.

With these classes and properties in hand we introduce concepts of (invol-
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untary) change. The process ontology relies on descriptions of time and place
for the representation of duration and location of changes. A Change is defined
as a difference between the situation before and after the change. It can be a
functionally coherent aggregate of one or more other changes. More specific-
ally, we distinguish between Initiation, Continuation and Termination changes.

Changes that occur according to a certain recipe or procedure, i.e. changes
that follow from causal necessity are Processes. They thus introduce causal
propagation and are said to explain the occurrence of change. Processes in LKIF
Core are similar to the fluents of event calculus (van Lambalgen and Hamm,
2005). However, the ontology does not commit to a particular theory of causa-
tion and we consider the perspective generic enough to enable the definition of
various disparate conceptions of causal relata. Contrary to changes, processes
are both spatially and temporally restricted. They extend through time – they
have duration – and are located at some temporal and spatial position. We fur-
thermore distinguish Physical_Processes which operate on Physical_Objects.

6.3.2 The Intentional Level

Legal reasoning is based on a common sense understanding that allows the
prediction and explanation of intelligent behaviour. After all, it is only the
behaviour of rational agents that is governed by law. The modules at the in-
tentional level include concepts and relations necessary for describing this be-
haviour: Actions undertaken by Agents in a particular Role. Furthermore, it
introduces concepts for describing the mental state of these agents, subjective
entities such as their Intention or Belief, but also communication between agents
by means of Expressions (Searle, 1995, and Section 7.3.2).

The class of agents is defined as the set of things which have intention and
can be the actor of an action: they may perform the action and are potentially
liable for any effects caused by the action (see Figure 6.5). An action is ‘inten-
tional under some description’ (Davidson, 2001), they constitute an intentional
interpretation of a process that reflects the changes brought about by some
agent in realising his intentions. Agents are the medium of an action’s intended
outcome: actions are always intentional. The intention held by the agent usu-
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ally bears with it some expectation that the intended outcome will be brought
about: the agent believes in this expectation. The actions an agent is expected
or allowed to perform are constrained by the competence of the agent, some-
times expressed as roles assigned to the agent. Because actions coincide with
processes, they can play a role in causal propagation, allowing us to reason
backwards from effect to agent (see Section 7.5). Actions can be creative in that
they initiate the coming into existence of some thing, or the converse terminate
its existence. Also, actions are often a direct reaction to some other action.

The LKIF Core ontology distinguishes between Persons, individual agents
such as “Joost Breuker” and “Pope Benedict XVI”, and Organisations, aggreg-
ates of other organisations or persons which acts ‘as one’, such as the “Dutch
Government” and the “Sceptics Society”. Artefacts are physical objects de-
signed for a specific purpose, i.e. to perform some Function as instrument in a
specific set of actions such as “Hammer”. Persons are physical objects as well,
but are not designed (though some might hold the contrary) and are subsumed
under the class of Natural_Objects. Note that natural objects can function as
tools or weapons as well, but are not designed for that specific purpose.

The notion of roles played an important part in recent discussions on on-
tology (Steimann, 2000; Guarino and Welty, 2002; Masolo et al., 2004; Loebe,
2007). A Role is a Subjective_Entity that specifies standard or required proper-
ties and behaviour of the entities playing the role (see Figure 6.6). Roles not
only allow us to categorise objects according to their prototypical use and be-
haviour, they also provide the means for categorising the behaviour of other
agents. They are a necessary part of making sense of the social world and allow
for describing social organisation, prescribe behaviour of an agent within a par-
ticular context, and recognise deviations from ‘correct’ or normal behaviour.
Indeed, roles and actions are closely related concepts: a role defines some set
of actions that can be performed by an agent, but is conversely defined by those
actions. The role module captures the roles and functions that can be played
and held by agents and artefacts respectively, and focuses on social roles, rather
than traditional thematic or relational roles.

A consequence of the prescriptive nature of roles is that agents connect ex-
pectations of behaviour to other agents: intentions and expectations can be
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used as a model for intelligent decision making and planning.24 It is import-
ant to note that there is an internalist and an externalist way to use intentions
and expectations. The external observer can only ascribe intentions and ex-
pectations to an agent based on his observed actions. The external observer
will make assumptions about what is normal, or apply a normative standard for
explaining the actions of the agent (Boer et al., 2005a; Boer, 2009).

The expression module covers a number of representational primitives ne-
cessary for dealing with Propositional_Attitudes (Dahllöf, 1995). Many concepts
and processes in legal reasoning and argumentation can only be explained in
terms of propositional attitudes: a relational mental state connecting a person
to a Proposition. However, in many applications of LKIF the attitude of the in-
volved agents towards a proposition will not be relevant at all. For instance,
fraud detection applications will only care to distinguish between potentially
contradictory observations or expectations relating to the same propositional
content. Examples of propositional attitudes are Belief, Intention, and Desire.
Each is a component of a mental model, held by an Agent.

Communicated attitudes are held towards expressions: propositions which
are externalised through some medium. Statement, Declaration, and Assertion
are expressions communicated by one agent to one or more other agents. This
classification is loosely based on Searle (1995). A prototypical example of a
medium in a legal setting is e.g. the Document as a bearer of legally binding
(normative) statements.

When propositions are used in reasoning they have an epistemic role, e.g.
as Assumption, Cause, Expectation, Observation, Reason, Fact etc. The role a pro-
position plays within reasoning is dependent not only on the kind of reasoning,
but also the level of trust as to the validity of the proposition, and the position
in which it occurs (e.g. hypothesis vs. conclusion). In this respect, the ex-
pression module is intentionally left under-defined as a rigourous definition of
epistemic roles would include their use in epistemological frameworks used
in reasoning (see Section 5.5.2). As a consequence, the ontology allows one to
ascribe an epistemic role to some entity, but cannot be used to infer it.

24Regardless of whether it is a psychologically plausible account of decision making. Dennett’s
notion of the Intentional Stance is interesting in this context (Dennett, 1987). Agents may do no more
than occasionally apply the stance they adopt in assessing the actions of others to themselves.
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Evaluative_Attitudes express an evaluation of a proposition with respect to
one or more other propositions, they express e.g. an evaluation, a value state-
ment, value judgement, evaluative concept, etc. These attitudes express only
the type of qualification which is an attitude towards the thing being evalu-
ated, and not for instance the redness of a rose, as in Gangemi et al. (2002) and
others. Of special interest is the Qualification, which is used to define norms as
specified by Boer et al. (2005a). Analogous to the evaluative attitude, a quali-
fication expresses a judgement. However, the subject of this judgement need
not be a proposition, but can be any complex description (e.g. a situation).

6.3.3 The Legal Level

Legally relevant statements are created through public acts by both natural and
legal persons. The legal status of the statement is dependent on both the kind of
agent creating the statement, i.e. Natural_Person vs. a Legislative_Body, and the
rights and powers attributed to the agent through mandates, assignments and
delegations. At the legal level, the LKIF ontology introduces a comprehensive
set of legal agents and actions, rights and powers (a modified version of Sartor
(2006); Rubino et al. (2006)), typical legal roles, and concept definitions which
allow us to express normative statements as defined in Boer et al. (2005a); Boer
(2006); Boer et al. (2007a); Boer (2009).

The Norm is a statement that combines two meanings: it is deontic, in the
sense that it is a qualification of the moral or legal acceptability of some thing,
and it is directive in the sense that it commits the speaker to ensure that the
addressee of the norm complies with it, e.g. through a sanction (Nuyts et al.,
2005). These meanings do not have to occur together as it is perfectly possible
to attach a moral qualification to something without directing anyone, and it
is equally possible to issue a directive based on another reason than a moral or
legal qualification (e.g. a warning).

The normatively qualified situations of LKIF are analogous to the generic



6.4. Discussion 143

situations, or generic cases of Valente (1995). A norm applies to (or qualifies)
a certain situation (the Qualified situation), allows a certain situation – the Ob-
liged or Allowed situation – and disallows a certain situation – the Prohibited or
Disallowed situation, see Figure 6.8. Allowed and disallowed situations are sub-
classes of the situation qualified by the norm. Furthermore, they by definition
form a complete partition of this situation: a norm applies only to situations
that are either mandated or prohibited.

As a consequence, norms of type Prohibition and Obligation are equivalent
because they are simply two alternate ways to put the same thing into words: a
prohibition to smoke is an obligation not to smoke. A Permission is different in
that it allows a situation without prohibiting anything. In that case the logical
complement of the allowed situation is some opposite qualified situation about
which we only know that it is not obliged.

Where in other approaches, cf. CLO (Gangemi et al., 2005), a situation is the
reification of some state of affairs, the normatively qualified situations in LKIF
Core are instantiated by states of affairs: they are defined as class descriptions
that represent a set of possible states of affairs. This means that a standard
reasoner can infer whether some actual situation is subsumed under a generic
situation, and thus whether norms exist that allows or disallows that situation.
Similarly, a classifier will create an inferred hierarchy of situations, which en-
ables a relatively straightforward resolution of lex specialis exceptions between
norms (Boer et al., 2005a).

6.4 Discussion

This chapter presented a principled approach to ontology development in the
legal domain, and described how it was applied in the development of the
LKIF Core ontology. The main requirements for this knowledge representation
ontology, as part of LKIF, are that it should be a resource for special, legal infer-
ence, and that it provides support for knowledge acquisition. The legal domain
poses additional requirements on the ontology in that it presupposes a com-
mon sense grounding. Section 6.2.1 discusses several of the types of ontologies
introduced in Section 5.4.1 and argues where they fall short in providing this
grounding. Section 6.2.2 presents an approach based on insights from cognit-
ive science and knowledge representation. This approach was incorporated in
the middle-out methodology applied in the development of the ontology. The
modules and main concepts of the LKIF Core ontology are discussed in Sec-
tion 6.3. LKIF Core was represented using the OWL 2 DL language described in
Chapter 3, and is available at the http://purl.org/net/lkif-core per-
sistent URL.25

As LKIF Core was developed by a heterogeneous group of people, we spe-
cified a number of conventions to uphold during the representation of terms
identified (Breuker et al., 2007). One of these is that classes should be represen-
ted using necessary & sufficient conditions as much as possible (i.e. by means
of owl:equivalentClass statements). Using such ‘complete’ class definitions en-

25The home page for the ontology is currently hosted at http://www.estrellaproject.
org/lkif-core. Separate modules of the ontology are reachable by adding the module name at
the end of the persistent URL, e.g. http://purl.org/net/lkif-core/action for the action
module.

http://purl.org/net/lkif-core
http://www.estrellaproject.org/lkif-core
http://www.estrellaproject.org/lkif-core
http://purl.org/net/lkif-core/action
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sures the ability to infer the type of individuals. In retrospect, the extensive use
of a combination of Generic Concept Inclusion axioms (equivalent class state-
ments on existential restrictions) and inverse properties turned out to be quite
taxing for (in our case) the Pellet reasoner. As at this time we used the reasoner
primarily for debugging purposes, a single inconsistency in the TBox could
cause the reasoner to stall, making it hard to debug the ontology. Although
this problem was remedied by lifting some of the restrictions on classes in LKIF
Core, it indicates that real time performance of reasoners on ontologies that use
the full expressiveness of OWL 2 DL can still be improved.26 The discussion of
design patterns in the next chapter proposes a way to improve reusability by
creating summaries of complex class definition patterns (see Section 7.3).

Using a large ontology such as LKIF Core in practice will inevitably be tax-
ing in other ways as well (see Section 5.4). A reusing ontology will need to
ascribe to its entire set of ontological commitments. Critical users may have
trouble reconciling their own views with the ontology, where naive use may
overlook important consequences of this commitment. Furthermore, the onto-
logy involves a level of granularity and detail that may not directly fit a domain
ontology. This can be overcome by importing available, compatible domain
ontologies in a representation based on the LKIF ontology, provided that safe
reuse is ascertained. A possibility is to create library of guaranteed compatible
ontologies as part of the LKIF architecture. Reusing a core ontology requires
a significant investment, even though improving reusability and facilitating
knowledge acquisition are some of its principal purposes. For a knowledge
representation ontology such as LKIF Core, the proof of the pudding is in the
eating: the pay-off of adopting the ontology in reasoning should exceed the
investment it requires.

The LKIF ontology has been successfully applied in the development of a
generic architecture for legal reasoning (HARNESS), as the main knowledge re-
source for performing normative assessment.27 Hoekstra et al. (2007) evaluates
the LKIF definition of Norm in the representation of part of an EU directive on
traffic regulations. In van de Ven et al. (2008b,a) we adopted the definitions
of the norms module to drive a Protégé plugin for normative assessment. This
plugin has been tested to work with representations of both a toy domain of lib-
rary regulations, and a part of the Hungarian tax law. It uses the Pellet reasoner
to compute the subsumption hierarchy of generic cases qualified by the body of
norms, and uses this information to generate a lex specialis exception hierarchy
of norms.

It turned out that extending the ontology with concepts required for the
domain of the regulations was relatively straightforward. However, specifying
the contents of norms in terms of OWL constructs remained an arduous task
because of the sheer complexity of the situations they govern. This experience
suggests that the ontology should be extended with a module for expressing
measurements, and led to the specification of design patterns that allow us
to adequately capture transactions and other complex concepts (Hoekstra and
Breuker (2008) and Section 7.2). Klarman et al. (2008) propose a way to combine
the LKIF ontology with a versioning scheme that corresponds to a specification

26Thanks to Taowei David Wang for pointing this out, see http://lists.owldl.com/

pipermail/pellet-users/2007-February/001263.html
27HARNESS: Hybrid Architecture for Reasoning with Norms by Employing Semantic Web

Standards

http://lists.owldl.com/pipermail/pellet-users/2007-February/001263.html
http://lists.owldl.com/pipermail/pellet-users/2007-February/001263.html
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of validity intervals for legal sources.
The following chapter gives an overview of several design patterns iden-

tified in the construction of the LKIF ontology. The purpose of this overview
is twofold. First, and foremost, it illustrates the wide applicability of design
patterns across domains, and secondly, it provides insight in the definition of
some of the central concepts in the LKIF ontology.



Chapter 7

Design Patterns

“Art is the imposing of a pattern on experience, and our aesthetic
enjoyment is recognition of the pattern.”

Alfred North Whitehead, Dialogues (1954)

7.1 Introduction

This chapter is an investigation in the applicability and reuse of structured on-
tology design patterns as defined in Section 5.6.4. Experience in the develop-
ment of the LKIF Core ontology has shown that constructing a large ontology
in a middle out fashion facilitates the emergence of such patterns. This is not
just due to the fact that practice and the subsequent and separate represent-
ation of clusters of basic concepts makes one aware of recurrent structures.
But the strong methodological emphasis on reuse of existing definitions targets
awareness of the similarities, rather than dissimilarities between clusters. Finally,
the commonsense and knowledge representation perspectives of the preceding
chapter allow the ontology engineer some distance from the theoretical intric-
acies of the domain being represented.

The discussion of patterns that emerged in the construction of LKIF Core
has several purposes. It provides a description and discussion of common
design patterns for the purposes of reuse. At the same time, it is a more in-
depth introduction to several important notions in LKIF Core, such as subject-
ive, social concepts on the one hand and physical concepts such as processes
on the other. Secondly, the reusability of patterns exemplified by these notions
are evaluated by applying them to diverse use cases.

A third consideration is that a thorough description of the application of
these design patterns gives insight in the way OWL 2 constructs are applied in
the construction of complex class descriptions. As we have seen in Chapter 5
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the methodological and theoretical guidelines that apply to ontology devel-
opment rarely if ever touch on the use of a knowledge representation lan-
guage. Examples and guidelines for the application of OWL are reserved to
either tutorials for novice users (Horridge et al., 2007), or an enumeration of
common misunderstandings targeted to improve such educational resources
(Rector et al., 2004). For sure, these efforts improve both the understanding
of the language, and the ability to assess whether what is represented is an
adequate representation of the domain, but they leave open the intermediate
step: the representation process itself.

There are some examples of more practical ‘cookbook’ approaches, such
as Seidenberg and Rector (2006)’s discussion of transitive properties in OWL,
and work on practical structured design patterns such as in Noy and Rector
(2006); Bobillo et al. (2007). Similarly, Gangemi (2005); Presutti et al. (2008) fo-
cus mainly on content patterns discussed in Section 5.6.4. However, these are
often problem and domain specific, and present the design pattern as a given,
readily reusable ontology modules. Furthermore, considering that design is a
task, a process, it seems odd to describe design patterns only in terms of de-
clarative structures, rather than by giving the procedure for applying them.
Especially since the most valuable contribution of design patterns lies with the
possibility to reuse and recombine them to form representations of new, un-
charted domains.

7.1.1 Dealing with Models

The development of a large ontology such as LKIF Core is not only complex
at a conceptual level, but involves numerous encounters with the limitations
of the knowledge representation language as well. In some cases the combin-
ation of highly expressive language features is such that reasoner performance
is severely reduced (cf. the GCI problem in Section 6.4), and sometimes the ex-
pressiveness required surpasses that of OWL 2 DL. The latter problem is fun-
damental, because the language puts a hard limit on what you can and can’t
express. Unfortunately, the limits of OWL 2 DL can suddenly pop up in the
most unexpected places, and OWL representations often appear to be in good
shape until a seemingly minor change brings the whole thing to shambles.

