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† Summary

background: Mammalian oocytes are activated by intracellular calcium (Ca2+) oscillations following gamete fusion. Recent evidence
implicates a sperm-specific phospholipase C zeta, PLCz, which is introduced into the oocyte following membrane fusion, as the responsible
factor. This review summarizes the current understanding of human oocyte activation failure and describes recent discoveries linking certain
cases of male infertility with defects in PLCz expression and activity. How these latest findings may influence future diagnosis and treatment
options are also discussed.

methods: Systematic literature searches were performed using PubMed, ISI-Web of Knowledge and The Cochrane Library. We also
scrutinized material from the United Nations and World Health Organization databases (UNWHO) and the Human Fertilization and Embry-
ology Authority (HFEA).

results and conclusions: Although ICSI results in average fertilization rates of 70%, complete or virtually complete fertilization
failure still occurs in 1–5% of ICSI cycles. While oocyte activation failure can, in some cases, be overcome by artificial oocyte activators such
as calcium ionophores, a more physiological oocyte activation agent might release Ca2+ within the oocyte in a more efficient and controlled
manner. As PLCz is now widely considered to be the physiological agent responsible for activating mammalian oocytes, it represents both a
novel diagnostic biomarker of oocyte activation capability and a possible mode of treatment for certain types of male infertility.
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Introduction
Infertility affects both genders in very different ways (Evens, 2004).
Although it is difficult to compile accurate data for the incidence of

global infertility, it is believed that infertility affects 70 million
couples worldwide, the majority of whom reside in developing
countries (Ombelet et al., 2008). The incidence of global infertility
is now estimated to affect one in seven couples (Evens, 2004;
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Boivin et al., 2007; Ombelet et al., 2008; Ledger, 2008; McVeigh
et al., 2008).

Since infertility represents a major physiological and psychological
problem to a growing proportion of the population, governments
worldwide are investing heavily in assisted reproductive technology
(ART) which has led to significant improvements in our understanding
of male/female reproductive systems, gamete preservation and
gamete manipulation (Elder and Dale, 2001; Cohen et al., 2005).
ART now accounts for 7% of all births in some developed countries
(Nasr-Esfahani et al., 2009). Worldwide, �1 million ART treatments
are performed each year and over 8 million ART babies have been
born worldwide (ICMART, 2009).

The most widely known example of ART is in vitro fertilization (IVF).
Initially developed to treat women with tubal infertility, IVF is now an
established treatment for a wide range of infertilities (McVeigh et al.,
2008). Over 30 years after the birth of the world’s first IVF baby,
more than 12 000 births in the UK arise each year as a result of
IVF, accounting for 1.4% of all births in the UK (HFEA register,
2007). A key technique in IVF is intracytoplasmic sperm injection
(ICSI), whereby a sperm is microinjected directly into the oocyte
cytosol. ICSI is predominantly used to treat male factor infertility fol-
lowing failure of conventional IVF, and is a highly successful technique
that, on average, results in normal fertilization in 70% of cases
(Nasr-Esfahani et al., 2009).

Current ART methods facilitate the treatment of most forms of
infertility (Fig. 1a and b). For example, infertile females suffering
from abnormal ovulation can be treated by in vitro maturation
(IVM), a method used to mature oocytes in vitro in preparation for
IVF (Cohen et al., 2005). Similarly, ICSI can rectify a number of male
factor problems, such as oligospermia (low sperm count), transcend-
ing the need for a normal sperm count/motility (Mangoli et al., 2008;
McVeigh et al., 2008). Although ART plays a critical role in reducing
infertility, there are still groups of infertile couples for which ART
has not yet proven successful. Of particular outstanding concern are
infertile males whose sperm are unable to activate oocytes, even fol-
lowing ICSI, or males exhibiting unexplained (idiopathic) male factor
infertility (Mangoli et al., 2008; Nasr-Esfahani et al., 2009).

Current data suggests that the incidence of ‘subfertility’ affects 1 in
15 men, with sperm defects being the most common cause (Publi-
cover et al., 2007). However, there is much debate surrounding the
specific causative factors of unexplained male infertility, most particu-
larly in cases of ICSI failure. It is estimated that male factor infertility
contributes to 35–40% of infertility in couples (Forti and Krausz,
1998; Inhorn, 2003; Boivin et al., 2007; Kumtepe et al., 2009), depend-
ing upon the biogeographical region studied. Although male factor
infertility can arise in a number of ways (Fig. 1b; Bourne et al.,
1995a, b; Elliot and Cooke, 1997; Evens, 2004; Meacham et al.,
2007; McVeigh et al., 2008; Kumtepe et al., 2009), it is widely accepted
that genetic causes are of most concern. Evidence is mounting to
suggest that abnormalities in testicular gene expression may underlie
many instances of idiopathic male infertility (Coward et al., 2007).
One such example is the azoospermia factor Y chromosome gene
region, which is prone to mutation (Nagafuchi et al., 1993; Vogt
et al., 1995). Other Y chromosome gene regions, such as RBM
(RNA-binding-motif) and DAZLA (deleted in azoospermia) are impli-
cated in spermatogenesis and the structural formation of sperm (Elliot
and Cooke, 1997; Ruggiu et al., 1997; Ambasudhan et al., 2003). More

recently, mutations in CATSPER1 have been found to cause infertility
(Avenarius et al., 2009). Further examples include AKAP3 and AKAP4,
deletion of which leads to sperm immotility and dysplasia of the
fibrous sheath surrounding the axenome (Chemes et al., 1987;
Turner et al., 2001; Matzuk and Lamb, 2008). Mouse models have
increasingly highlighted hundreds of candidate genes which may be
involved in human male infertility (Matzuk and Lamb, 2008; Poon-
gothai et al., 2009). Idiopathic male infertility may be the result of mul-
tiple genetic defects disrupting spermatogenesis and testicular gene
expression, indicating that ART interventions such as ICSI could

Figure 1 (a) Primary causes of infertility. Data sourced from Hull
et al. (1985), Maheshwari et al., (2008) and Wilkes et al., (2009).
(b) Primary causes of male factor infertility. Data sourced from
Dohle et al. (2009) and National Collaborating Centre for
Women’s and Children’s Health (2004).
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potentially transfer paternal fertility problems from father to son
(Sasaki et al., 2000).

