
OntoNotes: A Unified Relational Semantic Representation

Sameer S. Pradhan
BBN Technologies

Cambridge, MA 02138

Eduard Hovy
ISI/USC

Marina Del Rey, CA 90292

Mitch Marcus
University of Pennsylvania

Philadelphia, PA 19104

Martha Palmer
University of Colorado

Boulder, CO 80309

Lance Ramshaw
BBN Technologies

Cambridge, MA 02138

Ralph Weischedel
BBN Technologies

Cambridge, MA 02138

Abstract

The OntoNotes project is creating a corpus of large-
scale, accurate, and integrated annotation of multiple lev-
els of the shallow semantic structure in text. Such rich,
integrated annotation covering many levels will allow for
richer, cross-level models enabling significantly better au-
tomatic semantic analysis. At the same time, it demands
a robust, efficient, scalable mechanism for storing and ac-
cessing these complex inter-dependent annotations. We de-
scribe a relational database representation that captures
both the inter- and intra-layer dependencies and provide
details of an object-oriented API for efficient, multi-tiered
access to this data.

1 Introduction
The OntoNotes project is addressing the challenge of

large-scale, accurate, and integrated annotation of multiple
levels of the shallow semantic structure in text. Experience
has shown that when individual levels like syntactic parse
structure, propositional structure, and semantic role labels
can be annotated with high consistency (inter-tagger agree-
ment, or ITA), then machine learning models can also be
implemented to predict those structures with only somewhat
lower accuracy. The premise of OntoNotes is that integrated
annotation covering many levels will allow for richer, cross-
level models enabling significantly better automatic seman-
tic analysis.

Given that goal, the mechanism used to store and access
the annotation becomes a key part of the research, and not
just a tool support issue. The representation has to correctly
capture the dependencies between the different annotation
layers, so that consistency can be maintained across layers.
The representation also has to allow for unified access, so
that cross-layer features can be used in the integrated pre-
dictive models that will make use of these annotations. This

paper describes how we have addressed the research chal-
lenge of modeling such multi-layer annotations, with com-
plex, cross-layer dependencies, while providing efficient,
convenient, integrated access to the data.

2 OntoNotes

The OntoNotes [6] project is multi-year, collaborative
effort between BBN Technologies, the University of Col-
orado, the University of Pennsylvania, and the University
of Southern California’s Information Sciences Institute.

2.1 Data

The Year 1 release consists of newswire data from two
languages – English and Chinese. The English portion
is a 300k word, 597 documents collection from the non-
financial news portion of the Wall Street Journal (WSJ),
and the Chinese portion is a 250k word collection compris-
ing 325 documents from the Xinhua newswire and 78 doc-
uments from the Sinorama magazine. These documents are
annotated with the following layers of information:

1. Syntax– A syntactic layer representing a revised Penn
Treebank [10, 1].

2. Propositions– The proposition structure of both verbs
and nouns in the form of a revised PropBank [13, 1]

3. Word Senses– Coarse grained word senses are tagged
for the most frequent polysemous verbs and nouns, in
order to maximize coverage. The word sense granu-
larity is tailored to achieve 90% inter-annotator agree-
ment as demonstrated by Palmer et al. [12]. The re-
lated senses of different words will eventually be con-
nected to concepts in the Omega ontology [14].

4. Names– The corpus was tagged with a set of 18 proper
name entity types that were well-defined and well-
tested for inter-annotator agreement by Weischedel
and Burnstein [18].

1

5. Coreference – General anaphoric coreference that
spans a rich set of entities and events—not restricted to
a few types, as has been characteristic of most corefer-
ence data available until now—has been tagged with a
high degree of consistency. Attributive coreference [6]
is tagged separately from the more common identity
coreference.

For a more detailed description of the different layers,
the reader is referred to [6].

2.2 The Challenge

To the best of our knowledge, this is the first time that an
attempt has been made to integrate so many different, rich,
layers of syntax and semantics. Although, in combination,
we had decades of experience in annotating the individual
layers (excluding coarse grained word sense, and general
anaphoric coreference), we had no mechanism for integrat-
ing them. This posed a significant challenge as it is more
or less an open problem, and there exist no off-the-shelf re-
sources that can be used to meet this end.

The questions that this level of integration pose are:

1. How do we ensure that all the components are consis-
tent with each other? The types of inconsistencies that
we encounter in this process are two fold: i) Ones that
challenge the underlying assumptions and mechanics
of the annotation differences and require a careful revi-
sion of the inter-connecting components, and ii) Ones
that are more technical (engineering/formatting) in na-
ture. Although there is no silver-bullet for solving ei-
ther one, a solution to the latter can significantly al-
leviate problems encountered during representational
manipulations.

