
Semantic Web 0 (0) 1 1
IOS Press

Ontop: Answering SPARQL Queries over
Relational Databases
Editor(s): Óscar Corcho, Universidad Politécnica de Madrid, Spain
Solicited review(s): Jean Paul Calbimonte, École Polytechnique Fédérale de Lausanne, Switzerland; José Luis Ambite, University of Southern
California, USA; one anonymous reviewer

Diego Calvanese a, Benjamin Cogrel a, Sarah Komla-Ebri a, Roman Kontchakov b, Davide Lanti a,
Martin Rezk a, Mariano Rodriguez-Muro c, and Guohui Xiao a

a Free University of Bozen-Bolzano, Italy

{calvanese,bcogrel,sakomlaebri,dlanti,mrezk,xiao}@inf.unibz.it
b Birkbeck, University of London, UK

roman@dcs.bbk.ac.uk
c IBM TJ Watson, US

mrodrig@us.ibm.com

Abstract. We present Ontop, an open-source Ontology-Based Data Access (OBDA) system that allows for querying relational
data sources through a conceptual representation of the domain of interest, provided in terms of an ontology, to which the data
sources are mapped. Key features of Ontop are its solid theoretical foundations, a virtual approach to OBDA, which avoids
materializing triples and is implemented through the query rewriting technique, extensive optimizations exploiting all elements
of the OBDA architecture, its compliance to all relevant W3C recommendations (including SPARQL queries, R2RML mappings,
and OWL 2 QL and RDFS ontologies), and its support for all major relational databases.

Keywords: Ontop, OBDA, Databases, RDF, SPARQL, Ontologies, R2RML, OWL

1. Introduction

Over the past 20 years we have moved from a
world where most companies operated with a sin-
gle all-knowing, self-contained, central database to a
world where companies buy and sell their data, in-
teract with several data sources, and analyze patterns
and statistics coming from them. The focus is shifting
from obtaining information to finding the right infor-
mation. It has always been the case that information
is power, but today attention rather than information
becomes the scarce resource, and those who can dis-
tinguish valuable information from background clut-
ter gain power [28]. To separate the wheat from the
chaff, companies need a comprehensive understanding
of their data and the ability to cope with diversity in
the data.

Since the mid 2000s, Ontology-Based Data Access

(OBDA) has become a popular approach for tackling
this challenge [42]. In OBDA, a conceptual layer is
provided in the form of an ontology that defines a
shared vocabulary, models the domain, hides the struc-
ture of the data sources, and enriches incomplete data
with background knowledge. Then, queries are posed
over this high-level conceptual view, and the users
no longer need an understanding of the data sources,
the relation between them, or the encoding of the
data. Queries are translated by the OBDA system into
queries over potentially very large (usually relational
and federated) data sources. The ontology is connected
to the data sources through a declarative specification
given in terms of mappings that relate symbols in the
ontology (classes and properties) to (SQL) views over
the data. The W3C standard R2RML [17] was cre-

1570-0844/0-1900/$27.50 c© 0 – IOS Press and the authors. All rights reserved

2 Ontop

ated with the goal of providing a language for spec-
ifying mappings in the OBDA setting. The ontology
together with the mappings exposes a virtual RDF
graph, which can be queried using SPARQL, the stan-
dard query language in the Semantic Web community.
This virtual RDF graph can be materialized, generat-
ing RDF triples to be used with RDF triplestores, or al-
ternatively it can be kept virtual and queried only dur-
ing query execution. The virtual approach avoids the
cost of materialization and can profit from more than
30 years’ maturity of relational database systems (effi-
cient query answering, security, robust transaction sup-
port, etc.).

To illustrate these concepts and different notions in
this article, we will use the following running exam-
ple. All the material required to run this example in the
OBDA system Ontop (and a complementary tutorial)
can be found online1.

Example 1.1 (Hospital Database). We consider a hos-
pital database with a single table tbl_patient that
contains information on lung cancer patients. The ta-
ble has 4 attributes: the patient identifier (pid), his/her
name, the type of cancer (tumor), and its stage. The
lung cancer can be of two types: Non-Small Cell Lung
Carcinoma (NSCLC) and Small Cell Lung Carcinoma
(SCLC), which are encoded in the table by a boolean
value type as follows:

– false for NSCLC and true for SCLC.

The stage of the cancer is encoded by a positive integer
value stage as follows:

– NSCLC: 1–6 for stages I, II, III, IIIa, IIIb, and IV,
respectively;

– SCLC: 1 and 2 for stages Limited and Extensive,
respectively.

Our sample table contains the following data:

pid name type stage

1 ’Mary’ false 4

2 ’John’ true 1

Suppose we need a simple piece of information from
this database: “Give me the names of patients with a
tumor of stage IIIa”. Even this simple query in this tiny
database already presents some challenges, because in
order to formulate the query and to understand and an-
alyze the results we need to know how the information

1https://github.com/ontop/ontop-examples/

tree/master/swj-2015

is encoded in the data. In this paper, we describe how
to use the Ontop system to address this challenge by
enhancing the database with a semantic layer.

We present the OBDA system Ontop2, a mature
open-source system, which is currently being used
in a number of projects. Ontop supports all the
W3C recommendations related to OBDA: OWL 2 QL,
R2RML, SPARQL, SWRL, and the OWL 2 QL entail-
ment regime in SPARQL. The system is available as a
Protégé plugin, a SPARQL endpoint through Sesame
Workbench, and a Java library supporting OWL API
and Sesame API.

The structure of the article is as follows. Section 2
presents a high-level overview of the architecture of
Ontop. Section 3 surveys additional tools that can be
used with Ontop for creating, deploying, and query-
ing OBDA systems. Section 4 describes the SPARQL
query answering techniques implemented in Ontop.
Section 5 outlines the applications of Ontop, in partic-
ular the Statoil and Siemens use cases in the context
of the Optique EU project. Related SPARQL query an-
swering systems are surveyed in Section 6. Section 7 is
a retrospective on the development of Ontop over the
past five years. Finally, Section 8 concludes the article.

2. Architecture of Ontop

Ontop is an open-source3 OBDA system released
under the Apache license, developed at the Free Uni-
versity of Bozen-Bolzano. The Ontop system exposes
relational databases as virtual RDF graphs by linking
the terms (classes and properties) in the ontology to
the data sources through mappings. This virtual RDF
graph can then be queried using SPARQL by translat-
ing the SPARQL queries into SQL queries over the re-
lational databases. This translation process is transpar-
ent to the user.

The architecture of Ontop, which is illustrated in
Fig. 1, can be divided in four layers: (i) the inputs,
i.e., the domain-specific artifacts such as the ontology,
mappings, database, and queries; (ii) the core of the
system in charge of query translation, optimization,
and execution; (iii) the APIs exposing standard Java
interfaces to users of the system; and (iv) the applica-
tions that allow end-users to execute SPARQL queries
over databases. We explore each of these components
in turn.

2http://ontop.inf.unibz.it
3http://github.com/ontop/ontop

Ontop 3

Ontop SPARQL Query Answering Engine (Quest)

OWL-API Sesame Storage And Inference Layer (SAIL) API

R2RML API
OWL-API

(OWL Parser)
Sesame API

(SPARQL Parser)
JDBC

Protege
Optique
Platform

Sesame Workbench &
SPARQL Endpoint

Application
Layer

API
Layer

Ontop
Core

Inputs Relational
Databases

R2RML
Mappings

OWL 2 QL
Ontologies

SPARQL
Queries

Fig. 1. Architecture of the Ontop system

2.1. Inputs: Ontology, Mappings, Queries, and

Databases

To the best of our knowledge, Ontop is the first
OBDA system that supports all the W3C recom-
mendations related to OBDA: OWL 2 QL, R2RML,
SPARQL, SWRL, and the OWL 2 QL entailment
regime in SPARQL4. In addition, it supports all major
commercial and open-source relational databases.

Ontology. Ontop uses RDFS [8] and OWL 2 QL [39]
as ontology languages. OWL 2 QL is based on the DL-

Lite family of lightweight description logics [11,3],
which guarantees that queries over the ontology can be
rewritten into equivalent queries over the data alone.
Recently Ontop has been extended to support also a
fragment of SWRL [61].

Example 2.1. The following ontology captures the do-
main knowledge of our running example. It describes
the concepts of cancer and cancer patient with the fol-
lowing OWL axioms:

:NSCLC rdfs:subClassOf :LungCancer .
:SCLC rdfs:subClassOf :LungCancer .

:LungCancer rdfs:subClassOf :Neoplasm .
:hasNeoplasm rdfs:domain :Patient .
:hasNeoplasm rdfs:range :Neoplasm .

:hasName a owl:DatatypeProperty .
:hasStage a owl:ObjectProperty .

In particular, classes :NSCLC and :SCLC are sub-

4SWRL and the OWL 2 QL entailment regime are currently sup-
ported experimentally.

classes of :LungCancer (that is, both are types

of lung cancer), which in turn is a subclass of

:Neoplasm. The object property :hasNeoplasm has

class :Patient as its domain and :Neoplasm as its

range (in other words, it relates patients to neoplasms).