A noted phenomenon of male infertility is the failure of some
oocytes to activate following ICSI (Mahutte and Arici, 2003; Hein-
dryckx et al., 2005). One explanation for this is globozoospermia, a
condition affecting 0.1% of infertile men (Dam et al., 2007) in which
acrosome formation and oocyte activation capacity are abnormal
due to deformed morphology of the sperm. However, there are
also examples where morphologically normal sperm fail to activate
the oocyte. Recent studies have linked globozoospermia and these
other cases with oocyte activation failure as being apparently due to
aberrant expression, localization and protein structure of PLCz
(Yoon et al., 2008; Heytens et al., 2009).

In this review, our aim is to discuss the current understanding of
oocyte activation failure, and associated treatment options, focusing
specifically upon the role played by the sperm-derived oocyte acti-
vation factor, PLCz (Saunders et al., 2002; Swann et al., 2004, 2006;
Saunders et al., 2007; Parrington et al., 2007). We will also discuss
recent discoveries linking PLCz to characterized states of infertility
(Yoon et al., 2008; Heytens et al., 2009) and how these findings
might assist diagnosis and treatment in future.

Methods
To generate this review, we carried out a systematic literature search using
PubMed, ISI-Web of Knowledge and The Cochrane Library. Search terms
included phospholipase (PLC), phospholipase C zeta/PLCzeta/PLCz,
fertilization, oocyte activation, intracytoplasmic sperm injection/ICSI, glo-
bozoospermia, male factor infertility, oocyte activation failure and artificial
oocyte activation (AOA). We also scrutinized electronic material from the
United Nations and World Health Organization databases (UNWHO) and
the Human Fertilization and Embryology Authority (HFEA).

Results

Identification of PLCz as the oocyte
activation factor in mammals
Mammalian oocytes become arrested at the metaphase of the second
meiotic division (MII), following the exclusion of the first polar body
(Jones, 2005, 2007). One of the most important biological processes
involves the release of this arrest to allow development to proceed, a
process termed ‘oocyte activation’. Activation initiates release from
meiotic arrest, cortical granule exocytosis, progression of the cell cycle,
pronuclear formation, maternal mRNA recruitment and embryonic gene
expression, and involves repeated oscillations of free cytosolic Ca2+

(Kline and Kline, 1992; Swann and Ozil, 1994; Miyazaki and Ito, 2006;
Publicover et al., 2007; Swann and Yu, 2008). In contrast, egg activation
in non-mammalian species such as sea urchins and frogs, is triggered by
a single Ca2+ transient (Whitaker, 2006).

The first evidence for the importance of Ca2+ signals in egg and oocyte
activation came from the application of Ca2+ dyes to eggs and oocytes
from a wide range of species, associating increases in cytosolic Ca2+

with initiation of activation and embryogenesis (Ducibella et al., 2006).
Microinjections of Ca2+ ions alone are sufficient to trigger embryo devel-
opment up to the blastocyst stage in mice (Fulton and Whittingham, 1978;
Swann and Yu, 2008). Other studies have shown that the temporal pattern
of Ca2+ oscillations is largely species-specific, with different species pos-
sessing specific patterns of amplitude, duration and frequency over time

(Miyazaki et al., 1993; Jones et al., 1998; Kyozuka et al., 1998; Ducibella
et al., 2002, 2006).

Although it is now generally acknowledged that Ca2+ oscillations within
the mammalian oocyte are a direct result of inositol triphosphate (IP3)
mediated Ca2+ release (Parrington, 2001; Swann et al., 2004, 2006;
Whitaker, 2006; Saunders et al., 2007; Parrington et al., 2007; Swann
and Yu, 2008), the precise mechanism underlying these oscillations has
been unclear and the subject of intense debate, specifically in relation to
the relative roles played by the sperm and oocyte. A major breakthrough
in our understanding came with the discovery of a soluble ‘sperm factor’, a
sperm-derived phospholipase with distinctive properties (Jones et al.,
1998; Parrington et al., 1999; Jones et al., 2000; Rice et al., 2000;
Parrington et al., 2000, 2002), finally identified as PLC zeta (PLCz)
(Saunders et al., 2002). Numerous studies provide evidence for PLCz

being the physiological agent of oocyte activation. Injection of both recom-
binant PLCz RNA and protein into mouse oocytes results in the initiation
of Ca2+ oscillations, similar to those seen at fertilization, and embryonic
development to the blastocyst stage (Saunders et al., 2002; Cox et al.,
2002; Kouchi et al., 2005). Immuno-depletion of PLCz from sperm
extracts suppresses Ca2+ releasing ability (Saunders et al., 2002),
whereas sperm fractionation studies have indicated that the presence of
PLCz in sperm correlates with the sperm’s ability to induce Ca2+ oscil-
lations in the oocyte (Fujimoto et al., 2004; Kurokawa et al., 2005).
Furthermore, RNA interference (RNAi) experiments have produced
transgenic mice with significantly reduced expression of PLCz in the
testis (Knott et al., 2005). Fertilization by sperm from these animals is
characterized by a premature cessation of Ca2+ oscillations within the
oocyte. PLCz appears to play a similar role during fertilization in non-
mammalian species such as the chicken (Coward et al., 2005), medaka
fish (Ito et al., 2008b) and quail (Mizushima et al., 2009), suggesting the
existence of a mechanism common to all vertebrates.

