
OPA2Vec: combining formal and informal
content of biomedical ontologies to
improve similarity-based prediction

Item Type Article

Authors Smaili, Fatima Z.; Gao, Xin; Hoehndorf, Robert

Citation Smaili FZ, Gao X, Hoehndorf R (2018) OPA2Vec: combining
formal and informal content of biomedical ontologies to improve
similarity-based prediction. Bioinformatics. Available: http://
dx.doi.org/10.1093/bioinformatics/bty933.

Eprint version Post-print

DOI 10.1093/bioinformatics/bty933

Publisher Oxford University Press (OUP)

Journal Bioinformatics

Rights This is a pre-copyedited, author-produced PDF of an article
accepted for publication in Bioinformatics following peer
review. The version of record is available online at: https://
academic.oup.com/bioinformatics/advance-article/doi/10.1093/
bioinformatics/bty933/5165380.

Download date 28/08/2022 02:21:15

Link to Item http://hdl.handle.net/10754/629859

http://dx.doi.org/10.1093/bioinformatics/bty933
http://hdl.handle.net/10754/629859


Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year

Manuscript Category

Subject Section

OPA2Vec: combining formal and informal content

of biomedical ontologies to improve

similarity-based prediction

Fatima Zohra Smaili 1, Xin Gao 1,∗ and Robert Hoehndorf 1,∗

1King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer,

Electrical & Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955, Saudi Arabia.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Ontologies are widely used in biology for data annotation, integration, and analysis. In addition

to formally structured axioms, ontologies contain meta-data in the form of annotation axioms which provide

valuable pieces of information that characterize ontology classes. Annotation axioms commonly used

in ontologies include class labels, descriptions, or synonyms. Despite being a rich source of semantic

information, the ontology meta-data are generally unexploited by ontology-based analysis methods such

as semantic similarity measures.

Results: We propose a novel method, OPA2Vec, to generate vector representations of biological entities

in ontologies by combining formal ontology axioms and annotation axioms from the ontology meta-

data. We apply a Word2Vec model that has been pre-trained on either a corpus or abstracts or full-text

articles to produce feature vectors from our collected data. We validate our method in two different ways:

first, we use the obtained vector representations of proteins in a similarity measure to predict protein–

protein interaction on two different datasets. Second, we evaluate our method on predicting gene–disease

associations based on phenotype similarity by generating vector representations of genes and diseases

using a phenotype ontology, and applying the obtained vectors to predict gene–disease associations using

mouse model phenotypes. We demonstrate that OPA2Vec significantly outperforms existing methods for

predicting gene–disease associations. Using evidence from mouse models, we apply OPA2Vec to identify

candidate genes for several thousand rare and orphan diseases. OPA2Vec can be used to produce vector

representations of any biomedical entity given any type of biomedical ontology.

Availability: https://github.com/bio-ontology-research-group/opa2vec

Contact: robert.hoehndorf@kaust.edu.sa and xin.gao@kaust.edu.sa.

1 Introduction

Biological knowledge is widely spread across different types of resources.
Biomedical ontologies have been highly successful in providing the means
to integrate data across multiple disparate sources by providing an explicit
and shared specification of a conceptualization of a domain (Gruber, 1995).
Notably, ontologies provide a structured and formal representation of
biological knowledge through logical axioms (Hoehndorf et al., 2015b),
and ontologies are therefore widely used to capture information that is

extracted from literature by biocurators (Bodenreider, 2008). However,
ontologies do not only include a formal, logic-based structure but also
include many pieces of meta-data that are primarily intended for human
use, such as labels, descriptions, or synonyms (Smith et al., 2007).

Due to the pervasiveness of ontologies in the life sciences, many
applications have been built that exploit various aspects of ontologies for
data analysis and to construct predictive models. For example, a wide
selection of semantic similarity measures have been developed to exploit
information in ontologies (Resnik et al., 1999; Lin et al., 1998; Jiang
and Conrath, 1997; Wu and Palmer, 1994; Leacock and Chodorow, 1998;
Li et al., 2003; Al-Mubaid and Nguyen, 2006), and semantic similarity
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2 Smaili et al.

measures have successfully been applied to the prediction of protein–
protein interactions (Pesquita et al., 2009), gene–disease associations
(Köhler et al., 2009), or drug targets (Hoehndorf et al., 2014).

