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Ontology Versioning 
in an Ontology
Management
Framework
Natalya F. Noy and Mark A. Musen, Stanford University

Ontologies have become ubiquitous in information systems. They constitute the

Semantic Web’s backbone, facilitate e-commerce, and serve such diverse appli-

cation fields as bioinformatics and medicine. As ontology development becomes increas-

ingly widespread and collaborative, developers are creating ontologies using different 

tools and different languages. These ontologies cover
unrelated or overlapping domains at different levels
of detail and granularity.

This growth inevitably produces an ontology man-
agement problem: ontology developers and users
must be able to find and compare existing ontolo-
gies, reuse complete ontologies or their parts, main-
tain different versions, and translate between differ-
ent formalisms. In short, ontology developers face
problems similar to those that software engineers
have faced for many years.

A uniform framework, which we present here, helps
users manage multiple ontologies by leveraging data
and algorithms developed for one tool in another. For
example, by using an algorithm we developed for struc-
tural evaluation of ontology versions, this framework
lets developers compare different ontologies and map
similarities and differences among them.

Managing multiple ontologies
Multiple-ontology management includes these tasks:

• Maintain ontology libraries.Allow uniform access
to ontologies in a library; provide pertinent infor-
mation about each ontology such as its authors,
domain, and documentation; provide search capa-
bilities across all ontologies in a library; and per-
mit browsing of the ontologies themselves.

• Import and reuse ontologies. Let users extend and
customize ontologies others developed.

• Translate ontologies from one formalism to
another. Ensure interoperability of ontology devel-
opment tools by providing translators or import-

export mechanisms for ontologies developed
using different tools.

• Support ontology versioning. Provide mechanisms
to store and identify various versions of the same
ontology and to highlight differences between
them.

• Specify transformation rules between different
ontologies and versions. Enable transformation of
one ontology’s instance data to another ontology.

• Merge ontologies. Create a new ontology that
incorporates information from all given source
ontologies.

• Align and map between ontologies. Define corre-
spondences between different ontologies’ con-
cepts and relations.

• Extract an ontology’s self-contained parts. Ana-
lyze dependencies and let users extract sets of con-
cepts and relations as a subontology.

• Support inference across multiple ontologies. Use
mappings defined between ontologies to support
inference across several ontologies.

• Support query across multiple ontologies. Use
mappings to support queries to one ontology
posed in terms of another.

This list includes only the tasks we face today and
will likely grow as more diverse and overlapping
ontologies appear. Currently, most researchers treat
these tasks as completely independent ones, and the
corresponding tools are also independent from one
another. Ontology-merging tools (such as Chimaera1)
have no relation to ontology-mapping tools (such as
ONION2) or ontology-versioning tools (such as
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OntoView3). Researchers developing for-
malisms for specifying transformation rules
from one ontology version to another don’t
usually apply these rules to related ontolo-
gies that aren’t versions of each other.

However, many multiple-ontology man-
agement tasks interrelate and have common
elements and subtasks, and tools for sup-
porting some tasks can benefit from integra-
tion with others. For example, ontology-
merging methods we develop to help users
find overlap between ontologies can also
work for finding differences between ontol-
ogy versions.4 In both cases, we have two
overlapping ontologies and need to deter-
mine a mapping between their elements.
When we compare ontologies from different
sources, we concentrate on similarities,
whereas in version comparison we need to
highlight the differences. These processes
can be complementary.

In a previous study, we used heuristics
similar to those we present here to provide
suggestions in interactive ontology merging.5

Because ontology versioning deals with two
versions of the same ontology, we can use
the same techniques but require significantly
less user input and verification. We concen-
trate here on the ontology-versioning aspect
of multiple-ontology management.

An integrated infrastructure for
multiple-ontology management

Consider a set of ontologies. This set can
be rather small, such as a set of local ontolo-
gies developed by a single user. It can be
large, such as an ontology library for an orga-
nization or a community, or larger yet, such
as all ontologies in the Semantic Web. An
ontology set often includes ontologies a user
needs to relate to one another—perhaps
ontologies from other projects that a user
wants to merge to create a single coherent
ontology, or different versions of the same
ontology that the user needs to analyze. In
these cases, the user picks two or more
ontologies to work with and looks for over-
lap between them. We can express the over-
lap as a set of declarative mapping rules or
operational rules that would transform one
ontology into the other.