Studies in mice have concluded that PLCz mRNA is first detectable in
spermatids as opposed to testicular cells depleted of spermatids (Saunders
et al., 2002). More systematic RT–PCR studies of PLCz mRNA expression
during spermatogenesis in the pig and quail have indicated that PLCz mRNA
is most likely translated in elongating spermatids (Yoneda et al., 2006;
Mizushima et al., 2009), whereas northern blot analyses of postnatal ham-
sters has shown that PLCz mRNA is present as early as Day 17 (Young
et al., 2009), when meiotic spermatocytes first appear (Golan et al., 2000).

Although the general consensus is now that PLCz is probably the trigger
of development in mammals (Parrington et al., 2007), recent studies have
demonstrated possible candidates for sperm factors apart from PLCz,
which are able to induce meiotic progression or the typical pattern of
Ca2+ release in different species. Harada et al. (2007) identified a
45 kDa protein, citrate synthase, as the major component responsible
for oocyte activation in the newt Cynops pyrrhogaster. Injection of
Xenopus citrate synthase mRNA and porcine citrate synthase induced effi-
cient activation of newt oocytes. However, the detailed molecular mech-
anism or pathway involved remains to be addressed. Wu et al. (2007)
reported another possible candidate for the sperm factor, post-acrosomal
sheath WW domain-binding protein (PAWP), which resides in the post-
acrosomal sheath region of the perinuclear theca in bovine sperm and
other mammalian species. Microinjection of recombinant PAWP into MII
oocytes provokes pronuclear formation in different mammalian species
(porcine, bovine, macaque). A recent study confirmed the potential of
recombinant PAWP to induce Ca2+ release using Xenopus oocytes
(Aarabi et al., 2010). Although the molecular mechanisms underlying the
precise function of PAWP are currently unknown, it was suggested that
both PAWP and PLCz posses a double role in the oocyte activation
mechanism or alternatively, that the PAWP-mediated signalling pathway
may act upstream or downstream of Ca2+ signalling (Wu et al., 2007;
Aarabi et al., 2010).
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The oocyte itself also appears to play a pivotal role in the activation
mechanism (Tesarik et al., 2002; Heindryckx et al., 2005; 2007), the exact
details of which are yet to be properly understood (Ajduk et al., 2008).
The ability to produce appropriate Ca2+ oscillations is acquired following
successful oocyte maturation and involves various cytoplasmic changes. Evi-
dence for this includes the fact that fertilized immature mouse oocytes gen-
erate fewer Ca2+ transients of lower amplitude than do oocytes fertilized at
MII (Cheung et al., 2000). Eppig et al. (1994) suggested that cytoplasmic
maturation was not fully complete in oocytes from younger mice. During
oocyte maturation, the Ca2+ release mechanism is installed between pro-
phase I (germinal vesicle stage) and MII, coupled with a variety of cyto-
plasmic changes including reorganization of the endoplasmatic reticulum,
an increase in the number and sensitivity of IP3 receptors, and an increase
in Ca2+ concentration (Fissore et al., 2002; Ajduk et al., 2008; Swain and
Pool, 2008). Recent findings suggest that the distribution and function of
mitochondria within the oocyte also plays an instrumental role through
the endoplasmic reticulum and IP3 mediated Ca2+-signalling (Van Blerkom
et al., 2002; Dumollard et al., 2006).

PLCz as a fundamental agent of oocyte
activation
Many questions still prevail concerning the PLCz mechanism of action
(Fig. 2), cellular localization and potential role in male factor infertility.
PLCz exhibits a typical PLC domain structure (Saunders et al., 2002)
and has the closest homology with PLCd isoforms (Katan, 1998; Rebecchi
and Pentyala, 2000), particularly with PLCd1 (Swann et al., 2006). PLCz

possesses characteristic X and Y catalytic domains which form the
active site common to all PLCs (Rebecchi and Pentyala, 2000; Swann
et al., 2006), a C2 domain, and a set of EF hands. One major difference
is the absence of a PH domain, making PLCz the smallest known mamma-
lian PLC (Rebecchi and Pentyala, 2000; Saunders et al., 2002). All active
site residues are conserved, or conservatively replaced, and their mutagen-
esis leads to the loss of Ca2+ induction ability, confirming that as with
PLCd1, the active site of PLCz is responsible for targeting Phosphatidyl-
inositol 4,5-bisphosphate (PIP2) to cause IP3 mediated Ca2+ release
(Swann et al., 2006).

PLCz is also distinctive compared with other PLC isoforms in its high
sensitivity to Ca2+ (Rebecchi and Pentyala, 2000; Kouchi et al., 2004),

which may explain why PLCz is much more effective than other PLCs at
causing IP3 production and Ca2+ release in the oocyte cytoplasm
(Swann et al., 2006). Mammalian PLCzs have four EF-hand motifs at
their N-termini, which appear to play an important structural role in
PIP2 targeting and enzyme activity (Fujimoto et al., 2004; Kouchi et al.,
2004; Yoda et al., 2004; Kurokawa et al., 2005; Nomikos et al., 2005;
Swann et al., 2006; Nakanishi et al., 2008).