We also have a datatype property :hasName and an

object property :hasStage.

Mappings. Ontop supports two mapping languages:

the W3C RDB2RDF Mapping Language (R2RML),

which is a widely used standard; and the native Ontop

mapping language, which is easier to learn and use.

Ontop includes tools for converting native mappings

into R2RML mappings and vice-versa. Intuitively, a

mapping assertion consists of a source, which is an

SQL query retrieving values from the database, and a

target, which constructs RDF triples with values from

the source.

Example 2.2. The ontology in Example 2.1 can be

populated from the database in Example 1.1 by means

of the following mappings in the simplified Ontop

native mapping syntax:

4 Ontop

:db1/{pid} a :Patient .

← SELECT pid FROM tbl_patient

:db1/neoplasm/{pid} a :NSCLC .

← SELECT pid FROM tbl_patient

WHERE type = false

:db1/neoplasm/{pid} a :SCLC .

← SELECT pid FROM tbl_patient

WHERE type = true

:db1/{pid} :hasName {name} .

← SELECT pid, name FROM tbl_patient

:db1/{pid} :hasNeoplasm :db1/neoplasm/{pid} .

← SELECT pid FROM tbl_patient

:db1/neoplasm/{pid} :hasStage :stage-IIIa .

← SELECT pid FROM tbl_patient

WHERE stage = 4 and type = false

In this example, IRIs like :hasStage and rdf:type

(abbreviated as a) represent the constant compo-
nents of the RDF triples. IRIs :db1/{pid} and
:db1/neoplasm/{pid} are constructed using values
from the database: in both cases, {pid} is the value
of the attribute pid in the respective SQL query.
Similarly, {name} is a literal whose value is taken
from the attribute name in the SQL query of the
mapping. Note that there are individuals that represent
patients, :db1/{pid}, and individuals that represent
their tumors, :db1/neoplasm/{pid}. This allows
for a better modeling of the domain.

Mappings are also used for data integration. To
model an entity, for instance, a patient, that is rep-
resented by different objects in different datasources,
there are in principle two options. First, one can vir-
tually merge different objects representing the same
entity by generating the same URI for them. Second,
when the first option is not available, one can use
owl:sameAs in the target of the mappings to explicitly
state the equality between objects [12].

Queries. Ontop supports essentially all features of
SPARQL 1.0 as well as the OWL 2 QL entailment
regime of SPARQL 1.1 [35]. Implementation of other
features of SPARQL 1.1 (e.g., aggregates, property
path queries, negation) is ongoing work.

Example 2.3. Recall our information need in Exam-
ple 1.1: the names of all patients who have a neoplasm
(tumor) at stage IIIa. This can be represented by the
following SPARQL query:

SELECT ?name WHERE {

?p a :Patient ;

:hasName ?name ;

:hasNeoplasm ?tumor .

?tumor a :Neoplasm ;

:hasStage :stage-IIIa . }

On our sample database, the query would return
’Mary’. Observe that the vocabulary is more domain-
oriented and independent of the representation in the
database and there is no need to be aware of the spe-
cific values that encode types or stages of cancer in the
database.

Databases. Ontop supports standard relational
database engines via JDBC. These include all ma-
jor commercial relational databases (DB2, Oracle,
MS SQL Server) and the most popular open-source
databases (PostgreSQL, MySQL, H2, HSQL). In
addition, Ontop can be used with federated databases
(e.g., Teiid5 or Exareme6, formerly called ADP [59])
to support multiple data sources (e.g., relational
databases, XML, CSV, and Web Services).

2.2. Ontop Core

The core of Ontop is the SPARQL engine Quest,
which is in charge of rewriting SPARQL queries over
the virtual RDF graph and ontology into SQL queries
over the relational database (see Section 4).

2.3. API Layer

System developers can use Ontop as a Java library:
Ontop implements two widely-used Java APIs, which
are also available as Maven artifacts.

– OWL API [25] is a reference implementation for
creating, manipulating, and serializing OWL on-
tologies. We extended the OWLReasoner Java in-
terface to support SPARQL query answering.

– Sesame [9] is a de-facto standard framework
for processing RDF data. Ontop implements the
Sesame Storage And Inference Layer (SAIL) API
supporting inferencing and querying over rela-
tional databases.

2.4. Application Layer

Ontop is also available through a simple command-
line interface and through several applications access-
ing it via the aforementioned APIs. We describe three
such applications, which we have developed and main-
tained together with Ontop over the past years.

5http://teiid.jboss.org
6http://www.exareme.org

Ontop 5

(a) Mapping editor (b) SPARQL query answering

Fig. 2. Screenshots of the Ontop Protégé Plugin

– Protégé. Ontop implements a plugin for Protégé

based on OWL API. The plugin provides a graphi-
cal interface for various key functionalities related to
OBDA: editing mappings, executing SPARQL queries,
checking consistency of the ontology, bootstrapping
ontologies and mappings from the database, importing
and exporting R2RML mappings, materializing RDF
triples, etc. Figure 2 shows two screenshots of the On-

top Protégé plugin for creating mappings and answer-
ing SPARQL queries from the running example.

– Sesame Workbench and SPARQL Endpoint.
Sesame OpenRDF Workbench is a web application for
administrating Sesame repositories. We extended the
Workbench to create and manage Ontop repositories
using SAIL API. Such repositories can then be used as
standard SPARQL endpoints. Figure 3 shows a screen-
shot of creating an Ontop repository in Sesame Work-
bench.

– Optique Platform. The Optique Platform com-
plements Ontop by adding an intuitive visual query
builder, tools for ontology and mapping manage-
ment, a user-friendly query answering interface, and
a database federation tool, among other features [22].
Ontop is the core of the Optique Platform and is in
charge of the query transformation module. The plat-
form can exploit massive parallelism in the backend
whenever possible, and it also supports streaming data
(in the streaming scenario, Ontop is used only for
query rewriting).

Fig. 3. Screenshot of the Ontop Sesame Workbench

3. Ecosystem

Complementary to Ontop’s core functionalities,

there are additional tools that support the tasks in-

volved in creating and deploying OBDA systems. We

now provide a brief overview of some of the tools for

bootstrapping mappings and ontologies, for federating

data sources at SQL and SPARQL levels, and for for-

mulating queries.

6 Ontop

3.1. Mapping Generation

The process of creating mappings is probably the
most complex step in setting up an OBDA system. It
involves writing individual queries for each table and
column that needs to be aligned with the ontology’s vo-
cabulary. A number of tools for (semi-)automatic cre-
ation of mappings have been implemented.

Mapping Bootstrappers automatically generate
mappings and vocabularies from database schemas.
Ontop includes a mapping bootstrapper, which is
available as a command-line tool and as part of the
Protégé plugin. Most of the existing tools generate
mappings that follow the Direct Mapping7 specifi-
cation, a W3C recommendation for a default way
of generating RDF triples from SQL databases. The
specification contains guidelines on (i) how to use the
values of primary, foreign, and unique keys to create
IRIs for subjects and objects in RDF triples, (ii) how
to use table names to define classes, and (iii) how to
use table and column names to define properties. The
specification also deals with low-level issues such
as casting SQL values to RDF literals, handling null
values, etc. Although the (default) direct mapping
is not necessarily useful as a mapping by itself,
many mapping bootstrappers take it as a baseline for
mapping generation.

It is important to note, however, that a direct map-
ping is usually not sufficient to capture the seman-
tics of the data such as class hierarchies encoded in
columns with codes or IDs (e.g., type = false in-
dicates small cell lung cancer), or the conditions that
a certain value in a column identifies the object(s) that
belong to a certain class (e.g., a patient with stage 1
to 4 is a high risk patient). Systems like MIRROR [21]
and BootOX [27] support automatic generation of such
complex mappings by exploiting the common patterns
that schema managers use to encode the semantics of
the domain in the relational database.

Once mappings have been generated with any of
these tools, any query engine for virtual RDF graphs
like Ontop can use them.

Semi-automatic Mapping Generation. Mappings can
be constructed semi-automatically: the system sug-
gests new mappings by analyzing the data sources and
the existing mappings and the user guides the process.
Such systems, e.g., Karma [34] and Clio [20], rely on

7http://www.w3.org/TR/rdb-direct-mapping

schema matching techniques developed for data inte-
gration [18].

3.2. Ontology Bootstrapping and Matching

A basic vocabulary of classes and properties can
be obtained from the table and column names in a
database. However, such a vocabulary lacks ontologi-
cal axioms that describe its semantics. Ontology boot-

strappers are tools that extract RDFS or OWL ax-
ioms using schema information (such as integrity con-
straints) and/or the data in the database. For instance,
BootOX [27] can be used for ontology bootstrapping.

