
OntoSphere: more than a 3D ontology visualization tool

Alessio Bosca1, Dario Bonino1, Paolo Pellegrino1

1 Politecnico di Torino, Torino, Italy
{alessio.bosca, dario.bonino, paolo.pellegrino}@polito.it

Abstract. In this paper a new approach to ontology visualization is introduced,
using a more than 3-dimensional space. The ontology information is repre-
sented on a 3D view-port enriched by visual cues. A preliminary application
based on the presented principles is described, and results show that the ap-
proach is feasible and can actually lead to a more effective modeling process
and to an easy detection of “conceptual inconsistencies”. The opinions of do-
main experts are also quite positive and seem to indicate that the approach is
promising and can be extended for creating “user friendly” ontology editors for
people with low ICT skills.

Introduction

In the last years the Semantic Web has been constantly evolving from a vision of
few people to a tangible presence on the Web, with many tools, portals, ontologies,
etc. Such a great evolution involved many researchers, from different countries, and
has been primarily focused on technologies. At now a Web developer can start to
seriously consider the opportunity to provide semantically tagged content as the
needed tools and standards are available. However, the current web panorama shows
a very little adoption of semantics. The motivations for such a low adoption can be
various and related to very different aspects: technology immaturity, failing dissemi-
nation, user and developer resilience to changes, etc. In the sea of possible failures
and shortcomings, interfaces have a relevant role often discriminating good solutions
from bad ones. This is particularly true for tools related with knowledge modeling
and visualization, where the involved information can be quite complex and involve
multidimensional issues.

Several attempts aim at providing effective interfaces for knowledge modeling, i.e.
for ontology creation and visualization. Protégé and OntoEdit for example are com-
plete IDEs (Integrated Development Environments) that address in a single applica-
tion all the aspects related to ontology creation, checking and visualization (through
proper plug-ins). Such tools, although adopting rather different paradigms for editing
and inspecting ontologies, have in common a bi-dimensional approach to ontology
visualization. The bi-dimensional approach can be variously efficient and there are
actually good solutions available on the web: GraphViz, Jambalaya and OntoViz, just

for naming a few. Nevertheless, mapping the many dimensions involved by an ontol-
ogy like the concepts hierarchy, the semantic relationships, the instances and the pos-
sible axioms defining a given knowledge domain, on only two dimensions can some-
times be too restrictive.

In this paper we propose a new approach and a new application called OntoSphere
for inspecting and, in a near future, for editing ontologies using a more than 3-
dimensional space. The proposed approach visualizes the mere topological informa-
tion on a 3D view-port, thus leveraging one more dimension with respect to the cur-
rent solutions. This allows, at least, to better organize the visual occupation of repre-
sented data. Being the 3-dimensional view quite natural for humans, especially for
what concerns navigation, the proposed approach can be more effective in browsing
as it involves “manipulation-level” operations such as zooming, rotating, and translat-
ing objects. In addition, many more dimensions are introduced to convey information
on the visualized knowledge model (meta-information). The extension of the sub-
trees lying under the currently viewed concepts is, for example, visually rendered by
increasing the size of the visual cues adopted for them. The same approach is applied
to colors, which are used to add insights on the representation: blue spheres, for ex-
ample, indicate that the corresponding concepts are terminal nodes in the ontology.
Transparency is used for distinguishing inherited, or inferred, from direct relation-
ships; shapes are used for differentiating concepts and instances and so on.

Together with the ways to convey more information to the users through several
visual dimensions, the proposed work also aims at tackling the space allocation issues
for ontology visual models. In fact, in the traditional solutions, big ontologies can
easily lead to overcrowded representations that are difficult to browse and that can be
more confusing than aiding. Some attempts exist to overcome these problems, as in
OntoRama, where the nodes being inspected are magnified with respect to the other
nodes in the ontology. However, even these approaches tend to collapse when visual-
izing big ontologies such as SUMO, counting over than 20’000 concepts. The pro-
posed application, instead adopts a dynamic collapsing mechanism and different
views, at different granularities, for granting a constant navigability of the rendered
model.