We gain significant advantages from con-
sidering these tasks together rather than
independently:

• We can leverage algorithms for finding
similarities between overlapping ontolo-
gies from various sources to find differ-

ences between ontology versions. We use
different thresholds to decide whether two
frames are similar, but the underlying
analysis can be the same. Similarly, we can
use heuristics discovered when compar-
ing ontology versions to compare differ-
ent ontologies.

• Because ontology management tasks
involve comparing several ontologies, ana-
lyzing and understanding semantic rela-
tions between their elements can be cog-
nitively difficult. Regardless of whether the
ontologies are headed for merging or align-
ment or the user simply wants to compare
them, a uniform interface that shows sim-
ilarities and differences between ontolo-
gies, suggestions for integrating them, and
visualization of large-scale ontologies and
relations among them can greatly reduce
the user’s cognitive load.

Figure 1 presents our PROMPT ontology
management framework. All components
are plugins or extensions to the Protégé
ontology development environment (http://
protege.stanford.edu). Protégé provides an
intuitive graphical user interface for ontol-
ogy development, a rich knowledge model
that lets us test our tools with different
knowledge-modeling features, and an exten-
sible architecture that provides API access to
both the Protégé knowledge bases and its
user interface components.

This framework assembles several ontol-
ogy management tools and provides an infra-
structure for other related tools. Its key com-
ponents include

• IPROMPT, an interactive ontology-merging
tool that helps users merge ontologies by
providing suggestions, analyzing con-
flicts, and suggesting conflict resolution
strategies5

• ANCHORPROMPT, a graph-based tool for
finding related concepts in different
ontologies6 that takes as input pairs of
related terms in the source ontologies and
analyzes the ontologies’graph structure to
find new pairs of related terms

• PROMPTDIFF, an ontology-versioning tool
we describe later that finds a structural diff
(that is, determines what has changed)
between versions of the same ontology

• The Protégé project browser, which pro-
vides access to an ontology library, giving
users meta-information about ontologies
(such as authors, documentation, and mod-
ification date), snapshots of top levels of
ontologies, and allowing users to search
through classes and slots in all ontologies 

These tools interact closely. IPROMPT pro-
vides interface components for other tools that
let users browse two ontologies side by side,
use different colors for concepts from differ-
ent ontologies, list pairs of related terms, and
so on. IPROMPT also provides pairs of related
terms to ANCHORPROMPT. Analysis in ANCHOR-
PROMPT in turn provides additional suggestions
that IPROMPT can present to users. PROMPTDIFF

uses heuristics we developed in IPROMPT to
compare ontology versions. We concentrate
here on the problem of comparing ontology
versions and present an algorithm that auto-
matically finds differences between them.
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Figure 1. The PROMPT ontology management infrastructure.
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Finding structural diffs 
between ontologies

Ontology developers now face the same
problem software engineers began encoun-
tering long ago: versioning and evolution.
Software code version management tools
such as CVS (Concurrent Versions System,
www.cvshome.org) have become indispens-
able for software engineers participating in
dynamic collaborative projects. These tools
provide a uniform version storage mecha-
nism, the ability to check out particular code
segments for editing, an archive of earlier
versions, and mechanisms for comparing
versions and merging changes and updates.

Like software, ontologies change. These
changes can be caused, for example, by
domain modifications (that is, our knowledge
about the domain or the domain itself) or
altered conceptualization (if we introduce
new distinctions or eliminate old ones). Fur-
thermore, ontology development in large proj-
ects is a dynamic process in which multiple
developers participate, releasing subsequent

ontology versions. Naturally, collaborative
development of dynamic ontologies requires
tools similar to software-versioning tools. In
fact, ontology developers can use the storage,
archival, and check-out mechanisms of tools
such as CVS with few changes.

One crucial difference exists, however:
comparing software code versions entails sim-
ply comparing text files. Program code con-
sists of text documents, and comparing them—
the diff process—yields a list of lines that differ
in the two versions. This approach doesn’t
work for comparing ontologies: two ontolo-
gies can be exactly the same conceptually but
have different text representations. For exam-
ple, their storage syntax or the order in which
they introduce definitions in the text file might
differ, or a representation language might use
several mechanisms to express the same thing.
Text-file comparison thus proves largely use-
less in comparing ontology versions. The
PROMPTDIFF algorithm compares ontology ver-
sion structures, not their text serialization.