However, the quality of automatically bootstrapped
ontologies is usually not sufficient to allow their direct
use for querying data sources. Moreover, users might
want to use also well-established domain ontologies
in combination with bootstrapped ones. So, the boot-
strapped and domain ontologies need to be aligned.
Ontology matching techniques [19], which are able to
perform such alignment, can be seen as an extension
of the schema matching techniques mentioned earlier.
For example, BootOX uses the ontology matching tool
LogMap [26].

3.3. SQL Federation

One way in which Ontop supports data integra-
tion scenarios is through SQL federation. A federated

database is a DBMS that maps multiple independent
databases into a single virtual schema. The designer
of a federated database chooses how to map the in-
dependent databases into the virtual schema by, e.g.,
creating one-to-one mappings, renaming elements of
the schema, or creating virtual tables from SQL views.
Some federated databases also use wrappers for non-
SQL databases (e.g., XML) to provide a uniform user
interface for the client. SQL execution is coordinated
by the federation engine, which exploits techniques for
planning and executing cross-database joins with guar-
antees of concurrency and transaction control.

Most major DBMSs support federated schemas that
integrate independent servers of their own kind: for
example, MySQL creates federated schemas over in-
dependent MySQL servers. Federated schemas with
databases from multiple vendors are supported by
systems like UnityJDBC, IBM Websphere, MS SQL
Server, and Oracle; open-source solutions are provided
by JBoss’s Teiid and Exareme, both of which are sup-
ported by Ontop.

Ontop 7

3.4. SPARQL Federation

Another setup in which Ontop can be used in data
integration scenarios is through SPARQL federation.
As with federated SQL databases, SPARQL federa-
tion involves multiple and independent SPARQL end-
points that are queried through a single entry point. We
distinguish two forms of federation available: seamless
federation and SPARQL 1.1 SERVICE federation.

Seamless federation is very similar to SQL feder-
ation. That is, a system manager creates a federated
SPARQL end-point where she configures access to in-
dependent and remote end-points. Clients submit plain
SPARQL queries to the federated end-point, unaware
of the existence of the remote end-points. As with
SQL federation, the federation system is responsible
for finding the most efficient way of executing queries
(in particular, it is extremely important to minimize the
amount of data transferred between end-points). Anap-
sid [2] and FedX [55] are examples of such systems.

In contrast, SERVICE federation involves direct ref-
erences to remote end-points in SPARQL 1.1 queries:
the SERVICE keyword is used to scope a subgraph to a
particular end-point. For example:

SELECT ?s ?o {

?s a :Patient .

SERVICE ex:endpoint { ?s foaf:knows ?o } }

When a SERVICE keyword is encountered, the
SPARQL engine delegates the evaluation of the en-
closed graph pattern to the SPARQL end-point spec-
ified in the SERVICE call. The result is retrieved
by the local SPARQL engine and used to continue
the evaluation of the SPARQL query. SPARQL fed-
eration through SERVICE calls is available in most
SPARQL 1.1 compliant engines.

In contrast to seamless federation, using the
SERVICE keyword does not require the federation en-
gine to know about the remote end-points a priori. In
fact, the end-point URL itself can be a variable in the
query, getting values as the query gets executed.

Ontop can be used in both of these setups by deploy-
ing an Ontop SPARQL end-point (see Section 2.4).

3.5. Ontology-based Query Interface

The task of formulating SPARQL queries can be
challenging for end-users. There are several ontology-
based visual query interfaces to ease this task,
e.g., OptiqueVQS [58], QueryVOWL [24], SEWASIE

Ontop

ON-LINE OFF-LINE

Reasoner

Ontology

Mapping-

Optimiser

Mappings

DB Integrity Constraints

Classified

Ontology

T-mapping

SPARQL

Query

Query Rewriter

SQL query

SPARQL to SQL

Translator

Fig. 4. The Ontop workflow

VQS [15], and Faceted search [60]. These tools can be
used together with Ontop. In particular, OptiqueVQS
is the query interface in the Optique platform.

4. Answering SPARQL Queries

Ontop answers end-user’s SPARQL queries by
rewriting them into SQL queries and delegating exe-
cution of the SQL queries to the data sources. With
this approach there is no need to apply rules to the
data sources to materialize all the facts entailed by
the ontology. The workflow of Ontop can be divided
into an off-line and online stages and is illustrated in
Fig. 4. The most critical task during start-up (the off-
line stage) is generating the so-called T-mappings [49]
by compiling the ontology into the mappings. Dur-
ing query execution (the online stage), Ontop trans-
forms an input SPARQL queries into an optimized
SQL query using the T-mappings and database in-
tegrity constraints. We now explain each of the two
stages.

4.1. Off-line Stage: Ontology and Mapping

Compilation

The off-line stage of Ontop processes the ontol-
ogy, mappings, and database integrity constraints. This
stage can be thought of as consisting of three phases:
(1) ontology classification, (2) T-mapping construc-
tion, and (3) T-mapping optimization. In the imple-
mentation of Ontop, however, the last two phases are
performed simultaneously.

In Phase 1, the ontology is loaded through OWL
API and is classified using the built-in OWL 2 QL
reasoner. The resulting complete hierarchy of prop-
erties and classes is stored in memory as a directed
acyclic graph. For example, in the ontology in Ex-

8 Ontop

ample 2.1, both :NSCLC and :SCLC are subclasses
of :LungCancer, which in turn is a subclass of
:Neoplasm. It follows that every NSCLC and every
SCLC is a form of neoplasm:

:NSCLC rdfs:subClassOf :Neoplasm .
:SCLC rdfs:subClassOf :Neoplasm .

The classification algorithm is based on a variant of
graph reachability [45] (a similar procedure was later
described in [37]).

In Phase 2, T-mappings are constructed by compil-
ing the complete class and property hierarchies into
the mappings [49,51]. For example, consider concept
:Neoplasm in Example 2.1. Although it has no rules
in the mappings defined by the user, the two class
inclusions derived above give rise to the following
rules in the T-mapping:

:db1/neoplasm/{pid} a :Neoplasm .
← SELECT pid FROM tbl_patient

WHERE type = false

:db1/neoplasm/{pid} a :Neoplasm .
← SELECT pid FROM tbl_patient

WHERE type = true

Finally, in Phase 3, the T-mappings are optimized
by using disjunction (OR) and interval expressions in
SQL and by applying the semantic query optimiza-
tion (SQO) techniques (which will be described in
Section 4.2.2). For instance, using disjunction, Ontop

transforms the two rules above into a single rule

:db1/neoplasm/{pid} a :Neoplasm .
← SELECT pid FROM tbl_patient

WHERE type = false OR type = true

Such optimizations are known to be relatively expen-
sive (for example, SQO is based on an NP-complete
conjunctive query containment check) but are per-
formed only once, during the off-line stage of Ontop,
and therefore have no negative effect on the online
stage of query processing. On the other hand, the re-
sulting T-mappings define all the triples in the virtual
RDF graph that includes all the inferences due to the
ontology (under the entailment regime). Thus, during
the online stage, the T-mappings are used directly for
the translation of individual triple patterns in SPARQL
queries into SQL.

4.2. Online Stage: Query Answering

The online stage takes a SPARQL query and trans-
lates it into SQL by using the T-mappings. We fo-
cus only on the translation of SELECT queries (ASK
and DESCRIBE queries are treated analogously). In

this process Ontop also optimizes the SQL query
by applying SQO techniques [16,33]. We distin-
guish three phases in the query answering process.
(1) The SPARQL query is translated into SQL using
T-mappings. (2) The resulting SQL query is optimized
for efficient execution by the database engine. (3) The
optimized SQL query is then executed by the database
engine, and the result set is translated into the answer
to the original SPARQL query by creating the neces-
sary RDF terms. Note, however, that Phases 1 and 2 are
handled together in the implementation of Ontop and
we separate them here only for the sake of clarity. We
elaborate now on the three phases of query answering.

4.2.1. From SPARQL to SQL

Ontop internally represents the SPARQL query as
a tree of the algebra expression (generated by the
Sesame SPARQL parser). Each node of the tree is
transformed into the respective SQL expression. To il-
lustrate the transformation, we continue with the run-
ning example.

Example 4.1. Consider the fragment of the query in
Example 2.3 that retrieves all tumors of stage IIIa:

SELECT ?tumor WHERE {

?tumor a :Neoplasm ;

:hasStage :stage-IIIa . }

(Note that triple pattern ?tumor a :Neoplasm was
redundant in Example 2.3: indeed, Ontop can infer it
from ?p :hasNeoplasm ?tumor because the range
of :hasNeoplasm is :Neoplasm. On the other hand,
the users are not expected to perform inferences and, in
fact, often include such redundant triples.) The above
query is represented by the following tree:

PROJECT

JOIN

T1: ?x a :Neoplasm . T2: ?x :hasStage :IIIa .