The paper is organized as follows: section 2 presents some related works while
section 3 introduces the adopted approach and details the several solutions introduced
for conveying information in efficient ways. Section 4 describes the technical imple-
mentation of the OntoSphere application and provides some preliminary results.
Eventually section 5 provides conclusions and proposes some future works.

Related Work

The existing techniques for the visualization of ontologies can be summarized in
four main visual schemes, possibly cooperating in more complex scenarios: network,
tree, neighborhood, and hyperbolic. The network view represents an ontology as a
generic network of connected elements and is usually exploited when the knowledge
elements cannot be conveniently organized in hierarchies. The tree (or hierarchical)
view, instead, is generally used for more structured ontologies. However, the simple

hierarchical representation provided by this view is unable to represent connections
between distinct sub-trees that violate the dominant taxonomic structure. In such a
case, the connections violating the hierarchy are indicated in separate views, so com-
plicating the navigation of the structure. The most common examples of tree views
are based on indentation, as in file system browsers, or on diagrams with nodes and
arcs. However, a treemap view has also been proposed by Schneiderman [1], at the
Maryland University, which uses nested rectangles to represent sub-classes (Figure 1,
C).

Figure 1 - TreeViews: indented (A), nodes and arcs (B), TreeMap (C)

The main advantage of tree views is that they can be displayed with rather little ef-
fort in comparison with network-oriented views. More importantly, entire sub-trees
can be easily collapsed (i.e., temporarily hidden) to concentrate the attention on the
rest of the knowledge base. The next two schemes apply similar principles on net-
work-based structures: in fact, both the neighborhood and the hyperbolic views
(Figure 2) focus the attention on a chosen node and its nearest neighbors. In the for-
mer case only the semantically nearest nodes are displayed, whereas in the latter case
the nodes are displaced onto a hemi-spherical surface, projected onto the visual win-
dow, therefore magnifying the central nodes while shrinking the peripheral nodes.

(A) (B) (C)

Figure 2 - Neighborhood View (A), Hyperbolic View (B)

The aforementioned representation schemes have been utilized in numerous appli-
cations with assorted enhancements. Some of them are discussed in the next para-
graphs.

Protégé [1 2, 6] is an open source ontology editor providing support for knowledge
acquisition. Its framework natively allows the interactive creation and visualization of
classes in a hierarchical view. Each concept in the tree can be displayed along with
additional information about the related classes, properties, descriptions, etc., which
can all be quickly edited. Other panels manage class instances, alternative user inter-
faces, queries, and possibly other extensions which can be easily added to the frame-
work as plug-ins. Particularly, various plug-ins are available for enhancing the visu-
alization of the ontology and are therefore here discussed.

The OntoViz [7] plug-in displays a Protégé ontology as a graph by exploiting an
open source library optimized for graph visualization (GraphViz [5]). Intuitively,
classes and instances are represented as nodes, while relations are visualized as ori-
ented arcs. Both nodes and arcs are labeled and displaced in a way that minimizes
overlapping, but not the size of the graph. Therefore, the navigation of the graph,
enhanced only by magnification and panning tools, does not provide a good overall
view of the ontology, as the graphical elements easily become indistinguishable.

This problem is less critical in Jambalaya [3, 8], another ontology viewer for Pro-
tégé, based on a treemap scheme or rather nested interchangeable views, namely Sim-
ple Hierarchical Multi-Perspective (SHriMP). SHriMP is a domain-independent visu-
alization technique designed to enhance how people browse and explore complex
information spaces. An animated view of the ontology graph facilitates the navigation
and browsing at different levels of abstractions and details, both for classes and rela-
tions, while keeping low the learning curve through well-known zooming and hyper-
text link paradigms. However, text labels and symbols tend to overlap when the on-
tology grows in complexity and it is difficult to understand the relations among
classes or instances.