Without a PH domain, it remains unclear how PLCz targets its
membrane-bound substrate PIP2, since in other PLCs the PH domain
serves to anchor the enzyme to either specific plasma membrane proteins,
as is the case for the b, g and 1 isoforms of PLCs, or directly to PIP2 as is
the case in PLCd1 (Rebecchi and Pentyala, 2000; Rhee, 2001). Intriguingly,
Lee et al. (2004) suggested that the PH domain is not integral to the mem-
brane localizing ability of PLCd4. Although the C2 domain is considered a
regulatory domain, it is possible that this domain may aid PLCz in targeting
membrane-bound PIP2 (Swann et al., 2006). There is also evidence to
suggest that the C2 domain is required for the ability of PLCz to initiate
oocyte activation (Nomikos et al., 2005; Swann et al., 2006).

The other non-catalytic domain of PLCz that may regulate its activity is
the segment between the X and Y catalytic domains, the X–Y linker
(Swann et al., 2006; Nomikos et al., 2007). The proximity of this appar-
ently unstructured cluster of residues to the active site indicates some
potential involvement in regulating catalytic activity, or PIP2 binding
(Swann et al., 2006; Nomikos et al., 2007). Evidence suggests that PLCz

remains functional following proteolytic cleavage at the X–Y linker,
although data also indicate that these fragments can reform complexes
to retain activity (Kurokawa et al., 2007). Intriguingly, Hicks et al.,
(2008) showed that the X–Y linker in most, if not all, PLC isoforms
plays an auto-inhibitory role, the deletion of which results in elevated
activity. Indeed, proteolytic cleavage at the X–Y linker is thought to be
required in order for PLCz to be able to bind to the membrane and act
upon PIP2 (Saunders et al., 2007), raising questions as to the involvement
of the X–Y linker in PIP2 binding.

Following fertilization, oocyte Ca2+ oscillations cease at the time of pro-
nuclei formation (Marangos et al., 2003) with subsequent oscillations then
being observed in mouse zygotes during mitosis (Carroll, 2001; Marangos
et al., 2003). One possible explanation of such cell-cycle dependant ter-
mination and resumption, is that PLCz localizes to the pronuclei during
interphase due to a nuclear localization signal (NLS), resulting in the

Figure 2 Signalling pathway of PLCz. Reproduced from Berridge (2009) with permission.

Oocyte activation and infertility 693
D

ow
nloaded from

 https://academ
ic.oup.com

/hum
upd/article/16/6/690/742219 by guest on 16 August 2022



cessation of Ca2+ oscillations which resume following pronuclear envelope
breakdown during the fertilized oocyte’s entry into mitosis (Deguchi et al.,
2000; Larman et al., 2004; Yoda et al., 2004; Sone et al., 2005; Kuroda
et al., 2006; Swann et al., 2006; Ito et al., 2008a, b). It remains possible
that there is also a role for PLCz within the nucleus itself. However,
human PLCz does not translocate to the pronucleus when injected into
mouse oocytes (Ito et al., 2008a, b), thus the relevance of this phenomenon
remains less clear for human fertilization.

Another important issue is the pattern of localization of PLCz in the
sperm. Identification of PLCz’s location in the sperm could help confirm
its functional role in sperm as well as provide a benchmark to study the
pattern of localization of PLCz in infertile compared with fertile men.
Initial immunofluorescent studies in rodents suggested that in mouse
sperm, PLCz protein locates to the perinuclear theca of the sperm head
(Fujimoto et al., 2004), the expected location for the oocyte activation
factor (Kimura et al., 1998; Perry et al., 1999; Sutovsky et al., 2003;
Swann et al., 2006). Subsequent studies indicated that PLCz was localized
to post-acrosomal and equatorial regions in non-capacitated mouse and
bull sperm, respectively (Yoon and Fissore, 2007). In contrast to these
findings, a study of PLCz localization in mice and hamster sperm during
capacitation and the acrosome reaction indicated that PLCz was most pro-
minent in the acrosomal region in uncapacitated sperm of these species,
with a post-acrosomal localization being revealed following capacitation
(Young et al., 2009). It remains to be shown whether PLCz carries out
other roles besides oocyte activation, such as the acrosome reaction.

In non-capacitated human sperm, PLCz is predominantly localized to
the equatorial region of the sperm head (Grasa et al., 2008), and this
pattern of localization is maintained during capacitation and the acrosome
reaction. This location would be an ideal one for an oocyte activation
factor, since this region would be one the first to be exposed to the
oocyte cytoplasm following the acrosome reaction and gamete fusion,
thus facilitating easy passage of the protein into the oocyte. However,
as well as this predominantly equatorial pattern of localization, PLCz has
also been detected to a lesser extent in acrosomal and post-acrosomal
regions of human sperm. The fact that such variability in PLCz localization
is present in ejaculates from individual fertile males, as well as between
fertile males, raises the possibility that there may be differences in
oocyte activation capabilities between individuals or within an ejaculate,
even in the fertile male population (Grasa et al., 2008). Recent studies
suggest that PLCz RNA transcripts are present within human sperm
(Platts et al., 2007; Lalancette et al., 2008). It has been suggested that
such transcripts could be transcribed during fertilization and sustain a
‘long-lived’ Ca2+ response (Lalancette et al., 2008). However, the func-
tional significance of these PLCz transcripts, as for all RNA transcripts
present in human sperm, remains to be verified.