Next we explain how to produce the SQL expression
from a SPARQL query using T-mappings. Algorithm 1
is a simplified version of the process. It iterates over
the nodes of the SPARQL algebra tree in a bottom-up
fashion; more precisely, it goes through the list S of
nodes in the tree of query Q in the topological sorting
order. In our running example this list is [T1, T2, JOIN,
PROJECT]. So, the algorithm starts by replacing each
leaf of the tree, which is a triple pattern of the form
(s, p, o), by the union of the SQL queries defining its

Ontop 9

predicate in the T-mapping (lines 4–5). In this step, the
algorithm implicitly considers two cases: (i) when p

is an object or data property such as :hasStage or
:hasName, or (ii) when p is a (rdf:type) and o is a
class such as :Patient.

Once it finishes processing the leaves, it continues
to the upper levels in the tree (lines 7–17), where the
SPARQL operators (JOIN, OPTIONAL, UNION, FIL-
TER, and PROJECT) are translated into the corre-
sponding SQL operators (InnerJoin, LeftJoin, Union,
Filter, and Project, respectively). Once the root is trans-
lated, the process is finished and the resulting SQL ex-
pression is returned.

Example 4.2. Ontop translates the SPARQL query in
Example 4.1 into an SQL query of the following struc-
ture (see Fig. 5a):

Project

InnerJoin

Q1 Q2

The leaves, Q1 and Q2, are the SQL definitions of
the concept :Neoplasm and property :hasStage, re-
spectively, in the T-mapping rules constructed dur-
ing the off-line stage (see Section 4.1). Observe that
without the T-mapping optimizations in the off-line
stage, the resulting SQL would contain a union in place

Algorithm 1. Translating SPARQL into SQL
Input: SPARQL query Q, T-mappingsM
Output: SQL expression

1: S ← list of nodes in Q in a bottom-up topological order
2: sql← empty map from nodes to SQL expressions
3: for node n ∈ S do

4: if n is triple pattern then ⊲ translating leaves
5: sql[n]← replace-Tmap-def(n,M)
6: else ⊲ translating non-leaf nodes
7: if n = JOIN(n1,n2) then

8: sql[n]← InnerJoin(sql[n1], sql[n2])
9: else if n = OPTIONAL(n1, n2, e) then

10: sql[n]← LeftJoin(sql[n1], sql[n2], e)
11: else if n = UNION(n1, n2) then

12: sql[n]← Union(sql[n1], sql[n2])
13: else if n = FILTER(n1, e) then

14: sql[n]← Filter(sql[n1], e)
15: else if n = PROJECT(n1, p) then

16: sql[n]← Project(sql[n1], p)
17: end if

18: end if

19: end for

20: return sql[S.last()]

SELECT Q1.x FROM

((SELECT concat(":db1/neoplasm/", pid) AS x

FROM tbl_patient

WHERE type = false OR type = true) Q1

JOIN

(SELECT concat(":db1/neoplasm/", pid) AS x

FROM tbl_patient

WHERE stage = 4 AND type = false) Q2

ON Q1.x = Q2.x)

(a) Non-optimized generated SQL query

SELECT concat(":db1/neoplasm/", Q.pid) AS x

FROM

(SELECT T1.pid

FROM tbl_patient T1 JOIN tbl_patient T2

ON T1.pid = T2.pid

WHERE (T1.type = false OR T1.type = true)

AND T2.stage = 4

AND T2.type = false) Q

(b) SQL query after the structural optimization

SELECT concat(":db1/neoplasm/", Q.pid) AS x

FROM

(SELECT pid

FROM tbl_patient

WHERE type = false AND stage = 4) Q

(c) SQL query after the self-join elimination

SELECT concat(":db1/neoplasm/", pid) AS x

FROM tbl_patient

WHERE type = false AND stage = 4

(d) SQL query after the second structural optimization

Fig. 5. Example of SQL translation and optimization

of Q1, which would increase the complexity of the
SQL query and so, would have a negative effect on the
query evaluation time.

For the sake of simplicity we do not describe the
translation of filter expressions and OPTIONAL (an
optimal translation of unions and empty expressions in
the second argument is particularly challenging) and
how to handle data types and functions in SQL expres-
sions. Instead, we refer the interested reader to [53,35].

4.2.2. Optimizing the generated SQL queries

The generated SQL queries can already be executed
by the database engine but they are inefficient: they of-
ten contain subqueries, redundant self-joins, and joins
over complex expressions such as string concatena-
tions (the latter, for instance, prevent the database en-
gine from using indexes). Ontop employs a number of

10 Ontop

structural and semantic optimizations to simplify and
improve performance of produced SQL queries.

Structural Optimizations. Ontop applies three main
structural optimizations: (i) pushing the joins inside
the unions, (ii) pushing the functions as high as possi-
ble in the query tree, and (iii) eliminating sub-queries.
Returning to the running example, the SQL query ob-
tained by these optimizations is shown in Fig. 5b: op-
timizations (ii) and (iii) convert the join over the com-
plex expressions into a join over the attributes of the
relations (effectively de-IRIing the join) and subse-
quently remove the subqueries.

Semantic Optimization. Ontop adopts techniques
from the area of SQO [16,33]. In general, SQO refers
to the semantic analysis of SQL queries and use of
database integrity constraints, such as primary and for-
eign keys, to reduce the size and complexity of the
query, e.g., by removing redundant self-joins, and de-
tecting unsatisfiable or trivially satisfiable conditions.
In our running example, SQO eliminates the self-join,
which is redundant because pid is the primary key of
tbl_patient; it also simplifies the WHERE clause
because the condition (type = false OR type =

true) is implied by (type = false). The resulting
SQL query is shown in Fig. 5c. Observe that it has a
sub-query, Q, that could not be eliminated before but,
after the SQO step, structural optimization (iii) can be
applied again to eliminate sub-query Q and obtain an
even simpler SQL query, which shown in Fig. 5d.

Observe that these optimizations interact with and
complement each other. The optimization step is crit-
ical [36] and nontrivial. This simple example illus-
trates the basic principles. The translation of complex
queries is more involved and takes account of the gap
between the SQL and SPARQL semantics. The inter-
ested reader is referred to [35,53].

4.2.3. Executing Query over the Database

Since different database engines support slightly
different SQL dialects, we have to adjust the SQL syn-
tax accordingly. For instance, the string concatenation
operator is || in Postgres and concat in MySQL; in
MySQL, one cannot cast a value to Integer, so we
cast it to Signed instead; Postgres internally changes
unquoted table and column names (identifiers) to low-
ercase, while Oracle and H2 change unquoted identi-
fiers to uppercase.

As the final step, Ontop sends the generated SQL
query to the database engine and translates the result
into RDF terms (URIs or literals) to construct the an-

swers to the SPARQL query. In the implementation,
Ontop wraps the result set obtained from the database
via JDBC and creates corresponding Java objects for
OWL API or Sesame API.

4.3. Performance

The cost of query answering in Ontop can be split
into three parts: (i) the cost of generating the SQL
query, (ii) the cost of execution by the RDBMS, and
(iii) the cost of fetching and transforming the SQL re-
sults into RDF terms. We have studied the performance
of Ontop using several benchmarks (e.g., BSBM, Fish-
Mark, LUBM, and NPD) and settings (e.g., various
database engines, number of clients, dataset size) [35,
54,36,51]. The obtained results suggest that the per-
formance of Ontop depends more on the complexity
of the combination of ontology and mappings than
on the size of the dataset. On the one hand, this is
in line with the well-known theoretical results on the
price of OBDA: the transformation of the query suf-
fers an exponential blow-up in the worst case [23].
On the other hand, on the standard query rewriting
benchmarks (LUBM, Adolena, etc.), the tree-witness
query rewriting algorithm implemented in Ontop pro-
duces rewritings shorter and simpler than all other
tools; moreover, it is also faster [51]. As a conse-
quence, Ontop can efficiently perform ontological in-
ferences in the virtual RDF graph mode without any
need for materialization: on IMDb, for example, it is
competitive with such materialization-based systems
as OWLIM (GraphDB) [51] and, on LUBM, it outper-
forms reasoner-based systems, especially on large data
instances [35]. In benchmarks like BSBM and Fish-
Mark, where the number of mappings is small and the
datasets range from 25 to 200 million triples, Ontop

outperforms its competitors (D2RQ, OWLIM, Star-
dog, Virtuoso) by orders of magnitude [54]. This per-
formance is the result of (i) the fast SPARQL-to-SQL
translation (4–15ms); (ii) the efficient optimization of
the SQL; and (iii) the well-known efficiency of rela-
tional databases. For instance, in BSBM with 200 mil-
lion triples, Ontop can run more than 400.000 queries
per hour (44k query mixes per hour).

To better understand the performance of OBDA sys-
tems, we developed a more challenging benchmark,
the NPD Benchmark [36], which reveals the strengths
and pitfalls of OBDA. It is based on the original NPD
FactPages ontology, mappings and queries [57]. The
NPD FactPages original data is published by the Nor-
wegian Petroleum Directorate (NPD) and the query

Ontop 11

set was obtained by interviewing users of NPD Fact-
Pages.8 This setting thus provides a realistic account of
the information needs in the modeled scenario. The on-
tology and mappings contain thousands of axioms and
rules and our benchmark comes with a dataset of up to
4 billion triples, which were obtained from the original
NPD FactPages dataset. The results comparing Ontop

and Stardog on the NPD Benchmark show [36] that our
approach is scalable but more work is needed to opti-
mize the generated SQL queries. Indeed, while the op-
timizations currently implemented in Ontop result in
efficient SQL translations for most of the queries, some
cases are still challenging. Ontop outperforms Stardog
whenever the SPARQL query is translated into a small
SQL query. But in those few cases when the generated
SQL queries are large unions of subqueries, Stardog
still outperforms Ontop. We are currently working on
various techniques for tackling this issue.