TGViz [9], similarly to OntoViz, visualizes Protégé ontologies as graphs. In this
case however, the displacement of nodes and arcs is computed using the spring layout
algorithm implemented in the Java TouchGraph library [16]. The main advantage of

(A) (B)

this approach is the optimized exploitation of the bi-dimensional space in which the
nodes and arcs are dynamically distributed. However, the level of detail is not ad-
justed according to the level of zoom, often resulting in overcrowded pictures.

The ezOWL [10] plug-in, differently from the previous viewers, enhances Protégé
with a graph-based editing of ontologies, though reducing to a minimum the optimi-
zations for the graph organization. Even in this case it may be difficult to maintain
both a good understanding of the overall ontology and a sufficient level of detail
about a chosen sub-graph.

OntoEdit [11] is a commercial Java-based tool that, similarly to Protégé, offers a
graphical environment for the management and development of ontologies, and can
be enhanced with various plug-ins. In particular, the Visualizer plug-in proposes a bi-
dimensional graph-based view of the ontology using colored icons as nodes accom-
panied by contextual tooltips, such as colored borders or spots other than the usual
labels, which unfortunately are often hidden or overlapping.

IsaViz [12] is another graph-based visual editor for RDF models based on the
GraphViz library. In this case, the principal enhancement to the previously mentioned
approaches based on graphs is the Radar View, which, similarly to Jambalaya, dis-
plays a simplified network overview of the overall ontology in a small window, high-
lighting the currently edited region in a rectangle. In addition, icons and colors are
also exploited to concentrate information, while different visualization styles and lay-
outs are supported through the GSS (Graph Style Sheet) language, derived from the
well-known CSS (Cascading Style Sheet and SVG (Scalable Vector Graphics) W3C
recommendations. However, it is still not possible to customize the level of details for
big ontologies.

OntoRama [15] is an ontology browser for RDF models based on a hyperbolic lay-
out of nodes and arcs. As the nodes in the center are distributed on more space than
those near to the circumference, they are visualized with a higher level of detail,
while maintaining a reasonable overview of the peripheral nodes. In addition to this
pseudo-3D space, OntoRama also introduces the idea of cloned nodes. Since the
browser supports generic ontologies, with properties for classes, multiple relations,
sub-classing, and multiple inheritance, certain nodes and their sub-trees are cloned
and visualized multiple times so that the number of crossed arcs can be reduced, and
the readability enhanced. The duplicate nodes are displayed using an ad-hoc color in
order to avoid confusion. Unfortunately, this application does not support editing and
can only manage RDF data.

Eventually, the approaches and functionalities for each of the mentioned applica-
tion are summarized in the following table.

 View scheme
Viewer / Plugin Editor Network Hierarchical Neighborhood Hyperbolic
Protégé 9 9
 OntoViz 8 9
 Jambalaya 8 9 9 9
 TGViz 8 9 9
 ezOwl 9 9
OntoEdit 9 9
 Visualizer 9 9 9

IsaViz 9 9
OntoRama 8 9 9 9 9

Proposed Approach.

Applications for ontology visualization abstract from the formalism of the
underlying data and graphically model the information contained in the knowledge
base. Each tool presents the data according to its own approach but generally all of
them share the same choice of a 2D space. Well known and widespread visualization
tools as those mentioned in the previous section represent ontologies through a bi-
dimensional paradigm; our approach, instead, leverages the use of a 3D space as a
means to effectively represent and explore data through an intuitive interface.

Our application objective consists in enhancing the performances of current
solutions in terms of completeness and readability; in fact OntoSphere application
aims to graphically represent both the taxonomic and the not taxonomic links as well
as selecting and presenting information on the screen at an appropriate detail level
according to what is relevant to the user’s interest. Furthermore, the tool intends to
provide an intuitive navigation interface, featuring direct manipulation of the scene
(rotation, panning, zoom, object selection, etc.) and designed to particularly meet the
demands of domain experts who have little technical skills in the field of Semantic
Web, and therefore specifically rely on graphical interfaces.