We assume the following knowledge

model: an ontology has classes, a class hier-
archy, instances of classes, slots as first-class
objects, slot attachments to class to specify
class properties, and facets to specify con-
straints on slot values. These elements also
exist in other representation formalisms such
as RDF-S (Resource Description Frame-
work Schema, www.w3c.org/rdf) and OWL
(Web Ontology Language, www.w3.org/TR/
owl-features), sometimes in a slightly dif-
ferent form. So, our results apply to ontolo-
gies defined in these languages as well.

Suppose we’re developing an ontology of
wines. The first version (see Figure 2a) has a
class Wine with three subclasses, Red wine, White
wine, and Blush wine. Wine has a slot maker whose
values are instances of the class Winery. Red wine
has two subclasses, Chianti and Merlot. Figure
2b shows a later version of the same ontology
fragment, in which we’ve changed the name
of maker to produced_by and the name of Blush
wine to Rosé wine, we added a tannin_level slot to
Red wine, and we discovered that Merlot can be
white and added another superclass to Merlot.

O n t o l o g i e s
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Philip Bernstein and his colleagues explored the possibility
of creating a uniform view of model management for data-
base systems applications.1 They viewed a model as a complex
structure, such as a relational schema, a UML (Unified Model-
ing Language) model, an XML document type definition, or a
semantic network. They developed a formal framework for
mapping between models, using a mapping as a formal struc-
ture that contains expressions linking concepts in one model
to those in another model. This mapping can then be used for
transferring instance data, schema integration, schema merg-
ing, and other similar tasks.

Current ontology-versioning research addresses three main
issues:

• Identifying ontology versions in distributed environments
such as the Semantic Web2

• Explicitly specifying change logs between versions3–5

• Determining a set of additional ontology changes that
each user-specified change incurs6,7

However, change logs might not always be available, especi-
ally with distributed ontology development. So, our research
focuses on developing an automatic way to compare different
versions on the basis of the semantics encoded in their structure.

The OntoView ontology version management system8 also
compares source ontologies’ structures and identifies change
types between versions of the same concept. However, if a
concept name changes, OntoView doesn’t attempt to deter-
mine whether the newly named concept is the same as an old
concept. That is, OntoView concentrates on describing differ-
ences between concepts that would be in the same row of the
PROMPTDIFF table. OntoView does let its users augment a con-
ceptual description of how the concept has changed.

Schema-evolution and versioning research in databases also
assumes the availability of a record of changes between ver-
sions.9 Researchers usually identify a canonical set of schema
change operations and consider how these operations affect
instance data as it migrates from one version to another.10

Unlike schema evolution research, database-schema integra-
tion automates comparison between schemas originating from
different sources. Erhard Rahm and Philip Bernstein surveyed
approaches that use linguistic techniques to look for synonyms,
machine-learning techniques to propose matches based on in-
stance data, information retrieval techniques to compare at-
tribute information, and so on.11 In fact, this field potentially
can supply many heuristic matchers to the PROMPTDIFF algorithm.
However, because none of these algorithms was designed to
compare versions of the same schema, only different schemas,
it will be interesting to see how well they perform in our case.

One schema integration algorithm does rely on source sche-
mas being similar. In designing the TranScm system for data
translation, Tova Milo and Sagit Zohar observed that when
translating data from an XML document to an object-oriented
database, for example, the underlying schemas are often similar
because they describe the same data type.12 A few explicit rules
can thus account for many transformations. TranScm could ben-
efit from many of the simple heuristics we describe here, and
PROMPTDIFF could use some TranScm rules as its matchers.

Although semiautomated ontology-mapping research com-
pares disparate ontologies rather than versions of the same
ontology, its tools might offer some useful PROMPTDIFF exten-
sions. GLUE uses machine-learning techniques to find matches
between classes.13 ANCHORPROMPT14 and the SKAT tool’s articula-
tion engine15 both use similarities in the ontology graph struc-
ture to suggest candidate matches. Because they evaluate dif-

Related Work
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PROMPTDIFF automatically produces a table
(see Figure 3) showing differences between
the two versions—similar to the diff between
text files, this table presents a structural diff.
The first two columns show pairs of matching
frames from the two ontologies. Given two
versions of an ontology O, V1 and V2, frames
F1 from V1 and F2 from V2 match if F1 became
F2. The third column identifies whether the
frame has been renamed. The operation col-
umn shows the user how a frame has changed:
whether it was added or deleted, split in two
frames, or merged with another frame. We
assign a map operation to a frame pair if no
other operation applies. Map level indicates
whether the matching frames differ enough to
warrant user attention. If the map level is
unchanged, the user can safely ignore the
frames—nothing has changed in their defini-
tions. If two frames are isomorphic, their cor-
responding slots and facet values are images
of each other but not necessarily identical. The
map level is changed if the frames have slots
or facet values that aren’t images of each other.