5. Industrial Applications

Adoption of Ontop by the community has been
growing steadily in the past six years. In 2015, the On-

top bundle was downloaded more than 1800 times9,
the webpage got 12K hits, and the mailing list more
than 200 topics. Since November 2015, IBM has been
contributing to the Ontop code and using it, e.g., for
data integration [38]. Also, in November 2015, Com-
plexible Inc. integrated Ontop code into Stardog v4.

Ontop is actively used in academia.10 For example,
the EPNet project11 relies on Ontop to improve access
for scholars to historical and cultural data on food pro-
duction and commercial trade system during the Ro-
man Empire from several data sources [14]. Also, On-

top is used in Semantic Mediator [7], for accessing
electronic health records [46], and for querying tem-
poral and streaming data in OBDA [41].

Ontop is the core component of the Optique Plat-
form, which is developed in the EU large scale inte-
grating project Optique [22] and commercialized by
fluid Operations (fluidOps)12. In the rest of this sec-
tion, we describe the use cases of the two major in-
dustrial partners in the Optique project, namely Sta-
toil [30] and Siemens [41], and the role Ontop plays
there.

8http://factpages.npd.no/factpages
9Reported by SourceForge for the period May–December, 2015.
10https://github.com/ontop/ontop/wiki/UseCases
11http://www.roman-ep.net
12http://www.fluidops.com/en

Statoil. Statoil is an international energy company
with main activities in gas and oil extraction. It is head-
quartered in Norway and present in over 30 countries
around the world. Geologists at Statoil require access
to a number of large databases on a daily basis. One
of them, for example, the Exploration and Production
Data Store (EPDS), comprises over 1500 SQL tables
with information on historical exploration data (e.g.,
layers of rocks, porosity), production logs, and maps,
among others. It also contains business information
such as license areas and companies. The schema is
organized in such a way that the direct data access by
engineers (and geologists in particular) often becomes
challenging or even impossible. The main problem lies
not only in the size of the schema and the data but also
in the complex structure of this legacy database. The
solution currently adopted by Statoil relies on tools
that provide domain experts with a few different pre-
defined queries. However, these pre-defined queries
are often too specific, or too general, and cannot be
easily combined to obtain the desired results.

Siemens. Siemens Energy is one of the four sectors
of Siemens AG corporation. It is in charge of gen-
erating and delivering power from numerous sources.
Siemens Energy runs several service centers for power
plants. Each center monitors thousands of devices re-
lated to power generation, including gas and steam
turbines, compressors, and generators. Each device is
monitored by a number of sensors. All dynamic (ob-
servational) data from the sensors is stored in one large
relational database (PostgreSQL) using more than 150
tables per device. About 30 GB of new sensor and
event data is generated every day, resulting in a to-
tal of 100 TB of timestamped data. One of the main
tasks for service engineers monitoring these devices is
to promptly solve issues detected by gathering the rel-
evant sensor data and analyzing it.

The data gathering phase is often the bottleneck of
the process because it takes about 80% of the engi-
neers’ time. This is partly due to the complexity and
quantity of the data. Ideally, the engineers should be
able to access the data directly, by creating and com-
bining queries in an intuitive way that is compatible
with their knowledge. However, the data is often or-
ganized to better serve the applications rather than the
domain experts.

In scenarios such as at Statoil and Siemens, the
OBDA approach to solving these problems consists
in enriching the legacy databases with an ontological
layer that uses a terminology familiar to the engineers.

12 Ontop

The ontology helps the engineers in formulating their
own queries autonomously using the domain vocab-
ulary [22,31], thus effectively mediating between the
engineers and the data. The role of Ontop (and Op-

tique) is to make the OBDA approach feasible, by au-
tomating the process of translating the queries that the
engineers pose over the ontology into queries over the
legacy databases that can be executed efficiently.

6. Related SPARQL Query Answering Systems

We now briefly review the most popular SPARQL
query answering systems, which can be categorized
into two major types: triplestores and OBDA systems.
Table 1 summarizes their main features.

Triplestores provide a flexible generic logical model
for storing any set of RDF triples. However, if the
triples are generated from external sources (e.g., rela-
tional databases) then an intermediate ETL (Extract,
Transform, and Load) process is required to transfer
data between these external sources and the triplestore.
The ETL process can be expensive, especially when
data sources are frequently updated.

OBDA systems, on the other hand, are set up
over existing relational datasources and exploit their
domain-specific schemas. By using ontologies and
mappings, they expose the database as a virtual RDF
graph that can be queried using SPARQL (thus, the ad-
ditional ETL process is not required).

Some triplestores and OBDA systems have reason-
ing capabilities. The most common strategy for triple-
stores is forward-chaining, which consists in extend-
ing the set of RDF triples by means of inferences ac-
cording to a given set of rules. Thus, the OWL 2 RL
profile of OWL 2 (and similar rule-based ontology lan-
guages) are most suitable for triplestores. Forward-
chaining has certain drawbacks: inferences can be
costly in terms of both time and space; moreover, up-
dates and deletions of triples require additional book-
keeping for incremental reasoning. Also, this approach
cannot be adopted without sacrificing completeness of
query answering when the ontology language (such as
OWL 2 QL) is capable of inferring new individuals in
the data.

In contrast to triplestores, the most common strat-
egy for OBDA systems is query rewriting, and so
OWL 2 QL is the OWL 2 profile most suitable in this
setting. To guarantee rewritability, certain features,
such as recursion and property chains, are not allowed
in OWL 2 QL.

In the remainder of this section, we review various
implementations of the two types.

6.1. Triplestores

Virtuoso Universal Server13 is a hybrid system that
can be used as a relational database, a triplestore, or
an OBDA system. It has two editions, an open-source
and a commercial one. From the perspective of an-
swering SPARQL queries, Virtuoso is used mostly as a
triplestore. It supports SPARQL 1.1 and, in this mode,
it offers some backward- (by default) and forward-
chaining capabilities for limited subsets of RDFS and
OWL. When Virtuoso is used as a regular DBMS,
it can be turned into an OBDA system by setting
up mappings in its own mapping language. However,
its OBDA mode has several limitations: no reason-
ing capabilities are available and only a small frag-
ment of R2RML is supported. Virtuoso can be ac-
cessed through the Sesame and Jena APIs.

GraphDB,14 previously known as OWLIM [5], is a
commercial triplestore developed by Ontotext. It fully
supports SPARQL 1.1. OWL reasoning is based on the
forward-chaining materialization approach. This strat-
egy naturally fits with the OWL 2 RL profile but is in-
complete for OWL 2 QL [4]. GraphDB is accessible
through the Sesame API.

Stardog15 is a commercial triplestore developed by
Complexible Inc16. It supports SPARQL 1.1 and
several reasoning levels: RDFS, the three profiles
(OWL 2 QL, OWL 2 EL, OWL 2 RL), and OWL 2 DL
(however, completeness in the latter is guaranteed only
for schema reasoning). Stardog avoids eager materi-
alization and its reasoning engine is partly based on
query rewriting (in fact, the reasoning level can be cho-
sen by the user at query time). Stardog can be accessed
through the Sesame API. Since version 4 released in
November 2015, Stardog has integrated Ontop code
to support SPARQL queries over virtual RDF graphs.
Therefore, it can now be classified also as an OBDA
system.

RDFox17 is an in-memory triplestore developed at the
University of Oxford. It implements a novel shared-
memory parallel Datalog reasoning algorithm and sup-

13http://virtuoso.openlinksw.com
14http://ontotext.com/products/graphdb
15http://stardog.com
16http://complexible.com
17http://www.cs.ox.ac.uk/isg/tools/RDFox

Ontop 13

Table 1

Feature matrix of SPARQL query answering systems

Type System Reasoning Mapping support License Starting year

Triplestore Virtuoso RDFS ∗ Native, R2RML∗ GPL 2, Commercial 1999

GraphDB OWL 2 RL – Commercial 2005

Stardog OWL 2 ∗/ SWRL∗ Native, R2RML Commercial 2012

RDFox OWL 2 RL / SWRL / Datalog – Academic 2013

OBDA D2RQ No D2RQ Mapping, R2RML∗ Apache 2 2004

Mastro OWL 2 QL R2RML∗ Academic 2006

Ultrawrap RDFS-Plus Native, R2RML Commercial 2012

Morph-RDB No R2RML Apache 2 2013

Ontop OWL 2 QL / SWRL∗ Ontop Mapping, R2RML Apache 2 2010

(∗ indicates limited support)

ports OWL 2 RL reasoning by materialization [40].
The system is a cross-platform software written in C++
and comes with a Java wrapper supporting OWL API.