The choice of a three-dimensional environment constitutes our starting point in
designing the tool, as a 3D space offers one more dimension than traditional 2D
approaches to represent ontology data, so simplifying its interpretation.

In order to achieve completeness and readability, OntoSphere operates according
to two different principles:

• To increase the number of “dimensions” (colors, shapes, transparency, etc.)

which represent concepts features and convey additional information
without adding the burden of further graphical elements, such as labels, on
the scene.

• To automatically select which part of the Knowledge Base has to be
displayed and the detail level that has to be used in the process, on the base
of user interaction with the scene.

In particular, the latter guideline is particularly important for improving overall

system performances since scale factor indeed constitutes a strong issue in visualizing
complex graph structures like ontologies. As cardinality of elements increases, the
number of items to be concurrently displayed on the screen worsens the graphical
perception of the scene and complicates spotting details. When the amount of
visualization space needed to represent all the information within the KB outnumbers
the one available on the screen, a few options remain available: to scale down the
whole image to the detriment of readability, to present on the screen just a portion of
it and allow its navigation or to summarize the information in a condensed graph and

provide means for its exploration and expansion. As the effectiveness of these options
depends on the use case involved (consistency checking, domain comprehension, KB
updates) a combined usage of them can offer a better approach.

In order to fulfill the demanded requirements, our solution consists in exploiting
different scene mangers (RootFocus, TreeFocus and ConceptFocus SceneManagers)
that present and organize the information on the screen, each one of them according
to a differently detailed perspective. Such scenes interchange in managing the
graphical space as user attention shifts from one concept to another and the attention
focus is implicitly inferred from user’s interaction with the scene (e.g., a concept
selection with a mouse click). In this way we introduce the idea of “focusing” as the
application capability of highlighting the elements of interest while leaving out the
others.

The user interface we propose is very simple and pursues direct manipulation of
the scene as rotations, panning and zoom; it allows to browse the ontology as well as
to update it and to add new concepts and relations. Every concept within a given
scene is clickable with two different results: a left click performs a focusing
operation, shifting the scene to a more detailed level, while a right click maintains the
current perspective and simply navigates through elements. For example, left-clicking
on a concept in the global scene would lead to the visualization of the related concept
tree while right clicking on it would lead to the visualization of its children in the
same “earth-like” perspective, as explained in more details in the next sections.

RootFocus Scene

This perspective presents a big “earth-like” sphere bearing on its surface a
collection of concepts represented as small spheres (Figure 3). The scene does not
visualize any taxonomic information and only shows direct “semantic” relations
between elements of the scene, usually a graph not fully connected.

Atomic nodes, the ones without any subclass, are smaller and depicted in blue
while the others are colored in white and their size is proportional to the number of
elements contained in their own sub-tree.

This view is particularly intended for representing the ontology primitives, i.e., the
root concepts, but can also be used, during the navigation of the ontology, in order to
visualize direct children of a given node; a pretty useful option in case of heavily sub-
classed concepts.

Topmost concepts within the ontology and the relations between them define the
conceptual boundaries of the domain and provide a very good hint to the question:
“what’s the ontology about?”

Figure 3 - Global view

TreeFocus Scene

The scene shows the sub-tree originating from a concept; it displays the
hierarchical structure as well as semantic relations between classes. Since use
evidence proves that too many elements on the screen, at the same time, hinder user
attention, the scene completely presents only three fully-expanded levels at a time
and, as user browses the tree, the system automatically performs expansion and
collapse operations in order to maintain a reasonable scene complexity. The reader
may note in Figure 4 how focusing the attention on the concept
“ente_pubblico_locale”, on the left in the figure, causes (with a simple mouse click)
the vanishing of the uninterested branches, then collapsed in their respective parents.
Collapsed elements are colored in white and their size is proportional to the number
of elements present in their sub-tree; instead concepts located at the same depth level
within the tree have the same color in order to easily spot groups of siblings.
Relations of type Is_a within the scene are displayed with a neutral color (gray) and

without label, whereas other semantic relations involving two concepts already in the
scene are displayed in red, accompanied by the name of the relation (as in the
perspective described in the previous section). Otherwise, if an element of the tree is
related to a node that is not present on the scene a small sphere is added for that node
in the proximity of the given element, so terminating the end of the arrow: in such
cases, incoming relations are represented with a green arrow, while outgoing links
with a red one.

