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Abstract

It has become a current social trend for women to delay childbearing. However, the quality of oocytes from older females is compromised

and the pregnancy rate of older women is lower. With the increased rate of delayed childbearing, it is becoming more and more crucial to

understand the mechanisms underlying the compromised quality of oocytes from older women, including mitochondrial dysfunctions,

aneuploidy and epigenetic changes. Establishing proper epigenetic modifications during oogenesis and early embryo development is

an important aspect in reproduction. The reprogramming process may be influenced by external and internal factors that result in

improper epigenetic changes in germ cells. Furthermore, germ cell epigenetic changes might be inherited by the next generations.

In this review, we briefly summarise the effects of ageing on oocyte quality. We focus on discussing the relationship between ageing

and epigenetic modifications, highlighting the epigenetic changes in oocytes from advanced-age females and in post-ovulatory aged

oocytes as well as the possible underlying mechanisms.
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Introduction

The average age of women bearing children has
increased by w5 years in the past several decades
(te Velde & Pearson 2002). However, advanced maternal
age has deleterious effects on oocyte maturation and
embryonic development, for which the decreasing
oocyte quality with ageing may play a key role
(Henderson & Edwards 1968, Tarin et al. 1998a, Sher
et al. 2007, Simsek-Duran et al. 2013, Di Emidio et al.
2014, Rambags et al. 2014). These aspects have been
well reviewed in our previous publications (Miao et al.
2009, Qiao et al. 2014); therefore, we summarise what
is known on epigenetic alterations and relate changes
in the epigenome with alterations in gene expression,
mitochondrial dysfunction, nutrition, and hormonal
homeostasis (Fig. 1).

The risk of childlessness, stillbirth and multiple births
for daughters born by aged mothers (R40 years) is
increased when compared with daughters born to young
mothers (24–30 years of age) (Smits et al. 2002, Sekhon
et al. 2014, Selemani et al. 2014). Several studies have
indicated that maternal age is negatively correlated
with the health of the offspring (Rocca et al. 1991,
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Kemkes-Grottenthaler 2004, Brion et al. 2008, Gale
2010). The Barker hypothesis suggests that the foetal
development process is the origin of diseases in offspring
(Barker 1995), and compromised pre-ovulation oocyte
quality, especially related with epigenetic changes, may
be crucial as well (Ge et al. 2014a). Epigenetics,
including DNA methylation, histone modification and
non-coding RNA, regulate gene expression by changing
the conformation of chromosomes other than changing
DNA sequences. However, epigenetic modifications
may be affected by external and internal factors and
the epigenetic changes may be inherited by daughter
cells or the offspring (Flanagan et al. 2006, Bird 2007,
Goldberg et al. 2007). Therefore, establishing proper
genomic imprinting is a crucial event during oocyte
maturation and early embryonic development in
humans and other mammalian species. In the mouse
female germline, DNA methylation is re-methylated
during oocyte maturation after birth and it is completely
established at the germinal vesicle (GV) stage. This
process is mainly catalysed by DNA methyltransferase
3s (DNMT3s, reviewed by Tomizawa et al. (2012)).
In mammalian oocytes, the reprogramming process
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Figure 1 Schematics about relationship between epigenetic changes in
oocytes and advanced maternal age. Advanced maternal age causes
decrease in oocyte quality, including expression of HDACs and
DNMTs, mitochondrial dysfunction, abnormal nutrition supply,
changed levels of hormones and others. Thus, many pathways in
oocytes may be disrupted, which may be involved in the process of
establishing proper epigenetic modification in oocytes.
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takes place during oogenesis for histone modification
and non-coding RNAs, too which is well discussed in
previous reviews (Gu et al. 2010, Hales et al. 2011).
Thus, if the internal and/or external factors are changed
during oogenesis, the epigenetic reprogramming process
may be disturbed. For instance, in female mice DNA
methylation of imprinted genes in oocytes is altered
by maternal diabetes and obesity (Ge et al. 2013a,b,
2014b). Furthermore, if one-carbon metabolism is
abnormal, DNA methylation is changed in many tissues
and it is correlated with diseases (Steegers-Theunissen
et al. 2013).