6.2. OBDA Systems

D2RQ18 is one of the pioneering OBDA systems, de-
veloped at the Free University of Berlin and DERI.
This query rewriting system implements some query
optimizations but these have often been reported as in-
sufficient: for instance, the generated SQL queries can
contain an excessive number of joins [44]. It provides
its own mapping language, D2RQ, and supports only
a fragment of R2RML. No inference mechanism is in-
cluded. This software (last release in 2012) is available
under an open-source license.

Mastro19 is an OBDA system that shares common ori-
gins with Ontop. This query rewriting system supports
reasoning over OWL 2 QL ontologies. Unlike other
OBDA systems mentioned here, it supports only a re-
stricted fragment of SPARQL that corresponds to con-
junctive queries. Mastro is available only for demon-
stration, testing, and evaluation purposes.

Ultrawrap20 is an OBDA system commercialized by
Capsenta. It was recently extended to support infer-
ence over an extension of RDFS with inverse and tran-
sitive properties [56]. Ultrawrap uses an analogue of
T-mappings of Ontop, which are called saturated map-
pings and which are used for creating regular and ma-
terialized views in the relational database.

18http://d2rq.org
19http://www.dis.uniroma1.it/~mastro
20http://capsenta.com

Morph-RDB,21 formerly called ODEMapster, is an
open-source OBDA system supporting the R2RML
and Direct Mappings standards. This system imple-
ments a number of query optimizations techniques
such as self-join elimination [44]. However, it has no
inference capability.

7. A Retrospective

Ontop has its roots in our early work on QuOnto
and Mastro [1,10]. QuOnto is a reasoner for the de-
scription logic DL-Lite with plain conjunctive query
(CQ) answering and Mastro is its extension with GAV
(global as view) mappings for relational databases [42]
(both systems are maintained by the Sapienza Univer-
sity of Rome). Our work enabled the use of these sys-
tems through the ontology editor Protégé 3 [43] and
the DIG reasoner API [48].

Using these tools we interacted with third parties to
develop several OBDA applications [13,10,29,52,47]
(for a full list, see [47]). In the process we tested both
the performance of the state-of-the-art query rewriting
techniques and the feasibility of this technology for
data integration and data access. We obtained insights
on techniques and optimizations on the one hand, and
on APIs and required features on the other hand. These
two strands of development characterized our work
from then on. We now briefly elaborate on them.

Reasoning, Optimization, and Performance. The
main issue initially was the large number of CQs pro-
duced by the rewriting algorithm (PerfectRef [11])
implemented in QuOnto, which often returned hun-

21https://github.com/oeg-upm/morph-rdb

14 Ontop

dreds of thousands of CQs (even for simple ontolo-
gies and mappings). And although database systems
do perform very well in general, commercial and non-
commercial engines alike have problems with large
generated queries. To deal with the issue, we extended
PerfectRef by a Semantic Query Optimization (SQO)
component, which removes redundant CQs and elimi-
nates redundant self-joins using database integrity con-
straints (foreign and primary keys) [47].

The work in this direction materialized in the first
version of Ontop (2010), which was called Quest (the
name now refers only to the query processing engine).
Quest can work in (i) the virtual mode that sup-
ports virtual RDF graphs via mappings, and (ii) the
triplestore mode that stores RDF triples directly in
a relational database. We developed the theory of
T-mappings to improve performance in the virtual
mode [49,35] (cf. Section 4.1) and the Semantic Index
for the triplestore mode [50]. Then, the tree-witness
query rewriting algorithm [32] replaced PerfectRef to
drastically reduce the size of rewritings and take ad-
vantage of T-mappings and the Semantic Index. We
also observed [47] that the generic database-centric
SQO is insufficient in the OBDA setting and proposed
novel techniques: e.g., simplification of join conditions
by de-IRIing, cf. Section 4.2.2.

More recent lines of research on Ontop include
(i) the formalization of SPARQL in the context
of OBDA [53,35], (ii) the OWL 2 QL entailment
regime [35], (iii) the SWRL rule language with a lim-
ited form of recursion handled by SQL Common Ta-
ble Expressions [61], (iv) owl:sameAs for cross-
linked datasets [12], and (v) expressive ontologies be-
yond OWL 2 QL by rewriting and approximation with
the help of the mapping layer [6].

API, Features, and Accessibility. With the first ver-
sion of Ontop, we shifted our focus from the De-
scription Logic domain to Semantic Web technologies,
gradually increasing the level of compliance with the
RDF, RDFS, OWL 2 QL, SPARQL and R2RML stan-
dards. To support the OWL community, we include the
OWL API and Protégé 4 (and more recently Protégé 5)
interfaces for Ontop. To support the Linked Data com-
munity, we provide the Sesame API interface for On-

top, as well as an HTTP SPARQL endpoint.

Ontop was initially released under a non-com-
mercial use license before adopting the permissive
Apache 2.0 license in 2013. The project is now hosted
in GitHub so that anybody can download it and con-
tribute to the code. On the software engineering side,

to facilitate integration, building, testing, and distribu-
tion, Ontop was repackaged as a Maven project and has
been available from the official Maven repository since
2013. We gradually introduced project-wide testing,
starting with functional tests for the reasoning mod-
ules, query answering modules (including the DAWG
tests for SPARQL 1.0), and virtual RDF modules (in-
cluding the DAWG tests for R2RML). Now most JU-
nit tests (∼2000) are automatically run with Travis-CI
whenever new changes are pushed to GitHub.

8. Conclusion

We presented Ontop, a mature open-source OBDA
system, which allows users to access relational
databases through a conceptual representation of the
domain of interest in terms of an ontology. The sys-
tem is based on solid theoretical foundations and has
been designed and implemented towards compliance
with relevant W3C standards. It supports all major re-
lational databases and implements numerous optimiza-
tion techniques to offer a good level of performance.
Ontop has been adopted in several academic and in-
dustrial use cases.

In the future, we plan to develop Ontop in the fol-
lowing directions.

– In order to further improve performance, we will
investigate data-dependent optimizations.

– We plan to support larger fragments of SPARQL
(e.g., aggregation, negation, and path queries) and
R2RML (e.g., named graphs).

– For end-users, we will improve the GUI and ex-
tend utilities to make Ontop even more user-
friendly.

– We plan to go beyond relational databases and
support other kinds of data sources (e.g., graph
and document databases).

Acknowledgements. This paper is supported by the
EU under the large-scale integrating project (IP) Op-
tique (Scalable End-user Access to Big Data), grant
agreement n. FP7-318338.

References

[1] Andrea Acciarri, Diego Calvanese, Giuseppe De Giacomo,
Domenico Lembo, Maurizio Lenzerini, Mattia Palmieri, and
Riccardo Rosati. QUONTO: QUerying ONTOlogies. In Proc.

of the 20th Nat. Conf. on Artificial Intelligence (AAAI), pages
1670–1671. AAAI Press, 2005.

Ontop 15

[2] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio
Castillo, and Edna Ruckhaus. ANAPSID: An adaptive query
processing engine for SPARQL endpoints. In Proc. of the

10th Int. Semantic Web Conf. (ISWC), volume 7031 of Lec-

ture Notes in Computer Science, pages 18–34. Springer, 2011.
doi:10.1007/978-3-642-25073-6_2.

[3] Alessandro Artale, Diego Calvanese, Roman Kontchakov,
and Michael Zakharyaschev. The DL-Lite family and rela-
tions. J. of Artificial Intelligence Research, 36:1–69, 2009.
doi:10.1613/jair.2820.

[4] Barry Bishop and Spas Bojanov. Implementing OWL 2 RL and
OWL 2 QL rule-sets for OWLIM. In Proc. of the 8th Int. Work-

shop on OWL: Experiences and Directions (OWLED), vol-
ume 796 of CEUR Electronic Workshop Proceedings. CEUR-
WS.org, 2011.

[5] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan
Peikov, Zdravko Tashev, and Ruslan Velkov. OWLIM: A fam-
ily of scalable semantic repositories. Semantic Web J., 2(1):33–
42, 2011. doi:10.3233/SW-2011-0026.

[6] Elena Botoeva, Diego Calvanese, Valerio Santarelli,
Domenico Fabio Savo, Alessandro Solimando, and Guohui
Xiao. Beyond OWL 2 QL in OBDA: Rewritings and ap-
proximations. In Proc. of the 30th AAAI Conf. on Artificial

Intelligence (AAAI). AAAI Press, 2016.
[7] Béatrice Bouchou and Cheikh Niang. Semantic mediator

querying. In Proc. of the 18th Int. Database Engineering &

Applications Symposium (IDEAS), pages 29–38. ACM Press,
2014. doi:10.1145/2628194.2628218.

[8] Dan Brickley and R. V. Guha. RDF vocabulary description
language 1.0: RDF Schema. W3C Recommendation, World
Wide Web Consortium, February 2004. Available at http:
//www.w3.org/TR/rdf-schema/.