2. How do we distribute all these different layers of data?
Should we distribute them as independent pieces and
leave the task of assembling them to the end user? or,
do we provide an integrated representation that greatly
simplifies the dissemination of this rich information?
If the latter, what would be the best way to accomplish
this?

3. What type of representation would best facilitate the
use of this information as training data for systems
that will be incorporated into applications with their
own knowledge sources. Can this representation also
support leveraging these additional knowledge sources
during the training process?

2.3 Properties of an Ideal Solution

Since these layers represent related linguistic informa-
tion, there is a high degree or interconnection between them.

To begin with, the PropBank annotations are defined over
nodes in the Treebank. Most1 of the coreference links have
also been defined, by design, over the nodes in the Tree-
bank. Vital information relating to the interpretation of each
word sense, including its relation to the WordNet senses,
their argument structure, as well as the constraints imposed
on arguments by the particular semantic frame that a predi-
cate invokes, are captured in the sense inventory and frame
files. In short, the information required to interpret the se-
mantics of a sentence is spread over several different files,
and without some mechanism to control this information, it
can easily become asynchronous.

An ideal solution would be one that combines this in-
formation in an integral whole which allows an end-user to
both easily interpret all the vital connections as well as to
easily manipulate the information. The representation of
such layers, we believe, should provide a bare-bones struc-
ture independent of the individual semantics with the fol-
lowing properties:

1. Efficiency – It should efficiently capture both intra-
and inter- layer semantics

2. Independence– It should maintain the independence
of each annotation layer. Any component should be re-
placeable with a parallel representation. For example,
it should allow replacing PropBank with FrameNet [3].
That is, as long as the parallel representation exhibits
the same core properties, it should be easily incor-
porable into the whole.

3. Flexibility – It should provide mechanisms for flexi-
ble integration. For example, it should accommodate
a change in representation of, say, propositions over
spans of text instead of over nodes of a given syntactic
representation.

4. Granularity – It should be integrated at a level of
granularity so as to allow relatively easy integration of
more components.

5. Robustness– It should capture first-order, or primary
connections between the components in such a way
that secondary connections do not become inconsistent
upon a superficial change in representations.

6. Queriability – It should facilitate cross-layer queries.

7. Versioning – It should not be limited to storing the an-
notations themselves, but should manage different ver-
sions and hypotheses generated by automatic systems,
allowing them all to coexist.

1Some entities/events constitute subparts of the relativelyflat NP struc-
ture in the Treebank and have to be defined over word spans instead of
corresponding to nodes

3 A Solution

We have developed a representation which we believe
possesses all the above qualities to a more or less satisfac-
tory degree: a relational database representation that is used
to define and store the required semantics underlying the
data, and an object layer which allows for intuitive manipu-
lation of this data.

3.1 Relational Layer

The main reason for using a relational database represen-
tation is that it allows for flexibility of design and provides
an objective language to efficiently specify all the intercon-
nections in the form of its schema. Furthermore, there exist
time-tested mechanisms to deal with the problem of main-
taining consistent states of each layer, and at the same time
allow for concurrent modifications to individual layers. In
short, this is done by defining dependencies through the
use of Primary and Foreign keys over database tables. The
reader can find this information discussed in depth in any
standard text book on the subject of relational databases.

The entity relationship diagram for the database is shown
in Figure 1. The tables are shown divided into six logi-
cal blocks depending on the type of linguistic annotation
that they represent: i) The corpus itself, ii) Treebank, iii)
PropBank, iv) Word Sense, v) Names and vi) Coreference.
Each of the annotation schemes adds meta-information to
the corpus. The lowest common granularity of annotation is
represented by the Treebank tokens2, rather than the more
prevalent character-based indexing of several existing cor-
pora, significantly simplifying the visualization and manip-
ulability of the data. If required, the token-based indexing
scheme allows for dereferencing to lower levels of atom-
icity without affecting the interface between the corpus and
other layers of annotation. This could be achieved by the ad-
dition of a table that maps to the lower level, thus providing
a comfortable degree of encapsulation. This tokenization is
particularly well-suited for the existing layers of annotation
as they take the Treebank tokenization as a basis of derefer-
ence. There are a few exceptions; for example, in the case
of coreference for about 2% of the cases an entity is (most
likely) a subpart of one of the flat-NPs that the Treebank re-
alizes. This requires only the addition of a derivable layerof
token-based offsets. In the case of names, although the orig-
inal annotation is based on token-offsets, about 93% of the
names actually align with the existing nodes in Treebank.
In such an instance, we provide a derived layer of nodes
corresponding to the named entities. In short, the database
captures the primary level of granularity and allows for the
flexibility of adding derived layers for better interpretation
when necessary.