Figure 4 - Sub-tree navigation scenes

ConceptFocus Scene

The perspective depicts all the available information about a single concept, at the
highest possible level of detail; it reports the concept’s children and parent(s), its
ancestor root(s) and its semantic relations, both the ones directly declared for the
given concept and the ones inherited from its ancestors. Semantic relations are drawn
as arrows terminating in a small sphere (Figure 5): red if the relation is outgoing and
green otherwise. Direct relations are drawn close to the concept and with an opaque
color, while inherited ones are located a bit farther from the center and depicted with
a fairly transparent color.

This scene is pretty useful during consistency checking operations because it ease
the spotting of inconsistent concept or relations whenever a concept inherits from an
ancestor a property that “conceptually” contrasts with other features of its own.

Figure 5 - Detailed concept

Implementation and preliminary results

The work presented in this paper has been entirely developed in Java. The choice is
related to the current panorama of ontology editors and of tools for ontology creation
and maintenance, which are in the majority of cases developed in this language.
Among the other advantages, Java permits to use such tools in different operating
environments, from devices with low computational power, to high performance
workstations.
The visualization engine uses the Java 3D API to produce a three-dimensional inter-
active representation of ontology concepts and relationships. This API is directly
linked with an underlying Open GL engine that provides the required graphics capa-
bilities. The ontology related part, instead, is based upon the well-known Jena seman-
tic framework from HP which allows to easily load, manage and modify ontologies
and taxonomies written either in RDF, RDFS, DAML, OWL or N-triple. These two
main parts are the core modules of the implemented application, conciliating in a sin-
gle working space capabilities for visualizing and editing ontologies in various for-
mats.
In order to understand if the proposed approach is valuable and scalable enough, the
authors set up three different test beds. The first one assesses the compliance of the
tool with the initial requirements; the second one evaluates the tool utility when it is
applied to real world cases and the last test bed investigates whether the current de-
ployment is able to manage complex ontologies or not.
In the first experiment the application has been tested according to the standards for
agile development and for requirements satisfaction checking. All the modules com-
posing the platform have been developed starting from a rather precise specification

and have been tested according to pre-defined J-Unit tests. After passing the basic
functionality checking, the entire application has been tested against three different
use cases including: simple ontology browsing, “conceptual consistency” checking
and ontology development. In the ontology browsing case, a group of 8 users has
been required to load and browse 5 different ontologies. The goal was to guess the
domain of the chosen ontology and to analyze the granularity of the knowledge
model. The 5 ontologies used in this experiment are: the well-known Pizza ontology
from Protègè, the SUMO (Suggested Upper Merged Ontology) ontology, a music
ontology developed from scratch by the authors, the CABLE ontology and the
Passepartout ontology developed by the authors in collaboration with the Passepart-
out service of the Turin’s municipality.
Results for each of the ontologies are reported in Table 1.

Table 1. Results for the ontology browsing use case

Ontology Topics involved Topic and level of detail identification
 U1 U2 U3 U4 U5 U6 U7 U8
SUMO
(OWL)

Many general
topics 9 8 8 9 9 8 9 9

Music
(RDF/S)

Instruments,
Music actors,
Music genres,
etc.

9 9 9 9 9 8 9 8

CABLE
(OWL) 9 9 9 9 9 9 9 9

Passepartout
(OWL ,
RDF/S)

Disability, Aids
for disable peo-
ple, bureaucratic
issues related to
handicap, etc.