Altered epigenetic modification may be an important
factor for the complications seen in children of older
mothers (Ge et al. 2014a,b). In this paper, we review the
evidence for epigenetic alterations that have been
detected in oocytes and that could be responsible for
the age-related effects and the potential mechanisms.
Ageing and epigenetic modifications in tissues

Damage to the reproductive and other systems increases
with ageing in humans and in many other complex
organisms, and there is a decrease in the adaptability and
energy utilisation of the system. The accumulation of
damage is caused by external and internal factors.
Genetic factors only explain 20–30% of the variation
in the human lifespan for twins and long-lived families,
although these factors are crucial for survival to very old
ages (Herskind et al. 1996, Mitchell et al. 2001, Poulsen
et al. 2007). The other 70–80% of the variation may be
caused by stochastic events, the environment and other
non-genetic factors. Therefore, epigenetics, which is the
link between the environment and genes and which
regulates gene expression by mechanisms other than
changes in the underlying DNA sequence (Goldberg
et al. 2007), has been recognised as a possible
contribution to the ageing phenotype (Wilson & Jones
1983, Fraga et al. 2005, McCauley & Dang 2015).
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In mammals, epigenetic modifications are established
during foetal development and most of them will be
maintained throughout life by DNMT1. But the estab-
lished epigenetic modifications in organs may be
changed after birth if the external and/or internal
environment is altered. The genome-wide result shows
that global hypomethylation is associated with ageing
(Liu et al. 2003, 2011). Genome-wide analysis shows
that ageing is associated with a decrease in global
genomic methylation, including CpG-poor promoters
and tissue-specific genes (Heyn et al. 2012). Similar
results have been obtained by other studies in blood and
different tissues (Bjornsson et al. 2008, Moore et al.
2008, Bollati et al. 2009, Liu et al. 2009a, Kim et al.
2010, Gentilini et al. 2013, Wnuk et al. 2014). During
the lifetime of monozygotic twins, the older mono-
zygous twins exhibit remarkable differences not only in
genomic distribution of 5-methylcytosine DNA but also
in histone acetylation compared with the early years of
life (Fraga et al. 2005). In the process of postnatal
development and ageing of rhesus, dimethylation of
histone 3 lysine 4 (H3K4me2) globally increases at
promoters and enhancers (Han et al. 2012). Small non-
coding RNA known as microRNA (miRNA) negatively
modulates gene expression through binding to target
mRNAs. The expression of miRNA is regulated by
DNA methylation (Anwar & Lehmann 2014). Recently,
the expression of miRNAs in ageing organs of mice and
humans has also been observed (Pincus et al. 2011,
Inukai et al. 2012, Ye et al. 2014). In older (O38 years)
women, the miRNA profiling in the follicular fluid
is clearly different compared with younger ones
(!31 years) (Diez-Fraile et al. 2014). Although Anwar
& Lehmann (2014) discussed that DNA methylation
regulates the expression of miRNAs, the detailed
mechanisms remained obscure. Besides DNA methy-
lation, histone modifications and miRNAs, the
chromatin structure and transposable elements in
organisms are also altered with ageing in Caenorhabditis
elegans, Drosophila and mouse model systems and
the tissue culture-based replicative senescence model
of cell ageing (Wood & Helfand 2013). Although the
mechanism causing epigenetic changes in tissues after
birth may be different from that in oocytes, the alterations
in epigenetic modifications in different organs may
indicate that epigenetic modifications in oocytes may
be affected by ageing.
Epigenetic changes in ageing oocytes

Herein, ‘ageing oocyte’ is defined as oocyte ageing that
occurs in the ovaries of females who show a progressive
decline in oocyte number and poor oocyte quality in
ovaries during reproductive ageing (Tatone et al. 2008).
The pregnancy rate of older women is lower compared
with that of younger women, and the lower pregnancy
rate (Menken et al. 1986) may mainly be caused by
www.reproduction-online.org
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compromised oocyte quality (Wang et al. 2012). The
child born to an older mother tends to exhibit the onset
of some diseases in adulthood (Rocca et al. 1991,
Kemkes-Grottenthaler 2004). These observations
prompted us to ponder the mechanisms underlying this
phenomenon. External and internal environmental
alterations may cause changes in epigenetic modifi-
cations in oocytes. In animal models, the establishment
of epigenetic modifications in oocytes is affected by
maternal diets (Steegers-Theunissen et al. 2013), non-
communicable diseases (Ge et al. 2013b) and other
factors (Li et al. 2014). If the changes in epigenetic
modifications occur in the germline, it would affect
embryonic development and health of the offspring, and
this effect may even extend to further generations
(Ge et al. 2014b). Therefore, we discuss the association
of oocyte quality, highlighting the epigenetic modifi-
cations, with maternal ageing.
Ageing and oocyte quality