[9] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen.
Sesame: A generic architecture for storing and querying RDF
and RDF schema. In Proc. of the 1st Int. Semantic Web Conf.

(ISWC), volume 2342 of Lecture Notes in Computer Science,
pages 54–68. Springer, 2002. doi:10.1007/3-540-48005-6_7.

[10] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, Mariano Rodriguez-
Muro, Riccardo Rosati, Marco Ruzzi, and Domenico Fabio
Savo. The Mastro system for ontology-based data access. Se-

mantic Web J., 2(1):43–53, 2011.
[11] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,

Maurizio Lenzerini, and Riccardo Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-

Lite family. J. of Automated Reasoning, 39(3):385–429, 2007.
doi:10.1007/s10817-007-9078-x.

[12] Diego Calvanese, Martin Giese, Dag Hovland, and Martin
Rezk. Ontology-based integration of cross-linked datasets. In
Proc. of the 14th Int. Semantic Web Conf. (ISWC), volume
9366 of Lecture Notes in Computer Science, pages 199–216.
Springer, 2015. doi:10.1007/978-3-319-25007-6_12.

[13] Diego Calvanese, C. Maria Keet, Werner Nutt, Mariano
Rodriguez-Muro, and Giorgio Stefanoni. Web-based graph-
ical querying of databases through an ontology: the WON-
DER system. In Proc. of the 25th ACM Symposium on Ap-

plied Computing (SAC), pages 1388–1395. ACM Press, 2010.
doi:10.1145/1774088.1774384.

[14] Diego Calvanese, Alessandro Mosca, Jose Remesal, Martin
Rezk, and Guillem Rull. A ’historical case’ of ontology-based
data access. In Proc. of Digital Heritage 2015 (DH 2015).

IEEE Computer Society Press, 2015.
[15] Tiziana Catarci, Paolo Dongilli, Tania Di Mascio, Enrico Fran-

coni, Giuseppe Santucci, and Sergio Tessaris. An ontology
based visual tool for query formulation support. In Proc. of the

16th Eur. Conf. on Artificial Intelligence (ECAI), pages 308–
312. IOS Press, 2004. doi:10.1007/978-3-540-39962-9_15.

[16] Upen S. Chakravarthy, John Grant, and Jack Minker.
Logic-based approach to semantic query optimization.
ACM Trans. on Database Systems, 15(2):162–207, 1990.
doi:10.1145/78922.78924.

[17] Souripriya Das, Seema Sundara, and Richard Cyganiak.
R2RML: RDB to RDF mapping language. W3C Recommen-
dation, World Wide Web Consortium, September 2012. Avail-
able at http://www.w3.org/TR/r2rml/.

[18] AnHai Doan, Pedro Domingos, and Alon Halevy. Learn-
ing to match the schemas of data sources: A multistrat-
egy approach. Machine Learning, 50(3):279–301, 2003.
doi:10.1023/A:1021765902788.

[19] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro
Domingos, and Alon Halevy. Learning to match ontologies on
the semantic web. The VLDB Journal, 12(4):303–319, 2003.
doi:10.1007/s00778-003-0104-2.

[20] Ronald Fagin, Laura M. Haas, Mauricio A. Hernández,
Renée J. Miller, Lucian Popa, and Yannis Velegrakis. Clio:
Schema mapping creation and data exchange. In Conceptual

Modeling: Foundations and Applications – Essays in Honor of

John Mylopoulos, volume 5600 of Lecture Notes in Computer

Science, pages 198–236, 2009. doi:10.1007/978-3-642-02463-
4_12.

[21] Luciano Frontino de Medeiros, Freddy Priyatna, and Os-
car Corcho. MIRROR: Automatic R2RML mapping gen-
eration from relational databases. In Proc. of the 15th Int.

Conf. on Web Engineering (ICWE), volume 9114 of Lecture

Notes in Computer Science, pages 326–343. Springer, 2015.
doi:10.1007/978-3-319-19890-3_21.

[22] Martin Giese, Ahmet Soylu, Guillermo Vega-Gorgojo, Ar-
ild Waaler, Peter Haase, Ernesto Jiménez-Ruiz, Davide Lanti,
Martín Rezk, Guohui Xiao, Özgür L. Özçep, and Riccardo
Rosati. Optique – zooming in on big data access. IEEE Com-

puter, 48(3):60–67, 2015. doi:10.1109/MC.2015.82.
[23] Georg Gottlob, Stanislav Kikot, Roman Kontchakov,

Vladimir V. Podolskii, Thomas Schwentick, and Michael
Zakharyaschev. The price of query rewriting in ontology-
based data access. Artificial Intelligence, 213:42–59, 2014.
doi:10.1016/j.artint.2014.04.004.

[24] Florian Haag, Steffen Lohmann, Stephan Siek, and Thomas
Ertl. QueryVOWL: A visual query notation for linked data. In
Proc. of the 3rd Int. Workshop on Human Semantic Web Inter-

action (HSWI). ESWC 2015 Satellite Events, volume 9341 of
Lecture Notes in Computer Science, pages 387–402. Springer,
2015. doi:10.1007/978-3-319-25639-9_51.

[25] Matthew Horridge and Sean Bechhofer. The OWL API: A Java
API for OWL ontologies. Semantic Web J., 2(1):11–21, 2011.
doi:10.3233/SW-2011-0025.

[26] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Yujiao Zhou,
and Ian Horrocks. Large-scale interactive ontology match-
ing: Algorithms and implementation. In Proc. of the 20th Eu-

ropean Conf. on Artificial Intelligence (ECAI), volume 242,
pages 444–449. IOS Press, 2012.

[27] Ernesto Jimenez-Ruiz, Evgeny Kharlamov, Dmitriy
Zheleznyakov, Ian Horrocks, Christoph Pinkel, Martin G.

16 Ontop

Skjæveland, Evgenij Thorstensen, and Jose Mora. BootOX:
Practical mapping of RDBs to OWL 2. In Proc. of the 14th

Int. Semantic Web Conf. (ISWC), volume 9367 of Lecture

Notes in Computer Science, pages 113–132. Springer, 2015.
doi:10.1007/978-3-319-25010-6_7.

[28] Joseph S. Nye Jr. The benefits of soft power. Technical re-
port, Harvard University - Business School, 2004. Available at
http://hbswk.hbs.edu/archive/4290.html.

[29] C. Maria Keet, Ronell Alberts, Aurona Gerber, and Gibson
Chimamiwa. Enhancing web portals with ontology-based data
access: the case study of South Africa’s Accessibility Portal
for people with disabilities. In Proc. of the 5th Int. Workshop

on OWL: Experiences and Directions (OWLED), volume 432
of CEUR Electronic Workshop Proceedings. CEUR-WS.org,
2008.

[30] Evgeny Kharlamov, Dag Hovland, Ernesto Jimenez-Ruiz, Da-
vide Lanti, Hallstein Lie, Christoph Pinkel, Martin Rezk, Mar-
tin G. Skjæveland, Evgenij Thorstensen, Guohui Xiao, Dmitriy
Zheleznyakov, and Ian Horrocks. Ontology based access to ex-
ploration data at Statoil. In Proc. of the 14th Int. Semantic Web

Conf. (ISWC), volume 9367 of Lecture Notes in Computer Sci-

ence, pages 93–112. Springer, 2015. doi:10.1007/978-3-319-
25010-6_6.

[31] Evgeny Kharlamov, Nina Solomakhina, Özgür Lütfü Özçep,
Dmitriy Zheleznyakov, Thomas Hubauer, Steffen Lamparter,
Mikhail Roshchin, Ahmet Soylu, and Stuart Watson. How se-
mantic technologies can enhance data access at Siemens En-
ergy. In Proc. of the 13th Int. Semantic Web Conf. (ISWC), vol-
ume 8796 of Lecture Notes in Computer Science, pages 601–
619. Springer, 2014. doi:10.1007/978-3-319-11964-9_38.

[32] Stanislav Kikot, Roman Kontchakov, and Michael Za-
kharyaschev. Conjunctive query answering with OWL 2 QL.
In Proc. of the 13th Int. Conf. on Principles of Knowledge Rep-

resentation and Reasoning (KR), pages 275–285. AAAI Press,
2012.

[33] Jonathan J. King. QUIST: A system for semantic query op-
timization in relational databases. In Proc. of the 7th Int.

Conf. on Very Large Data Bases (VLDB), pages 510–517. IEEE
Computer Society, 1981.

[34] Craig A. Knoblock, Pedro A. Szekely, José Luis Ambite,
Aman Goel, Shubham Gupta, Kristina Lerman, Maria Muslea,
Mohsen Taheriyan, and Parag Mallick. Semi-automatically
mapping structured sources into the Semantic Web. In Proc. of

the 9th Extended Semantic Web Conf. (ESWC), volume 7295 of
Lecture Notes in Computer Science, pages 375–390. Springer,
2012. doi:10.1007/978-3-642-30284-8_32.