2words tagged with part of speech in the Treebank

In reviewing the design, note that all the tables with the
suffix type indicate tables that only store type informa-
tion. The others represent instance tables where instances,
instead of just the type information, are stored. Various car-
dinalities such asone-to-oneor one-to-manyrelationships
are shown using thecrow’s feetstyle of representation. The
ontonotes table contains the id for the OntoNotes cor-
pus. This is associated with the many subcorpora that rep-
resent it – identified by thesubcorpus table. The subcor-
pus contains many files captured in thefile table, which
in turn contain one or more documents (thedocument ta-
ble). The document then contains one or more sentences
(the sentence table). This now puts a structure on the
raw text which we are embellishing with layers of linguis-
tic information. The second logical block is the Treebank.
Here at the center lies thetree table which represents
a general case of trees, nodes and leaves. The root tree
has aNULL parent whereas the leaves haveNULL children.
Hierarchical information is captured through table recur-
sion. The meta-information on the tree nodes is captured in
the compound function tag and function tag type

tables. There can be more than one function tag associ-
ated with a node in the tree, and many nodes associated
with the same function tag type – known as amany-to-
manyrelationship in database terms, and the design princi-
ples dictate the generation of a link table which we call the
compoundfunction tag table and which contains a compos-
ite primary key which is made up of the two foreign keys:
one being the primary key of thefunction tag table; and
the other being the primary key of thetree table. For the
sake of generality, eachtree has an associatedtoken and
other syntactic information such as the part of speech type
(pos type table), the phrase type (phrase type table), the
trace chain (syntactic link table). The reason for giv-
ing the latter table a more general name is that it is also
used to capture links from the propositions as indicated by
the reference to theargumentid.

The PropBank logical block captures the propositional
annotation. Here, at the center lies theproposition
table which has associated with it apredicate and
one or morearguments. Both the predicate as well as
the arguments exhibit amany-to-manyrelationship with
the nodes in the Treebank. Therefore, we create two
more link tablespredicate node and argument node.
predicate type andargument type tables capture the
respective type information. Each predicate in the Prop-
Bank invokes a semanticframe and that determines
which of it’s core arguments such as ARG0, ARG1,
etc. can be legally associated with that predicate as
well as the semantics of those arguments. This frame
type is represented in thepb sense type table, and the
pb sense type argument type serves as the link table.
This in turn is connected across the logical boundary to the

� � � � � �

� � � � � 	
 �

� � � � �
 � �

� � � � � 	
 �

� 	 � � �� � � � � � � �
 � �

� � � � � �
 � � �
 � � � �
 � � 	 ��

�
 � �
 � � � �� �
 � � �
 � � � � � � � � � � � � �
 � � � � � � �� � � � �
 � � � � � � � � � � � � ��
 � � �
 � � � � � � � � � � � � ��
 � � �
 � � � � � � ��

 	 � � � �
 � � � � � � � � �� � � � � � � � � � �

 	 � � � �
 � � � �� � � � � � � � � � �
 	 � � � �
 � � � � � � � � � � � � � � �� �
 � �
 � � � � � � � �� � 	 � � � � � �
�
 � � � �

� � � � � 	 � � �
 � �� � � � � 	 � � � � � � �
 � � � � � �� � � � � 	 � � � � � � � �� � � � � � � � � �� � � � 	 � � � � 	 �� 	 � � � �
 � !

� � � � � � � � � �
�
� � 	 � � � � � � �� � � � � � � � � �
 � �
 � 	 � � � � � �
 �� �
 � � � �
 � � 	 � � � � � � � � � � � �" � � � 	 � � � � � � � � � �� � 	 � � � � � � � � � � � �� � 	 � � � � � � � � � � � � �	 � � � � �
 � � � � � � � � � � � � � � �
 � � � � # 	 �
 � � � � �� � � � � � � � � �

	 � � � � �
 � �
 � �� � � � � � � � � �	 � � � � �
 � � � � � � �� � � � �
 � � � � � � � � 	 � � � � �
 � � � � � �� � � � �
 � � � � � � � � � � � � �	 � � � � �
 � � � � � � � � � � � �

�
 � � �
 � � � � � � � � $
 � � �
 � � � � � � ��
 � � �
 � � � � � � � �$
 � � �
 � � � � � � � � � � � � �
$
 � � �
 � � � � � � �� � � � � � � � � � � � � � �% � � � 	 � � � � � �� � � �
� % � � � 	 � � � � � �� �
 � �
 � � � � � � � ��
 � � �
 � � � � � � � �� �
 � �
 � � � � � � �
 � �
 � !$ � �
	 � � � � �
 � � � � � �� � � � � � � � � �

	 � � � � �
 �� � � � � � � � � � �
 � � � � � �	 � � � � �
 � � � � � � � � � � � �� � � � � 	 � � � � �
 � � � 	 �	 � � � � �
 � � �
 � !	 � � � � �
 � � 	
 	 � � � � � �

� � � � � 	 � �� � � � �
 � � � � � �� � � � � � � � � �
 � � � � � �� � � � � 	 � � � � � � � � � � � � �
� � � � � 	 � � � � � � �� � � � � � � � � �
� � � � � � � �
 � � � �
 � � � � � �� � � � � � � � � �
� � � � � � � �
 � � � �
 �� � � � � � � �
 � � � � # 	 �
 � � � � � �� � � � � � � � � �� � � � � � � �
 � � � �
 � � � � � � � � � � � �� �
 � �
 � � � � � � � �� � 	 � � � � � �
�
 � � � �
 � � � � � � � �
 � � � � # 	 �
� � � � � � � � �
 � � � � # 	 �
 � � � � � � � � � � �

� �
 � � � �
 � � 	 � � � � � �� � � � � � � � � �
 � � � �� � �
 � � � �
 � � 	 � � � � � � � � � � � �� � � � � � � � � � � � � �� � 	 � � � � � � � � � � � � � � � � � �
 � � � � � � �� � � � � �
 � � �
 � � � �
 � � 	 � � � � � � �� � � � � � # � � � � � � �� � � � � � 	 � �
 � � � � � � �� # � 	 � � � � � � � � � � � � �� # � � �
 � !� � 	 � ��
 � � � � � � � �� � � � � � � � � �

� � � � �
 � � � � � � �� % � � � 	 � � � � � �

�
 � � �
 � �� �
 � � �
 � � � � � � � � � � � � �% � � � 	 � � � � � �� � � �

� # � 	 � � � � � � �� � � � � � � � � �

 	
 � � 	 � � � � � � ��
 	 � � � � � � � � � � �� 	
 � � 	 � � � � � � � � � � � � �� 	 � � � � �� � � � � � ��
 � � �
 ��
 � �
 � � � � � � � � � � � � � � � � � � �
 � � � � � � �� � � � � � � � � � � � � � � � � � � �
 �� � � � � � � � � � � � � � � �
� �
 � �
 � �� � � � � �
 � � � � � � �� �
 � �
 � � � �
 � !� �
 � �
 � � � � � � �
 �
 � � � � 	 � � � � � � �
 �

% � � � 	� $ � �

Figure 1. Entity-Relationship diagram of the OntoNotes database

on sense type pb sense type table in the Word Sense
portion of the database. What this means is that the
OntoNotes sense type has amany-to-manymapping to
the PropBank frame sense. A similar relationship to the
WordNet senses is captured in thewn sense type and
on sense type wn sense type and thewn sense type

tables.

Finally, names are represented with thename entity

and name entity type tables in the logical block
called Names, and the tablescoreference chain

and coreference link capture the corefer-
ence chains and links within each document in
the corpus. The coreference chain type and
coreference link type store the respective type
information. As mentioned earlier, most of the coreference

links and names correspond to a node in the tree, and
that information is stored astree id in the respective
table where applicable, or NULL otherwise. We used the
MySQL database to realize the database design.

3.2 Object Layer

A well-defined relational layer provides a clear founda-
tion for designing the object layer. To facilitate a better de-
sign of the object layer, we took the following decisions:

1. We decided to trade-off database normalization for
database design elegance and integration with the ob-
ject world. Therefore, we did not normalize the tables
beyond the first normal form.

2. We decided to create a composite primary key for

���� ��� ��� �� �� ��� ��� �� �� ����� ��� ��� �� ������	
�
� �
� � ������
���� ���� ��������
������ ����������� ������
������� ���
��	� �
�� � �������� � ����� �������� 	���� �����
�
��� ����� ������ ��� �
������������	� ��

� � �����!��� "#���
����������� ����������� ������� ����������� ������
������������
�
��� ����� ������ ��

� � �����! $#� %#& '� '#��� ���������� ��	� (�	(����������� ��	���
�
��� ����� ������ ��� �
������������	� ��
� � �����!%� ���
������� �������� �� ��������� ����
���� ���
����������
����
�
��� ����� ������ ��� �
������������	� ��

� ������! �) %������� (�	(���	� �
��
� �����������
����
�
��� ����� ������ ��� �
������������	� ��
*����! &���������	���� ���	���
�
��� ����� ������ ��� �
������������	� ��

%+! &��&�!�) %��
����������������� (�	(, - ��
� �����
�
��� ����� ������ ��� �
����������
% ��. '$����
������ ����
�����
��������������	��	�� ���������	
�
� ��
����
�
��� ������� ��
�� ��� ����
���� ����� ������ ��� �
������������	� ��

% ��. '$� ��! %����
�����������
�����
�������
���� ���
�������
�� ���
������ ����
�����������	��	�� ������
�
��� ����� ������ ��� �
������������	� ��
% ��. '$���! �) %������� (�	(��������
�
��� ����� ������ ��� �
������������	� ��

% �#%#& '� '#��
���������� �����	
�
� �����������
��� ����
��/�� �
����� �� �������� ����� ��
��� �	��� ���	�
��	��������
���������
������� ������������� 	��	��	������
�� �
�0	����������	��	�� ������
�
��� ������� ��
�� ��� ����
���� ����� ������ ��� �
������������	� ��
%�# %#& '� '# �! +��1�
�������	
�
� ����������� (�	(����������
�� �
	��	���� ���	������� (�	(�������
�
��� ������
� (�� ������0�� ������0�� �
������������	� �������� ������	� ��������-
� �� ������	
�
� �	 2��3 ������	
�
� ��
������
����22

�����
������� ��2

�����
����� ����	2��3
������	
�
� ��
��� ����������� �����	2 4 ��3 �� �������	2��3

�� ��������
�
�� �������� �� ��	

2
2��3�� ���������� �� 2

����	��	�� ��������
���� 222
���������� �����	
�
� �� (�	(2

�������	��� (�	(2 $#� 555*��$� '#�! ���
���� ��� �
������������	� ��

%6��&�! �) %��
���� ��� (�	(���
�
��� ��� �
������������	� ��
%#&! �) %��
������� (�	(� �
������������	� ��

&) ���$� '$! "'�1�
�� � ������� ������ 	��� ����
��
����
��� 	��� ����
���		��
������ ��������
����
�
��� ��� �
������������	� ��&) ���$� '$! "'�1! �) %��
������� (�	(���
�
��� ��� �
������������	� ��

�#1���
�� � �����
�
��� ����� ������ ��� �
���������������
������ � ���	�� ��������������� ��� ����������
�����
����
���
����� �������(
���
��������������
��	��������
��
������� �����
��
����
��� �����
�� � ��7�� 0��� (�	(��� 0��7 � ��� (�	(� ��� ���7� ����
�� (�	(�
� ���7� ����
�� (�	(�������� �
�
��
�	������	
�
� ����� 	��	������� ���
�����
�
��� ����� ������ ��������
����� ��������	� �
�� ��� �	��������������	� ���	��� ���	��� ���- �	 ������� � ��� 	� �
�� �������� ���� � ��� 	� �
�� ������� 	��� ��� ��������� 	��� ����
� �������� ��� 	��� ����
� ���
�
�
� �
8��
�	���
�
�
� �
8�� 	� �����
�� �
�0	��������		� ���-�	��������		�� ����	 �����
���� ����� �(�
�	 ���
	�� �����
������ ���
	�� ������ �
�
����������� ��
�� ��� �
���������� ��	� ��������-
� ��

����!.#$����������
���� �	�� �
	��� ���� (�	(������
�	��� ���� ������	���� ���	�
����
�
��� �������� ����
�	�������� ��� �
������� � ��
������ ����������� ������ ��� �
������������	� ��������-
� ��

����+��1�
������	���� ���	������
�	������ (�	(������ ���	���������������
����
�
��� ������������� �	� ��� �
������������	� ��������-
� ���� ������������� (�	(3 �����	2��3
��(
�� �� ��������4 ��3 4 ��2

*��$� '# �!��� �
������������	� �� *��$� '#�!��!�) %�
���������� �����
� ����� 4 ��2

������
� �����	 2��3 ������
� �������� ��2
�	� �����
�� �
�0	4 ��3

�	� �����
�� �
�0��� �� 2
��(��	���� ��2 ���	��� ��2

��� 0��4 ��2

Figure 2. UML representation of the modules on.corpora.tree and on.corpora.proposition which rep-
resents the Treebank and PropBank respectively.

each table rather than using auto-increment, or using
a database generated composite primary key. The goal
here was seamless integration between the relational
and object world. This meant that the database pri-
mary keys can also be used to index the objects in the
respective containers. Another advantage of this is that
the keys by themselves have a lot of semantic value and
a person looking at them can, to some extent, decipher
what it represents.

In the object design, almost every database table corre-
sponds to an object with the database columns representing
part of the attributes. There is almost always more derived
information required for logical manipulation that is part
of an object which is not in the database table itself. This
resonates with the original plan of having only the bare-
minimum of information needed to represent the data in
the database. If required, more complex logic can be easily
built in the object layer. Also, most often it is the case that

the objects inside container objects are skeletal representa-
tions of those objects thus maintaining component indepen-
dence.