Many studies in the IVF–ET setting have demonstrated
that ageing does not appear to affect the ability of
oocytes to become fertilised, but compared with younger
women, the implantation rates are lower and the
spontaneous abortion rates are higher for older women
(Romeu et al. 1987, Warburton et al. 1987, Lim & Tsakok
1997). Navot et al. (1991) reported that the age-related
decline in female fertility is attributed to oocyte quality.
For young mothers, about 20% of oocytes are aneuploid
(Hassold et al. 2007), but the percentage increases to
50% or more in the oocytes of older mothers (Fragouli
et al. 2011, Handyside et al. 2012). One reason may be
that the level of cohesin, which is the key protein that
regulates chromosome separation, falls below the level
required to stabilise chiasmata and to hold sister
centromeres tightly together in pre-ovulatory ageing
oocytes (Lister et al. 2010, Jessberger 2012). Cohesion
loss may be responsible for age-related meiotic segre-
gation errors in mammalian oocytes (Petronczki et al.
2003, Revenkova et al. 2004, Tsutsumi et al. 2014). In
humans, the expression of REC8 and SMC1B, the subunit
of cohesin, in oocytes is decreased in 40-year-old
women compared with 20-year-old women (Tsutsumi
et al. 2014). There are other factors that may induce
oocyte aneuploidy, which have been well reviewed
recently (Jones & Lane 2013). Mitochondrial dysfunc-
tions are observed in pre-ovulatory ageing oocytes
(Dorland et al. 1998, Bentov et al. 2011, Eichenlaub-
Ritter et al. 2011). As the amount of mitochondria
decreases, the mutation of mitochondrial DNA may
become increased and mitochondrial function is also
affected in the oocytes of advanced-age female bovine,
hamsters and mice (Eichenlaub-Ritter et al. 2011, Iwata
et al. 2011, Simsek-Duran et al. 2013). Gene expression
and chromatin structure (Wood & Helfand 2013) are also
found to be affected by ageing. Hamatani et al. (2004)
www.reproduction-online.org
compared the difference in the expression profile at the
transcript level of metaphase II (MII) oocytes of 5- to
6-week-old mice with that of 42- to 45-week-old mice.
Among w11 000 genes whose transcripts are detected
in oocytes, 5% showed obvious expression changes
(Hamatani et al. 2004). Similar expression profiles in
aged mouse oocytes have been reported in another study
(Pan et al. 2008). An alteration in the expression profile
of human MII oocytes is also associated with female
ageing (Grondahl et al. 2010, Santonocito et al. 2013). In
mouse oocytes, the mRNA and protein expression levels
are altered with ageing, and dysfunctions of the ageing
ovary may be a reason for the altered expression of
mRNAs and proteins in pre-ovulatory ageing oocytes
(Schwarzer et al. 2014, Tatone et al. 2014).
Ageing oocytes and epigenetics

Previous discussions indicate that the epigenetic modifi-
cations of oocytes may be affected by advanced maternal
age because the expression of DNMTs and histone
acetyltransferases (Myst1 (Kat8) and Mrgx (Morf412);
Hamatani et al. 2004) is altered with ageing. Therefore,
the changes in epigenetic modifications may partly explain
why the child of anolderwoman is predisposed to the onset
of hypertension, obesity and other diseases in adulthood
(Aagesen et al. 1984, Malini & Ramachandra 2006).

Ageing oocytes and DNA methylation

If DNMT1, which maintains the DNA methylation
patterns in oocytes and embryos (Mertineit et al. 1998),
is deleted in mouse oocytes, the embryos show a loss of
allele-specific expression and methylation at certain
imprinted loci, and the foetuses of homozygous females
die during the last third of gestation (Howell et al. 2001).
In 5- to 6-week-old mouse oocytes, the gene expression
profile is different from that in 42- to 45-week-old
mouse oocytes. DNMT1, 3b and 3l are involved in the
differential gene expression (Hamatani et al. 2004). Yue
et al. (2012) found that the changes in genome-wide DNA
methylation in oocytes and preimplantation embryos of
35- to 40-week-old mice were associated with decreased
expression of DNMTs. The pregnancy rate of older
Kunming mice (35–40 weeks old) is lower than that of
younger mice, and the stillbirth and foetal malformation
rate are higher in the older group compared with the
younger group, which may be associated with abnormal
DNA methylation in oocytes (Yue et al. 2012). In humans,
TAP73 expression which is regulated by DNA methy-
lation patterns is lower in the oocytes of women older
than 38 years of age compared with the oocytes of
women younger than 36 years of age (Guglielmino et al.
2011). There are still no direct proofs that the DNA
methylation status in human oocytes is affected by ageing.