In Figure 3, Red wine has changed: it got a new
slot. Also, the Chianti class pair is marked as iso-

morphic: the frames themselves haven’t
changed but the frames they directly reference
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produced_by Winery
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Red wine
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tannin_level String

ChiantiMerlot
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ChiantiMerlot
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Figure 2. Two versions of a wine ontology. Between the original (a) and this revision
(b), changes (indicated by shading) include the slot name for the Wine class, the name
of the Blush wine class, a new slot added to the Red wine class, and another superclass for
the Merlot class.

ferent ontologies, these algorithms must be more conservative
in their comparisons, requiring more than a simple name and
type match between frames to declare their similarity. How-
ever, because PROMPTDIFF is easily extensible, we can incorporate
these algorithms as new matchers in the fixed-point stage and
integrate the results. Furthermore, most algorithms we’ve men-
tioned either don’t use the semantics of links at all or treat only
is-a links as a special case. In the matchers we describe here,
we’ve used the semantics of is-a, instance-of, slot attachment, slot
range, and facet attachment links.
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(Red wine) have.
The PROMPTDIFF algorithm has two parts:

1. An extensible set of heuristic matchers
2. A fixed-point algorithm to combine the

matchers’results to produce a structural
diff between two versions

Each matcher employs a small number of
the structural properties in an ontology to
produce matches. The fixed-point step in-
vokes the matchers repeatedly, feeding one
matcher’s results into the others until they
produce no more changes in the diff.

We based our approach to automating the
comparison on two experimental observa-
tions. First, when we compare two versions of
the same ontology, a large number of frames
remain unchanged. Second, two frames of the
same type (for example, both classes or both
slots) with the same or very similar names
were almost certainly images of each other.
These observations aren’t true, however, when
we compare two different ontologies from dif-
ferent sources. Consider a class named Univer-
sity. In two different ontologies, the class might
represent either a university campus or a uni-
versity as an organization with its depart-
ments, faculty, and so on. If we encounter Uni-
versity in two versions of the same ontology, it
almost certainly represents exactly the same
concept (and because we have a human look-
ing at the results in the end, we can tolerate
the “almost” in that sentence).

Comparing ontology versions would be
much simpler if we had logs of changes
between versions. However, given the decen-
tralized environment of ontology development
today, we can’t realistically expect such logs
to be available. Many ontology development
tools provide no logging capability, and ontol-
ogy libraries are set up to publish ontology ver-
sions but not change logs. Representation for-
mats address representation of the ontologies

themselves but not changes in them. Further-
more, logs aren’t always helpful when several
users work on the same ontology. We thus
expect users will increasingly need to compare
versions without consulting a change log.

PROMPTDIFF heuristic matchers
The PROMPTDIFF algorithm combines an

arbitrary number of heuristic matchers, each
of which looks for a particular property in
the unmatched frames. All the matchers must
conform to the monotonicity principle:
matchers don’t retract any matches that have
already been established.

The matchers we describe here are fairly
simple; our approach’s strength lies in their
combination. Each looks at a particular part
of the ontology structure, such as an is-a hier-
archy or slots attached to a class. Being
heuristic matchers (hence based on observa-
tions that in some cases may not turn out to
be true), they could theoretically produce
incorrect results. Having examined ontology
versions in several large projects, however,
we haven’t come across such examples and
believe the matchers would consistently pro-
duce correct results. Furthermore, PROMPTDIFF

presents the matching results to a human
expert for analysis, highlighting changed
frames so that the expert can examine and
confirm or reject these matches. These
frames usually constitute a small fraction of
all frames in an ontology. So, even for very
large ontologies, human experts need to
examine only a few frames.

Here we describe some of the matchers
that we use in the algorithm. In the descrip-
tions below, Fn denotes a frame of any type
(class, slot, facet, or instance), Cn denotes a
class, and Sn denotes a slot.