The semantics of a DL knowledge representation language defines a space
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Class Membership Property Assertions Model of A

a ∈ A ⊓ B ⊓ C ⊓ D a related to itself 7.2a
a ∈ A ⊓ D and b ∈ B ⊓ C p

2
(a, b), p

3
(a, b),

p
1
(b, a), p

4
(b, a)

7.2b

a ∈ A, b ∈ B ⊓ C and d ∈ D p
2
(a, b), p

3
(a, b),

p
1
(b, d), p

4
(b, d)

7.2c

a ∈ A, b ∈ B and d′, d′′ ∈ D p
2
(a, b), p

3
(a, b),

p
1
(b, d′), p

4
(b, d′′)

7.2d

a ∈ A ⊓ B ⊓ C and d ∈ D p
2
(a, a), p

3
(a, a),

p
1
(a, d), p

4
(a, d)

7.2e

a ∈ A ⊓ B ⊓ C and d′, d′′ ∈ D p
2
(a, a), p

3
(a, a),

p
1
(a, d′), p

4
(a, d′′)

7.2f

a ∈ A ⊓ C, b ∈ B and d ∈ D p
2
(a, b), p

3
(a, a),

p
1
(b, d), p

4
(a, d)

7.2g

a ∈ A, b ∈ B, c ∈ C and d, d′, d′′ ∈ D p
2
(a, b), p

3
(a, c),

p
1
(b, d′), p

4
(c, d′′)

7.2h

a ∈ A, b ∈ B, c ∈ C and d, d′, d′′ ∈ D p
2
(a, b), p

3
(a, c),

p
1
(b, d), p

4
(c, d)

7.2i

Table 7.1: Valid models of the class A as depicted by figures 7.2a – 7.2i.

of describable valid models (Section 2.5.1). Given the set of language prim-
itives provided by the language, we can go about carving up that space by
ruling out certain models. For example, an owl:disjointWith relation between
two classes A and B rules out all models where some individual i is a member
of both. In general terms, the problem is that the surface structure of class level
descriptions does not correspond to the structure of allowed models. There are
no heuristics in place that assist a knowledge engineer in determining what
primitives to use when.

As illustration, consider an ontology O with primitive classes A, B, C and
D. We introduce roles p

1
, p

2
, p

3
and p

4
with no domain or range defined, and

give the following description of class A:

A ≡ p
2

some (B ⊓ p
1

some D)

⊓ p
3

some (C ⊓ p
4

some D)

At the class level, this definition of A has a structure that resembles the shape
of a diamond (see figure Figure 7.1), but this structure is not reflected at the
instance level. When we assert the individuals a, b, c, d, d′ and d′′, the definition
of A may allow (at least) all patterns of relations between these individuals
depicted in Figure 7.2, given the assertions of Table 7.1.

Conversely, we might want to achieve a pattern similar to figure 7.2i at the
instance level, using a much simpler structure at the class level. This is the case
when one or more of the classes A,B,C or D are the same, or when some of the
roles p

1
, p

2
, p

3
and p

4
are equivalent. Achieving a representation of A that ad-

equately covers the intended structure, comes down to finding ways to either
prevent or ensure the possibility of a single individual to play multiple roles.
It requires us to prune the set of possible models that satisfy the class descrip-
tion and achieve complete lockdown on unintended interpretations. As with a
complicated phase in a game of Twister, the slightest slip can have significant
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Figure 7.2: Valid models of class A
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Figure 7.3: Structured object: the heart (Motik et al., 2007a)

consequences.
Fortunately, there is significant progress with respect to automatic debug-

ging and explanation facilities in e.g. Pellet and Protégé 4 based on belief re-
vision (Halaschek-Wiener et al., 2006). The Tweezers extension of Pellet, de-
scribed in Wang and Parsia (2007), allows an engineer to examine the models
generated by its tableaux algorithm.1

7.1.2 Structured Concepts

Arguably, the limits of expressiveness become increasingly more tangible as
the complexity of the domain increases. In fact, many relatively simple do-
mains involve structures that are not necessarily complex by themselves, but
do push the limits of description logics and consequently result in intricate rep-
resentation. For instance, the physical structure of organs, molecules, artefacts,
devices, but also the interaction patterns between actions, processes and their
participants are complex combinations of interdependent entities that are hard,
if not impossible to represent in DL.

Motik et al. (2007a) emphasise the need to be able to describe structured ob-
jects, objects that are defined primarily by the (internal) composition of their
parts. A good example, also employed by Motik et al. is the human heart
(see Figure 7.3). The heart consists of four ‘chambers’, the left and right at-
ria, and the left and right ventricles, each of these are separated by a septum,
the interatrial and ventricular septa, respectively. However, in OWL DL it is
impossible to express that e.g. the atria are separated by the same septum.

In SUMO, complex concepts are represented as rules in Common Logic
(ISO/IEC, 2007), a highly expressive but undecidable language. This allows
one to represent the reciprocity constraints in a direct way, by means of vari-
ables. As discussed by Grosof et al. (2003), decidable Horn logic programs

1See http://www.mindswap.org/~tw7/work/profiling/code/, and its recent in-
carnation as a Protégé 4 plugin, SuperModel, at http://www.cs.man.ac.uk/~bauerj/

supermodel/.

http://www.mindswap.org/~tw7/work/profiling/code/
http://www.cs.man.ac.uk/~bauerj/supermodel/
http://www.cs.man.ac.uk/~bauerj/supermodel/
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allow the definition of non tree-like structures in a straightforward manner.
For instance, a definition of the class A, based on the pattern of Figure 7.1 can
be captured by the following rule:

A(?a) ← p2(?a, ?c) ∧ p3(?a, ?b) ∧ C(?c) ∧ B(?b)

∧p1(?c, ?d) ∧ p4(?b, ?d) ∧ D(?d)

At first sight, it may seem beneficial to adopt an approach that combines a
rule-based formalism with OWL 2 DL. However, this combination has several
drawbacks. First of all, rules bring back the epistemological promiscuity and
order dependence of control knowledge. Furthermore, like the procedural and
interpretive attachments of e.g. KRL and KL-ONE (Bobrow and Winograd,
1976; Brachman, 1979, and Section 2.2.5), they can only assert new knowledge.
Rules cannot aid in posing extra restrictions for classification: they cannot pre-
vent classification in the way that integrity constraints in databases do (Hoek-
stra et al., 2006). Although Motik et al. (2007b) and others have made progress
in combining DL with integrity constraints, these developments have not as
yet found their way into applications.

Maintaining consistency between inferences of the classifier and the rule
interpreter is not trivial. This is largely a consequence of the safeness condi-
tion necessary for decidable combinations of rule and DL formalisms (Motik
et al., 2005). Because variables in DL-safe rules are only allowed to be bound
to known, named individuals, a rule interpreter will not take the possibly infin-
ite number of anonymous individuals inferred by an OWL 2 DL reasoner into
account: rules are likely to quantify over incomplete models of the TBox.

Hybrid approaches that reconcile DL with rules, such as DLP (Grosof et al.,
2003), Horn-SHIQ (Krötzsch et al., 2006), and the recent ELP (Krötzsch et al.,
2008b) and SROIQ-Rules (Krötzsch et al., 2008c) inevitably sacrifice express-
ive power to constrain reasoning complexity. For instance, DLP is defined as
the intersection of DL and logic programming languages,2 the ELP language
requires variables in the body of a rule to be connected either via a tree-shaped
graph or a set of such graphs, the SROIQ-Rules language is restricted to those
rule-like constructs expressible in the SROIQ DL. In short, languages either
provide expressive rules with limited DL, or expressive DL with limited rules.
As a consequence, complex concepts are often defined using a language of the
former form, even though this is not always necessary. The question remains:
what can we still meaningfully express in OWL 2 DL?

7.1.3 Three Patterns

This chapter discusses OWL 2 DL representations of three frequently occurring
patterns. Rather than full fledged class definitions, these patterns are presen-
ted by the way they are assembled using the OWL 2 primitives discussed in
Chapter 3. In this description, the various design decisions and limitations of
the representation are discussed in detail, and for each pattern it is shown how
it can be applied to various domains.

The first pattern concerns the diamond structure briefly discussed in the pre-
ceding section. Section 7.2 is an extended version of Hoekstra and Breuker

2This approach lies at the heart of the OWL 2 RL profile of OWL 2. See Section 3.5.2.
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(2008), and investigates ways to approximate this structure using some of the
more expressive language features of OWL 2 DL. Central to this pattern is the
ability to infer identity relations between different participants in the pattern.

The second pattern is concerned with the representation of relations and
their reifications. Section 7.3 discusses how several use cases, such as n-ary
relations and subjective entities, can be reduced to the problem of inferring
a relation between two individuals that participate in the reification of that
relation. The pattern describes triangular structures, which can be combined to
define complex (social) relations.

The third pattern allows the representation of sequences of multiple entit-
ies. Section 7.4 presents the pattern and shows how it can be applied in the
definition of causal relations and complex protein structures. The pattern relies
heavily on the role inclusion axioms of OWL 2 and is compared to an alternat-
ive pattern described by Drummond et al. (2006).

Finally, in Section 7.5 the three patterns are combined in the representation
of the Action class of LKIF Core. The wide applicability and reusability of this
pattern-based representation shows significant benefits compared to the clas-
sical middle-out approach of Section 5.2. Nonetheless, it is quite possible that
the patterns discussed here gather their applicability from the basic nature of
the concepts that triggered their original representation in the first place.

The patterns discussed in this chapter are representations of notions that
stand in the spotlight of theoretical discussion in both philosophy and AI. In
line with the knowledge representation perspective of the preceding chapters,
these representations are illustrations of the capabilities and usability of OWL
2 DL in a variety of domains and make no claim with respect to ontological,
nor theoretical correctness. Knowledge representation is a means to an end,
and we can only aim to approximate reality.

7.2 Grasping the Diamond: The Reciprocity of Ex-

change

Concepts in general ontologies are basic building blocks for the definition of
more specific and compound notions. They are not only domain independent
and generally applicable, they are necessarily also abstract and simple. In vari-
ous papers we have advocated a crisp distinction between basic ontological
categories, and more complex notions, captured in frameworks (Breuker and
Hoekstra, 2004c; Hoekstra et al., 2007, and Section 5.5.2). Although this is the
general rule, some compound concepts are of a clear ontological nature. Con-
struction of the LKIF Core ontology prompted us to consider a term frequently
occurring in law – e.g. in contracts – that is both very abstract, and composite:
the transaction. Transactions bind two actions by reciprocity, which is particu-
larly reflected by identity and other constraints on roles in the two constituting
actions. It forms a graph pattern that is diamond-shaped (see Figure 7.4).

A generic use case (cf. Gangemi (2005)) that covers these reciprocal com-
binations is the notion of exchange. Exchange not only pervades the full range
of physical, mental and abstract changes, but also takes a very abstract posi-
tion in ontologies such as LKIF-Core and SUMO: it is an unavoidable concept
and appears in various forms, e.g. in the definition of financial transaction of
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Figure 7.4: Structure of a transaction

SUMO (Niles and Pease, 2001). Entities such as objects and processes can un-
dergo any of three kinds of change. In a change of value, the value of a property
of an entity changes: e.g. a traffic light changes to green; a car accelerates.
Transfer is a change of a value of a (anti-rigid) property that is not inherent to
the entity: e.g. an object is moved to another position, a person graduates.
Usually the property that changes is a position. A transformation is the change
of a rigid property: e.g. a solid physical object melts to form a liquid. All three
types of change can occur in the context of an exchange. A trivial example
of ex-‘change-of-value’ is changing currencies. Metabolism is an example of
an exchange consisting of transformations where material and energy are ex-
changed between an organism and its environment.

However, exchange involves additional constraints with regard to recipro-
city. For instance, a sales transaction consists of two transfer actions: a buyer
receives some goods for which he pays money, and the seller receives that same
money and provides the same goods (Figure 7.4). For any exchange, the reci-
procity constraints are:3

Identity
the active participants in both transfers are the same. For instance, the
agent that is the actor of the money transfer (paying) is also the receiver
of the goods. The agent that is the actor that transfers the goods, i.e. the
seller, is the receiver of the money.

Balance
the objects in both transfers, i.e. the things being exchanged, should be
comparable in some way. For instance, the value of the money should be
balanced by the value of the goods.

A position metaphor can be applied to the participants of an exchange, e.g.
goods and money are said to trade places. The same metaphor holds in a legal
context for the exchange of ownership: ownership is a legal position, a right
Hohfeld (1919). Again, legal positions themselves involve reciprocity as well:
the right to own is balanced by a duty to pay.

Although indeed this section focuses on exchange as primary use case, sim-
ilar structures can be found in more static notions such as physical (situation)
descriptions, biological structures (Motik et al., 2009), dependency diagrams,
and more theoretical notions such as Hohfeldian squares (Hohfeld, 1919).

In the next section, the representation of transactions is described in a step-
by-step fashion, showing at the same time the practical knowledge pattern,

3Observe that the words ‘buying’ and ‘selling’ refer to the same conceptual entity. They are not
synonymous; the choice of word is determined by the linguistic-pragmatic context.
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and a hands-on methodology for approximating diamond-like structures using
OWL 2 DL primitives.

7.2.1 Representing Transaction

A knowledgeable user of OWL will most likely only encounter real problems
when dealing with elaborate, highly structured concepts. Often these problems
are so big, or just insurmountable, that we resort to a rule-based representation.
For the reasons discussed in Section 7.1.1, this is undesirable or at least should
be avoided when possible. Only when the expressive power of either one of
the formalisms is pushed to its limits, problematic interactions between the
two formalisms can be avoided.

Just like the human heart, used as example by Motik et al. (2007a), the no-
tion of transaction is a structured concept. The following sections take this use
case to elaborate on the tools we can use to eliminate some of the undesirable
models allowed by an initial, naive representation. The purpose of the final
representation is twofold:

Identification
to be able to correctly recognise an individual transaction as a member of
a transaction class, but also

Enforcement
to generate a violation when an individual is incorrectly asserted to be a
member of that class.

The methodology consists of a succession of five steps:

Step 1: Initial Class Definition

The straightforward definition of a transaction is a Transaction class that has
transfer actions Transfer as parts. In turn, each Transfer has an actor and recipient
property with some agent Agent as value, and an object relation with an object
Object:

Transaction ≡ part some Transfer

Transfer ≡ actor some Agent ⊓ recipient some Agent

⊓ object some Object

Step 2: Constrain the Number of Role Fillers

Evidently, the above definition only prescribes that there must be at least one
part relation with a Transfer. We can fine tune this definition by specifying that
a Transaction has only instances of Transfer as its parts and provide a cardinality
restriction on the number of part relations allowed. However, this is too strict
as it no longer allows for any other part relations either. In OWL DL 1.0 the
only way out of this predicament was to introduce a specific has_transfer sub
property of part for the Transaction class. For an individual to be inferred to
be a Transaction, it should be expressed using the (class specific) has_transfer
relation. However, using the qualified cardinality restrictions of OWL 2 DL
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we can specify that a Transaction should have exactly two part relations to a
Transfer individual:

Transaction ⊑ part exactly 2 Transfer

Identification of individuals can only be achieved by means of equivalence ax-
ioms in combination with the domain and range of a property. Some types of
restrictions cannot be used for identification. Because of the open world as-
sumption, an upper bound on the cardinality of a property at some class can
not be used to identify an individual to be a member of that class, as there is no
way to know whether the individual has additional properties of that type. For
the same reason, universal restrictions cannot be used for identification using
equivalence axioms.

Once the type of an individual is established, additional subclass axioms
can be used to infer new properties of the individual: it is shaped to conform
with the pattern expressed in the restriction. Of course, this approach can be
problematic when the equivalence axiom is under specified, as too many indi-
viduals may be inferred to be a member of that class. Using this methodology,
we can refine the Transaction class as follows:

Transaction ≡ part some Transfer ⊓ part min 2 Transfer

⊑ part only Transfer ⊓ part exactly 2 Transfer

Admittedly, this definition of Transaction is quite strict, as it does not allow for
anything having more than two Transfers as part. For any individual that does
have more than two, the reasoner will infer some of the Transfer individuals to
be the same. Asserting that these individuals are mutually different, will make
the ABox incoherent. Of course, we can overcome this limitation by refining
the definition of Transfer to include only those transfer actions taking part in a
proper transaction. However, simply stating that every Transfer should be part
of a transaction does not add any new information. Nonetheless, requiring that
any Transaction should have (at least) two individual Transfers as part ensures
that the definition is not ‘triggered’ for individuals that are not asserted to be
mutually distinct.4

Step 3: Disambiguate Role Fillers

Let’s turn our attention to Transfer; we restrict it in a similar fashion:5

Transfer ≡ actor some Agent ⊓ recipient some Agent

⊓ object some Object

⊑ actor exactly 1 Agent ⊓ recipient exactly 1 Agent

⊓ object exactly 1 Object

In fact, the definition of Transfer adds complexity because it involves distinct
properties and different ranges. However, this heterogeneity allows us to drop

4Note that the distinctness of two individuals cannot be enforced by means of a class descrip-
tion, as the open world assumption allows for the existence of some other (unspecified) distinct
individual.

5For the current purposes, the participant properties could be made functional thereby waiving
the necessity for qualified cardinality conditions. However, functionality is a rather strong claim as
it is a global restriction whereas cardinality restrictions operate locally on a class and its subclasses.
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Figure 7.5: Tree-model as described by the definitions of Transaction and Trans-
fer. The dotted arrows depict the path along the tree by the property
‘value_similar’.

the owl:allValuesFrom axiom as the combination of exact cardinality and exist-
ential restriction has the same effect. The complexity resides in that we need
a way to distinguish the actor from the recipient. The above definition does in-
deed ensure that we have at least an actor and a recipient for any Transfer, but
these individuals may still be the same. Asserting disjointness between Agents
in different roles is not desirable, as this eliminates all models where each Agent
fulfils both roles at the same time. Fortunately, OWL 2 introduces the ability to
make the extensions of the properties disjoint.6

Step 4: Traverse the Tree

Figure 7.5 shows the completion graph for the definitions of Transaction and
Transfer we have so far. As one can see it is tree-shaped and e.g. does not
require that the actor of transfer Tf1 and the recipient of Tf2, Ag1 and Ag4 re-
spectively, are the same. Because of the tree-model property of SROIQ(D),
we cannot further extend these definitions to enforce such a restrictions. How-
ever, we can still infer a lot of information that we can use to further restrict the
various participants in the transaction.