However, one study (Lopes et al. 2009) reports that the
increase in resorption sites, morphological abnormalities
Reproduction (2015) 149 R103–R114
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anddelayeddevelopmentare relatedwith theageofC57BL/
6 mice (43–47 weeks old), but the monoallelic expression
of the imprinted genes H19 and Snrpn is normal in the
blastocysts of aged female mice and the DNA methylation
patterns of the differentially methylated regions (DMRs) of
Snrpn, Kcnq1ot1,U2af1-rs1 (Zrsr1),Peg1, Igf2rand H19 are
not altered.ByRestriction LandmarkGenome Scanning, the
investigators also did not find significant differences in
genome-wide DNA methylation in embryos and placentas
from aged female mice (Lopes et al. 2009). This is
contradictory to previous reports (Hamatani et al. 2004).
The authors propose that the contradiction may be related to
the materials selected and the limitation of the technique
utilised in their study (Lopes et al. 2009). During zebrafish
ageing, two CpG island shores are hypomethylated in
oocytes, but they are de novo methylated in fertilised eggs
(Shimoda et al. 2014). This suggests that the loss of
methylation might be reset after fertilisation because there
is a de-methylation and re-methylation process during early
embryonic development.

Although reports about DNA methylation changes in
oocytes from advanced-age females are contradictory, the
popular viewpoint proposes that the DNA methylation
in oocytes may be changed by pre-ovulatory ageing.

Ageing oocytes and histone modifications

Histone modifications, including methylation, acety-
lation, ubiquitination and other modifications, represent
another crucial and well-investigated epigenetic modi-
fication. During meiosis, histone is deacetylated
globally at the MI and MII stages by histone deacetylase
(HDAC) activity in mammalian oocytes as revealed by
Table 1 Effects of advanced maternal age on epigenetics in oocytes.

Species Epigenetic changes

Mouse Genome-wide DNA methylation is lower in 35- to 40-w
mouse oocytes

Mouse DNMTs (DNMT1, 3a, 3b and 3l) expression is decreased
aged mouse oocytes

Mouse Histone deacetylase is downregulated and histone rema
acetylated in older mouse oocytes. Histone acetylatio
is affected in aged GV and MII oocytes

Mouse Sirt2 expression is lower in the oocytes of old mice com
young mice

Mouse H3K9me3, H3K36me2, H3K79me2 and H4K20me2 are
in aged oocytes

Mouse The expression of Cbx1 and Sirt1 is changed in the oocy
Mouse Histone 3 lysine 4 methylation is changed in aged GV o
Bovine Non-imprinted genes (SLC2A1, PRDX1, ZAR1 and BTS)

hypomethylated in the oocytes of adult cows compare
prepubertal calves

Zebrafish Two CpG island shores hypomethylated in oocytes with
Human The deacetylation of H4K12 in human MII oocytes is aff

an age-dependent manner
Human The expression of ubiquilin I, USP2, USP34 and USP42

in the oocytes of women aged 37–39 years
Human MicroRNAs expression profiling of the follicular fluid of

is different from that of the follicular fluid of older fem
Equine Three miRNAs are expressed in significantly higher amo

isolated from follicular fluid of old compared to young
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immunostaining (Kim et al. 2003, Akiyama et al. 2004,
Reddy & Villeneuve 2004). Akiyama et al. (2006) reported
that if meiotic histone deacetylation was inhibited,
aneuploidy occurred in fertilised mouse oocytes and
this resulted in embryonic death in the uterus at an early
stage of development. HDAC is downregulated at
transcript level in ageing mouse (42- to 45-week-old)
oocytes (Hamatani et al. 2004) although histone still
remains acetylated in the oocytes of 10-month-old female
mice (Akiyama et al. 2006). This suggests that histone
modification in pre-ovulatory ageing oocytes may be
affected (Table 1) and during development it may result
in embryonic death. Similar results were obtained by
Manosalva & Gonzalez (2009) and Suo et al. (2010).
The expression of Sirt2 which is related with the
acetylation of histone H4K16 in the oocytes of aged
mice is lower compared with that in younger mouse
oocytes (Zhang et al. 2014a).

Another study found that the histone methylation in
mouse GVoocytes was affected by advanced maternal age
(Manosalva & Gonzalez 2010) (Table 1). Concomitantly,
the GV and MII oocytes of older females lack H3K9me3,
H3K36me2, H3K79me2 and H4K20me2 compared
with the GV and MII oocytes of younger females.
Meanwhile, the expression of the histone methylation-
related factors (Cbx1 and Sirt1) is changed in ageing GV
oocytes. Histone 3 lysine 4 methylation in mouse GV
oocytes is also changed by ageing (Shao et al. 2015).