The first matcher looks for frames of the
same type with the same name. In Figure 2,
ontology versions V1 and V2 have a frame
Wine, which in both versions is a class. So the

matcher declares that the two frames match.
In general, if F1 ∈ V1 and F2 ∈ V2, and F1 and
F2 have the same name and type, then F1 and
F2 match. Frames can be of type class, slot,
facet, or instance. In our experiments, this
matcher produced on average 97.9 percent of
all matches because ontologies usually don’t
change much from one version to the next.

Another matcher looks for a single un-
matched sibling. In the example in Figure 2,
suppose we matched the classes Wine, Red wine,
and White wine from V1 to their counterparts with
the same names in V2. Then the Wine class in
both versions has exactly one unmatched sub-
class: Blush wine in V1 and Rosé wine in V2. In this
situation, we conclude that Rosé wine is the
image of Blush wine. In general, if C1 ∈ V1 and
C2 ∈ V2, C1 and C2 match, and each class has
exactly one unmatched subclass (subC1 and
subC2, respectively), then subC1 and subC2

match. A similar matcher for multiple un-
matched siblings (see the next paragraph) can
be distinguished by its set of slots.

We can extend the previous matcher to
look for a more complicated situation: mul-
tiple unmatched siblings exist, but only one
pair of siblings has the same set of slots. Sup-
pose that Wine first had only two subclasses,
Red and White. Red has a tannin_level slot of type
String. In the next version, Wine has three sub-
classes, and we added “wine” to each subclass
name (see Figure 4a). When all of the Wine’s
subclasses are unmatched, we can still match
Red to Red wine because these are the only
classes that have the tannin_level slot. In gen-
eral, if C1 ∈ V1 and C2 ∈ V2, C1and C2 match,
and subC1 and subC2 are subclasses of C1 and
C2 respectively, and all the slots of subC1

match all the slots of subC2, and for each of
subC1 and subC2, its set of slots is different
from the set of slots of all of its siblings, then
subC1 and subC2 match.

The next matcher looks for siblings with
the same suffixes or prefixes. Taking the sec-
ond situation further, if we remove “wine”
from the class name for Wine subclasses (see
Figure 4b), all names for these subclasses
change. However, if we see they’ve all
changed in the same way—the same suffix
has been removed—we can create the corre-
sponding matches anyway. In general, if 
C1 ∈ V1 and C2 ∈ V2, C1 and C2 match, and
all C1 subclass names match all C2 subclass
names except for a constant suffix or prefix,
then the subclasses match.

An unmatched superclass provides infor-
mation for another matcher. Suppose we first
used the plural form and called the class at the

O n t o l o g i e s
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Figure 3. A PROMPTDIFF table shows differences between the wine ontology versions in
Figure 2.
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top of the hierarchy Wines but used singular for
all the subclasses (see Figure 4c), then cor-
rected the mistake. (In a separate matcher, we
can look for class names that change from
plural to singular or vice versa.) All subclasses
of the two unmatched classes—Wines and
Wine—will then match, and we can conclude
that the two unmatched classes match as well.
In general, if all subclasses of C1 ∈ V1 match
subclasses of C2 ∈ V2, then C1 and C2 match.

Another matcher looks for a single un-
matched slot. In the example in Figure 2, sup-
pose we matched the class Wine from the first
version to its counterpart in the second ver-
sion. Each class has a single slot that’s so far
unmatched: maker and produced_by, respec-
tively. Not only is each slot the only un-
matched slot attached to its respective class,
but the slot’s range restriction is also the
same: the class Winery. We can therefore
match maker and produced_by. In general, if C1

∈ V1 and C2 ∈ V2, C1 and C2 match, and each
class has exactly one unmatched slot, S1 and
S2 respectively, and S1 and S2 have the same
facets, then S1 and S2 match.

If a knowledge model allows definition of
inverse relationships, we can take advantage
of such relationships and look for unmatched
inverse slots. Suppose we have a slot maker in
V1 (at the Wine class in Figure 2), which has an
inverse slot makes at the Winery class (see Fig-
ure 4d), and we have a slot produced_by in V2,
which has an inverse slot produces. Once we
match maker and produced_by, we can match
makes and produces because they are inverses
of the slots that match. In general, if S1 ∈ V1

and S2 ∈ V2, S1 and S2 match, invS1 and invS2

are inverse slots for S1 and S2 respectively,
and invS1 and invS2 are unmatched, then invS1

and invS2 match.
Finally, we look for split classes. Suppose

an early definition of our wine ontology
included only white and red wines and we
simply defined all rosé wines as White wine
instances. In the next version, we introduced
a Blush wine class and moved all corresponding
rosé wine instances to this new class. In other
words, we split the White wine into two classes:
White wine and Blush wine. In general, if C0 ∈ V1

and C1 ∈ V2 and C2 ∈ V2, and for each
instance of C0 its image is an instance of
either C1 or C2, then C0 splits into C1 and C2.
A similar matcher identifies merged classes.