[35] Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro,
Guohui Xiao, and Michael Zakharyaschev. Answering
SPARQL queries over databases under OWL 2 QL entailment
regime. In Proc. of the 13th Int. Semantic Web Conf. (ISWC),
volume 8796 of Lecture Notes in Computer Science, pages
552–567. Springer, 2014. doi:10.1007/978-3-319-11964-9_35.

[36] Davide Lanti, Martin Rezk, Guohui Xiao, and Diego Cal-
vanese. The NPD benchmark: Reality check for OBDA sys-
tems. In Proc. of the 18th Int. Conf. on Extending Database

Technology (EDBT), pages 617–628. OpenProceedings.org,
2015. doi:10.5441/002/edbt.2015.62.

[37] Domenico Lembo, Valerio Santarelli, and Domenico Fabio
Savo. Graph-based ontology classification in OWL 2 QL. In
Proc. of the 10th Extended Semantic Web Conf. (ESWC), vol-
ume 7882 of Lecture Notes in Computer Science, pages 320–

334. Springer, 2013. doi:978-3-642-38288-8_22.
[38] Vanessa Lopez, Martin Stephenson, Spyros Kotoulas, and Pier-

paolo Tommasi. Data access linking and integration with
DALI: building a safety net for an ocean of city data. In Proc.

of the 14th Int. Semantic Web Conf. (ISWC), Part II, volume
9367 of Lecture Notes in Computer Science, pages 186–202.
Springer, 2015. doi:10.1007/978-3-319-25010-6_11.

[39] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu,
Achille Fokoue, and Carsten Lutz. OWL 2 Web Ontology
Language profiles (second edition). W3C Recommendation,
World Wide Web Consortium, December 2012. Available at
http://www.w3.org/TR/owl2-profiles/.

[40] Boris Motik, Yavor Nenov, Robert Piro, Ian Horrocks, and Dan
Olteanu. Parallel materialisation of Datalog programs in cen-
tralised, main-memory RDF systems. In Proc. of the 28th AAAI

Conf. on Artificial Intelligence (AAAI), pages 129–137. AAAI
Press, 2014.

[41] Özgür Lütfü Özçep and Ralf Möller. Ontology based data
access on temporal and streaming data. In Reasoning Web.

Reasoning on the Web in the Big Data Era – 10th Int. Sum-

mer School Tutorial Lectures (RW), volume 8714 of Lecture

Notes in Computer Science, pages 279–312. Springer, 2014.
doi:10.1007/978-3-319-10587-1_7.

[42] Antonella Poggi, Domenico Lembo, Diego Calvanese,
Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Linking data to ontologies. J. on Data Semantics,
X:133–173, 2008. doi:10.1007/978-3-540-77688-8_5.

[43] Antonella Poggi, Mariano Rodríguez-Muro, and Marco Ruzzi.
Ontology-based database access with DIG-Mastro and the
OBDA Plugin for Protégé. In Kendall Clark and Peter F. Patel-
Schneider, editors, Proc. of the 4th Int. Workshop on OWL: Ex-

periences and Directions (OWLED DC), 2008.
[44] Freddy Priyatna, Oscar Corcho, and Juan Sequeda. Formal-

isation and experiences of R2RML-based SPARQL to SQL
query translation using Morph. In Proc. of the 23rd Int.

World Wide Web Conf. (WWW), pages 479–490. ACM, 2014.
doi:10.1145/2566486.2567981.

[45] S. Pugacs. Efficient query answering with semantic indexes.
BSc thesis, KRDB Research Centre for Knowledge and Data,
Free University of Bozen-Bolzano, 2011.

[46] Alireza Rahimi, Siaw-Teng Liaw, Jane Taggart, Pradeep Ray,
and Hairong Yu. Validating an ontology-based algorithm to
identify patients with type 2 diabetes mellitus in electronic
health records. Int. J. of Medical Informatics, 83(10):768–778,
2014. doi:10.1016/j.ijmedinf.2014.06.002.

[47] Mariano Rodriguez-Muro. Tools and Techniques for Ontology

Based Data Access in Lightweight Description Logics. PhD
thesis, KRDB Research Centre for Knowledge and Data, Free
University of Bozen-Bolzano, 2010. doi:10.1007/978-3-642-
39784-4_5.

[48] Mariano Rodriguez-Muro and Diego Calvanese. Towards an
open framework for ontology based data access with Protégé
and DIG 1.1. In Proc. of the 5th Int. Workshop on OWL: Expe-

riences and Directions (OWLED), volume 432 of CEUR Elec-

tronic Workshop Proceedings, 2008.
[49] Mariano Rodríguez-Muro and Diego Calvanese. Dependen-

cies: Making ontology based data access work in practice. In
Proc. of the 5th Alberto Mendelzon Int. Workshop on Foun-

dations of Data Management (AMW), volume 749 of CEUR

Electronic Workshop Proceedings, 2011.
[50] Mariano Rodriguez-Muro and Diego Calvanese. High perfor-

Ontop 17

mance query answering over DL-Lite ontologies. In Proc. of

the 13th Int. Conf. on Principles of Knowledge Representation

and Reasoning (KR), pages 308–318. AAAI Press, 2012.
[51] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael

Zakharyaschev. Ontology-based data access: Ontop of
databases. In Proc. of the 12th Int. Semantic Web Conf. (ISWC),
volume 8218 of Lecture Notes in Computer Science, pages
558–573. Springer, 2013. doi:10.1007/978-3-642-41335-3_35.

[52] Mariano Rodriguez-Muro, Lina Lubyte, and Diego Cal-
vanese. Realizing ontology based data access: A plug-
in for Protégé. In Proc. of the ICDE Workshop on In-

formation Integration Methods, Architectures, and Systems

(IIMAS), pages 286–289. IEEE Computer Society Press, 2008.
doi:10.1109/ICDEW.2008.4498333.

[53] Mariano Rodriguez-Muro and Martin Rezk. Efficient
SPARQL-to-SQL with R2RML mappings. J. of Web Seman-

tics, 33:141–169, 2015. doi:10.1016/j.websem.2015.03.001.
[54] Mariano Rodriguez-Muro, Martin Rezk, Josef Hardi, Mindau-

gas Slusnys, Timea Bagosi, and Diego Calvanese. Evaluat-
ing SPARQL-to-SQL translation in Ontop. In Proc. of the 2nd

Int. Workshop on OWL Reasoner Evaluation (ORE), volume
1015 of CEUR Electronic Workshop Proceedings, pages 94–
100, 2013.

[55] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel,
and Michael Schmidt. FedX: A federation layer for distributed
query processing on linked open data. In Proc. of the 8th Ex-

tended Semantic Web Conf. (ESWC), volume 6644 of Lecture

Notes in Computer Science, pages 481–486. Springer, 2011.
doi:10.1007/978-3-642-21064-8_39.

[56] Juan F. Sequeda, Marcelo Arenas, and Daniel P. Miranker.
OBDA: Query rewriting or materialization? In practice, both!

In Proc. of the 13th Int. Semantic Web Conf. (ISWC), volume
8796 of Lecture Notes in Computer Science, pages 535–551.
Springer, 2014. doi:10.1007/978-3-319-11964-9_34.

[57] Martin G. Skjæveland and Espen H. Lian. Benefits of pub-
lishing the Norwegian Petroleum Directorate’s FactPages as
Linked Open Data. In Proc. of Norsk Informatikkonferanse

(NIK 2013). Tapir, 2013.
[58] Ahmet Soylu, Evgeny Kharlamov, Dmitriy Zheleznyakov,

Ernesto Jimenez-Ruiz, Martin Giese, and Ian Horrocks.
Ontology-based visual query formulation: An industry experi-
ence. In Proc. of the 11th Int. Symposium on Visual Comput-

ing (ISVC), volume 9474 of Lecture Notes in Computer Sci-

ence, pages 842–854. Springer, 2015. doi:10.1007/978-3-319-
27857-5_75.

[59] Manolis M. Tsangaris, George Kakaletris, Herald Kllapi,
Giorgos Papanikos, Fragkiskos Pentaris, Paul Polydoras, Eva
Sitaridi, Vassilis Stoumpos, and Yannis E. Ioannidis. Dataflow
processing and optimization on grid and cloud infrastructures.
Bull. of the IEEE Computer Society Technical Committee on

Data Engineering, 32(1):67–74, 2009.
[60] Daniel Tunkelang. Faceted Search. Synthesis

Lectures on Information Concepts, Retrieval, and
Services. Morgan & Claypool Publishers, 2009.
doi:10.2200/S00190ED1V01Y200904ICR005.

[61] Guohui Xiao, Martin Rezk, Mariano Rodriguez-Muro, and
Diego Calvanese. Rules and ontology based data access. In
Proc. of the 8th Int. Conf. on Web Reasoning and Rule Sys-

tems (RR), volume 8741 of Lecture Notes in Computer Sci-

ence, pages 157–172. Springer, 2014. doi:10.1007/978-3-319-
11113-1_11.