Oocyte activation failure
ICSI is currently the most efficient ART technique to overcome borderline
and severe male infertility, failed IVF or unexplained infertility (The ESHRE
Capri Workshop, 2007). Although ICSI results in average fertilization rates
of 70% (Heindryckx et al., 2005), complete or virtually complete fertiliza-
tion failure still occurs in 1–5% of ICSI cycles (Flaherty et al., 1998;
Mahutte and Arici, 2003; Yanagida et al., 2008). Incorrect injection of
sperm, expulsion of injected spermatozoon from the oocyte or failures
of sperm head decondensation are not considered to substantially contrib-
ute to fertilization failure after ICSI (Yanagida et al., 2008). A deficiency in
the mechanism of oocyte activation is regarded as the principal cause of
fertilization failure, or abnormally low fertilization after ICSI, and can
reoccur in several cycle attempts (Sousa and Tesarik, 1994; Heindryckx
et al., 2008). Additionally, the number of oocytes collected and the pres-
ence of motile or vital sperm are both strongly associated with fertilization

failure, and have to be taken into account when determining the cause of
failed or low fertilization (Yanagida, 2004). There is much clinical interest in
investigating the mechanisms underlying oocyte activation failure caused by
a sperm- or oocyte-related deficiency. It is of utmost importance to dis-
tinguish these two possible causes, primarily to better inform patients
about possible transmission to their progeny, and to better understand
underlying mechanisms in order to develop remedial treatments. Apart
from failure of meiotic progression of the human MII oocyte, sperm
centrosomal dysfunction and concomitant lack of sperm aster formation
may preclude the close opposition of the pronuclei required for
syngamy, leading to pronuclear arrest of human zygotes (Van Blerkom,
1996; Rawe et al., 2002, 2008). Cases of the latter instance can also be
considered clinically as failed fertilization after ICSI, but should be distin-
guished from activation failure and MII arrest.

A diagnostic Mouse Oocyte Activation Test (MOAT) was first used to
examine the activation capacity of sperm from a globozoospermic infertile
patient by injection into mouse oocytes (Rybouchkin et al., 1996), and was
subsequently employed in larger populations of patients with a history of
failed ICSI or obvious morphological indications such as globozoospermia
(Tesarik et al., 2002; Heindryckx et al., 2005, 2008; Heytens et al., 2009).
Importantly, this test can indicate sperm-borne activation deficiencies,
revealed by an inability to cause pronuclei formation and division into
two cells of mouse oocytes. It has been shown that total or partial globo-
zoospermic, extreme oligo-astheno-teratozoospermic and testicular
sperm of some patients fail to activate mouse oocytes, while also failing
fertilization after ICSI in humans (Tesarik et al., 2002; Heindryckx et al.,
2005, 2008; Kyono et al., 2009). Interestingly, even morphologically
normal sperm from several patients fail to activate mouse oocytes
(Heindryckx et al., 2008; Heytens et al., 2009).

It should be noted that MOAT results, and the study of associated
defects in PLCz, cannot be strictly extrapolated to human oocytes, since
the potency of human PLCz is higher than of mouse PLCz (Cox et al.,
2002), meaning that a slightly reduced activation capacity in human
sperm revealed by the MOAT could cause total fertilization failure in
human oocytes. Therefore, the MOAT may not be sensitive enough to
reveal activation deficiencies in all sperm samples, and more precise diag-
nostic tests to determine activation capacity are therefore warranted.
Other studies have used a heterologous bovine ICSI model to study
centrosomal function of human sperm which gave rise to failed ICSI
(Nakamura et al., 2001), leading to the finding that, compared with
fertile donor sperm, sperm from one globozoospermic patient possessed
centrosomal dysfunction in terms of reduced sperm aster formation which
could not be restored by artificial activation (Nakamura et al., 2002).
However, ionophore treatment in another globozoospermic patient with
reduced centrosomal function reported by the same group resulted in a
successful pregnancy (Terada et al., 2009). These findings have not been
confirmed by other groups, or on other patients. Given the successfully
established pregnancy after application of artificial activation in the latter
study, the underlying mechanism of failed fertilization is likely due to acti-
vation deficiency rather than centrosomal dysfunction.

Artificial activation of mammalian oocytes
AOA can be induced by a wide range of various chemical, mechanical or
physical stimuli, which elicit mostly one Ca2+ transient in the oocyte
(Alberio et al., 2001). Different methods of artificial activation have been
used for studies involving somatic cell nuclear transfer, or the creation
of parthenogenetic embryos (Machaty, 2006; Brevini and Gandolfi,
2008). The most popular artificial activating agents for human oocytes
include calcium ionophores, such as ionomycin and A23187, electrical
pulses, and combinations with protein synthesis or kinase inhibitors such
as 6-dimethylaminopurine (6-DMAP), or puromycin that blocks the
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re-synthesis of cyclin B or CDK1 activity (Heindryckx et al., 2009). These
artificial activation agents cause a single prolonged Ca2+ rise, but fail to
elicit physiological patterns of Ca2+ release. Other activating agents,
which have been shown to cause multiple transients, include strontium
chloride (SrCl2) in mice (Kline and Kline, 1992; Kishikawa et al., 1999),
phorbol esters (Cuthbertson and Cobbold, 1985) or thimerosal (Fissore
et al., 1995). These, however, have only been reported to be efficient in
limited number of species, are less efficient than ionophores in most
species, or can cause meiotic spindle disruption (Alberio et al., 2001).