Depending on the interface requirements of a particular
application, the level of detail in each object can be altered
to meet various needs. As an example, the word sense of
a lemma can be tagged to be “1” but that “1” actually rep-
resents the sense “1” which has various attributes associ-
ated with it, such as its definition, the associated PropBank
frame groups, the associated WordNet sense groups, etc.
This is achieved by just accessing the “senseinventory”
class which centralizes information for each lemma and
their senses, mappings etc. This has an alternative benefit of
avoiding possible redundancy and therefore inconsistency.
Figure 2 shows the UML representation of part of the pack-
age “on.corpora” which comprises, among others, the mod-
ules “on.corpora.tree” and “on.corpora.proposition” The
argument part class represents the information in the “ar-

gumentnode” table. Theargument analogue does not
really have a exact parallel in the database world, but it cap-
tures the fact that an argument can be represented by multi-
ple nodes in the tree – a trace node, which points to possibly
another trace node which points to the actual node that iden-
tifies the string that the argument is represented with. All
three, in the PropBank world, are considered to be equiv-
alents of the same argument. Therefore the name “argu-
mentanalogue”. The attribute “argumentanalogueindex”
is in order to maintain the directional association between
these equivalent arguments. Further, each layer is provided
with application level logic to integrate itself with the other
layer that it has an integral connection with. For exam-
ple, in this particular case, owing to the centrality of the
Treebank thepropbank andon sense classes have been
provided withenrich treebank methods which make the
necessary connections, thus forming full-fledged objects.
Whereas,name bank, andcoreference bank have been
provided withenrich align treebank methods that try
to align the token spans with nodes in the tree when there
exists one.

More details on the design can be found in the
“ontonotes-db-tool” API that has been submitted for distri-
bution with the corpora. The Python programming language
has been used to implement the object layer.

4 Interaction Lifecycle
We will take a brief look at a typical interaction be-

tween the raw data, database, and object layers. A few
lines of code allow a pre-defined corpus file-structure to
be read and converted into objects. The application logic
could identify several errors and inconsistencies in the raw
data that are encountered during object creation. These are
mostly at the independent object level. Upon successful
object creation they are written to the database. Each ob-
ject uses itswrite to db(cursor) method to write itself
to the database. The top-level container contains the over-
all logic whereas the intermediate containers know how to
write themselves to the database and these methods are del-
egated from top down to achieve the desired result. Next
the database can identify errors and inconsistent relation-
ships. These are written to a report file. Part of the data that
does get read into the database is guaranteed to be consis-
tent with the design. Theontonotes-db-tool API can
then be used to read in the database, and generate the ob-
jects from it. All top level containers know how to re-create
the full-fledged objects and pointers to objects as required.
This is possible through thefrom db(cursor) method.

In a typical database initialization lifecycle, the raw data
will be read and written to the database iteratively until all
the errors and inconsistencies are solved. When the data in
the database is stable, most likely a lifecycle would involve
reading the database and converting it into objects and per-

forming the required manipulations. This manipulation can
be done at three different levels – i) using generated ob-
jects only; ii) using SQL queries only, ii) combining both to
achieve the simplest data manipulability.

5 Benefits of this Architecture

Lets say the user wishes to find an answer to the fol-
lowing question –What is the distribution of named en-
tities that areARG0s of the predicate “say”? The pseu-
docode outlined in Figure 3 shows how you could accom-
plish that using a combination of SQL and object-level ma-
nipulation. Without the current architecture, this manipula-
tion would have required significant pre-processing by each
end-user, requiring possible re-interpretation of the underly-
ing semantics of the data itself, and a possible introduction
of error therewith.

While synchronizing and revising the Treebank and
PropBank annotations, there were several cases of well-
defined changes such as: i) if an NP representing an ARGM
argument, is dominated by a PP, which is dominated by a
VP that is the parent of the predicate, then the ARGM la-
bel is transferred from the NP to the dominating PP; ii) if
an argument tagged on an NP is dominated by an SBAR,
dominated by a WH-phrase, then a separate semantic link
(SLINK) is created that links the ARG label on the WH-
pronoun to its referent, the latter of which was previously
directly tagged as an argument of the predicate; iii) traces
are inserted to address some synchronization issues; iv) ar-
gument attachments, and therefore phrase attachments were
altered. More such changes are mentioned in [1]. All these
changes required some degree of change to the Treebank,
and therefore all the pointers in PropBank annotation had to
be revised to be consistent with the Treebank. Since we did
not have this tool/representation when we performed these
merges, it was quite a painful and kludgy experience. There
are tools such asTSurgeon, which do allow arbitrary ma-
nipulations of tree structures, but fail to be very useful in
such cases where multiple representations are simultane-
ously affected, and have to be synchronized. In light of
this new representation and API, those changes would be
extremely easy.