In humans, the mRNA expression profile of MII oocytes
is related with ageing. The differently expressed genes are
involved in many biological processes, such as cell cycle,
metabolism, apoptosis, protein modification and others
(Grondahl et al. 2010). Recently, van den Berg et al. have
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shown that the histone acetylation staining of H4K5,
H4K8, H4K12 and H4K16 was intensive in GV oocytes;
however in MI and MII oocytes, chromatin was
deacetylated in variable proportions. They also investi-
gated the relationship between histone acetylation and
maternal age. The results indicate that advanced maternal
age negatively influences the deacetylation of H4K12
in human MII oocytes (van den Berg et al. 2011).

For women at aged 37–39 years, the gene for ubiquilin 1
(a ubiquitin-like protein) is downregulated in the oocytes,
but three genes for the ubiquitin-specific peptidases USP2,
USP34 and USP42 are upregulated (Grondahl et al.
2010). This suggests that the ubiquitination may be affected
by age in human oocytes (Steuerwald et al. 2007). This
indicates that histone ubiquitination might also be affected
in oocytes by ageing, but there is still no solid evidence
to confirm it.

Ageing oocytes and miRNA

miRNA is a kind of small non-coding RNA which
functions in post-transcriptional regulation of gene
expression upon recruitment into effector complexes
(miRNA protein complexes or microRNPs; Truesdell
et al. 2012). The post-transcriptional regulation may be
particularly crucial for early mammalian development,
from maturation of the germ line to initiation of
gastrulation, because the genome is transcriptionally
silent from the fully grown oocyte stage until zygotic
genome activation (Abe et al. 2010). Small RNA is present
in mouse oocytes, including miRNA (Tam et al. 2008), but
Suh et al. (2010) suggest that miRNA function is globally
suppressed during oocyte maturation and preimplanta-
tion development. However, loss of Dicer, which is
crucial for the generation of endo-siRNA and miRNA, in
mouse oocytes results in severe spindle and chromosomal
segregation defects (Murchison et al. 2007), while loss of
Dgcr8, which is essential only for miRNA processing, in
the mouse has no effects on mRNA expression (Suh et al.
2010). Once Ago2 is knocked out in mouse oocytes, the
phenotype is similar to that observed in Dicer-knockout
mouse oocytes (Kaneda et al. 2009). These results suggest
that miRNAs function may be suppressed in mouse
oocytes. However, miRNA mediates mRNA translation
activation by FXR1 in Xenopus laevis oocytes (Truesdell
et al. 2012). In mouse oocytes, miRNA-335-5p could
affect oocyte maturation by regulating cytoskeleton
dynamics (Cui et al. 2013). A similar result that
miRNA-27a activation is not suppressed is observed in
porcine oocytes (Chen et al. 2012). Many studies also
demonstrated that miRNAs were essential for follicle
development in different species (Abramov et al. 2013,
Sohel et al. 2013, Yang et al. 2013, Zhang et al. 2014b).
miRNAs expressed in oocytes could regulate bovine early
embryogenesis (Tripurani et al. 2013). This contradic-
tion has been well reviewed in previously published
papers (Svoboda & Flemr 2010, Suh & Blelloch 2011).
www.reproduction-online.org
It was shown that 79 miRNAs and 41 miRNAs existed
in the microvesicles and exosomes isolated from equine
follicular fluid respectively (Table 1), and three miRNAs
are expressed significantly higher in exosomes isolated
from follicular fluid of old mares compared with young
ones (da Silveira et al. 2012). In humans, miRNAs are
abundant in MII oocytes and cumulus cells and they
may be essential for follicle development (Assou et al.
2013). Moreover, the miRNA expression profile in
follicular fluid of women with polycystic ovary syn-
drome or premature ovarian failure is different from that
in follicular fluid of unaffected women (Roth et al. 2014).
In addition, miRNAs expression profiling of the follicular
fluid of younger (!31 years) and older (O38 years)
individuals was also investigated and the result showed
that the expression of four miRNAs is different. These
miRNAs are involved in carbohydrate digestion and
absorption, p53 signalling and other biological pro-
cesses that may be related with fertility. Therefore, this
set of miRNAs and their respective targets should be
evaluated in relationship with reproductive ageing
(Diez-Fraile et al. 2014). However, the correlation
between miRNA expression and oocyte quality during
maternal ageing is still unknown.