We first shift our attention to the two Object individuals O1 and O2 appear-
ing in the two transfers. As we discuss in Section 7.2, these two objects need to
have a balance in ‘value’: good vs. money in transactions, kinetic vs. potential
energy in collisions, etc. OWL 2 DL property chains specify the propagation
of a property along some path of interconnected properties. We introduce the
property value_similar that connects the two objects of the transaction as fol-
lows:

object− o part− o part o object ⊑ value_similar

Because of the left-right symmetry of the tree-model of Transaction the value_
similar property is symmetric and reflexive; because both O1 value_similar O2

and O2 value_similar O1 hold, and the two part relations connecting Ta to Tf1
and Tf2 cannot be distinguished.

6i.e. for any two individuals x, y and actor(x, y) there exists no recipient(x, y).
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We could similarly specify a symmetric and transitive same_id_as property
that specifies (in a custom manner) that two individuals share identity:

actor− o part− o part o recipient ⊑ same_id_as

recipient− o part− o part o actor ⊑ same_id_as

Step 5: Introduce Asymmetry

Unfortunately, this chain is overly general as it infers same_id_as relations
between the actor and recipient participating in a single action. Again, this
is caused by the symmetry of the two part branches of the completion graph of
Transaction. As in OWL 2, complex properties such as property chains cannot
be disjoint, the only way to rule out models in which the two participants are
inferred to be the same, is to make the tree itself asymmetric. We can do this in
two ways.

Firstly, we could make the generic definition of Transaction intrinsically
asymmetric by disambiguating the left-hand side and right-hand side of the
tree using two distinct part properties. This has the drawback we had before,
i.e. it is rather ad hoc and makes identification tautological. Secondly, rather
than enforcing asymmetry, we can exploit available asymmetry by disambig-
uating the two sides of the tree via the nature of the participants in the two
transfers. This solution has the drawback that the participants on both sides
need to be suitably distinct, and that sameness can only be expressed in terms
of the characteristics of those participants. In other words, it increases domain
dependence of the representation: the same_id_as relation can not be inferred
for the generic Transaction class.

Granted that the reader agrees that the first disadvantage outweighs the
second, we continue to disambiguate between different participants. Suppose
our transaction is a sales transaction where some Good is exchanged for a
quantity of Money. We can use this information to discriminate between the
two Transfers that make up our Transaction:

Goods_Transfer ≡ Transfer ⊓ object some Good

Again, the equivalence axiom is used to grab the Transfer individuals that in-
volve goods. We can then use our strict prior definition of Transfer to enforce
object specific relations between the Transfer and the actor and recipient:

recipientg ⊑ recipient

actorg ⊑ actor

Goods_Transfer ⊑ recipientg some Agent ⊓ actorg some Agent

The money transfer Money_Transfer and properties can be defined accordingly.
Because of the exact qualified cardinality constraints on Transfer for the parti-
cipants object, actor and recipient, a DL reasoner will infer that for any Goods_
Transfer g and Agent a, if g actor a then g actorg a. Based on this inference, we
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can rephrase the same_id_as relation in terms of context specific relations:

actor−g o part− o part o recipientm ⊑ same_id_as

actor−m o part− o part o recipientg ⊑ same_id_as

recipient−g o part− o part o actorm ⊑ same_id_as

recipient−m o part− o part o actorg ⊑ same_id_as

Given the transaction Ta depicted in Figure 7.5, and O1 : Money and O2 : Good
we can now infer the relations Ag1 same_id_as Ag4 and Ag2 same_id_as Ag3.7

7.2.2 Discussion

The notion of exchange, and more specifically transaction, represents a com-
monly recurring pattern in many domains. Although it is a concept primarily
characterised by its structure, rather than inherent properties, it has a strong
ontological flavour. The reciprocity of the various participants in an exchange
is similar to constraints in representations of physical artefacts.

The structure of this complex concept can be approximated by exploiting a
combination of the newly introduced language constructs in OWL 2 DL. The
previous section describes a general methodology that can be applied to create
approximate representations of any diamond shaped structure. It is composed
of five straightforward steps. Create initial class definitions that provide a basic
means for identifying individuals. Constrain the number of role fillers allowed
for members of that class, by combining upper and lower bound cardinality
restrictions using both subclass and equivalence restrictions, respectively. Dis-
ambiguate role fillers by making property extensions disjoint. Define property
chains that traverse the tree to create (identity) relations between different par-
ticipants in a transaction (or similar pattern). And finally, introduce asymmetry
by incorporating contextual information, e.g. by using less generic concepts to
define the more general relation.

These steps ensure both that candidate individuals in the ABox are appro-
priately identified, and that inferred property values for those individuals are
enforced. Explicit violation of such inferences, e.g. by means of a negative ob-
ject property assertion in OWL 2 DL for the same_id_as property, results in an
incoherent ABox. However, the same_id_as and other relations introduced in
this pattern are inferred on the basis of property chains, but they do not enforce
the existence of a chain when they are asserted. A chain of properties can only
be defined as a sub property of another property, but it cannot be stated to
be equivalent: the super property does not define the chain. This is because if
this were possible, we could specify a recursive property, e.g. p o r ≡ r, and
thereby force the existence of an infinite property chain using an existential or
cardinality restriction.8 Therefore, for the pattern to ‘work’ – and this holds

7The good and money in the example can be enforced to be different individuals by making
the Money and Good classes disjoint. If this is undesirable (i.e. because money can be considered
a good as well), this does raise the need for a specific Sales_Transaction class that consists only
of a Money_Transfer of Money that is no Good. Alternatively, one can introduce a custom differ-

ent_id_from property along the lines of same_id_as.
8Note that this is different from an existential restriction on a transitive property, as transitive

properties may have an infinite length, but do not have to.
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for all patterns in this chapter – care has to be taken to distinguish between
inferable and ‘assertable’ properties.

Admittedly, because we can only approximate the diamond shape, the most
conspicuous drawback is the need for an alternative to owl:sameAs to express
that two individuals are ‘the same’. On the other hand, in some cases a custom
relation is even to be preferred over the owl:sameAs relation such as when it
is used to relate two different states of the same object. For instance, transac-
tions can be conceived of as involving change, where the state of affairs before
the transaction should be distinguished from the result of the transaction (see
Section 7.4). In this case, a same_id_as relation can express a shared identity
between logically different individuals, where asserting the owl:sameAs relation
would result in an incoherent ABox (Hoekstra et al., 2006).

An added advantage is that the pattern steers clear of problems arising
from the overlapping expressiveness of DL and logic programs. To close the
diamond, we need only define a single, relatively harmless DL-safe rule that
maps the same_id_as property to owl:sameAs. However, such a rule cannot in-
fer that some individual is a participant in a complementary action when the
participants of that action are not explicitly asserted. An alternative is to use
nominal classes as ‘placeholders’ on the different individuals in the pattern.
For instance, the definition of Transaction could be amended in a way that it
enforces all actor role fillers of its Transfer parts have the value of a single indi-
vidual transaction_actor. A match of some individual with the Transaction class
description will then infer owl:sameAs relations between the (possibly differ-
ent) individuals that fill the actor roles in that particular case, and the transac-
tion_actor. This is only useful in a controlled environment where the structure
of individuals that matches a class only occurs once. When multiple transac-
tion individuals match the class description, their actors will be inferred to be
the same as well.

7.3 Reification and Summarisation: Relations and

Social Reality

This section describes a pattern that allows for the summarisation of reified re-
lations. It is argued that although a reified relation often conveys a stronger
ontological commitment than the original relation, while at the same time the
original relation is often more convenient for practical use. The two sides of the
coin are discussed in the context of two use cases: the representation of n-ary
relations (Noy and Rector, 2006) and a description of social reality (Searle, 1995).

7.3.1 N-Ary Relations

One of the design patterns discussed by the Semantic Web Best Practices and
Deployment (SWBP) working group of the W3C concerns the representation
of so-called n-ary relations: relations between more than two entities (Noy and
Rector, 2006).9 The need for a ‘best practices document’ on the representation
of n-ary relations in OWL DL originates from two phenomena. Because OWL

9See http://www.w3.org/2001/sw/BestPractices.

http://www.w3.org/2001/sw/BestPractices
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does not provide means to express n-ary relations directly, many other repres-
entation languages do have built-in support for these relations: the document
addresses a translation problem for users coming from a different background.
For instance, formal ontologists tend to represent ontologies using expressive
languages such as traditional first order logic or other languages that allow the
definition of such predicates, cf. CommonLogic (ISO/IEC, 2007). At the other
end of the spectrum, the TopicMaps10 language allows for associations with
multiple subjects.

Noy and Rector (2006) discuss three use cases where n-ary relations would
be in order:11

Case 1
“Christine has breast tumour with high probability.”

This phrase hints at a binary relation between the person Christine and
diagnosis Breast_Tumor_Christine with a qualitative probability value de-
scribing this relation as high: the binary relation really needs a further
argument.

Case 2
“Steve has temperature, which is high, but falling.”

In this case, Steve has two values for two different aspects of a has_tempe-
rature relation: its magnitude is high and its trend is falling. The two bin-
ary properties always go together, and should be represented as one n-
ary relation.

Case 3
“John buys a ‘Lenny the Lion’ book from http://books.example.

com for $15 as a birthday gift.”

Here, there is a single relation in which individual John, entity http:

//books.example.com and the book Lenny_the_Lion participate. This
relation has other components as well such as the purpose (birthday_gift)
and the amount ($15).

The solution proposed by Noy and Rector is to represent such n-ary rela-
tions as a class with n properties that reifies the relation.12 For instance, the
has_diagnosis relation between Christine and Breast_Tumor_Christine is repres-
ented as an individual of type Diagnosis_Relation with properties value Breast_
Tumor_Christine and probability high. Similarly, Steve’s has_temperature is rep-
resented as an individual Temperature_Observation, and John’s book purchase
is represented as a Purchase individual (see Figure 7.21).

Regarding the first case, this solution is similar to the association class in class
diagrams of UML that directly represents some association (relation) between
two classes. The association class itself can then have additional properties,
such as in Figure 7.6. Association classes can only be used to reify a binary
relation where the relation itself has additional properties.

10See http://www.topicmaps.org
11Examples and text taken from http://www.w3.org/TR/swbp-n-aryRelations/. Noy

and Rector describe a fourth use case where a single object is related to an ordered list of other
objects, see Section 7.4.

12Noy and Rector (2006) avoid the use of this term because of differing interpretation of the term
in TopicMaps and RDF.

http://books.example.com
http://books.example.com
http://books.example.com
http://books.example.com
http://www.topicmaps.org
http://www.w3.org/TR/swbp-n-aryRelations/
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patient

disease
Breast TumorChristine

probability: high

Diagnosis

Figure 7.6: The association class ‘Diagnosis’ in UML, from http://www.ibm.

com/developerworks

Noy and Rector do not address the fact that these cases are based on the a
priori ontological commitment that the individuals involved are part of a single
relation. How does such a commitment come about? In knowledge represent-
ation, and ontology construction in particular, there exists a rather prominent
tradition that advocates isomorphism to natural language. This tradition is in
part upheld by those having a background in natural language understanding
and semantics, whose primary interest is to represent exactly what is expressed
in a sentence. A stronger influence is the philosophical stance in ontology that
the categories of existence lie at the basis of human cognition. It is furthermore
argued in a semiotic tradition, that human cognition, or rather, the categories
of human thought, are best conveyed through studying natural language (cf.
the discussion of the DOLCE ontology in Section 6.2.1).

The decision to represent some description as a relation is often guided by
the common rule of thumb that nouns (or noun phrases) represent concepts
where verbs represent relations. Additionally, nouns preceded by ‘has’, as e.g.
‘has temperature’ are usually represented as properties as they indicate de-
scriptions that cannot stand on their own: a temperature is always the temper-
ature of something (Brachman et al., 1991; Sowa, 2000). A description preceded
by a proposition such as ‘with’ is a modifier of some relation. Adjectives such
as ‘high’ indicate values of relations.

It is these kinds of simple rules that are exploited by controlled natural lan-
guages for OWL such as Attempto Controlled English (Kaljurand and Fuchs,
2007, ACE), the Sidney OWL Syntax (Cregan et al., 2007) and Rabbit (Schwitter
et al., 2008). There is a reason that these languages are controlled: natural lan-
guage is itself highly mouldable. Consider for instance the case of Christine in
Table 7.2. These examples all describe approximately the same thing; they are
paraphrases, and casual reading of these sentences seems to convey the same
information. However, when we adopt the rules of Brachman et al. (1991),
the possible resulting models may become strikingly different for each of the
sentences.

The gist of this exercise is to show that the need for a language construct,
such as n-ary relations should be based on a conscious decision to interpret
a use case in a particular way: it is an ontological commitment. A too direct
connection to the way information is conveyed in linguistic expressions may
introduce a commitment for cases where the conceptualisation underlying the
expression makes no such commitment. Conversely, the proposed alternative
representations of cases 1-3 make explicit two additional ontological commit-
ments:

• a commitment to the existence of some intermediate entity through which

http://www.ibm.com/developerworks
http://www.ibm.com/developerworks
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1. “Christine has breast tumour with high probability”

Some unspecified n-ary relation between Christine and breast tumour, where the probabil-
ity of this relation is high;

2. “Christine has a high probability of breast tumour”

A binary relation ‘has high probability’ between Christine and breast tumour;

3. “Christine has a diagnosis of breast tumour with high probability”

Some binary relation between Christine and diagnosis, and two relations between diagnosis
and breast tumour and high probability, respectively;

4. “Christine is diagnosed as having breast tumour with high probability”

An binary relation ‘is diagnosed’ between Christine and breast tumour, and a probability
of this relation with value high;

5. “Christine’s diagnosis is breast tumour with high probability”

Some binary relation between Christine and diagnosis of type breast tumour where the
probability of this diagnosis is high.

Table 7.2: Different wording, different representation?

the various relata of the n-ary relation are connected.

• a commitment to the non-existence of the n-ary relation itself, for the in-
termediate entity and the n-ary relation cannot exist at the same time.
This does not exclude the possible existence of additional relations between
the relata of the intermediate entity.

These commitments are not arbitrary: the reification makes explicit some
knowledge about the domain which would be left implicit in the n-ary re-
lation. For each of the cases, the reified class cannot be anything other than
respectively a diagnosis, observation or purchase. The n-ary relation is a sim-
plification, or summary, of the underlying conceptual structure. The restriction
to binary relations in OWL thus enforces a more ontologically concise repres-
entation. The drawback, on the other hand, is that exactly because of this com-
mitment, the n-ary relation itself can no longer be represented. Nonetheless,
the design pattern described in Section 7.3.3 can reclaim some of the relational
character of the reification.

7.3.2 Social Reality

A similar case for reification can be made on the basis of the considerations un-
derlying the intentional and legal levels of LKIF Core (discussed in sections 6.3,
6.3.2 and 6.3.3). Remember that in line with the world knowledge in Valente’s
functional ontology, the legal level is an abstraction of commonsense know-
ledge. This abstraction is similar to the way in which intentional and func-
tional notions, are generalised over physical phenomena by the design and
intentional stance of Dennett (1987). These notions are social constructs that can
be attributed to, or imposed on brute facts, phenomena the existence of which
does not depend on human agreement (Searle, 1995).

According to Searle, institutional facts are constructed by means of con-
stitutive and regulative rules, rules of the form:
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X counts as Y in context C

Examples of constitutive and regulative rules are, respectively:

• Bills issued by the Bureau of Engraving and Printing (X) count as money
(Y) in the United States (C).

• For the purposes of this law (C), a house boat (X) is deemed to be a house
(Y).

Where a regulative rule imposes additional restrictions on something (i.e. a
house boat) to create an institutional fact (the house-boat-as-house) which can
exist independently from that rule, the constitutive rule determines (in part)
the possibility of existence of the institutional fact. Clearly, where regulative
rules have a normative character, constitutive rules are definitional. It is there-
fore not surprising that the counts-as relation has received a lot of attention in
AI and Law, most recently in Grossi et al. (2005); Grossi (2007).

Although the counts-as relation in constitutive rules attributes the proper-
ties of Y to X in a similar fashion as ordinary subsumption, it is very distinct
in three ways:

• The counts-as relation is ontologically subjective and observer relative,
and therefore contextual. It only holds in relation to a certain context,
within a system of constitutive rules created by (collective) intentionality.

• The counts-as relation limits inheritance, and does not permit substitutab-
ility of the syntactic elements of rules. For instance, the statement “Money
is the root of all evil” in conjunction with the constitutive rule introduced
before, does not make that “Bills issued by the Bureau of Engraving and
Printing count as the root of all evil in the United States.”. This is because
the context of the counts-as relation is intensional; the institutional fact
cannot be defined by reference to statements outside the context.

• The counts-as relation can be used to connect anti-rigid with rigid classes
(Guarino and Welty, 2004). For example, where “bills issued by the Bur-
eau of Engraving and Printing” is rigid, the “money” class is anti-rigid.

These characteristics of the counts-as relation make that it cannot be rep-
resented using the subsumption relation, which is contextless, extensional and
subject to ontological restrictions concerning its relata (Section 5.5.1). Social,
institutional facts can accumulate in layers, but eventually need to bottom-out
in brute facts. This logical priority of brute facts coincides with the layered per-
spective of Dennett’s stances and corresponds with primacy of physical reality
in the LKIF Core ontology.