We used the OntoNotes data in the Lexical Sample WSD
task of the SemEval [16] competition. It was extremely easy
to format the word sense information from OntoNotes to
conform to the predetermined Semeval lexical-sample task
format.

The amount of coreference annotation in OntoNotes was
richer and more in quantity than any other effort in the past.
However, the tool that we used was a generic tool called
“Callisto3” developed at MITRE. Although it is a very flex-
ible tool, it does not provide mechanisms to add data-level

3http://callisto.mitre.org/

Procedure: get nameentity distribution(aarg type, apredicatelemma)

1: Load OntoNotes database
2: for all proposition∈ on.proposition.propositionbank.propositions()do
3: if proposition.predicate.lemma== a predicatelemmathen
4: (arg type, argid)← get arg info(“select * from argument where proposition id = proposition.id”)
5: for all arg type∈ arg typesdo
6: if arg type== a arg typethen
7: nodeid← get arg nodeid(“select * from argument node where argument id = argument.id”)
8: documentid← proposition.documentid
9: sentenceid← proposition.sentenceid

10: document← on.tree.treebank.gettree document(documentid)
11: tree← document.gettree(sentenceid)
12: node← tree.getsubtree(nodeid)
13: nameentity type← node.nameentity
14: nameentity hash[nameentity type]← nameentity hash[nameentity type] + 1
15: end if
16: end for
17: end if
18: end for
19: return nameentity hash

Figure 3. Pseudocode for performing a cross-layer query on the representation using the API

consistency checks based on the semantics of the individual
tasks that you use it to accomplish. One recurring man-
ifestation of this limitation was that annotators could er-
roneously add a coreference link to multiple coreference
chains. To correct this, we added a quality control step
which comprised of trying to add the annotated documents
to the database, and inserted a routine using the DB-API,
that created a report of multiple-link errors, which the an-
notators could easily read, and edit the coreference chains
accordingly to eliminate the inconsistencies. This process
was repeated until no errors were identified while loading a
document to the database.

Even in the well established, and heavily-used Penn
Treebank, we identified some orphan, or duplicate traces
that were subsequently corrected. This process identified
many more such cases in the Chinese Treebank, which are
relatively new and unexplored by the community – Espe-
cially since automatic parsers typically tend to ignore this
information and not reproduce it.

Last, but not the least, annotation tools can be built us-
ing this representation as their backend, and tools could be
easily written to visualize this complex data fairly easily.

6 Related Work
Although this is probably the first attempt at combin-

ing so many different layers together, the importance of this
goal has already been recognized by the community and at-
tempts have been made to reach a consensus; most notably
by the formation of the ISO/TC 37/SC 4 standard by the In-
ternational Standards Organization. This standard identifies

principles and methods for creating, processing and man-
aging language resources [8]. A working group within this
standard WG1-1 has been trying to put together a Linguis-
tic Annotation Framework (LAF) that can serve as a basis
for harmonizing existing language resources. However, the
bottom line is that this is a framework, and whoever wants
to conform to that has to define the schemas and write trans-
lation routines to convert their data into the required repre-
sentation – which is a form of feature structure graph. We
envelope our specific six layers by efficiently capturing their
internal semantics at a skeletal level and provide an object-
level representation that could be easily translated into any
format that might evolve from this standard.

Another feature structure representation – GLARF [11]
tries to capture information in various Treebanks, and also
tries to superimpose some predicate argument structure.
This technique is more representation centric – trying to
capture a union of various individual representations, how-
ever, as per our understanding, without any means of easy
access to the data. It is also not clear how it would extend
to accommodating more layers of semantic information.

An additional significant effort is the Unified Linguistic
Annotation (ULA) project [15] which is also a collabora-
tive effort aimed at merging several existing semantic anno-
tation efforts: PropBank, NomBank, Coreference, the Penn
Discourse Treebank, and TimeBank. Crucially, all individ-
ual annotations are being kept separate in order to make it
easy to produce alternative annotations of a specific type of
semantic information (e.g., word senses, or anaphora) with-
out needing to modify the annotation at the other levels.

One of the main goals of this project is to eliminate any
theoretical incompatibilities between the different layers.

In the past, database representations have been used to
store individual annotation layers as in case of FrameNet [2]
as well as WordNet. However, they are restricted to pred-
icate argument structures and pure ontological representa-
tions, respectively. Neither of them have provided native
layers of API for easy manipulation. The distribution is a
collection of XML documents, so end-users have to write
routines to read and manipulate the data themselves. Re-
cently, as part of the Unstructured Information Manage-
ment Architecture (UIMA) [7] effort, IBM has introduced
a mechanism called Common Analysis System (CAS) [4]
that allows definition of annotation types and serialization
as well as querying capabilities. To our knowledge, it has
not yet been widely used, or reported, so a detailed compar-
ison is not possible at this time.