Studies have demonstrated that whereas human oocytes can be suc-
cessfully artificially activated, parthenogenetic development mostly
arrests at the embryo genome activation stage in humans (Brevini and
Gandolfi, 2008). Using donated in vivo matured MII oocytes, human
parthenogenetic blastocyst formation was accomplished using 6-DMAP
as an artificial activating agent. However, there was a large variation in
the blastocyst development rates (8.6–52%), with not all obtained blasto-
cysts demonstrating a visible inner cell mass (Cibelli et al., 2001; Lin et al.,
2003; Revazova et al., 2007; Paffoni et al., 2007; Mai et al., 2007; de Fried
et al., 2008; Heindryckx et al., 2009). Parthenogenetic blastocyst formation
derived from in vitro matured GV oocytes using a combined electrical–
chemical activation protocol was achieved, but only one blastocyst was
obtained (Yu et al., 2009).

Several studies in animals have demonstrated that the number and
amplitude of artificially induced Ca2+ transients not only affects activation
efficiency, but also has a profound influence on subsequent embryonic
development (Ozil et al., 2006), blastocyst quality (Bos-Mikich et al.,
1997), the implantation potential of rabbit parthenogenotes (Ozil and
Huneau, 2001) and mouse zygotes (Ozil et al., 2006), and results in
altered embryonic gene expression (Ozil et al., 2006). The knockdown
of PLCz in a transgenic mouse model showed that a reduced frequency
of Ca2+ oscillations caused decreased activation rates, impairing the
implantation potential (Knott et al., 2005). However, it has also been
suggested that the sum of elevated Ca2+ is most important, rather
than a normal pattern of Ca2+ oscillations (Ozil et al., 2005; Toth
et al., 2006).

Not all artificial activating agents faithfully mimic the pattern of
oscillations caused by PLCz. In contrast, when cRNA encoding the full-
length of PLCz protein from different species was injected into mouse
oocytes, Ca2+ oscillations similar to those evoked by sperm were
observed (Cox et al., 2002; Saunders et al., 2002), leading to successful
embryonic development up to the blastocyst stage. Rogers et al. (2004)
demonstrated that the frequency of Ca2+ oscillations correlated with the
concentration of PLCz cRNA used. A higher concentration of 10 mg/ml
PLCz cRNA resulted in high-frequency oscillations inducing efficient acti-
vation (pronuclei formation). However, only 2 of 10 activated zygotes
reached the 2-cell stage, subsequently arresting. Earlier experiments
injecting human PLCz cRNA into mouse oocytes showed that high-
frequency Ca2+ oscillations give rise to cleavage stage arrest (Cox
et al., 2002). By decreasing the PLCz cRNA concentration, development
up to the blastocyst stage was achieved using human oocytes which had
failed to fertilize (Rogers et al., 2004). Furthermore, Yu et al. (2008)
demonstrated how much PLCz protein is required for optimal embryo-
nic development by injecting cRNA encoding luciferase-tagged human
PLCz into mouse oocytes and observing subsequent parthenogenetic
development, demonstrating that activation can be induced by a wide
range of cRNA concentrations, but that successful preimplantation devel-
opment was critically dependent on a specific narrow window of PLCz

levels.
However, for clinical purposes injection of PLCz cRNA could be

problematic, partly because it could be difficult to limit its oscillation
inducing capacity during embryo development, but also because of
studies suggesting that mammalian embryos may contain an

endogenous reverse transcriptase activity (Spadafora, 2004) that
could potentially convert introduced cRNAs into PLCz cDNA that
might then become incorporated into the genome. The use of recom-
binant PLCz protein has also been shown to induce equivalent Ca2+-
oscillations in mouse oocytes (Kouchi et al., 2004). However, many
researchers have reported that PLCz protein appears to be unstable
and may not be fully active and a demonstration that PLCz protein
can be used clinically to overcome defects in oocyte activation still
remains to be shown.

Clinical use of assisted oocyte activation
Since the first report of AOA (Rybouchkin et al., 1997), numerous studies
have reported pregnancies after the application of AOA as a treatment for
failed or low fertilization after ICSI (for reviews, see Yanagida et al., 2008;
Nasr-Esfahani et al., 2009). Unfortunately, most studies have lacked infor-
mation about the cause of fertilization failure, for instance from diagnostic
tests such as the MOAT. Heindryckx et al. (2005, 2008) demonstrated
that AOA is highly efficient for couples suffering from low or failed fertili-
zation, with concomitant failure of pregnancy. Fertilization rates were sig-
nificantly increased after AOA application to a normal level (74%) and
successful pregnancies were established in all groups of patients (33%),
although patients with extreme OAT-zoospermia showed lower preg-
nancy rates after AOA (9%). This shows that AOA is capable of initiating
artificial Ca2+ rises in the oocyte cytoplasm, sufficient to normalize fertili-
zation rates and establish pregnancies in such patients (Heindryckx et al.,
2005, 2008). A couple with a history of low fertilization (17% in eight
cycles, no pregnancy) was successfully treated in a cycle of AOA with
SrCl2, resulting in a 100% fertilization rate, with pregnancies from fresh
and frozen embryos (Yanagida et al., 2006). In a larger set of nine patients,
Kyono et al. (2008) showed that fertilization and pregnancy rates were sig-
nificantly increased following the use of SrCl2 (22–65 and 0–40%, respect-
ively). However, no diagnostic tests were used in these studies to reveal
sperm related activation deficiencies, and it has yet to be elucidated
whether SrCl2 is an efficient alternative for AOA since some groups
have failed to induce artificial activation in human oocytes using SrCl2
(Rogers et al., 2004; Heindryckx et al., 2009).