A fourth characteristic of social constructs is that, because of their context
dependency, they are often conceived of as a relation between the brute fact
and its context. A well known example is the duality of roles as relations and
classes (Steimann, 2000; Loebe, 2003). Steimann identifies three ways to rep-
resent roles, as named places in relations, as specialisation or generalisation, or as
adjunct instances. Clearly, of these only the first and last conform to the inten-
sional character of the counts-as relation, and only the latter is directly compat-
ible with OWL.
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Figure 7.7: Reification versus summarisation of relation R.

Representing roles as adjunct instances means that the role itself and its
player are defined as two distinct classes, with a played_by relation. For each
occurrence where some entity plays a role, two individuals need to be present
in the ABox of a description logic. However, for some purposes this repres-
entation may be non intuitive or overly verbose, and the relation between role
player, role and context is ‘flattened’ to a relation between role player and con-
text. This is essentially the named places approach, and although OWL does
not support these, a similar effect can be reached by defining the named places
as mutually inverse properties.

The role-as-relation approach is enticing in cases where the role-as-class
approach involves an apparent circularity. To give an example, it is hard to
consider the role Student independently from a student_of relation with a Uni-
versity class. Defining Student in terms of that relation is rather tautological.
A similar example is the interplay between a propositional attitude Belief, and
the proposition that is believed_by an agent. In the development of LKIF Core,
we encountered various other occasions where this pattern emerged (see Sec-
tion 7.3.4).

7.3.3 Representing Summarisation

Both the representation of social reality and n-ary relations involve an import-
ant ontological commitment to either a relation oriented approach (impossible
in OWL for the n-ary case) or a class centred representation. As we have seen,
in many cases the class centred approach is ontologically more concise, but also
more verbose. For many applications it is useful, or simply convenient, to ab-
stract away from this ontological commitment. This process of summarisation is
in fact the reverse of reification. While reification turns a secondary entity into
a primary entity – i.e. a relation is reified as a class – summarisation ‘hides’ a
primary entity as a secondary entity. The use cases for n-ary relations of Sec-
tion 7.3.1 show that a need for representing n-ary relations is usually motivated
by relations that already hide an ontological commitment. Arguably, an expli-
cit methodology for creating (or inferring) the summarisation of ontologically
concise, but verbose representation can be very useful for e.g. ontology reuse.
A reusing ontology may reuse just the abridged version of ‘properties’ without
compromising its ontological commitment.

Figure 7.7 shows the reification Rr of relation R as an individual with expli-
cit subject, predicate and object relations, and the converse summarisation Rs
of individual R as a relation between classes C1 and C2. The use of the term
‘reification’ was discredited by Noy and Rector (2006) because of its different
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meaning in different languages (Section 7.3.1). Even when we commit to the
single interpretation of reification in RDF, it is clear that the RDF-solution does
not meet our needs:

• In RDF, for any property an rdf:Statement can exist that reifies it (Sec-
tion 3.3.1). However, the converse does not hold: given some rdf:Statement
one cannot automatically infer the existence of a property assertion between
rdf:subject and rdf:object of the type specified by rdf:predicate. This means
that RDF is not expressive enough to support both reification and sum-
marisation using a single mechanism.

• RDF reification is indiscriminate with respect to the type of the relation
being reified, whereas the current use cases are restricted to n-ary rela-
tions and constitutive rules.

• Though OWL has an RDF serialisation and thus can be said to support
its reification mechanism, reified RDF statements cannot be used in OWL
axioms without violating the expressiveness constraints of OWL DL.

Given these considerations, the following sections outline a design pattern
that allows us to infer the summary of a reified relation. First, the general
principle is described in terms of the construction of social roles. This is then
elaborated to show its application for n-ary relations and other subjective con-
structs. Note that the purpose of this exercise is not to specify contextual sub-
sumption along the counts-as relation (cf. Grossi (2007)) in DL, but rather to
allow maximum usability of ontologically concise representations.13

Step 1: Initial Class Definition

Consider the definition of a simple social rule, a student is a person who is
enrolled as such at some university. Using Searle’s counts-as rule, we can re-
phrase this as:

A person (X) counts as a student (Y) if enrolled at some university (C)

Casting this into OWL axioms, we get:

Student ≡ played_by some Person ⊓

context some University

Step 2: Constrain and Disambiguate Role Fillers

The above definition does not constrain the number of and type of entities
that are valid values for the context and counts_as properties. We import the
Subjective_Entity class from the LKIF Core ontology to import its restrictions.
A subjective entity is defined as an entity imposed on another entity using a

13Section 7.5.1 describes how a role attribution can be used to ‘backfire’ certain property values
to the brute fact.
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counts-as rule:14

Subjective_Entity ≡ imposed_on some owl:Thing ⊓

context some owl:Thing

⊑ imposed_on exactly 1 owl:Thing ⊓

context exactly 1 owl:Thing

imposed_on ≡ counts_as−

Note the way in which the equivalent class and subclass of axioms on Subject-
ive_Entity are used to ensure that any entity that is attributed in some context
is both recognised as a Subjective_Entity, but also enforced to be attributed to
exactly one entity in a single context (Section 7.2.1). We reuse the definition of
Social_Role in a similar fashion. A social role is a role that can only be played
by a single agent, in a single context, it inherits a cardinality restriction on the
played_by and context properties from Subjective_Entity. Where played_by is
defined as the inverse of a plays subproperty of counts_as. The relevant axioms
from LKIF Core are:

Role ≡ played_by some owl:Thing

⊑ Mental_Entity

Social_Role ⊑ Role ⊓

played_by some Agent

played_by ≡ plays−

played_by ⊑ imposed_on

plays ⊑ counts_as

If we adopt these axioms, the Student role can only be played by a single per-
son at a single university. It should furthermore be clear that the redefined
definition of Student is a conservative extension of the LKIF ontology:

Student ⊑ Social_Role

At this point, the same problem as with our definition of Transaction in Sec-
tion 7.2.1 arises. Currently, we have said nothing about how the classes Person
and University are related. The cardinality restrictions on the played_by and con-
text properties allow us to infer that, since Student is a subclass of Social_Role,
the Person class must be subclass of Agent. The current representation is silent
as to whether a University is an agent as well, and a university could in prin-
ciple be a student in the context of itself.15 We can use our knowledge of the
domain to prevent this from happening and disambiguate universities from
persons, i.e. by making both classes disjoint. However, this disambiguation
between context and brute fact is a global restriction, and indeed the properties
imposed_on and context are defined as disjoint in the LKIF ontology.

14For a more restrictive definition we could define imposed_on and context as functional prop-
erties.

15In fact, a University is itself a Role played by some Organisation (which is an Agent).
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Figure 7.8: Tree-model as described by the definition of Student

Step 3: Traverse the Tree

Figure 7.8 shows the completion graph for the definition of Student, where the
student role S is played by a person P within the university context U . As dis-
cussed earlier, this structure constitutes a reified relation expressing student-
ship between the university and the person. A straightforward summarisation
of the reification can be specified as simple role inclusion axioms that simulate
the respective named places:

context− o plays− ⊑ student

plays o context ⊑ university

That is for the structure in Figure 7.8, a DL reasoner will infer a student relation
between university U and person P , and its inverse. Because in role inclusion
axioms the property chain is a sub property of the property, the summarisation
is subject to a similar limitation as RDF reification, but in the exact opposite dir-
ection. Where in summarisation we can only infer the relation given the reified
structure; RDF reification only infers the reified structure, given the relation.
Also, summarisation cannot be used to express an explicit predicate relation
between the summarised class (Student) and the relation (student).

Step 4: Introduce Domain Dependence

For the purposes of our example, this role inclusion axiom is overly ambitious
as it will infer the relation for any context and brute fact connected through
a Role. The way out of this predicament is to define the student relation in
terms of some of the elements particular to the structure of the Student class,
i.e. to introduce domain dependence. There are two ways to do this: either by
refining the properties involved, or by using self restrictions.

We can refine the properties in the Student definition by adding the follow-
ing axioms:

Student ⊑ student_context some University ⊓

student_played_by some Person

student_context ⊑ context

student_played_by ⊑ played_by

Because of the cardinality restrictions on the context and imposed_on proper-
ties, the properties student_context and student_played_by will correspond to
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Figure 7.9: Observer-relative and Institutional facts

the context and played_by properties for any individual of type Student. Since
the restriction on the domain dependent properties is only specified in a sub-
class axiom, inferring membership of the Student class does not depend on
these properties. The student property can now be restated as:

student_context− o student_played_by ⊑ student

The main drawback of this approach is that for every type of Role, we need to
add a domain dependent property and axiom for each of the properties in its
definition. Furthermore, these domain dependent properties can only be used
local to the Role being defined. Since both properties cannot be used to infer
class membership of Student, we can infer the student relation for any three
individuals connected in the prescribed manner. Using equivalence instead of
subsumption in the definition of Student does not help matters, as that may
make the domain independent and dependent restrictions of the Student class
equivalent.

A more economical approach is to reduce the opaqueness of the distinction
between the TBox and RBox by introducing a single property that uniquely
identifies a class in the RBox. For our Student role, we introduce the is_student
property, that will relate any student individual to itself. We can ensure this by
specifying a self restriction on the Student class:

Student ⊑ is_student some self

Any individual that is related to itself via the is_student property will be iden-
tified as an instance of Student, and any individual asserted as instance of Stu-
dent will be related to itself via that property. We can now rephrase the student
summarisation axiom as follows:

context− o is_student o played_by ⊑ student

The university summarisation property can be expressed by reversing the direc-
tion of the context and played_by properties. Figure 7.9 shows the general struc-
ture of this pattern for observer relative and institutional facts. This approach
suffers from the same restriction regarding the equivalence axiom. Generally,
the attribution of social constructs is difficult to define independently. A pos-
sible way out is to give a more specific definition of the context of the social
construct, e.g. the set of actions typically associated with students. Nonethe-
less, the use of a marker property such as is_student is consistent with the fact
that social facts are created via conscious acts, such as statements and declara-
tions (Searle, 1995).
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Subjective_Entity ≡ imposed_on some owl:Thing ⊓

context some owl:Thing

⊑ imposed_on exactly 1 owl:Thing ⊓

context exactly 1 owl:Thing

Role ≡ played_by some owl:Thing

⊑ Mental_Entity

Social_Role ⊑ Role ⊓

played_by some Agent

Student ≡ played_by some Person ⊓

context some University

⊑ Social_Role

⊑ is_student some self

imposed_on ≡ counts_as−

played_by ≡ plays−

played_by ⊑ imposed_on

plays ⊑ counts_as

context− o is_student o played_by ⊑ Student

plays o is_student o context ⊑ University

Figure 7.10: Axiomatisation of the Student class

Step 5: Punning

To complete the picture of summarisation, the property and class names of
the subjective entity being defined can be made the same. OWL 2 punning
allows us to treat the named entity as either an object or a class depending on
how it is used (see Section 3.5.2). This way, roles such as Student can be used
both as property and as class without compromising ontological commitment,
or burdening (re)users of the ontology with overly verbose vocabulary. The
resulting axiomatisation is depicted in Figure 7.10.

7.3.4 Discussion and Examples

The preceding section gives an overview of a general structure design pattern
for representing the summarisation of reified relations. This summarisation is
established in five steps, that partially coincide with the steps in Section 7.2.1.
Create initial class definitions that provide a basic means for identifying indi-
viduals. Constrain the number and type of role fillers by applying the techniques
from Section 7.2.1. Define the summarisation property as a property chain that
traverses the tree from context to brute fact. Introduce domain dependence by in-
corporating contextual information, most notably using a marker property that
uniquely identifies members of a class in the RBox. Optionally use punning
to lift the syntactic distinction between the summarisation property and the
corresponding reification.

The following sections give an overview of how this pattern can be applied
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Figure 7.11: Reification Rn of an n-ary relation.

to various different contexts, such as the representation of n-ary relations of
Section 7.3.1, and various mental entities in the LKIF Core ontology.

Representing N-Ary Relations

Although we have seen in Section 7.3.1 that n-ary relations cannot be represen-
ted directly in OWL DL, we can summarise them in a fashion similar to how
we represent social roles. The main difference between the reification of binary
relations and n-ary relations is that the latter have multiple subjects or objects,
but share a single predicate. Compare the reified relation Rn of Figure 7.11 with
that of R in Figure 7.7.

As Noy and Rector (2006) point out, n-ary relations typically have multiple
objects, but a single subject (Cases 1 and 2 from Section 7.3.1). Consider their
representation of the Diagnosis_Relation:

Diagnosis_Relation ⊑ diagnosis_value some Disease

⊑ diagnosis_prob some Probability

Person ⊑ has_diagnosis only Diagnosis_Relation

Because diagnosis_value and diagnosis_probability are functional properties, no
cardinality restrictions are defined. Figure 7.12 shows an instance of this rela-
tion DR as it is related to a person P , a disease D and its probability P . To
make the representation more uniform, we add a restriction on the inverse of
has_diagnosis as subclass axiom to Diagnosis_Relation (no diagnosis without a
patient):

Diagnosis_Relation ⊑ patient some Person

Following the pattern described in the previous section, we add a marker prop-
erty is_diagnosis to the definition of Diagnosis_Relation:

Diagnosis_Relation ⊑ is_diagnosis some self

Given these definitions, we can define the summarisation property diagnosis
with domain Person and range Disease ⊔ Probability as the following property
inclusion axiom:

has_diagnosis o is_diagnosis o diagnosis_value ⊑ diagnosis

has_diagnosis o is_diagnosis o diagnosis_prob ⊑ diagnosis
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Figure 7.12: The n-ary relationDR between person P , diseaseD and probabil-
ity Pr.

In this case, the marker property is_diagnosis may be a bit superfluous. How-
ever we can easily extend this pattern to express more specific kinds of dia-
gnosis:

Cancer_Diagnosis ≡ diagnosis_value some Cancer

⊑ is_cancer_diagnosis some self

and informative properties such as a has_cancer_prob property that relates the
patient to the probability of such a particular diagnosis:

has_diagnosis o is_cancer_diagnosis o diagnosis_prob ⊑ has_cancer_prob

These axioms allow us to infer for e.g. Christine (P ) that if she has a has_diag-
nosis relation with a Cancer_Diagnosis DR which has a diagnosis_prob with
value high (Pr), then Christine has_cancer_prob high.

This representation can be extended in a straightforward manner to cover
more complex n-ary relations, as e.g. case 3 of Section 7.3.1 where John buys
a Lenny_the_Lion book. His Purchase is in fact a type of Transaction (Sec-
tion 7.2.1). We can use the familiar role inclusion axiom and marker property
is_purchase to express relations such as buys, sells and earns:16

actor−m o part− o is_purchase o part o objectg ⊑ buys

actor−g o part− o is_purchase o part o objectg ⊑ sells

actor−g o part− o is_purchase o part o objectm ⊑ earns

Figure 7.13 shows how John (Ag1) can be inferred to have a buys relation with
the Lenny_the_Lion book (G).

Representing Mental Entities

Besides roles, other subjective and mental entities play an important role in
the LKIF Core ontology. Propositional attitudes, such as beliefs, intentions and
convictions are central to the representation (and resolution) of legal cases, and
in particular mens rea. For instance, the state of mind ‘malice aforethought’

16Provided that the objects of both Transfer actions are suitably distinguished.
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Figure 7.13: The sells, buys and earns relations in a Purchase transaction

necessary for the qualification of murder, is defined as the intent to kill, inflict
serious bodily harm or a state of reckless indifference. Also, persons can be
held liable for the actions of another person if they caused that person to hold
a belief that led to an illicit act (Hart and Honoré, 1985).

Propositional attitudes are not only subjective entities – they are observer
relative – but have a relational character that is very similar to that of roles. For
instance, consider the following sentence:

“Mary believes that John killed Susan.”

Here the propositional content of the belief is “John killed Susan”. The pro-
noun ‘that’ is used to mark a reification of the propositional content of the
belief. However, we cannot say that “John killed Susan” is the belief, rather
the belief is inclusive of both the attitude and the content, i.e. it is “that John
killed Suzan”. We can rephrase the example as “Mary holds a belief towards the
proposition ‘John killed Suzan’.”, as a consequence of which “Mary” believes
“John killed Suzan”.

The LKIF Core takes this duality into account and represents the classes
Propositional_Attitude and Proposition as follows:

Propositional_Attitude ≡ towards some Proposition

⊑ Subjective_Entity ⊓Mental_Object ⊓

held_by some Agent

Proposition ⊑ Mental_Object ⊓

attitude some Propositional_Attitude

towards ⊑ imposed_on

attitude ⊑ counts_as

attitude ≡ towards−

holds ⊑ context−

held_by ≡ holds−

A propositional attitude is anything held by an Agent towards some Proposition.
The properties towards and holds are sub properties of the properties we used to
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Figure 7.14: The propositional attitude PA held by an agent Ag towards a pro-
position P .

construct subjective entities. This definition is easily refined to cover the belief
example, by adding a subclass Belief, its corresponding marker property, and
the summarisation property chain:

Belief ⊑ is_belief some self

⊑ Propositional_Attitude

holds o is_belief o towards ⊑ believes

Using this definition, we can infer for any agent Ag that holds a Belief (PA)
towards a Proposition (P ), that Ag believes P . The general pattern is depicted in
Figure 7.14).