Each matcher considers only frames that
haven’t yet been matched. So in practice each
matcher (except the first one) examines only
a small number of frames (only those that
don’t yet have a match).

We combine all available heuristic match-
ers (such as those described earlier, and any
others available) in the PROMPTDIFF algo-
rithm, a fixed-point algorithm that produces
the complete structural diff for two ontology
versions. PROMPTDIFF runs all matchers until
they produce no new changes in the table.

Because no matcher retracts the results of
previous matchers or its own results from
previous runs (the monotonicity principle),
the algorithm always converges. We show
elsewhere that if each matcher’s running time
is polynomial, the whole algorithm’s running
time is also polynomial.4
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Figure 4. Situations for applying different PROMPTDIFF matchers. (a) The Wine class
acquires an additional subclass, and the slots for the class Red in V1 and the class Red wine
in V2 match. (b) The class names for the Wine subclasses match except for the “wine” 
suffix. (c) The class names for the Wine and Wines subclasses match; the superclass name
has changed. (d) The slots maker and makes are inverse slots in one version; the slots 
produced_by and produces are inverse slots in another version.
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Evaluation
Empirical evaluation is particularly im-

portant for heuristic algorithms because no
provable way exists to verify their correct-
ness. We implemented PROMPTDIFF as a Pro-
tégé plugin. We then evaluated it using
ontology versions in two large projects at
our department: EON (www.smi.stanford.
edu/projects/eon) and PharmGKB (www.
pharmgkb.org). Both rely heavily on ontolo-
gies, use Protégé for ontology development,
and keep records of different ontology ver-
sions. We compared consecutive ontology
versions and versions that were farther
apart. For each pair, we created the struc-
tural diff manually (given that the ontol-
ogies contained between 300 and 1,900 
concepts, the process was onerous) and
compared this manually generated result
with the one PROMPTDIFF produced.

We’ve presented the complete evaluation
results elsewhere4 but summarize them here.
On average, 97.9 percent of the frames in
each version remained unchanged. To eval-
uate our algorithm’s accuracy, we considered
the frames that had changed (the remaining
2.1 percent)—exactly those frames that a
user would need to look at. On average,

PROMPTDIFF identified 96 percent of the
matches between those frames (this measure
resembles recall in information retrieval
terms), and 93 percent of the matches that
PROMPTDIFF identified were correct (preci-
sion). More important, all discrepancies be-
tween manual and automatic results were
confined to the frames for which PROMPTD-
IFF did not find any matches. In other words,
when PROMPTDIFF did find a match for a
frame, it was always correct. Sometimes the
algorithm failed to find a match when a
human expert could find one. A human
expert can determine that two frames are
similar even if a rule applied in a specific case
isn’t sufficiently general to apply in all cases.
Two such examples are a significant overlap
in a class name (such as Finding versus Physi-
cal_Finding) or a similarity in the slot range
(such as two slots at matching frames that
have the same range). The matchers, in con-
trast, must use sufficiently general rules that
apply to any ontology.

We can interpret these numbers from the
user’s point of view. In one experiment, V1 had
1,886 frames, 83 of which changed (in fact,
names of 67 of those were accidentally re-
placed with system-generated names). The

PROMPTDIFF result contained 19 unmatched
frames; given that we can trust the matches
PROMPTDIFF generated, we need to examine
only these 19 unmatched frames instead of
examining all 1,886 in V1, a significantly sim-
pler task (it turned out that 14 of those frames
had no matches). Hence, even for very large
ontologies, users need to examine manually
only a small fraction of frames—those for
which PROMPTDIFF found no matches. And
PROMPTDIFF conveniently shows these frames
first in the list of results. 

We used 10 matchers in our experiments
and, on average, executed each matcher 2.3
times in each experiment. Each matcher pro-
duced a new result at least once.