9 8 9 8 8 9 9 9

Pizza (OWL) Pizzas… 9 9 9 9 9 9 9 9
8 = not recognized
9 = correctly recognized

Checking the ontology for “conceptual consistency” is rather different from the for-
mal consistency checking done by logic reasoners. What has to be checked is not the
ontology consistence for reasoning and inference, but whether a user can detect do-
main-related inconsistencies created during the ontology design process. For exam-
ple, a concept may inherit some relationships that are not appropriate for it, either
because of a wrong parent-child relation or because of a previously undetected error
in the domain modeling: in this case the ontology is formally consistent but not con-
ceptually. The ontologies involved in this test were the same used in the previous one,
as well as the users.
Some interesting aspects came out from the experimentation: the detection of “con-
ceptual inconsistencies” through the observation of the ontology representation ap-
pears, in fact, strongly dependent on the dimension of the knowledge domain and on
the expertise that the user has in that domain. So, for example, by looking at Table 2

it is clearly noticeable that in the SUMO ontology no inconsistencies were found, as it
is, in fact, huge and well designed, while the involved testers had a very poor back-
ground on the SUMO domain. On the other side, in the CABLE ontology almost all
inconsistencies were detected since the ontology is small (80 concepts) and the do-
main was well known by all the experimenters. In conclusion, determining whether
the proposed OntoSphere application is or is not able to evidence inconsistence is
very difficult, since the involved factors are diverse and can interact in complex pat-
terns.

Table 2. The results of the "conceptual inconsistencies" checking.

Ontology Number of
known concep-
tual inconsis-
tencies

Number of detected inconsistencies

 U1 U2 U3 U4 U5 U
6

U
7

U8

SUMO
(OWL) ? (not known) 0 0 0 0 0 0 0 0

Music
(RDF/S) 6 0 0 4 2 6 0 4 2

CABLE
(OWL) 2 2 2 2 2 0 2 0 2

Passepartout
(OWL ,
RDF/S)

12 4 8 0 3 10 3 0 7

Pizza (OWL) 0 0 0 0 0 0 0 0 0

When the proposed application is used for ontology development, the support pro-
vided for detecting conceptual inconsistencies is much more evident. The adoption of
OntoSphere for inspecting the work in progress allowed, in fact, to easily detect mod-
eling errors. In particular, the mostly recognized errors were about relationship propa-
gation along the ontology hierarchy and wrong definitions of parent-child (isA)
relationships. Although it is quite difficult to fill-up a table for showing how, and to
what extent, the proposed application supports the process of ontology creation, in-
terviews with users evidenced that many times the experimenters were able to quickly
spot the modeling errors. Their opinion indicated the intuitive visualization and the
capability to visually represent inherited and inferred relationships as the main factors
for achieving success in their own modeling process.
This last experiment actually lies between the functional tests and real world test
cases. However, to provide a more grounded experimentation (please note that the
results here presented are still very preliminary) the authors performed a real world
test in the occasion of the final meeting of CABLE, a European MINERVA project
on “CAse Based e-Learning for Educators” []. In that meeting, a demo of the Onto-
Sphere application has been presented to visualize the ontology developed in the con-
text of the CABLE project. The exciting result is that, rather than complaining about
the complexity of the provided interface, or about the appearance or the controls for

browsing the ontology, the first observation was: “No! That relation can not subsist
between those two concepts!” What surprisingly happened is that the application was
able to highlight the inherited relations so that the errors were spotted in few minutes
of ontology browsing. This is clearly a not scientific result since experiments are to
be conducted in a controlled environment, shall have a clear objective and must be
carried on by a significant group of users. And the aim of this paragraph is not to sus-
tain the thesis that assumes such reaction as a good result. However, the user reac-
tions in the CABLE meeting are encouraging signals that the still preliminary Onto-
Sphere application can be a valuable instrument in ontology design and development.

Figure 6. The Suggested Upper Merged Ontology viewed with OntoSphere.