Although calcium ionophores are commonly used for AOA
(Nasr-Esfahani et al., 2009), a modified ICSI method has been used to
treat failed ICSI, based on the vigorous aspiration of the oocyte cytoplasm,
which gives rise to successful pregnancies (Tesarik et al., 2002; Ebner et al.,
2004). However, these findings have not been reproduced. Electrical
pulses have been described to overcome fertilization failure in one case
report (Yanagida et al., 1999), which was recently confirmed in a
large-scale study of 71 patients with a history of total fertilization failure
(Baltaci et al., 2009). In this study, 21 patients underwent routine ICSI
without or with concurrent electrical pulses on sibling oocytes, resulting
in a fertilization rate of 12 and 62%, respectively; however, no pregnancy
was reported. Furthermore, 50 patients all underwent AOA with electrical
pulses, resulting in fertilization and pregnancy rates of 48 and 42%,
respectively.

The advent of technologies such as ICSI combined with AOA has
given much hope for the treatment of conditions such as globozoosper-
mia. The vast majority of cases where routine ICSI has been performed
using globozoospermic sperm have had very low success rates in
achieving pregnancy (Bourne et al., 1995a, b; Liu et al., 1995; Tro-
koudes et al., 1995; Battaglia et al., 1997; Kilani et al., 1998, 2004).
However, there have since been a number of cases demonstrating
that ICSI combined with AOA greatly increases the success rate of fer-
tilization and subsequent pregnancy (Rybouchkin et al., 1997; Kim et al.,
2001; Tesarik et al., 2002; Heindryckx et al., 2005, 2008; Dirican et al.,
2008; Tejara et al., 2008; Kyono et al., 2009; Taylor et al., 2010). Since
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an erroneous Ca2+ pattern may cause impaired embryonic develop-
mental potential in animal models (Ozil et al., 2006), it is also possible
that other infertile patients showing embryo arrest, low embryo quality
and even recurrent implantation failure might also benefit from some
form of AOA.

Links between PLCz defects and oocyte
activation failure
Given the proposed role of PLCz in oocyte activation, it is possible that
abnormal forms or aberrant function of PLCz may be the underlying

Figure 3 A comparison of calcium inducing ability between fertile and infertile sperm. Fertile human sperm induce calcium oscillations of charac-
teristic amplitude and frequency when injected in mouse oocytes whereas infertile sperm do not. Downward arrows indicate the time of sperm injec-
tion. Reproduced from Yoon et al. (2008) with permission.

Figure 4 Localization of PLCz in normal and infertile human sperm. PLCz was detected in the equatorial region in the sperm from a healthy indi-
vidual, was significantly diminished in the sperm from a globozoospermic patient, and was absent from a non-globozoospermic infertile patient. Repro-
duced from Heytens et al. (2009) with permission.
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cause of certain types of male factor infertility and oocyte activation failure.
Recent studies have shown that the sperm of infertile men, which consist-
ently fail IVF and ICSI are unable to produce Ca2+ oscillations upon injec-
tion into mouse oocytes, or produce oscillations which are
uncharacteristic compared with those observed from fertile men, being
reduced in both frequency and amplitude (Fig. 3; Yoon et al., 2008;

Heytens et al., 2009). Furthermore, immunofluorescence and immunoblot
analysis have revealed that infertile patients, whose sperm failed ICSI and
were unable to produce Ca2+ oscillations, showed abnormalities in PLCz
expression (Fig. 4; Yoon et al., 2008; Heytens et al., 2009). Moreover, the
activating ability of human sperm that have failed ICSI can be rescued upon
co-injection with mouse PLCz mRNA (Yoon et al., 2008). Many of the

Figure 5 Histidine.Proline point mutation identified by Heytens et al. (2009) in an infertile male patient diagnosed with oocyte activation
deficiency, (a) model of human PLCz showing functional domains (green—EF-hand, blue—X catalytic domain, yellow—Y catalytic domain and
cyan—C2 domain). Histidine398 is shown in red, (b) close-up of H398 showing side-chain–side-chain hydrogen bonds alongside a close-up of
P398 in mutant PLCz showing no side-chain–side-chain hydrogen bonds, (c) microinjection of wild type and mutant PLCz into mouse oocytes
and resulting calcium release patterns. Reproduced from Heytens et al. (2009) with permission.
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patients in these studies were diagnosed with globozoospermia. Although
analysis of the PLCz gene revealed no major genetic abnormalities in glo-
bozoospermic men, the sperm of these patients exhibited reduced levels
or absence of PLCz expression (Yoon et al., 2008; Heytens et al., 2009).
Interestingly, following the use of ICSI along with a Ca2+ ionophore, high
rates of fertilization were observed, along with an ongoing pregnancy,
when using globozoospermic sperm that had an absence of PLCz

expression (Taylor et al., 2010).
As discussed above, globozoospermia affects �0.1% of infertile men

(Dam et al., 2007) and is characterized by the presence of 100% round-
headed sperm lacking an acrosome. As yet, it is unclear whether patients
whose ejaculate contains both normal and globozoospermic cells (partial
globozoospermia) suffer from a variation of the same syndrome (Dam
et al., 2007). Yoon et al. (2008) reported absence of PLCz in both the
normal and round-headed sperm of a partial globozoospermic patient,
in line with the inability of partial globozoospermic sperm cell types to acti-
vate mouse oocytes, as reported by Heindryckx et al. (2008). Numerous
reports studying familial cases have suggested that globozoospermia is a
genetic syndrome (Kullander and Rausing, 1975; Flörke-Gerloff et al.,
1984; Dale et al., 1994; Kilani et al., 2004; Heindryckx et al., 2005).
However, the specific mode of inheritance remains unclear (Dam et al.,
2007), although recently it was reported that a mutation in the
SPATA16 gene appears to be associated with certain types of globozoos-
permia in men (Dam et al., 2007).