Some attitudes are not merely internal to some agent, but are externalised
by means of a speech act. The Speech_Act class in LKIF Core is defined as
an action that creates a Communicated_Attitude such as declarations, assertions
and promises. Communicated attitudes are those attitudes that convey an Ex-
pression, a proposition that is mediated through some Medium (e.g. a book):

Communicated_Attitude ≡ states some Expression

⊑ Propositional_Attitude

Speech_Act ≡ creates some Communicated_Attitude

⊑ Creation

states ⊑ imposed_on

creates ⊑ object

As Creation is a subclass of Action, the Speech_Act inherits its restriction on the
participants actor and result. An Agent is said to utter a Communicated_Attitude
if it is created through some Speech_Act:

Speech_Act ⊑ is_speech_act some self

actor− o is_speech_act o creates ⊑ utters

The attentive reader may have noticed that the utters property is not defined as
a sub property of the inverse of context. The reason is that if this relation were
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Figure 7.15: The communicated attitude CA that states expression E, created
by speech act SA and uttered by agent Ag

asserted, the context property would become a complex property, and we would
lose the ability to constrain its cardinality (see Section 3.5.1). We can circumvent
this limitation by wrapping the context property into the definition of utters.
This done by additionally defining the utters relation as a super property of the
concatenation of context− and a marker property is_communicated_attitude:

context− o is_communicated_attitude ⊑ utters

This way, we can infer the utters relation in two ways: via the specification of
a speech act, or by the explicit assertion of a communicated attitude. Unfor-
tunately, the tree model property of DL again does not allow us to enforce
that simultaneous application of both methods results in the inference that
the speech acts are uttered by a single Agent. The same_id_as relation of Sec-
tion 7.2.1 can be extended to simulate an owl:sameAs relation for this pattern:

actor− o is_speech_act o creates o utters− ⊑ same_id_as

The new vocabulary can be used to express the relational character of various
communicated attitudes, such as declarations and statements. For instance, the
Declaration class is defined as follows:

Declaration ⊑ is_declaration some self

⊑ Communicated_Attitude

The marker property is_declaration is then used to define the declares relation
(Figure 7.15):

utters o is_declaration o states ⊑ declares

Implications for Reuse

In the discussion of Chapter 6 it was hinted at that summarisation could con-
tribute to a more practical reusability of ontologies. The broad range of use
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cases for the summarisation pattern discussed in this section clearly shows that
its applicability is far reaching. Without summarisation, the choice between a
relation or class oriented representation of e.g. roles is an important ontolo-
gical commitment. And more importantly, this choice would have to be made
individually, for any of the use cases we discussed. The result is often a hodge-
podge of relation and class oriented solutions, within a single ontology.

Reuse of the LKIF Core ontology in applications that use expressive fea-
tures of OWL 2, such as the versioning mechanism of Klarman et al. (2008) and
normative assessment described in Hoekstra et al. (2008), is quite demanding
because of the large number of complex class axioms in the LKIF ontology itself
(see Section 6.4). Summarisation allows us to combine the conciseness of rela-
tions with the verbose ontological correctness of classes within an ontology. A
lightweight version of the ontology can be constructed by creating direct class
axioms for summary properties, while discarding the axioms related to their
reification. The resulting ontology is much more succinct, both qua ontological
commitment and qua expressiveness. While summary properties are complex
in the original ontology, the lightweight ontology represents them as simple.
The latter consequently does not involve any cardinality constraints nor does
it assert expressive property types over these properties. Of course ontologies
that reuse the lightweight ontology may add such restrictions on those prop-
erties without violating any of the global restrictions in Motik et al. (2009), but
this would not constitute safe reuse.

7.4 Sequences: Change and Causation

“You see there is only one constant. One universal. It is the only
real truth. Causality. Action, reaction. Cause and effect. ”
“And this is the nature of the universe. We struggle against it, we
fight to deny it but it is of course. Pretend it is a lie, beneath our
poised appearance the truth is we are completely out of control.
Causality, there is no escape from it, we are forever slaves to it.
Our only hope, our only peace is to understand it, to understand
the why. ”

Merovingian, The Matrix Reloaded

The representation of sequences of entities is central to many domains. Ex-
amples are the representation of physically or conceptually linked structures
such as chains, trains, roads, and routes, or chapters in a book, respectively
(Drummond et al., 2006). For instance, Noy and Rector (2006) describe the a
case for an n-ary relation that involves a route: “United Airlines flight 3177
visits the following airports: LAX, DFW, and JFK.” The flight has a relation
with three airports, and the sequence indicates the order in which its visits
these airports. Similarly, sequences play an important role in the qualitative
representation of quantities, such as relative speed or temperature. However,
it is particularly essential in the representation of anything related to time and
change, for clearly, temporal relations have a directed sequential structure:
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Figure 7.16: Alternative classifications of under specified protein sequence mo-
tifs (Drummond et al., 2006, Fig.2)

Time is the conscious experiential product of the processes that allow the (hu-
man) organism to adaptively organise itself so that its behaviour remains tuned
to the sequential (i.e. order) relations in its environment.

(Michon, 1990, p.40)

A perceived temporal ordering of events is thus a by-product of our in-
teraction with the order relations in reality. In Breuker and Hoekstra (2004b);
Hoekstra and Breuker (2007) we have argued that this order is dependent on
how processes in reality causally interact. The fact that the occurrence of some
process is a necessary and sufficient condition for the occurrence of another
process, implies a causal relation that coincides with a temporal ordering of
the processes: causation is what makes time tick.

Other than the transitivity of properties, OWL does not provide a built-in
construct for representing (temporal) sequences. Though OWL 2 will include
an owl:datetime datatype property for representing times, a similar datatype-
oriented approach is not always applicable. For instance, Drummond et al.
(2006); Villanueva-Rosales and Dumontier (2007) focus on the representation
of sequences of molecular structures such as protein sequences and functional
groups, respectively. Proteins are sequences of amino acids, and are categor-
ised and referred to according to properties of the patterns of amino acids –
or motifs – they contain. Drummond et al. present a design pattern for se-
quences inspired by the data structure commonly used to represent lists (as e.g.
in rdf:List, Prolog and Lisp list, and the abstract List class in Java). Their OWL-
List class functions as a built-in construct, and can be used to classify proteins
according to the patterns they contain (see Section 7.4.3 for a discussion of its
definition). Figure 7.16 shows an example classification task in biochemistry.

The OWL representation of Villanueva-Rosales and Dumontier has a sim-
ilar goal. The chemical properties of large carbon based molecules (chemical
compounds) are described by experts in terms of the interaction between func-
tional groups: partial molecular structures. Although we could envision a
mapping from functional groups and motifs to unique numbers (or even a cus-
tom datatype), this moves all semantics outside of OWL itself and we can no
longer adequately represent the groups themselves. Arguably, a representation
of time in terms of points or intervals has a more straightforward mapping to
a datatype, but again, such an approach does not define these temporal occur-
rences themselves.
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The following sections introduce a design pattern for representing sequen-
ces, based on a use case for causal explanation. The next section introduces
the perspective on causation of Hoekstra and Breuker (2007) and illustrates
requirements for its representation as part of LKIF Core. Section 7.4.3 compares
the pattern with that of Drummond et al. and discusses its advantages and
limitations.

7.4.1 Causation

Causality plays a central role in virtually all scientific disciplines. In all cases
its use is more precise than in commonsense – for instance, it is distinguished
from covariance, correlation and coincidence – but essentially it does not differ
in its capacity to explain dependencies between events. Lehmann (2003) ad-
opts a distinction between the notions of causality and causation; he uses the
term ‘causality’ to denote the ontological view, and reserves the term ‘causa-
tion’ for the occurrence of causality. The definition of causality is a major issue in
philosophical metaphysics, and has been for many centuries (Kim, 1998; Dav-
idson, 2001; Schaffer, 2003). Philosophy primarily concerns itself with what
causality is, i.e. it is focused on ontological questions regarding the existence
and properties of causality. Epistemological questions arise concerning how
we can know about the occurrence of causality in the real world and, once we
do know, what inferences we can draw from the causal relation between two
events.

Causation is an abstract, reflective concept that summarises a more qualit-
atively distinct relation. An account of causation involves an understanding
of relationships between events in terms of processes. This intermediary role of
processes can be conceived of as a dependency: as causation between events.
Causation is no more and no less than the (abductive) inference that the oc-
currence of event B can be explained by a (sub-)process that is implied by an
earlier or simultaneous event A. In other words, after we perceive a collision
between two billiard balls, we infer a transfer of force from the moving ball to
the static ball. This allows us to say that the collision caused the second ball to
move. In a nutshell, recognising the transfer of power at the collision is suffi-
cient for our understanding; the assertion that the collision caused the ball to
move is superfluous.

This view furthermore exposes the overloading of causal relations common
in many domains, such as the interspersion of liability and causality in legal
causation (Hoekstra and Breuker, 2007). In general, we can distinguish two
types of causation: physical causation that describes physical processes and agent
causation, which describes the actions of rational agents. Legal theory intro-
duces two additional forms of causation (Lehmann, 2003; Hart and Honoré,
1985): interpersonal causation, which describes the effect one agent might have
on another (e.g. as a consequence of communication), and negative causation,
representing the connection between an effect and some agent not acting (e.g.
negligence). As discussed in Hoekstra and Breuker (2007), the latter are legal
constructs rather than basic causal relations.
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Approaches

In Artificial Intelligence, causation has been the direct and indirect object of
study in a number of specialised areas. Worth mentioning in this respect is
the work of Pearl (2000), which finds its basis in a probabilistic representation
of physical causation; more knowledge-intensive approaches to physical causa-
tion from the fields of Qualitative Reasoning (QR) and Model Based Reasoning
(MBR) (e.g. Horn (1990)), ontology-based approaches, and a multitude of form-
alisms for agent causation (communication) within multi-agent systems.

Formal Causal Reasoning The work by Pearl (2000) stands out in AI as the
most comprehensive and explicit modelling of what could be called “compu-
tational causality”. His main contribution lies with probabilistic (Bayesian)
modelling of quantifiable dependencies between occurrences, e.g. the use of
drugs and their effects on patients. In this sense it fits the tradition in science to
enable the identification of causes or causal factors in a well founded, formal
way. This work is also relevant for legal reasoning about cases that have a
probabilistic basis, as for instance in claims about compensation for damage of
health suffered due to the consumption of certain industrial products. How-
ever, his approach is not particularly well suited for a more qualitative rather
than quantitative conception of causation, which Pearl (2000, Ch.10) coined ac-
tual cause:

“an event recognised as responsible for the production of a certain outcome
[. . . ] Human intuition is extremely keen in detecting and ascertaining this type
of causation and hence is considered the key to construct explanations [. . . ] and
the ultimate criterion (known as “cause in fact”) for determining legal respons-
ibility”
[. . . ]
“Clearly, actual causation requires information beyond that of necessity and
sufficiency: the actual process mediating between the cause and the effect must
enter into consideration.”

Pearl (2000, p.309)

However, Pearl sees the conceptual basis for actual causation as a mere ad-
ditional element, rather than primary and sufficient for deciding on causation
in fact. His somewhat exploratory work on factual causation is aimed at a
formal, ‘correct’ modelling of causal dependency rather than a more qualitat-
ive commonsense perspective.

Qualitative and Model Based Reasoning Another potential source of inspir-
ation for the representation of causal relations is the representation and reason-
ing involved in modelling the structure and behaviour of systems (Bredeweg
and Struss, 2004). Qualitative reasoning (QR) started as an approach to com-
monsense reasoning and initially coined naive physics. In his influential second
naive physics manifesto, Hayes (1985) argues that causality is not a “useful,
self-contained theory”, but “that it is an umbrella term for a large variety of
particular relationships” (Hayes, 1985, p.19). In Hoekstra and Breuker (2007)
we underwrite his stance that causality is not a primary term in an ontology
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of common sense, e.g. it is not defined by LKIF Core. Rather, the variety of
causal relationships between events considered to correspond to the relations
between different kinds of processes.

In QR, a model of the structure of a system is used to simulate the propaga-
tion of changes through the system, including structural changes of the system
itself. This propagation yields chains of events, which represent a prediction of
the behaviour of the system, given some initial state. Events in QR are connec-
ted by property values induced by two types of relations: influences and pro-
portionalities. Proportionalities represent definitional or inherent dependencies
between property values. For instance, an increase in volume of a substance
has a linear correspondence to its weight.17 On the other hand, influences rep-
resent an actual causal effect on the value of properties, for instance the prox-
imity of a heat source will influence the temperature of an object. These causal
relations follow from processes (Forbus, 1984), which are represented as model
fragments.

QR is particularly useful for modelling well known and stable physical
structures. For instance, model based reasoning – an applied branch of QR
– is used mainly in the representation and diagnosis of devices. Although QR
techniques have been used in other domains than physics, e.g. in modelling
ecological and social systems (Bredeweg et al., 2006), it is limited to purely
physical causation and does not provide a means to model agents, let alone
the processes initiated by them. Furthermore, as discussed in Hoekstra et al.
(2006), the model fragments that play a central role in QR cannot be represen-
ted in OWL in a straightforward manner, as they are highly structured concepts
(Motik et al., 2007a, and Section 7.1).

Agent Technology Agent causation is not explained just by causes but by
reasons as well, and in particular the intention to perform an action. The no-
tion of intention, although more recent, has given rise to as much philosophical
controversy as causation. In AI the notion has been operationalised to model
actions, and in particular communication between artificial agents. The lan-
guages by which these agents communicate typically provide constructs for
representing belief-states, actions, plans, data etc. The most prominent ex-
ample being the belief, desire, intention model of Georgeff et al. (1999, BDI).
The BDI model is a representation of the inner workings of agents (includ-
ing people), and is intended to contribute to a better understanding of how
intention influences action. Nonetheless, there are a number of reasons why
agent technology cannot be used for detecting commonsense causation. First
of all, agent technology is concerned with simulation, the realtime behaviour of
agents, where our use case relies on post-diction. Furthermore, the BDI model
does not cover physical causation.

Ontology The ontological approach to causation in fact described in Lehmann
et al. (2004); Lehmann and Gangemi (2007), defines causal dependencies within
the framework of the DOLCE ontology, see e.g. Gangemi et al. (2002, and Sec-
tion 6.2.1).

Causal relations relate very simple events that change a single aspect of a
single object. Between these events, three existential dependencies are identi-

17Provided that the substance is not a contained gas.



7.4. Sequences: Change and Causation 180

fied: structural, causality and circumstantial dependencies. Physical causation is
defined as the relation that holds between two individual events that satisfy
both the causality and the circumstantial constraints. The framework allows
for the classification of some description of a number of events as an instance
of physical causation in fact.

The ontology contains no theory of the (physical) world; i.e. descriptions
are not expressed using domain knowledge. For instance, the semantics of a
state is not represented intensionally, but only through its name (e.g. being-
wounded), it contains no description of what it means to be in that state. The
lack of such descriptions makes this approach less useful for explaining the
existence of a causal relation: the basic causal relations between events are
asserted rather than inferred on the basis of domain knowledge. A system built
on such a representation is less flexible in dealing with incomplete knowledge,
as it can only infer causal propagation on the basis of a fully specified, explicit
causal model.

7.4.2 Representing Causal Change

This section introduces a content pattern for describing the linear ordering of
events that lies at the heart of causal relations in LKIF Core. The approach
differs from Drummond et al. (2006) in that it captures the sequential nature
of these relations, similar to how transitivity relates to the part of relation,
whereas Drummond et al. use a nested structure. The pattern is based on the
principle that an account of subsequent states of objects, expressed in terms
of domain knowledge, can be recognised as the occurrence of one or more
processes. The interaction between these processes is both necessary and suffi-
cient for the identification of causal relationships (Hoekstra and Breuker, 2007).
Given the sequential ordering of these states and processes we can furthermore
infer temporal relations.

Step 1: Initial Class Definition

Events and states occur at some time and place, i.e. they happen against a four
dimensional canvas of space and time (Davidson, 2001). These co-ordinates
determine the possibility of causal relationships: time and location limit causal
propagation. The intensional definition of Change expresses a difference be-
tween before and after its instances occur, and thus involves a requirement and
a result situation. A particular situation may be any valid configuration of en-
tities. Since these entities have to be related in order for them to form a single
situation, it can be generically captured by an OWL class description that takes
one of the entities participating in the situation as focal point. In other words,
where the definition of a change at class level describes required and resulting
situations, a particular occurrence of a change, i.e. an event, is related to single
individuals.18 Processes are changes that consist of other changes, though not
every change that is composed of other changes is a process.

18States and events are occurrences and are used to respectively refer to individual objects and
changes.
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Figure 7.17: Change and causal relations.

The initial class definitions of Change and Process are thus as follows:

Change ≡ requirement some owl:Thing ⊓ result some owl:Thing

⊑ requirement exactly 1 ⊓ result exactly 1

⊑ at some Place ⊓ at some Temporal_Occurrence

⊑ part only Change

Process ⊑ Change

Step 2: Traverse the Tree

The above definition already allows us to define a number of interesting causal
and temporal relations. For instance, consider the situation in Figure 7.17. The
changes c1 and c2 each have a part c′

1
and c′

2
where the result o2 of c′

1
is a

requirement for c′
2
. Here, clearly c′

1
causes c′

2
, but c1 can be said to cause c2

as well. These causal relations are straightforwardly defined using two role
inclusion axioms:

result o requirement− ⊑ causes_directly

causes_directly ⊑ causes

part o causes o part− ⊑ causes

where causes is a transitive property and causes_directly is not. We can further-
more remark that if two situations are the requirement and result of a change,
then a temporal ordering relation must hold between the intervals at which
they hold:

at− o result− o requirement o at ⊑ after

at− o requirement− o result o at ⊑ before
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These inclusion axioms allow us to infer e.g. that the interval i1 holds before
i3, and i3 before i5. However, for a change to affect its conditional situations,
we may require its temporal occurrence to coincide with an interval i2 that
partially overlaps the time of its required and resulting situation:

at− o requirement o at ⊑ overlaps

at− o result o at ⊑ overlaps

A more rigorous adoption of Allen (1984) might specify that i2 finishes the in-
terval i1 and starts interval i3. However, this would mean that i2 coincides with
an overlap between i1 and i2, which is a significant ontological commitment to
the simultaneous coexistence of the situations s1 and s2. To exclude this possib-
ility, the requirement and result properties are made disjoint. This also removes
models where a change is inferred to directly cause itself.