Post-ovulatory ageing of oocytes and
epigenetic modifications

After ovulation, when the arrested MII oocytes are not
fertilised during the window of the optimal fertilisation
time in vivo or in vitro, the unfertilised oocytes undergo
a time-dependent decline concerning quality and this
is called ‘post-ovulatory ageing of oocytes’ (Liang et al.
2012). Studies indicate that post-ovulatory ageing of
mouse oocytes decreases the pregnancy rate, litter size
and increases the percentage of male offspring compared
with control females (Tarin et al. 1999, 2002, Kosubek
et al. 2010, Liang et al. 2011). F1 offspring derived from
post-ovulatory ageing oocytes are prone to the onset of
growth retardation, delayed development of the righting
reflex and emotionality (Tarin et al. 1999). Otherwise,
post-ovulatory ageing of mouse oocytes decreases
reproductive fitness and longevity of offspring (Tarin
et al. 2002). This suggests that the epigenetic modifi-
cation in post-ovulatory ageing of oocytes may be altered
(Table 2). In our laboratory, we have analysed methyl-
ation patterns of imprinted genes in mouse oocytes
during the post-ovulatory process. We examined
methylation patterns of Snrpn and Peg1 in in vivo and
in vitro oocytes at 13, 21 and 29 h of human chorionic
gonadotrophin (hCG) injection, respectively, and loss of
methylation was observed at 29 h of hCG injection
(Liang et al. 2008). Imamura et al. (2005) also reported
Peg1 lost methylation in oocytes during post-ovulatory
ageing. However, only a small number of oocytes
showed aberrant methylation in the DMR of Peg3 in
offspring derived from post-ovulatory ageing mouse
Reproduction (2015) 149 R103–R114
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Table 2 Effects of post-ovulatory ageing of oocytes on epigenetic
modifications.

Species Epigenetic changes References

Mouse DNA methylation patterns of
Snrpn and Peg1 in oocytes is
altered at 29 h after hCG
injection

Liang et al. (2008)

Mouse Peg1 loss of methylation in
oocytes during post-ovulatory
ageing

Imamura et al. (2005)

Mouse Acetylation of H4K8, H4K12 and
H3K14 is altered in ageing
oocytes

Huang et al. (2007) and
Liu et al. (2009b)

Porcine Histone of H4K12 is changed in
post-ovulatory ageing oocytes

Cui et al. (2011)
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oocytes (Liang et al. 2011). Although the DNA
methylation of some imprinted genes is influenced by
oocyte ageing, whether the whole-genome methylation
patterns and histone modification are affected by oocyte
post-ovulatory ageing is unclear. The histone modifi-
cations in post-ovulatory ageing of mouse oocytes are
changed at 19 h of hCG injection compared with that
at 14 h of hCG injection. When extending the time to
24 h of hCG injection, the fluorescence signals of
acetylation of H3K14 also increased in oocytes (Huang
et al. 2007). Another study reported that histone
acetylation of H3K14 and H4K12 increased in mouse
oocytes during post-ovulatory ageing (Liu et al. 2009b).
This phenomenon is also observed in porcine oocytes
during post-ovulatory ageing (Cui et al. 2011), although,
the detailed underlying mechanism is still unknown.

Oocyte ageing and epigenetics: underlying
mechanism(s)

Changes in enzymes related with epigenetic modifi-
cations. Epigenetic modifications are catalysed by
numerous proteins, including DNMTs, ten-eleven-
translocations (TETs), HDACs, ZFP57, Dicer, and
KAP1/TRIM28. If their expression is affected in oocytes,
the epigenetic modifications may be altered. DNMT1
and DNMT1o are crucial for maintaining proper
methylation and DNMT3a, b and l are key de novo
methylation enzymes. When the expression of DNMT1,
which is necessary for maintaining DNA methylation,
is disrupted in mouse oocytes, DNA methylation of
imprinted genes is not maintained properly during early
embryonic development (Hirasawa et al. 2008, Kurihara
et al. 2008). The changed expression of DNMTs in
oocytes from individuals of advanced maternal age
(Hamatani et al. 2004, Grondahl et al. 2010) might be
the direct reason for causing the DNA methylation
alterations (Fig. 1). In MII oocytes of 35- to 40-week-old
mice, the protein expression of DNMT1, DNMT3a,
DNMT3b and DNMT3l is obviously lower than those
in MII oocytes of 6- to 8-week-old mice (Yue et al. 2012).
Anckaert et al. (2013) used 14-day in vitro follicle culture
as a model to investigate pre-ovulatory intrafollicular
Reproduction (2015) 149 R103–R114
oocyte ‘ageing’ and found that the mRNA levels of
Dnmt3a, Dnmt3l and Zfp57 were altered compared with
12-day in vitro follicle culture in the mouse.