Recently, a set of methods have been developed that can characterize
nodes and edges in knowledge graphs through “embeddings”. A
knowledge graph is a directed graph which consists of nodes that represent
entities within a domain of knowledge, labeled edges which represent
relations between these entities, and an inference mechanisms that enables
the generation of new relations between entities in the graph. A knowledge
graph embedding is a function that maps entities (nodes and edges) in a
knowledge graph to vectors within an n-dimensional vector space subject
to constraints that aim to preserve certain structural features of the graph
within the vector space; several methods to generate knowledge graph
embeddings have been developed that primarily differ in the constraints
they employ on the mapping function (Bordes et al., 2013; Nickel et al.,
2016a; Ristoski and Paulheim, 2016). These methods are used to produce
feature vectors for entities represented in a knowledge graph and encode
for (parts of) the knowledge about the entity that is represented in
a knowledge graph. Knowledge graph embeddings have already been
applied successfully in the biological domain to predict relations between
biological entities (Alshahrani et al., 2017; Alshahrani and Hoehndorf,
2018). However, ontologies, in particular those in the biomedical domain,
cannot easily be represented as graphs (Rodríguez-García and Hoehndorf,
2018); rather, they constitute logical theories that are best represented as
sets of axioms (Baader et al., 2003).

Recently, we developed Onto2Vec, a method that generates feature
vectors from the formal logical content of ontologies (Smaili et al., 2018),
and we could demonstrate that Onto2Vec can outperform existing semantic
similarity measures. Here, we extend Onto2Vec to OPA2Vec (Ontologies
Plus Annotations to Vectors) to jointly produce vector representations
of entities in biomedical ontologies based on both the semantic content
of ontologies (i.e., the logical axioms) and the meta-data contained in
ontologies as Web Ontology Language (OWL) (Grau et al., 2008; W3C
OWL Working Group, 2009) annotation axioms. We combine multiple
types of information contained in biomedical ontologies, including
asserted and inferred logical axioms, datatype properties, and annotation
axioms to generate a corpus that consists of both formal statements,
natural language statements, and other annotation axiom values that relate
entities to literals. We then apply a Word2Vec model to generate vector
representations for any entity named in the ontology. We further extend our
method by incorporating information from biomedical literature. Using
transfer learning, we apply a pre-trained Word2Vec model in OPA2Vec
to significantly improve the performance in encoding natural language
phrases and statements.

We evaluate OPA2Vec using two different ontologies and applications:
first, we use the Gene Ontology (GO) (Ashburner et al., 2000) to produce
vector representations of yeast and human proteins and determine their
functional similarity and predict interactions between them; second, we
evaluate our method on the PhenomeNET ontology (Hoehndorf et al.,
2011; Rodríguez-García et al., 2017) to infer vector representations of
genes and diseases and use them to predict gene–disease associations.
We demonstrate that OPA2Vec can produce task-specific and trainable
representations of biological entities that significantly outperform both
Onto2Vec and traditional semantic similarity measures in predicting
protein–protein interactions and gene–disease associations. OPA2Vec is
a generic method which can be applied to any ontology formalized in
OWL, and OPA2Vec is freely available from https://github.com/

bio-ontology-research-group/opa2vec/.

2 Results

2.1 OPA2Vec performance in predicting interactions

between proteins

OPA2Vec is an algorithm that uses asserted and inferred logical axioms
in ontologies, combines them with annotation axioms (i.e., meta-data
associated with entities or axioms in ontologies) and produces dense vector
representations of all entities named in an ontology, or entities associated
with classes in an ontology (see Section 4.1 and Supplementary Figure 1).
One of the main applications of ontologies is the computation of semantic
similarity (Pesquita et al., 2009). As OPA2Vec combines logical axioms
and annotation axioms into single vector representations, we expect that
we can obtain more accurate feature vectors for biological entities than
using the ontology structure alone, and that we can use this to improve the
computation of semantic similarity.