We can now also specify that a Process (or any other entity) occurs during an
interval that covers, i.e. encompasses, all intervals of all changes it is composed
of:

at− o part o at ⊑ covers

Corresponding spatial relations, such as overlaps can be constructed in a similar
fashion.

Step 3: Disambiguate Role Fillers

The causes property allows us to define Process as the class of causal changes:

Process ⊑ Change ⊓ causes some owl:Thing

⊑ part only (Change ⊓ causes some owl:Thing)

However, this definition leaves room for changes that are causal without being
(part of) a process. In fact, as argued in Hoekstra and Breuker (2007) causation
does not exist independently from processes. Whether some change is causal
is determined by whether it is either a process or part of a process, and not
the other way around. The causes relation should therefore only hold between
entities that meet these criteria. We alter the definition of Process and causes by
including a marker property is_process (see Section 7.3.3):

Process ⊑ is_process some self

is_process o part o causes o part− o is_process ⊑ causes

The above property chain infers a causes relation between two processes, but
it does not specify a causal relation between the changes that are part of these
process. To do this, we introduce the class Causal_Change and a marker prop-
erty is_causal_change that captures those changes that are part of processes.
The definition of Process is altered accordingly:

part_of ≡ part−
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Causal_Change ≡ part_of some Process

⊑ is_causal_change some self

⊑ Change

Process ⊑ is_process some self

⊑ Change ⊓ causes some owl:Thing

⊑ part only Causal_Change

Anything that is part of some process, is a causal change, and processes con-
sist only of causal changes. As a side note, we can now define Cause as an
Epistemic_Role played only by causal changes:

Cause ≡ Epistemic_Role ⊓ played_by some Causal_Change

To define the causal relation between causal changes, we replace the property
chain for causes relations between changes (the second role chain in Step 2)
with the following role inclusion:

is_causal_change o causes_directly o is_causal_change ⊑ causes

The inverse of the causes property is defined in a straightforward manner. The
transitivity of the causes relation allows us to infer causal propagation both
over a chain of connected result and requirement_of properties, and between
processes that are connected via such a chain. Furthermore, the current defin-
ition ensures that causal relations only hold between changes and processes at
the same aggregation level. A single change cannot cause a process, but rather
the process (as a whole) that contains that change does.

Step 4: Introduce Asymmetry

The representation presented in the previous step allows us to infer causal rela-
tions between changes and processes provided that we know some change con-
stitutes a process. However, as we have also said, the recognition of a process
constitutes a causal explanation; the causal relations follow from this recogni-
tion. We therefore need some way to qualitatively distinguish different types
of processes.

To illustrate this, consider a very simple blocks world that consists of a
single Block (in three states b1, b2 and b3), and two Surface individuals (s1 and
s2). Any Object can be positioned on a single other individual of type Object,
and the only operation available is to move an object to a different position.
Our Move process will consist of lifting the object from s1 and putting it on s2.19

19Of course this is a simplification over the complexity of even the simplest processes in reality,
such as the interplay between mass, speed, forces, and potential and kinetic energy in a collision
between billiard balls. However, incorporating these properties does not alter the structure presen-
ted here.
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Figure 7.18: Two valid models of the class Move.

The corresponding class descriptions and individual assertions are as follows:

Move ≡ part some Lift ⊓ part some Drop

⊑ Process

Lift ≡ requirement some (Object ⊓ on some Object)

⊓ result some (Object ⊓ not(on some Object))

Drop ≡ requirement some (Object ⊓ not(on some Object))

⊓ result some (Object ⊓ on some Object)

Object ≡ {b1, b2, b3, s1, s2}

⊑ on max 1

Block ⊑ Object

Surface ⊑ Object

Note that for the definition of Lift and Drop we need to close the world by enu-
merating all possible members of the Object class. This allows us to specify that
b2 is not on any other object using negative property assertions. Without this,
the class restriction not(on some Object) would never be satisfied. The process
p consisting of changes c1 and c2 on the blocks is defined as in Figure 7.18.
Because b2 is both the result of c1 and the requirement for c2, a causal relation
is inferred between these two changes. However, the definition of Move has a
valid model where the two changes are not connected in this way (Figure 7.18),
and no causal relation is inferred.

As it is exactly the sequential character of changes that defines processes,
we make the recognition of the process entirely dependent on a property chain
that expresses its characteristic causal sequence of changes. This chain is (again)
defined using marker properties that allow us to recognise classes inside the
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lift_and_drop_sequence

causes

p

c1 c2

b1 b2 b3

part part

requirement result

s1 s2

on on

is_lift is_drop

result requirement

Figure 7.19: Example of a process sequence.

RBox:

Lift ⊑ is_lift some self

Drop ⊑ is_drop some self

Move ≡ part some (lift_and_drop_sequence some owl:Thing)

⊑ part some Lift

⊑ part some Drop

⊑ Process

is_lift o causes o is_drop ⊑ lift_and_drop_sequence

Of course, a process can be defined by any number of such sequences. How-
ever, an obvious limitation of the representation is that it does not enforce the
changes in the process sequence to be a part of the process itself. Parthood
can be inferred, but this requires the representation of a separate role chain
for every step in the process sequence as traversing the next property would
include all changes (indirectly) caused by the process.

Figure 7.19 shows how the lift_and_drop_sequence traverses the decompos-
ition of process p. The marker properties allow us to distinguish between the
different branches of the decomposition in the same way that we introduced
asymmetry in Section 7.2.1.

7.4.3 Discussion

The previous section presents an approach to the representation of sequences
based on four familiar steps. First an initial class definition gives the basic struc-
ture for the elements of the sequential structure. Secondly, a transitive property
is defined by traversing the basic structure. Additionally, the connected nature
of the structure allows us to infer more relations between its elements (e.g. the
temporal relations between the occurrence of changes). The third step is to dis-
ambiguate role fillers by introducing marker properties that ensure the sequence
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relation only holds between appropriate elements. Finally, asymmetry is used
to expose the sequential character of the structure. We mark a starting element
that defines the sequence as a composition of property chains.

Drummond et al. (2006) and Noy and Rector (2006) take a different ap-
proach, and represent sequences as lists. The OWLList class of Drummond et al.
is defined as follows:

OWLList ⊑ isFollowedBy only OWLList

EmptyList ≡ hasContents max 0

≡ OWLList ⊓ ¬(isFollowedBy some owl:Thing)

hasNext ⊑ isFollowedBy

where hasContents and hasNext are functional properties, and isFollowedBy is
transitive. In this definition the hasContents property has the same role as
marker properties in the pattern presented of the previous section, where the
hasNext property is a generalisation of the result and requirement properties, and
the transitivity of isFollowedBy corresponds to the causes relation. The OWLList
pattern is more verbose as for every member of the sequence, an additional
OWLList individual needs to be created that links the contents to the next mem-
ber. To see the difference, consider a (Ser, Gly, Lys) protein sequence from Fig-
ure 7.16 using the OWLList pattern:

Ser-Gly-Lys ≡ OWLList ⊓ hasContents some Ser ⊓

hasNext some (OWLList ⊓ hasContents some Gly ⊓

hasNext some (OWLList ⊓ hasContents some Lys ⊓

EmptyList))

With some appropriate definition of the classes Ser, Gly and Lys. Using the
role-based pattern, we get:20

Ser ⊑ is_ser some self

Gly ⊑ is_gly some self

Lys ⊑ is_lys some self

Ser-Gly-Lys ≡ part some (serglylys_seq some Lys)

is_ser o next o is_gly o next o is_lys ⊑ serglylys_seq

Compared to Drummond et al. (2006) the approach presented here has several
advantages. First of all, the pattern is much less verbose at both the class and
individual level (see Figure 7.20). Furthermore, the pattern does not rely on the
representation of a data structure: it feels conceptually odd to call Ser-Gly-Lys
a list, where it is really a molecular structure composed of three substructures.
This is because the OWLList reflects an epistemological, rather than an ontolo-
gical perspective.

20For clarity, the two approaches use distinct property names. Similarly, marker properties are
prefixed with ‘is_’ though more intuitive names are allowed through punning, e.g. Ser instead of
is_ser.
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sgl hasNext _:x
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hasContents
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hasContents

hasNext _:y
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hasContents

hasNext []

sgl ser gly lyspart next next

ser gly lys

Figure 7.20: The (Ser,Gly,Lys) sequence represented as OWLList and as ser-
glylys_seq.

One of the main problems with the OWLList class definition reported by
Drummond et al. is that some of its valid models are not proper lists: it does not
exclude the additional branches that can be defined using isFollowedBy instead
of the functional hasNext property. Although the intended interpretation of the
isFollowedBy property is that it is the transitive closure of hasNext, this cannot be
enforced in OWL. The role-based approach suffers from the same problem, e.g.
causes and serglylys_seq are super properties of their respective chains, but are
not equivalent to it: an individual can be asserted to have a serglylys_seq prop-
erty to some Lys individual without being connected through each consecutive
step of the property chain (see Section 7.2.2). However, here the problem is less
salient as the properties are specific to the class being defined (e.g. Ser-Gly-Lys),
where isFollowedBy is domain independent and transitive. Similarly, a limita-
tion shared by both approaches is that neither can exclude cycles, as this would
require the complex sequence properties to be antisymmetric.

Where OWLList depends on the sequence to have no branches, and uses the
functional hasNext property to (partially) ensure this, the role approach does al-
low for arbitrary branching, by enforcing or lifting local cardinality constraints
on the next property (or corresponding alternative). For instance, the causal
propagation defined in the previous section allows a state to be connected to
multiple changes via the requirement property. Two process sequences that par-
tially overlap can be superimposed by maintaining an exact cardinality restric-
tion of 1 on the part property, while defining an existential restriction on both
process sequence properties:

SomeProcess ≡ part some (process_sequence
1

some A ⊓

process_sequence
2

some B)

⊑ part exactly 1

Alternatively, we can prohibit branching over the next property by defining
next as functional, or specifying a maximum cardinality restriction on the prop-
erty for each protein class.

Furthermore, sequences of a specific length are hard to define in either ap-
proach as no cardinality restrictions are allowed on transitive and other com-
plex properties (See Section 3.5.1). The OWLList pattern requires an exhaustive
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representation of each member class, while the role pattern needs the defini-
tion of a role inclusion axiom of the intended length. The advantage of the lat-
ter solution is that it can simply be stated in terms of the generic next property,
whereas the former requires a rather complex class definition. The reason is
that where role inclusion axioms are sequential, and can easily be concatenated,
class descriptions are nested and do not allow direct reuse of generic structures.

Suppose the definition of simple sequence S = [a, b, x, x, e], where x is an
arbitrary element. The OWLList pattern for this sequence would be:

S = [a, [b, [x, [x, [e, []]]]]]

and it can readily be seen that the representation of the sequence [x, x], namely
[x, [x, []]] cannot be directly inserted in the pattern. On the other hand, the role
pattern representation of the sequence is:

S = a o b o x o x o c

where x o x can be substituted withXs = x o x, resulting in S = a o b oXs o c.
In a similar fashion, OWLList is limited in the representation of sub-lists, and
requires the explicit representation of the entire list. The role approach does
not have this limitation.

The procedure for causal explanation described in Breuker and Hoekstra
(2004b); Hoekstra and Breuker (2007) was based on the stance of e.g. Michon
(1990) that the experience of time and causation are cognitive by-products
of our interaction with reality. The discovery of causal relations is therefore
largely a matter of ‘making sense’ of changes in the world around us (cf. the
cognitive perspective outlined in Section 6.2.2), the experience of time is a by-
product of this process. Admittedly, the representation of processes and causal
propagation presented here reflects a simplified view on causation. For in-
stance, because of the limitations of OWL, it does not cover causal relations
between a change where the non existence of a certain object is a requirement,
and a change that ensures its non existence (i.e. a change that does not have a
result).21

The system presented in Breuker and Hoekstra (2004b) relied on rules and
a search over the knowledge base to ‘probe’ for possible processes in a bag of
separate individuals. A match with a known process would indicate a causal
and temporal ordering. The pattern introduced in the previous section can be
used to achieve the same goal, but infers the types of processes occurring in
the knowledge base by using an OWL 2 DL reasoner.22

21In fact, although it is possible to assert an individual that represents an object’s non-existence,
we cannot prevent through DL constructs that an ‘existence’ and ‘non-existence’ individual are
asserted at the same time.

22Given the expressiveness of the pattern, this is bound to be computationally expensive for
larger sets of states.
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Figure 7.21: Transaction example from Noy and Rector (2006).

7.5 Patterns in Practice: Action!

The notion of action is a complex concept that brings together the perspect-
ives of all three patterns defined in the preceding sections. The Transaction de-
scribed in Section 7.2 involved two Transfer actions. The Purchase of Section 7.3
is such a transaction, and was conceived as a single reified n-ary relation. Its
representation involved the inference of several relations between participants
in the transaction. Furthermore, actions can be seen as the result of attribut-
ing an intention to some agent in starting a process (see also Section 6.3.2). In
other words, an action is a Subjective_Entity that is imposed_on a Process. The
connection between actions and processes is tight to such an extent, that the
connection between an agent and the consequences of its actions is conceived
of as causal (Davidson, 2001; Lehmann, 2003). In this light it is important to
distinguish reasons from causes, i.e. “Sally hit Jimmy on the head because she
was angry” gives an explanation of Sally’s intention to hit Jimmy, and not of a
causal relation between her anger and the hitting.

One might argue that since actions and processes coincide, action-processes
cannot cease to be actions, the Action class must be rigid and should thus be
defined as a subclass of Process. This would be possible if actions (and transac-
tions) had the spider-like structure of Joe’s Purchase in Noy and Rector (2006,
and Section 7.3.1) (see Figure 7.21).23 However, Breuker (1981, Ch.6) shows
that the surface structure of linguistic expressions is a deceptively simplistic
abstraction of a more complex conceptual structure. This conclusion is based
on an analysis of mental processes that take place when people read a pronoun,
such as ‘it’, and find its referent. The difference in response time for subjects in
performing this reference assignment gives insight in the conceptual structure
that exists in their mind.

Actions are often represented in terms of relationships with certain them-
atic roles, such as actor (or agent), object, instrument, location, recipient, pa-
tient, theme, etc. Over the years, many alternative representations of the re-
lation between actions and thematic roles have been, and still are, investig-
ated. Breuker’s research corroborated the structure of conceptual dependency
graphs, or scripts, of Schank and Abelson (1975), where characteristically the
instrument of an action has a subordinate role. In particular, Breuker suggests
that thematic roles exist at three distance levels from the action:

23Figure 7.13 in Section 7.3.4 already gave an alternate representation based on the Transaction

pattern.
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• The first level contains the agent and object roles, these are the most central
to the action.

• At the second level, its recipient and location are specified. These roles can
be used both in the sense of antecedent and consequent of the action, e.g.
the from-location vs. the to-location.

• The instrument role is specified at the third level, and reflects a subordin-
ate state or action necessary for the action to take place.

A second reason to conceive actions as subjective entities, rather than pro-
cesses, is that action frames can range from very simple, as in “The butcher
cuts the meat”, to very complex actions such as “With a knife, the butcher cuts
the meat into convenient pieces for the nice old lady.” A representation of such
sentences should adequately cover the structure and intentional perspective of
the action expressed by it, without interfering with the structure and causal
perspective of processes. Thirdly, the ability to conceive of actions without
them actually taking place in reality, such as in planning, is an indication that
they are mental entities. The role of verbs in the creation of metaphors (Pinker,
2007, and Section 5.6.1) furthermore suggests that the default relata of actions
are roles. They are slots that have certain default fillers, but can be reapplied to
non-standard categories to create a metaphor.

The following section shows how the three patterns are combined to create
a consistent representation of the class Action.

7.5.1 Representing Action

As identified by Breuker (1981), the most basic participants of an Action are
its actor and object. Only Agents can be the actor of an Action. Furthermore,
Actions may be imposed_on a Process. We specify its basic class definition as
follows:

Action ≡ actor some Agent ⊓ object some owl:Thing

⊑ Subjective_Entity ⊓ actor only Agent ⊓

imposed_on max 1 Process

object ⊑ participant

actor ⊑ participant

Note that this definition differs from the representation of Transfer in Section
7.2.1. It is less strict as it does not involve cardinality restrictions on the prop-
erties involved. Because we will infer the various roles of participants in the
action using role inclusion axioms, we can no longer use number restrictions.
In fact, as participants may reoccur at multiple stages of the process, e.g. the
various states a piece of meat is in while being cut, there is a good non-technical
reason for lifting the number restriction as well. However, it does mean that
we need to specify additional conditions for the same_id_as property:

object− o object ⊑ same_id_as

actor− o actor ⊑ same_id_as
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We can still enforce the disjointness between participant properties as e.g. re-
quired to distinguish between recipient and actor. However, the disjointness
of participants is not a general requirement, as agents may perform actions on
themselves.