Two other works that comes closest to ours in terms of
the types of annotations and corpora itself, are the Prague
Dependency Treebank [5] and the Salsa project [9, 17].
However, even these do not include word senses, their con-
nections to the Ontology, and a full range of coreference.
Neither do they address additional languages (Chinese and
Arabic) and genres (Broadcast News, Talk Shows, etc.) that
we address.

7 Conclusions

In conclusion, we have created a corpus with various lev-
els of semantic information integrated in one big database.
This process identified several levels of inconsistencies that
were resolved, ensuring a clean, consistent final product.
The relationships between all the layers and within the
layers themselves is efficiently captured in the database
schema. We have also provided an object layer on top of the
database layer, written in Python, which can flexibly ma-
nipulate the data at the level of the database or as objects, to
extract information across layers which was not easily pos-
sible before. It can also produce the individual layers by
themselves as well as a human readable representation. All
this is available for distribution through the Linguistic Data
Consortium (LDC). This should facilitate defining custom
views of the data as well as extracting cross-layer features
for use in predictive models, neither of which was easily
possible previously.

8 Acknowledgments

We gratefully acknowledge the support of the Defense
Advanced Research Projects Agency (DARPA/IPTO) under
the GALE program, DARPA/CMO Contract No. HR0011-
06-C-0022.

References

[1] O. Babko-Malaya, A. Bies, A. Taylor, S. Yi, M. Palmer,
M. Marcus, S. Kulick, and L. Shen. Issues in synchronizing
the English Treebank and PropBank. InWorkshop on Fron-
tiers in Linguistically Annotated Corpora, July 2006.

[2] C. Baker, C. Fillmore, and B. Cronin. The structure of the
framenet database.International Journal of Lexicography,
16(3):281–296, 2003.

[3] C. F. Baker, C. J. Fillmore, and J. B. Lowe. The Berkeley
FrameNet project. InProceedings of COLING/ACL-98, pages
86–90, Montreal, 1998. ACL.

[4] T. Gotz and O. Suhre. Design and implementation of the uima
common analysis system.IBM Systems Journal, 43(3), 2004.

[5] J. Hajic, B. Vidova-Hladka, and P. Pajas. The prague depen-
dency treebank: Annotation structure and support. InIRCS
Workshop on Linguistic Databases, 2001.

[6] E. Hovy, M. Marcus, M. Palmer, L. Ramshaw, and
R. Weischedel. OntoNotes: The 90% solution. InProceed-
ings of HLT/NAACL, USA, June 2006.

[7] IBM. Unstructured information management architecture
(UIMA) – http://www.research.ibm.com/uima. 2005.

[8] N. Ide and L. Romary. International standard for a linguistic
annotation framework.Journal of Natural Language Engi-
neering, 10(3-4):211–225, 2004.

[9] K. Erk and S. Pado. A powerful and versatile xml format
for representing role-semantic annotation. InProceedings of
LREC, 2004.

[10] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz. Build-
ing a large annotated corpus of English: The Penn treebank.
Computational Linguistics, 19(2):313–330, June 1993.

[11] A. Meyers, G. R., M. Kosaka, and S. Zhao. Covering tree-
banks with glarf. InACL/EACL Workshop on Sharing Tools
and Resources for Research and Education, 2001.

[12] M. Palmer, O. Babko-Malaya, and H. T. Dang. Different
sense granularities for different applications. In R. Porzel,
editor,2nd Workshop on Scalable Natural Language Under-
standing, Boston, MA, USA.

[13] M. Palmer, D. Gildea, and P. Kingsbury. The proposition
bank: An annotated corpus of semantic roles.Computational
Linguistics, 31(1):71–106, 2005.

[14] A. Philpot, E. Hovy, and P. Patrick. The omega ontology.
In Proceedings of the ONTOLEX Workshop at IJCNLP, Jeju
Island, South Korea, October 2005.

[15] J. Pustejovsky, A. Meyers, M. Palmer, and M. Poesio. Merg-
ing PropBank, NomBank, TimeBank, Penn Discourse Tree-
bank and coreference. InWorkshop on Frontiers in Corpus
Annotations II: Pie in the Sky,

[16] SemEval 2007. SemEval-2007. In4th International Work-
shop on Semantic Evaluations, 2007.

[17] D. Spohr, A. Burchardt, S. Pado, A. Frank, and U. Heid. In-
ducing a computational lexicon from a corpus with syntactic
and semantic annotation. InProceedings of IWCS-7, 2007.

[18] R. Weischedel and A. Brunstein. BBN pronoun coreference
and entity type corpus LDC catalog no.: LDC2005T33. BBN
Technologies, 2005.