As last experiment, a simple scalability test was performed: the goal was to under-
stand if OntoSphere is able to load and visualize ontologies having great amounts of
concepts and relationships. The entire SUMO ontology was therefore loaded and
browsed and the loading process took around 3.5 seconds, while navigation was per-
formed in real-time. SUMO is the Suggested Upper Merged Ontology and it is cur-
rently released under a GPL license. It counts about 20,000 concepts related by over
60,000 axioms. The screenshots show OntoSphere running with the SUMO ontology
and visualizing the “Internal Change” branch that stems from the root concept “Proc-
ess” (Figure 6), and the sub-tree lying under the ontology root concept “Entity”
(Figure 7).
There are still some issues to be fixed when browsing really huge ontologies: the
visualized concepts tend to clash if the number of concepts visualized at the same
time is high. Also the labels tend to overlap making the visualization more difficult to
manage (as in many other viewers). Moreover, since a human cannot take into ac-
count more than a reasonable number of objects at a time, huge graphs shall be col-
lapsed and different ontology navigation patterns and interfaces shall be provided.

Figure 7. Another view of the SUMO ontology in OntoSphere.

Conclusions

In this paper the authors presented OntoSphere: a 3D ontology visualization tool.
Some very preliminary results are provided showing that the proposed approach is
feasible and that is judged valuable by domain experts that need to develop and re-
view ontologies. The tool proved to be able to scale up to really huge ontologies, such
as SUMO, preserving reasonable loading times and with enough fluidity in naviga-
tion.
However, there are still many issues to be addressed: concept clashes shall be re-
solved in a more efficient way, possibly avoiding label overlap, navigation through
the ontology graph needs further refinements, making the entire process more usable
and customizable, etc.
At now, the authors are working on some of these improvements and are transform-
ing the OntoSphere application into a Protégé plug-in that will be released under the

LGPL public license. Future works will include a more precise and extensive test
campaign and a user centered design of navigation interfaces.

References

1 Ben Shneiderman, “Treemaps for space-constrained visualization of hierarchies” ,
ACM Transactions on Graphics (TOG) Volume 11 , Issue 1 (January 1992) Pages: 92 -
99 Year of Publication: 1992.
2 Holger Knublauch. An AI tool for the real world: Knowledge modeling with Protégé.
JavaWorld, June 20, 2003.
3 M.A. Storey, M. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, and N. Noy. Jamba-
laya: Interactive visualization to enhance ontology authoring and knowledge acquisition in
Protégé. In Workshop on Interactive Tools for Knowledge Capture, Victoria, B.C. Canada,
October 2001.
4 P.W.Eklund, N.Roberts, S.P.Green, OntoRama: Browsing an RDF Ontology using a
Hyperbolic-like Browser, The First International Symposium on CyberWorlds (CW2002),
pp.405-411, Theory and Practices, IEEE press, 2002
5 Gansner, E. R. & North, S. C. (1999), An open graph visualization system and its ap-
plications to software engineering, Software|Practice and Experience 30(11), 1203-1233.
6 The Protégé Ontology Editor and Knowledge Acquisition System.
http://protege.stanford.edu/
7 OntoViz Tab: Visualizing Protégé Ontologies.
http://protege.stanford.edu/plugins/ontoviz/ontoviz.html.
8 Jambalaya.
http://www.thechiselgroup.org/chisel/projects/jambalaya/jambalaya.html.
9 TGVizTab, A TouchGraph Visualization Tab for Protégé 2000.
http://www.ecs.soton.ac.uk/ ha/TGVizTab/TGVizTab.htm.
10 ezOWL: Visual OWL (Web Ontology Language) editor for Protégé.
http://iweb.etri.re.kr/ezowl/index.html.
11 OntoEdit.
http://www.ontoknowledge.org/tools/ontoedit.shtml.
12 IsaViz: A Visual Authoring Tool for RDF.
http://www.w3.org/2001/11/IsaViz/
13 The FRODO RDFSViz Tool.
http://www.dfki.uni-kl.de/frodo/RDFSViz/
14 RDFAuthor.
http://rdfweb.org/people/damian/RDFAuthor/
15 OntoRama.
http://www.ontorama.com/
16 TouchGraph library
http://touchgraph.sourceforge.net/