Because there is no way to automatically determine the participant roles of
an action by its process description, they need to be explicitly marked as ful-
filling a thematic role. In the most basic case, we need at least the Object_Role
and Actor_Role. Their class definitions, including corresponding marker prop-
erties are as follows:

Thematic_Role ⊑ Role

Object_Role ⊑ Thematic_Role ⊓ is_object_role some self

Actor_Role ⊑ Thematic_Role ⊓ is_actor_role some self

Where is_object_role and is_actor_role are sub properties of the is_role marker
property. Given a imposed_on assertion between an action a and a process p,
and roles attributed to the situations that are part of p’s causal structure, we
can infer the individuals that participate in the action:

imposed_on o is_process o part o is_change o requirement ⊑ participant

imposed_on o is_process o part o is_change o result ⊑ participant

The fillers of the actor and object properties can only be gathered by taking
into account the roles they play. To accomplish this, the thematic roles need to
‘backfire’ to their role fillers:24

Object_Role ⊑ played_by only (is_object some self)

Actor_Role ⊑ played_by only (is_actor some self)

Every individual that plays a particular thematic role is now related to itself
via a marker property that indicates this role playing. The actor and object
participants can now be gathered by the following property inclusion axiom:

participant o is_object ⊑ object

participant o is_actor ⊑ actor

By our earlier definition of Subjective_Entity (of which Action and Role are sub-
classes), the subjective entity only holds within a certain context. Unfortu-
nately, as with the utters relation in the definition of Communicated_Attitude in
Section 7.3.4, we cannot specify this context via a property chain (since every
subjective entity has exactly one context). However, we can again partially cir-
cumvent this problem by providing two alternate representations of a specific
action_context property:

Action ⊑ is_action some self

participant o plays ⊑ action_context−

is_action o context− o is_object_role ⊑ action_context−

is_action o context− o is_actor_role ⊑ action_context−

24Of course, the relation can also be inferred in the other direction. For instance, the plays relation
between some individual and its thematic role can also be inferred by specifying that e.g. every
individual with an is_object relation pointing to itself plays an Object_Role.
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Figure 7.22: Action structure for inferring the actor, object and instrument parti-
cipant roles.

The action_context property allows alternate definitions of object and actor:

action_context− o played_by o is_object ⊑ object

action_context− o played_by o is_actor ⊑ actor

Following Schank and Abelson (1975); Breuker (1981) the instrument participant
is not directly linked to the action, but is rather the object of a subordinate ac-
tion. Given an explicit assertion of the plays relation between such an object
and an Instrument_Role, we can infer the instrument given a composition of the
part and object relations:

Instrument_Role ⊑ Thematic_Role ⊓ is_instrument_role some self

⊓ played_by only (is_instrument some self)

instrument ⊑ participant

is_action o part o is_action o participant o is_instrument ⊑ instrument

is_instrument_role o context o part− o is_action ⊑ action_context

is_action o part o is_action o actor ⊑ actor

actor− o part o is_action o actor ⊑ same_id_as

The action_context of instrument roles is the action for which they are an in-
direct participant. The actor of the subordinate action is also the actor of the
containing action, and consequently shares its identity. Figure 7.22 shows the
action structure resulting from the definitions presented in this section, given a
fictive action a1 that consists of a process p1 for which the requirement s1 and
the result s2 of its constituting change c1 are respectively the actor and object of
action a1. The instrument s2 is the requirement of c2 in process p2 that forms
the causal structure of action a2, which is part of action a1.
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An Intentional Stance

The relation between an action and its actor is somewhat harder to flesh out.
We have said that actions are subjective entities imposed on a process, given the
intention of some agent. At the same time, this intention is exactly to perform
the action, and consequently to execute the process. However, to accommodate
for the possibility that an agent fails to initiate the action he intends to perform,
the intention and action cannot be the same thing, nor can the propositional
content of the intention coincide with the process. Furthermore, where an ac-
tion is objective in the sense that it does not exist merely in the mind of its actor,
the intention is not.

To relate intention to action, we thus need two subjective entity summar-
isation triangles that both have the same actor as context. First, we represent
the Intention analogous to the Belief class of Section 7.3.4:

Intention ⊑ is_intention some self

⊑ Propositional_Attitude

holds o is_intention o towards ⊑ intends

Similarly, we summarise the relation between Agent and Process by defining an
initiates role chain:25

performs ⊑ actor−

performs o imposed_on ⊑ initiates

In other words, the actor of an Action is said to perform it, and executes the
process that counts_as the action. The Agent that executes the process is its
agentive_cause, and thus counts_as the Epistemic_Role of Cause in the context
of the process.

Cause ⊑ is_cause some self

⊑ Epistemic_Role

Actor_Role ⊑ played_by only (initiates some (context_of some Cause))

agentive_cause ⊑ initiates−

executes o context_of ⊑ imposed_on

Note how the mere playing of the Actor_Role by some Agent forces it to be the
initiator of some process for which it is a Cause. In the same way, the playing
of this role can be used to force the Agent to hold an Intention_to_Act:

Actor_Role ⊑ played_by only (holds some Intention_to_Act)

Intention_to_Act ⊑ is_intention_to_act some self

⊑ Intention

This mechanism is very powerful in that it solves the inheritance problem of
the counts_as relation discussed in Section 7.3.2. Subjective entities can restrict
the properties of classes they are imposed on by a nested universal restriction
on the counts_as property (or its sub properties).

25Note that this chain does not depend on the marker property for Action as the actor property
already takes this into account.
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Figure 7.23: Four summarisation triangles for Action.

7.5.2 Discussion

The preceding section presents a representation of a complex concept, Action,
by combining the three patterns described earlier. First, part of the diamond
shape of the Transaction was extended to connect to the sequence pattern of Pro-
cess. We had to lift the cardinality constraints on the participants in actions,
to be able to define them as the summarisation property of the triangular pat-
tern of subjective entities. This drawback is amended by adding additional
same_id_as property chains, but otherwise the Transaction pattern remained in
tact. The structure of the sequence pattern was used to constrain the allowed
participants in an action, and identify the agentive cause of the process that
counts as action.

It is rather easy, and tempting, to extend this structure even further. The
composition of marker properties, roles, subjective entities, causes and actions
gives an intuitive handle on the definition of more complex social constructs in
LKIF Core, such as legal notions related to liability. Following Lehmann (2003)
the agent that initiates a process which causes an event that results in some
damage can be said to be potentially liable for that damage. Without giving a full
definition of these concepts, a straightforward definition of this relation is ex-
pressible as a role chain that uses the caused_by, agentive_cause and played_by
properties:

Damage ⊑ Legal_Role ⊓ played_by only (is_damage some self)

is_damage o result_of o caused_by o agentive_cause ⊑ potentially_liable

The four summarisation triangles involved in the intentional perspective on
actions are depicted in Figure 7.23.

7.6 Discussion

This chapter presented and discussed three design patterns inspired by, but not
limited to the LKIF Core ontology presented in the previous chapter. Rather
than content patterns, these emphasise the structure common to many repres-
entations. The first pattern, of Section 7.2, is inspired by the general inability
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to constrain the models of a DL class description in such a way that they cor-
respond to a diamond-like structure (Section 7.1.1). A typical use case for this
pattern is the notion of exchange, but similar application can be found in the de-
scription of physical, structured objects, such as the human heart, and artefacts,
such as tables and electronic devices. Whether the resulting class description is
an ontological definition or rather a framework depends on its object, rather than
its structure.

The design pattern was introduced in an incremental fashion, emphasising
the procedural nature of design, and elucidating the decisions and trade-offs
involved in the representation of the Transaction class. The procedure is com-
posed of five steps: creating an initial class description, constrain the number
of role fillers, disambiguate between role fillers, traverse the tree model of the
class definition using property chains, and introduce asymmetry between the
branches of the tree to allow for precise property chains. Central to this pro-
cedure is to ensure first the recognition of individuals belonging to a class, and
secondly enforce compliance to the class definition when an individual is as-
serted to be a member. Once the definition is as strict as possible, additional
information is inferred by the liberal use of subclass axioms and, in particular,
role inclusion axioms.

The pattern introduces the same_id_as and different_id_from properties as
alternatives to the built-in owl:sameAs and owl:differentFrom properties. Because
the latter are part of the OWL semantics, they are subject to the tree model re-
striction of DL. However, the former are not and can be interpreted in two
custom ways: as equivalent to their built-in counterparts, e.g. by specification
of the DL-safe rule in Section 7.2.2, or as carrying the identity of the individuals
it relates. The third pattern, of Section 7.4 illustrates that this second interpreta-
tion is particularly useful in the description of different states of a single entity.
The use of nominals or value restrictions as placeholders in class descriptions
is not a general alternative to the pattern described here as its applicability is
restricted to controlled environments (see Section 7.2.2).

Section 7.3 presents a triangular pattern for the summarisation of reified re-
lations, based on use cases for n-ary relations identified by the SWBP (Noy and
Rector, 2006), and common ways to define social concepts. The same cannot be
achieved using standard RDF reification. The main contributions of this pat-
tern are the ability to construct and combine complex relations using simple
combinations of classes and roles, and a general method for abstracting from
expressive ontologies to create a simplified version that is easier to reuse.

The pattern is constructed largely by the same procedure as that of Sec-
tion 7.2, but extends it with a step to introduce domain dependence of the sum-
mary property, and an optional punning step. It is characterised by the use
of marker properties to identify classes from within the RBox, and backfiring of
property restrictions over the relations. The latter mechanism is of particular
interest to social and legal domains where role playing and e.g. deeming provi-
sions rely heavily on the inheritance of properties from anti-rigid classes over
the counts_as relation, as opposed to standard subsumption. In addition to the
same_id_as mechanism of the first pattern, this pattern furthermore demon-
strates a mechanism for wrapping a simple property inside a role inclusion to
simulate a rdfs:subPropertyOf relation. This to circumvent situations where as-
serting this relation would make the property complex (see Section 7.3.4).

The third design pattern, described in Section 7.4, is an approach to repres-
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enting sequences inspired both by requirements for causal explanation in law
(Hoekstra and Breuker, 2007), and protein sequences in biomedical research
(Drummond et al., 2006). The construction of class definitions using this pat-
tern follows a similar methodology as that of Section 7.2 and Section 7.3. How-
ever, it differs in that membership of the sequence class depends entirely on
the inferred property chain, where the other patterns primarily use property
chains to infer new relations. It is very lean and flexible compared to exist-
ing approaches as sequences are defined solely by role inclusion axioms. An
important benefit is that role inclusions can easily be combined to form more
elaborate chains.

The combination of the three patterns in Section 7.5 shows that not only the
patterns, but perhaps more importantly the techniques central to the patterns
can be usefully applied to construct elaborate class definitions. It turns out
that extension of the three design patterns can be conservative without com-
promising significant expressive power. This is because they are self-contained
and their synthesis is only defined by means of property inclusion axioms and
additional class definitions, rather than restrictions on existing classes. The prin-
ciple of backfiring is a good example; using the subjective entity summarisation
pattern, we can specify conditional restrictions on the instances of a particular
class without affecting the original class definition. For instance, the Actor_Role
requires every Agent that plays the role to initiate some Process, but does not
alter the definition of the Agent class itself. In fact, it does not even mention
it. Loose coupling of the three patterns furthermore corroborates the assump-
tion of stratification that underlies the distinction between the different levels
of description in LKIF Core (see Section 6.3).

As a general approach to ontology development, the procedures used in the
patterns are limited in several ways. We have seen multiple times that prop-
erty inclusions are sub properties of the property they define (Section 7.4.3).
This means that although they may allow us to infer the existence of a prop-
erty in more cases than before, it does not affect the pre-existing semantics of
that property provided that it is already treated as complex. The use of such
extensible properties must therefore follow the global restrictions defined in
Motik et al. (2009). It is advisable that ontology engineers who employ one
of the patterns explicitly mark simple properties intended for extensibility us-
ing some annotation property, similar to e.g. the meta-properties proposed by
Guarino and Welty (2004) for marking the rigidity of a class (see Section 5.5.1).

A related restriction is that the assertion of individuals should take the del-
icate semantics of role inclusion axioms into account: asserting a value for a
property defined by such a chain does not imply the existence of that chain
between an individual and the value. In principle, this limitation is amendable
by introducing macro-like named property chains that allow assertions and
class restrictions to refer to the chain directly, rather than its super property.
However, such named chains would be subject to strict global restrictions to
prevent undecidability.

The third restriction follows from the custom solution to the limited ex-
pressiveness of OWL 2 in describing non-tree like structures. The same_id_as
and different_id_from properties carry special semantics that is not part of OWL
2 itself, but can be very useful in the context of a knowledge based system that
has to deal with the manipulation of multiple entities in different states. An on-
tology engineer will have to make a conscious decision to interpret them either
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as equivalent to their built-in counterparts, or as identity-carrying properties.
On the other hand, the design patterns presented in this chapter demon-

strate a promising avenue for a more liberal reuse of parts of ontologies. Rather
than capturing a strict ontological commitment, design patterns express an on-
tological perspective, that can be applied to basic concepts to construct deriv-
ative notions.26

26The patterns described in this chapter are available as OWL files at http://ontology.
leibnizcenter.org.

http://ontology.leibnizcenter.org
http://ontology.leibnizcenter.org


Chapter 8

Conclusion

“Whoever wishes to foresee the future must consult the past; for
human events ever resemble those of preceding times. This arises
from the fact that they are produced by men who ever have been,
and ever shall be, animated by the same passions, and thus they
necessarily have the same results.”

Machiavelli

8.1 Introduction

This book presents an exploration of lessons learned in over forty years of re-
search in the field of knowledge based systems. Chapter 2 covers the period
from the sixties until the early nineties. During these years, increased exper-
ience in using knowledge representation to build intelligent applications cul-
minated in the awareness of two important requirements: the need to separate
different types of knowledge, and to develop formal, restricted knowledge rep-
resentation languages tailored for each of these types. Jointly these constitute a
knowledge representation perspective that has far reaching consequences for how
knowledge representation artefacts are built.

Seven consecutive chapters explore these consequences for knowledge that
reflects the ontological commitments of a system’s domain theory. The specific-
ation of such ontologies is an important step in the knowledge level specification
of knowledge based systems (see Section 2.4). A guarantee on the computa-
tional properties of terminological representation languages allows ontologies
to be used directly as knowledge system components (Section 2.5). Ontologies
that are meant to be used in this way are knowledge representation ontologies
(Section 4.5), and are typically represented using languages belonging to the
family of description logics. Chapter 3 discusses how a highly expressive de-
scription logic has been crafted on top of existing languages for the web, and
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introduces the resulting language: OWL 2 (Motik et al., 2009). Chapter 4 in-
vestigates and disentangles different uses of the word ‘ontology’ and presents
a clear view of the role of ontologies in knowledge based systems.

Chapter 5 discusses a selection of methodologies and principles for onto-
logy development that have seen the light over the past fifteen years. Chapters
4 and 5 jointly provide a framework of requirements for ontology develop-
ment in the context of knowledge representation. These requirements are fur-
ther refined in Chapter 6, which describes the LKIF Core ontology of basic
legal concepts. In particular, the consequences of the knowledge representa-
tion perspective are discussed in the relation between LKIF Core and existing
ontologies. Finally, Chapter 7 brings together chapters 3 and 6 in a confronta-
tion with the OWL 2 DL knowledge representation language. The design pat-
terns presented there are representations of concepts and structures that can be
found across many domains, and follows from an exploration of the full extent
of OWL 2 DL’s expressiveness. Their description conveys a skeleton method-
ology for constructing OWL class definitions, that makes use of several novel
micro patterns.

In the introduction of this book I formulated five questions related to the
task of knowledge representation:

• Quality – How can the quality of models be improved?

• Design – Can the design of models be facilitated, or made easier?

• Compatibility – To what extent do theory and practice go hand in hand?

• Rationale – What is the rationale behind representation languages?

• Expressiveness – How do limitations in expressiveness affect models of a
concrete domain?

The following sections discuss the findings from chapters 2 through 7 in rela-
tion to these questions, and present a number of conclusions.

8.2 Compatibility of Ontologies

Ontology development is an important part of a knowledge systems develop-
ment methodology that relies on a maximisation of knowledge reuse. Indeed,
existing ontologies are often used as bootstrap for the creation of larger ontolo-
gies, or as axiomatic foundation for more extensive knowledge representations.
This ontology reuse is hindered by two important factors. Firstly, ontologies
can be overwhelming in complexity and size; they are hard to interpret and ex-
tend. Secondly, direct ontology reuse is subject to the ontology interaction prob-
lem identified in Section 5.4.2: the problem that axioms in a reused ontology
and its extension may interact in unpredictable and undesirable ways, caus-
ing the semantics of a reused ontology to change. For expressive languages,
no decidable algorithm exists that can determine whether the extensions of an
ontology are mutually compatible with respect to its axiom closure.
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Soft Reuse

The most common solution to this problem is to limit the role of axioms. Either
by shifting attention to lightweight ontologies, or by maintaining a less restrict-
ive definition of reuse. The first approach is apparent in contemporary work
on knowledge acquisition (Gangemi and Euzenat, 2008). For instance, com-
plex tasks such as ontology merging and alignment are considered reducible
to linguistic matching of concept names and distance measures over (taxo-
nomic) relations. However, this is undesirable from a knowledge representa-
tion perspective: lightweight ontologies cannot account for the domain theory
in knowledge based systems. The second approach is exemplified by allow-
ing ‘repairs’ to reused ontologies, e.g. by proposing ways to alleviate semantic
mismatches (discussed in Section 5.4). It is hard to see how this approach con-
tributes to the compatibility and reusability of systems, components and ser-
vices.

Both approaches sacrifice the technical reusability of knowledge compon-
ents for a reusability claim at a more conceptual level: two systems that ‘reuse’
the same ontology may be incompatible in its ‘use’. Although indeed this sug-
gests that the original ideal of fully compatible knowledge systems may have
been somewhat naive, it remains that the number of incompatibilities should
be minimised, by maximising reusability of ontologies intended for that pur-
pose.

Perspectives

This last observation inspired the idea to design ontologies for specific types
of reuse, and has become a central part of most ontology engineering method-
ologies (Section 5.4.1). For instance, the distinction of van Heijst et al. (1997)
between top, core, domain and application ontologies was meant to organise
ontology libraries in a modular fashion, with strictly separate levels of descrip-
tion. However, these distinctions are rarely applied in practice, as immediate
needs often prevail over methodological principles: existing ontologies tend to
freely mix levels of description. Furthermore, the drawback of such categorisa-
tions is that they do not capture the purposes for which an ontology has been
developed. As I discuss in Chapter 4, existing ontologies tend to mix three very
distinct perspectives (Section 4.5):

• Knowledge Management Ontologies are (structured) vocabularies developed
for sharing and reuse of information within organisations.