The expression of enzymes related with histone
modification is also affected by advanced maternal
ageing in oocytes. For example, Hdac2 is downregulated
and the expression of histone acetyltransferases (Myst1
and Mrgx) decreases in aged mouse oocytes (Hamatani
et al. 2004). In old mice, the expression of the histone
methylation-related factors Cbx1 and Sirt2 was changed
in GV oocyte (Manosalva & Gonzalez 2010). The protein
and kinase activities of CDC2A decreased in the GV and
MII oocytes of old mice (Manosalva & Gonzalez 2009).
Although specific inhibitors of HDACs could delay post-
ovulatory oocyte ageing in mice and pigs (Huang et al.
2007, Jeseta et al. 2008, Lee et al. 2013), it is still unclear
whether the change in histone acetylation is caused
by the altered level or activities of HDACs for these
post-ovulatory ageing oocytes from young mice.

Other enzymes related with epigenetic modifications,
for example TETs (Yamaguchi et al. 2012), Trim28
(Messerschmidt et al. 2012) and Dicer (Murchison
et al. 2007), may also be critical for oocyte develop-
mental potential. However, there are few studies to
investigate whether their expression in oocytes is
affected by ageing or not. The proteins of the TET family
are not only involved in DNA demethylation during
early embryo development (Tahiliani et al. 2009, Gu
et al. 2011, Ma et al. 2012), they are also crucial for
female germ cells to complete meiosis (Yamaguchi et al.
2012). If the expression of Tet3 is suppressed in oocytes,
the paternal global demethylation process at the zygote
stage is impaired (Gu et al. 2011). Although TETs are
associated with ageing and diseases (van den Hove et al.
2012), a role for them in pre-ovulatory ageing oocyte
and post-ovulatory ageing oocyte is still undetermined.

Changes in mitochondrial activity. Mitochondrial
dysfunction may be another crucial factor inducing
epigenetic changes in the oocytes of advanced females
(Fig. 1). Oocyte maturation includes nuclear maturation
and cytoplasmic maturation, and there are many bio-
logical events involved in these two processes, such as
gene expression and histone and chromatin modifica-
tions(Eppig1996).Duringoocytematuration,energy(ATP)
required is supplied by mitochondria (Torner et al. 2004).
Histone and DNMTs use S-adenosyl-L-methionine
(SAM) as a donor of methyl groups. SAM is biosynthe-
sised using methionine and ATP (Igarashi & Katoh 2013).
Wellen et al. (2009) demonstrated that ATP-citrate
lyase was necessary for histone modification. Therefore,
we conclude that if mitochondrial function is compro-
mised by maternal age, the epigenetic modification
may also be affected. In aged mouse oocytes, ATP and
mitochondrial genomes are reduced to 38.4 and 44%
respectively (Simsek-Duran et al. 2013). In bovine
oocytes, the number of mitochondria and content of
ATP are also affected by maternal age (Iwata et al. 2011).
www.reproduction-online.org
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In post-ovulatory aged oocytes, reactive oxygen species
(ROS) may be another factor inducing epigenetic
changes. During in vitro ageing in porcine oocyte,
H4K12 acetylation levels are related with ooplasmic
ROS content (Cui et al. 2011). Glucose level is related
with de novo purine and cAMP synthesis, which is
associated with nuclear maturation of oocytes
(Colton et al. 2003). The cumulus cells supply nutrition
to oocytes in the final phase of oocyte maturation
(Gilchrist et al. 2008). The function of cumulus cells is
compromised by maternal age (Tatone & Amicarelli
2013). Thus, the energy transmitted from cumulus cells
decreases, which may affect the establishment of
epigenetic modifications in aged oocytes.

Nutrition effect. The changed nutrition supplies, especial
one-carbon, may contribute to epigenetic changes in
aged oocytes (Anckaert et al. 2010, Steegers-Theunissen
et al. 2013; Fig. 1). For instance, the folate status declines
with ageing, including decreased folate intake and
altered folate availability (Jacob et al. 1998, Rampersaud
et al. 2000). Therefore, the disruption of folate-mediated
one-carbon metabolism by ageing may be another
reason causing the abnormal DNA methylation in aged
oocytes (Jacques et al. 2001).