Importantly, Heytens et al. (2009) identified a heterozygous substitution
mutation in the coding sequence of PLCz in a non-globozoospermic infer-
tile male. This occurred within the Y domain at position 398 resulting in
histidine (H398) being changed to proline (Heytens et al., 2009). Multiple
sequence alignments confirmed the histidine to be conserved in this pos-
ition across all mammalian PLCzs (Cox et al., 2002; Saunders et al., 2002;
Yoneda et al., 2006; Young et al., 2009), chicken PLCz (Coward et al.,
2005), medaka (fish) PLCz (Ito et al., 2008a, b), as well as all PLCd iso-
forms (Ellis et al., 1998; Saunders et al., 2002), indicating that this
residue may play an important role within the protein (Heytens et al.,
2009). It is possible that the H398P mutation could cause important
changes in PLCz function as proline is a non-polar amino acid with a
bulky planar ring side group, and a known disruptor of secondary structure
and protein stability (Bajaj et al., 2007). Indeed, modelling studies of human
PLCz have predicted that the mutation could disrupt an alpha helix struc-
ture in the catalytic region and affect interactions with neighbouring amino
acids (Fig. 5a and b; Heytens et al., 2009). In line with such predictions,
injection of mutant human PLCz cRNA into mouse oocytes resulted in
highly abnormal Ca2+ transients, which were insufficient for oocyte acti-
vation, in contrast to oocytes injected with control wild type PLCz
which produced a series of Ca2+ oscillations characteristic of normal
oocyte activation (Fig. 5c; Heytens et al., 2009).

Prospects for identifying further PLCz
mutants and potential for therapy and
contraception
Although the findings of Yoon et al. (2008) and Heytens et al. (2009)
provide the first clinical link between defects in PLCz and human male
infertility, this area of research is still very much in its infancy. Further
analytical studies need to be undertaken to explore the precise effects
of the H398P mutation upon PLCz structure and function. To identify
further patients with mutations in PLCz, the incorporation of high-
throughput genetic screening techniques, such as temperature gradient
capillary electrophoresis, may be invaluable in increasing analytical effi-
ciency. Yoon et al. (2008) and Heytens et al. (2009) focused on the
PLCz coding region, although both utilized PCR primers that also amplified
at least 50 bp of the intronic sequences flanking each exon so as to include

the intron/exon border in their analysis. Future studies could also screen
introns and the PLCz promoter region so as to include potential regulatory
sites that might be mutated in some infertile patients.

For clinical purposes a combination of genetic analysis selectively target-
ing the PLCz coding region, along with immunofluorescent and immuno-
blot analysis of sperm samples, may prove useful diagnostic tests for
ART clinics. Currently, only heterologous ICSI models are available for
testing the activation capacity of human sperm, such as MOAT (Rybouch-
kin et al., 1996; Heindryckx et al., 2008). Owing to ethical and legal restric-
tions, inconvenience and technical difficulty of mouse ICSI, it could be
beneficial to develop simpler cell-free and enzymatic tests for PLCz activity
that might be used to diagnose infertility linked to oocyte activation
deficiency. The identification of men with oocyte activation defects also
raises the possibility of using recombinant PLCz protein as a potential
therapeutic agent.

The principle of using PLCz therapeutically has already been demon-
strated by Yoon et al. (2008), who ‘rescued’ the oocyte activating capa-
bility of globozoospermic sperm by the co-injection of PLCz cRNA into
mouse oocytes, although the pre- and post-implantation developmental
potential could not be determined using this heterologous ICSI model.
Rogers et al. (2004) also showed that PLCz cRNA could activate aged
human oocytes which had previously failed to fertilize. However, for clini-
cal purposes, it would be necessary to use a recombinant protein form of
PLCz, for reasons already discussed.

Summary
Although assisted reproductive technologies have greatly reduced
infertility, there are still cases of ICSI failure resulting from oocyte acti-
vation deficiency. Mammalian oocytes are activated by intracellular
Ca2+ oscillations thought to be triggered by the sperm-specific phos-
pholipase C, PLCz. In this review, we have sought to evaluate the
potential causes of oocyte activation failure and the potential role
played by defective forms of PLCz in causing infertility in men. Immu-
nofluorescence and immunoblot analysis of PLCz expression and
localization in the sperm, combined with assays of PLCz enzymatic
activity, may have potential use as diagnostic tools. Although recently
it has been shown that oocyte activation failure can be overcome clini-
cally by artificial oocyte activators such as calcium ionophores, injec-
tion of recombinant PLCz protein might be used in the future as a
more physiological oocyte activation agent. This may be particularly
important given recent studies showing that the precise pattern of
Ca2+ oscillations at fertilization may influence both the efficiency
and quality of embryo development.
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