• Knowledge Representation Ontologies are reusable terminological knowledge
representations that specify the part of a domain theory of knowledge
based systems that directly reflects its ontological commitment.

• Formal Ontologies are formal specifications of an ontological theory in
philosophy.

In chapter 4 and 5, I argue that it is the compatibility between these three
perspectives that determines whether two ontologies are in principle compat-
ible. A commitment to either of these perspectives entails the adoption of a set
of specific requirements (Section 5.4.3).
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Language

In Section 5.4.2, I discuss a formal framework for assessing the type of reuse
possible between two ontologies. Section 5.4.3 formulates five restrictions that
apply to ontology reuse in the context of knowledge sharing between know-
ledge based systems. In particular, reuse is governed by language compatibility,
which has a direct effect on the reusability of ontologies across the three per-
spectives. The level of language expressiveness required to accommodate each
view ranges from featherweight to first order logic. For instance, the specific-
ation of a knowledge management ontology does not require an expressive
language, as it will be used only for limited forms of reasoning. For formal and
knowledge representation ontologies, on the other hand, more expressiveness
is desirable as it increases their adequacy as models of reality. Language com-
patibility is glossed over by existing methodologies: they invariably adopt a
weaker interpretation of reuse.

At first sight, the latter two ontology types seem to have corresponding
requirements. However, as outlined in Chapter 2, if an ontology is to be used
as knowledge component in a reasoning architecture, it should be restricted to
formalisms that take into account the restricted language thesis of Levesque and
Brachman (1987): inference over the language should be efficient and decidable
(see Section 2.5). In other words, it should be dependable and produce correct
answers within a predictable amount of time. As a result, there exists a trade-
off between expressiveness, i.e. potential ontological adequacy, and utility: the
scope of knowledge representation ontologies is determined by a hard limit.

For formal ontologies in philosophy, as with other predominantly theoret-
ical disciplines, such limitation given by practical considerations is not pertin-
ent to their purpose. Nonetheless, even an ontology as formal consolidation
of a metaphysical theory is subject to the structural limitations of formal lan-
guage (see Section 4.3.1). Formalisation is not a silver bullet: no matter how
expressive a formal language is, a formal theory will never fully cover reality.
The current state of the art in the field of knowledge representation results from
the acknowledgement of this fact, and ensures that at least we can apply our
approximate theories to something useful, other than only the advancement of
scientific thought. As long as this fundamental trade-off is not acknowledged
by philosophical ontologists, a usefulness claim of formal philosophical onto-
logies for knowledge based systems remains rather dubious.

Scope and Abstraction

The LKIF Core ontology, described in Chapter 6, is a knowledge representation
ontology. It is developed as part of an effort to provide a common vocabulary
for information exchange between legal knowledge based systems. Section 6.2
discusses four formally specified, generic ontologies and considers them for
reuse and integration in LKIF Core: SUMO (Niles and Pease, 2001), DOLCE
(Masolo et al., 2003; Gangemi et al., 2002), CLO (Gangemi et al., 2005), and CYC
(Lenat et al., 1990; Lenat, 1995). The discussion shows that these ontologies are
not reusable for two reasons. First, their level of generality is obtained in a
large part by the use of higher order abstractions that cannot be expressed in
even the most expressive decidable knowledge representation languages: they
do not meet the language compatibility requirement. Secondly, the perspect-
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ive of an ontology determines its scope and level of abstraction (Section 5.4.1).
This makes that the level of description of a generic formal ontology may well
be applicable to a certain domain, but is of only limited help in the definition
of more concrete concepts used in reasoning: they do not facilitate knowledge
acquisition. A similar limitation resides in methodologies that emphasise ab-
stract ontological principles, such as ONTOCLEAN (Section 5.5.1). Although
practical for keeping track of, and justifying design decisions, such principles
do not directly help solve concrete knowledge acquisition problems.

Common Sense

The LKIF Core ontology takes a different approach: rather than a focus on the
abstractions that transcend multiple domains (as in philosophy), the ontology
represents notions they have in common. It is a core ontology, and aims to give
definitions of concepts that are basic to both law and common sense. The fo-
cus on commonalities, and cognitively basic notions, is a key part of ontology
engineering methodologies developed during the nineties (Section 5.3).

LKIF Core takes this one step further and emphasises the origins of com-
mon sense as an important inspiration for the structure of the ontology. This
consideration of human cognition is reminiscent of the early days of know-
ledge representation, and in particular the use of semantic networks to rep-
resent semantic memory (Section 2.2.3). However, the current focus is far less
ambitious: the correspondence between representation and cognition is taken
as facilitator for acquisition, usability and reuse, rather than as corroboration
of a cognitive psychological theory of human intelligence. In the context of the
Semantic Web, the ontology aligns with the perspective of a human user, rather
than with just the technical perspective of machine-machine communication.

Frameworks

The quest for commonalities easily derails in the definition of recurrent struc-
tures that are generic across situations, but are not of an ontological nature.
While subsumption is central to ontology specification, its use is not reserved
to ontologies. For instance, in typologies that capture permutations of prop-
erty values rather than proper ontological categories. Section 5.5.2 discusses
the distinction between ontologies and three types of frameworks: situational,
mereological, and epistemological frameworks. These frameworks are similar
to Schankian scripts in that they capture the context of ontological categories;
i.e. their accidental rather than intrinsic properties. They rely on partonomy
and dependency relations; two of the three relations considered primary by
Smith (2004); Breuker and Wielinga (1987).

8.3 Quality and Design

Over the years, significant effort has been directed to facilitate the ontology
design process. As ontologies became increasingly specified using formal lan-
guages, the engineering view on knowledge based systems development and
design, which emerged in the early nineties, was applied the development of
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ontologies as well: methodologies, design principles, tools and – more recently
– design patterns each aim to provide handles for ontology construction.

Design Patterns

We have seen that ontology engineering methodologies position the represent-
ation of an ontology as part of a relatively opaque ‘ontology coding’ step. In
part this lack of detail is remedied by the incorporation of available existing on-
tologies, but they can only partly contribute to the quality of a new ontology,
given the limitations on ontology reuse discussed in the previous section. In-
terest therefore grows in extracting the parts of ontologies that can be usefully
applied in the construction of new ontologies. The recent rise in popularity
of such design patterns marks the start of a new development in ontology con-
struction, aimed at sharing best practices, rather than ready-made solutions.
A second reason for investigating design patterns is the expectation that they
would allow for a more lightweight form of ontology reuse.

However, the discussion of design patterns in Section 5.6 shows that the
ontology interaction problem holds for most of these patterns as well, and
content ontology design patterns in particular, as they are wholly defined in
terms of domain concepts. On the other hand, logical design patterns cannot
play the same role as they are specified at a meta level comparable to that of
the language constructs themselves. In Section 5.6.4, I therefore propose the
metaphoric use of structure patterns that are less restrictive with respect to their
implementation in ontologies.

Micro Patterns

A closer inspection of the internal structure of design patterns, reveals that
they need not necessarily be directly specified at the level of OWL constructs:
a number of intermediate, composite structures appear across the three design
patterns described in Chapter 7. The techniques for role-chain summarisation,
identity and difference propagation, backfiring of property values, the com-
bination of self-restrictions and role chains, and wrapping properties in chains
are concrete tools for ontology representation in OWL. Such micro-patterns re-
flect modelling techniques, rather than concrete patterns that need to be trans-
posed when applied to a new domain (cf. Section 5.6.4). Micro-patterns are
good candidates for extensions to OWL editors, either as macros (proposed by
Vrandečić (2005)), or as simple plugins. For instance, the AddMarkers plugin
for Protégé 4 automatically adds marker properties to all classes in the active
ontology.1 It is not unlikely that some of these micro patterns are common
enough to warrant future addition to the OWL syntax as ‘syntactic sugar’.

Patterns in Design

Design patterns are the result of a design task, a description of this design pro-
cess conveys their rationale and improves accessibility. The sharing of design
patterns should take into account how and why they are created: rather than
patterns in ontology, design patterns should capture patterns in design. One

1See http://www.leibnizcenter.org/users/rinke/2008/10/08/

addmarkers-protege-4-plugin/

http://www.leibnizcenter.org/users/rinke/2008/10/08/addmarkers-protege-4-plugin/
http://www.leibnizcenter.org/users/rinke/2008/10/08/addmarkers-protege-4-plugin/


8.4. Rationale and Expressiveness of OWL 2 204

step beyond structure and micro patterns is therefore the conscientious collec-
tion and dissemination of experience in creating ontology content.

The previous chapter introduces three patterns, which are deliberately de-
scribed in terms of the steps needed to apply them to concrete domain use
cases. In fact, the overlap in these steps indicates that ontology construction
involves the application of certain representation strategies that in conjunction
fulfil a design task. Much akin to the way in which problem types index the lib-
rary of problem solving methods of Breuker (1994), this suggests that use cases
for design patterns should be cast in terms of design tasks, rather than exclus-
ively in domain terms. Chapter 7 can be regarded as a preliminary study of
this approach and I believe a more rigorous investigation in this direction will
benefit the quality and design of ontologies to a much larger extent than even
the most elaborate library of content ontology design patterns will ever do.

8.4 Rationale and Expressiveness of OWL 2

The restricted nature of knowledge representation languages such as OWL 2
DL is given by technical, computational considerations of chapters 2 and 3,
rather than the theoretical and methodological issues outlined in chapters 4
and 5. We have seen ample evidence that this language is not a direct ‘fit’ for
ontology representation: not everything that is an ontology can be expressed
in DL, and not everything that is expressible is an ontology. While the lat-
ter problem can be responded to using a strict methodology and adherence
to principles, the former is more problematic. The knowledge representation
perspective puts reuse before use: why should I use a language that does not
allow me to express what I need for my application?

Decidability

Although many of the arguments of Doyle and Patil (1991) against the restric-
ted language thesis of Levesque and Brachman (1987) have been superseded
– simply because description logics have become much more expressive – de-
cidability is still very topical. For instance, the distinction between OWL DL
and OWL Full was introduced because of disagreement within the WebONT
working group as to whether decidability was a must-have feature for OWL.
The call for expressive languages is often legitimate, e.g. given theoretical con-
siderations (in philosophy), as well as where applications require undecidable
(or unexplored) extensions such as functional datatype properties (‘keys’) or
variables. However, a resolve not to use OWL 2 DL because of its limitations is
not always justified, and the choice for a more expressive language may harbor
hidden surprises. Although decidability may be a rather harsh requirement in
itself, it does offer dependability.

There is a hard limit to what can be expressed in OWL 2 DL, and to a large
extent this limitation is the result of a commitment to decidable reasoning.
However, this is not the only reason. The historic review in Chapter 2 shows
that separating different types of knowledge is crucial to the success of main-
tainable and reusable knowledge components. This need was the main motiva-
tion for the development of languages targeted to the representation of distinct
knowledge types. Description logics were inspired by the need to provide a
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formal basis for the frame-paradigm, used to capture the terminological know-
ledge used in a system’s domain theory (Section 2.3.2). As a consequence, DL
reasoners are optimised for performing inference tasks typical to this type of
knowledge: classification (TBox) and realisation (ABox).

Decidable rule languages may have other, enticing expressiveness bounds,
but this comes at the cost of constructs that OWL 2 DL does cater for, such as e.g.
cardinality restrictions (cf. the OWL 2 RL profile in Section 3.5.2). Furthermore,
it is to be expected that the interaction problem between knowledge resources
is even more significant for rule languages. Firstly, as these are not tailored for
a specific type of knowledge, the knowledge types in a rule base more easily
interact (Bylander and Chandrasekaran, 1987). Where description logics have
come forth from a need to perfect the terminological aspects of domain know-
ledge, rule languages have never been optimised for e.g. representing strategic
or causal knowledge in the same way.2 Secondly, the semantics of rules is more
likely to interact than that of OWL 2 DL axioms, as the latter has been specific-
ally designed to allow for extensible representations: rule languages adopt the
closed world assumption, where OWL assumes an open world (Section 3.4).

Perception

A principal conclusion of Chapter 7 is that OWL 2 DL is expressive enough
for many practical problems. The specification of transactions, roles, processes
and actions in OWL 2 DL shows that by using the language in novel ways, the
definition of concepts can be sufficiently precise, with acceptable trade-offs. In
fact, I argue that in many cases the inexpressiveness of DL is perceived. For in-
stance, the pattern for n-ary relations in Section 7.3 shows that this impression
is often based on syntactic considerations.

The mismatch between perceived and actual expressiveness of OWL is a
result both of its innate complexity, and of the fact that it differs significantly
from other expressive, intuitive, but sometimes under specified languages.
This brings us to one of the main the arguments for favouring a rule language
over a description logic: people are often considered to ‘think in rules’. Al-
though the call for an intuitive language is certainly justifiable, this is an inter-
face issue. In fact, there currently exist several alternative presentations for DL
axioms: structured natural-language syntaxes for OWL (Kaljurand and Fuchs,
2007; Cregan et al., 2007; Schwitter et al., 2008), the visual editing of OWL on-
tologies proposed by Brockmans et al. (2006), and even proposals to present
DL axioms as rules (Gasse et al., 2008; Krötzsch et al., 2008a). Clearly, an intuit-
ive presentation syntax does not necessarily correspond to appropriateness for
automated reasoning.

8.5 Closing Remarks

I hope this book contributes to a better understanding of why ontologies are
useful, and why a language such as OWL 2 DL is its quirky little self. For a
long time, ontologies were seen as the geese that lay the golden eggs. Now
that the shine is slowly wearing off, the danger is that they are dismissed as

2In fact, the representation of causal knowledge is the main focus of languages in qualitative
and model-based reasoning, see Section 7.4.1.
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slogan level management-speak, or exiled to the realm of metaphysical debates
between philosophers. In this book, I have tried to show that ontologies are
no different than other knowledge representation artefacts. Their applicability
may be restricted only to certain cases, but they still play a vital role in any
serious endeavour to the development of reusable knowledge based services,
especially when these are published on the web.

A related observation is that web-based – and certainly web-scale – reas-
oning is still an open issue. Even relatively lightweight applications, such as
distributed querying of RDF resources and the composition of semantic web
services have a long way to go. In some sense this is disappointing, as the
longer the promise of a true semantic web is pending, the more likely it is that
raw power data mining approaches claim some of its potential market share.
Nonetheless, the very idea of a semantic web already sparked an enormous
variety of novel technologies that can be used for other, more modest applic-
ations. OWL 2 DL is not just a web language; it is a powerful and expressive
language for building knowledge based components as well. The ability to
share ontologies across the web is a huge improvement, and solves many of
the issues that concerned the knowledge acquisition community during the
early nineties (i.e. ontology libraries). OWL could not have reached its current
status and user base without its foundation in the ideal of a Semantic Web.

However, we must be careful not to default too easily to OWL 2 DL as onto-
logy representation language. For, is OWL 2 useful for representing ontologies
in general? The extensive discussion on the various perspectives on ontolo-
gies leads me to conclude that this is certainly not always the case. If you are
committed to building an ontology that is to be used for (decidable) know-
ledge based reasoning, and can be shared on the web, it is certainly the most
advanced language currently available. For building a philosophical founda-
tional ontology, a language with minimal ontological and epistemological bias
such as predicate logic may be more suitable. However, this will render the
ontology unsuitable for automated reasoning in practical systems. Thirdly, if
the main purpose is the standardisation and sharing of a vocabulary, a less ex-
pressive language is more suitable (Section 3.3). It is good to see that the need
for well designed, but lightweight languages is increasingly being catered for;
both through the introduction of language profiles in OWL 2, and in the SKOS
vocabulary definition language.

It is my firm belief that the status granted to ontologies during the nineties
was overzealous, and although it paved the way for the adoption of a well
wrought language as standard for knowledge representation on the web, it
also instigated a lot of confusion that led both to entrenched positions in sci-
entific debate and to disappointment of early adopters. In this book I question
the claim that ontologies based on philosophical theories are somehow ‘better’,
which is implicit in many publications on formal Ontology (e.g. Guarino and
Giaretta (1995); Bera and Wand (2004); Barry Smith (2007)). I argue that this
claim be evaluated in the context of an ontology’s purpose, and that for know-
ledge representation ontologies more practical requirements take precedence.
This insight forms the backbone of the LKIF Core ontology and design pat-
terns presented here, and I believe it is a viable alternative to the philosophical
approach. Nonetheless, an empirical study as to which approach is more ap-
propriate under various circumstances would certainly be more conclusive.

We have seen that committing to a knowledge representation perspective
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exposes ontology development to inherent trade-offs and problems, and re-
quires a thorough understanding of the knowledge representation language
used. Ontology development consists of two phases, first knowledge is extrac-
ted from experts, then this knowledge is expressed using a formal language.
The caveat is the medium through which this takes place: the ontology en-
gineer. Rather than expert knowledge, it is his knowledge that is captured in
formal representations: the engineer is the true knowledge acquisition bottle-
neck. This realisation is lacking in both ontology engineering methodologies
and traditional design patterns, at least to the extent that they cover only part
of the ontology development process.

This book covers both theory and practice of knowledge acquisition, rep-
resentation and ontologies; it emphasises human understanding as knowledge
structuring principle, and demonstrates this approach in the development of
an ontology, and the description, justification and representation of several
design patterns. In doing so I hope it contributes to a better understanding
of the representation of ontologies; or rather, what it means to do ontology rep-
resentation.
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