Possible hormonal effects. A study demonstrated that
oestrogen replacement therapy in menopause women
reduced the total plasma homocystine concentration
and increased genomic DNA methylation of mono-
nuclear cells (Friso et al. 2007). In rodent brain, the
methylation percent on the promoter of oestrogen
receptor alpha is modulated by the expression of
oestrogen (Schwarz et al. 2010). The DNA methylation
is not only affected by hormones present in tissues, may
be also in oocytes. In humans and mice, the methylation
patterns of Peg1 and H19 are changed by hormones used
for superovulation of growing oocytes (Sato et al. 2007).
With ageing, the androgen level, which can be
converted to oestrogen, is reduced for females (Blevins
et al. 2013). The DNMT proteins and transcripts in the
livers of 3-, 12-, and 24-month-old Ames dwarf mice
are drastically reduced compared with WT siblings, and
growth hormone appears to modulate the expression of
DNMT1 and 3a (Armstrong et al. 2014). The amount
of oestrogen which is important for follicular develop-
ment decreases with ageing (Olsen & Kovacs 1996).
Although there is no direct evidence showing that the
epigenetic modifications are affected by hormones in
pre- and post-ovulatory aged oocytes, it might contribute
to the changes in epigenetic modifications in aged
oocytes, which needs experimental validation (Fig. 1).
Conclusion(s) and perspectives

The above discussions suggest that advanced maternal
age and post-ovulatory oocyte ageing are deleterious to
oocyte quality, including oocyte maturation, chromo-
some segregation, epigenetic modifications and
mitochondrial function, and the health of the offspring
www.reproduction-online.org
from advanced-age mothers may also be affected by
compromised oocyte quality (Takeo et al. 2013a). In this
review, we mainly discussed the possible relationship
between advanced maternal age and epigenetic modi-
fications in oocytes and the potential underlying
mechanisms. Two major problems are still unresolved:
i) the detailed mechanisms underlying compromised
oocyte quality including epigenetic changes caused by
advanced maternal age and ii) the prevention of the
adverse effects of oocyte ageing on epigenetic changes.
As discussed previously, changes in enzymes including
methyltransferases (DNMTs) and demethylases (TETs)
may be the direct reasons for epigenetic alterations in
aged oocytes, but whether/how ageing induces the
changes in their expression needs further clarification.
With the application of new technologies, it has
been possible to test the transcriptome, global DNA
methylation, histone modifications and proteome in
limited number of cells or even in a single cell (Guo
et al. 2014, Lovatt et al. 2014, Smallwood et al.
2014), which may help to address this issue. Another
important study still to pursue is how to prevent the
age-related deleterious effects on oocytes. If the
disulphide-reducing agent dithiothreitol (DTT), an anti-
oxidant, is supplemented to the culture medium, the
negative effects of post-ovulatory ageing of mouse
oocytes in vitro on fertilisation, cellular fragmentation
at 24 h post-insemination and the potential of embryos
for development until the blastocyst stage are prevented,
at least in part (Tarin et al. 1998b). N-acetyl-cysteine
(NAC) supplemented to medium can also decrease ROS
levels in post-ovulatory aged oocytes, but only resvera-
trol increased the fertilisation rate (Takeo et al. 2013b).
Whether the epigenetic changes in these oocytes are
prevented is unknown. But another study demonstrated
that if adult female mice were subjected to caloric
restriction, they did not exhibit age-related increases
in oocyte aneuploidy, meiotic spindle abnormalities
or mitochondrial dysfunction, all of which occurred in
the oocytes of age-matched controls (Selesniemi et al.
2011). This indicates that the epigenetic modification
in aged oocytes may also be affected by calorie
restricted diet because energy is crucial for
epigenetic modifications. In medium supplemented
with pyruvate, post-ovulatory oocyte ageing is prevented
and changes in histone acetylation are corrected in the
mouse oocyte (Liu et al. 2009b). Some studies suggest
that both DNA methylation and histone modification
are associated with caloric restriction (Li et al. 2011,
Chouliaras et al. 2012, Chen et al. 2013). One-carbon
supplies methyl for methylation, so changing nutrients
in diet might prevent abnormal methylation in oocytes.
If the levels of methyl donor are lower in the medium
during mouse follicle culture, the establishment of
oocyte imprinting is affected (Anckaert et al. 2010).
Steegers-Theunissen et al. (2013) reviewed the effects
of one-carbon on reproduction and long-term health of
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offspring. These studies suggest that age-related effects,
including epigenetic changes, on oocytes might be
prevented by diets, medicine or other methods.
However, until now we still cannot effectively prevent
the age-related deleterious effects on oocytes.
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