We’ve also experimented with executing
matches in a different order. We found no
cases where the final set of matches differed
depending on the order in which the match-
ers executed. Different matchers might iden-
tify a particular match each time, but the final
set of matches itself remained unchanged. As
we extend the set of matchers, we’ll likely
find cases where the execution order does
make a difference.

Versioning and other ontology
management tasks

As we previously mentioned, PROMPTDIFF

is only one element in our multiple-ontology
management infrastructure. Much synergy
exists between PROMPTDIFF and ontology-
merging tools—we leverage both data and
algorithms from one tool in the others. While
we designed PROMPTDIFF to compare differ-
ent versions of the same ontology, IPROMPT

helps users find similarities and differences
between ontologies from different sources.
Many of the heuristic matchers described
earlier came originally from IPROMPT. Con-
versely, PROMPTDIFF provided new heuristics
for finding similarities among different
ontologies.

Consider, for example, the two ontologies
shown in Figure 5. These come from the
DAML ontology library and were designed
by two different DAML participants. Both
ontologies describe the structure of academic
organizations.

Consider the matcher for multiple un-
matched siblings. If multiple unmatched sib-
lings exist in two different versions, PROMPT-
DIFF looks at slot information to find
matches. In IPROMPT, where we compare two
different ontologies, slots aren’t likely to be
similar, and the exact number of siblings will
probably differ as well (compare the two
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Figure 5. Snapshots of the two source ontologies’ class hierarchies, both representing
academic organizational structures, developed by DAML groups at (a) Carnegie Mellon
University and (b) the University of Maryland.
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hierarchies in Figure 5). However, IPROMPT

still can use the same heuristic to present two
small sets of unmatched siblings to the user,
who can then easily identify matches.

For example, suppose we have already
matched the following class pairs from Fig-
ure 5: Organization and Organization, Governmen-
tal_org and GovernmentOrganization, and Academic_org
and EducationOrganization. The unmatched sib-
lings are Industrial_org on the CMU side and
CommercialOrganization and NonprofitOrganization on
the UMD side. Probably no direct match
exists between the related classes, but the
user might decide that, in fact, Industrial_org
and CommercialOrganization are related.

Now consider the matcher for a single
unmatched sibling. If the same situation arises
during merging, we can suggest to the user,
with a high level of confidence, that the classes
match. For example, if we match classes The-
sis and MastersThesis in Figure 5, classes PhDThesis
and DoctoralThesis would be unmatched.

Likewise, IPROMPT can easily reuse many
other matchers we’ve described. If, during
merging, IPROMPT encounters a situation sim-
ilar to that described for unmatched inverse
slots, it can also suggest that the user merge
the corresponding slots. The matcher that
looks for siblings with the same suffixes and
prefixes will also work well for merging. The
number of siblings could differ slightly
because different modelers might represent
different divisions. However, IPROMPT can
again use the heuristic to indicate a potential
match between classes.

Our ontology-versioning and ontology-
merging tools differ primarily in the source
of matching frame pairs. Whereas PROMPT-
DIFF collects them by recursively calling
different matchers, IPROMPT uses match
information provided by users to find new
matches. IPROMPT also can use matches pro-
duced by ANCHORPROMPT, a graph-based
algorithm for comparing different ontolo-
gies.6 Figure 1 shows how the different
multiple-ontology management tools inter-
relate by providing algorithms and data to
one another. 

Versioning is just one task in managing
multiple ontologies. By looking at

these processes in an integrated framework,
we can reuse the algorithms and leverage the
information we gain in executing one task to
perform analysis for another task. For exam-
ple, in implementing version comparison, we

used heuristics that we developed for ontology
merging by just lowering the threshold for con-
sidering two terms to be similar. Conversely,
when studying ontology versions in different
projects, we learned new heuristics that we can
apply to finding similarities between ontolo-
gies for ontology merging and alignment.

When we evaluate interactive merging and
mapping tools, we must compare ontologies
that different users produced from the same
source ontologies. We can use the PROMPTD-
IFF results to measure similarities between
two related ontologies—how many concepts
have changed, how many are isomorphic,
and so on.

In the future, we plan to explore using
PROMPTDIFF results to generate transforma-
tion scripts from one version to another
(another task in multiple-ontology manage-
ment). Computer programs can then use
these scripts to migrate instance data (as in
schema versioning) or to query one version
using another version. This task’s main chal-
lenge will be minimizing the number of lossy
transformations, which cause loss of values
at intermediate steps.
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