To evaluate our hypothesis and demonstrate the potential of using
OPA2Vec, we used the Gene Ontology (GO) as a case study (see
Section 4.2). We generated a knowledge base using GO, and added
either human proteins or yeast proteins as instances. We related each
protein to its functions by asserting that a protein P with function
F is an instance of the class has-function some F. We applied
OPA2Vec on these two knowledge bases (one including human proteins
and the other yeast proteins) and generated vector representations for each
protein and ontology class. We then used these vector representations
to predict interactions between proteins as characterized in the STRING
database (Szklarczyk et al., 2017) by calculating the cosine similarity
between each pair of protein vectors and using the obtained value
as a prediction score for whether two proteins interact or not. To
further improve our prediction performance, we used a neural network
model to learn a similarity measure between two feature vectors that is
predictive of protein–protein interactions (Smaili et al., 2018). The steps
we followed to predict protein–protein interactions using OPA2Vec are
illustrated in Supplementary Figure 2. Figure 1 shows the AUC values
obtained for OPA2Vec (Supplementary Figure 3 shows the ROC curves
and Supplementary Figure 4 the precision–recall (PR) curves), and the
comparison results against Onto2Vec and Resnik’s semantic similarity
measure (Resnik et al., 1999) with the Best Match Average strategy
(Pesquita et al., 2009) for human and yeast. We found that OPA2Vec
significantly improves the performance in predicting interactions between
proteins in comparison to both Resnik’s semantic similarity measure and
Onto2Vec (e.g., improvement between Onto2Vec and OPA2Vec using
cosine similarity is significant with p = 0.031 and p = 0.041 for human
and yeast, respectively; one-sided Mann-Whitney U test).

To determine the contribution of each annotation property to the
performance of OPA2Vec, we restricted the inclusion of annotation
properties to each of the following annotation properties which
are most frequently used in GO: label (rdfs:label), description
(obo:IAO_0000115), synonym (oboInOwl:hasExactSynonym,
oboInOwl:hasRelatedSynonym, oboInOwl:hasBroadSyn-

onym, oboInOwl:hasNarrowSynonym), created by (oboInOwl:
created_by), creation date (oboInOwl:creation_date), and
OBO-namespace (oboInOwl:hasOBONamespace). Supplementary
Table 1 show the relative contribution of each of the annotation
properties for prediction of protein–protein interactions for human and
yeast. We found that the inclusion of the natural language descriptions
(obo:IAO_0000115) and the class labels (rdfs:label) results in the
highest improvement of performance, while some annotation properties,
such as creation date or the namespace, do not improve the prediction.
Interestingly, the created_by annotation property adds some minor
improvement to the performance. The created_by annotation property
is used to keep track of the person who is the creator, or original editor, of
a class within an ontology. Classes are often created, edited and defined by
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OPA2Vec 3

Fig. 1. AUC values of different methods for PPI prediction for yeast and human.

Onto2Vec uses formal ontology axioms and compares vectors through cosine similarity;

Onto2Vec(NN) uses a neural network to compare vectors; OPA2Vec-Medline is

our method and uses formal ontology axioms, entity-class associations and annotation

properties from the ontology meta-data (labels, description, synonyms, created_by)

with a Word2Vec model pre-trained on Medline, and compares vectors through cosine

similarity; OPA2Vec-Medline(NN) is OPA2Vec-Medline and uses a neural

network to determine similarity between two protein vectors; OPA2Vec-PMC is similar

to OPA2Vec-Medline but uses a Word2Vec model pre-trained on fulltext articles

in PMC, and compares vectors through cosine similarity; OPA2Vec-PMC(NN) is

OPA2Vec-PMC and uses a neural network to determine similarity between two protein

vectors; OPA2Vec(No pre-training) uses same strategy as OPA2Vec but without a

pre-trained Word2Vec model; Resnik is a semantic similarity measure.

experts within a particular domain, and the same expert will add similar or
related classes to the GO. Therefore, proteins with associations to classes
created by the same person may have higher probability to interact due to
having more similar functions.

Our analysis shows that annotation properties which describe
biological entities in natural language contribute the most to the
performance improvements of OPA2Vec. In particular the label and
description, synonyms, and created-by properties result in better, more
predictive feature vector representations. Therefore, we limited our
analysis to the labels, descriptions, synonyms, and creator name from
the ontology meta-data in further analysis (see Supplementary Figure 5
for comparative results).

Supervised training can significantly improve the predictive
performance when using two vector representations for prediction of
biological associations as it has the potential to “learn” custom, task- and
dataset-specific similarity measures (Smaili et al., 2018). Therefore, we
trained a deep neural network (see Section 4.6) to predict whether two
proteins interact given two protein vector representations as inputs. We
found that this supervised approach further improves the performance of
OPA2Vec (see Figure 1 and Supplementary Figure 3).

Furthermore, we performed all experiments twice, comparing
OPA2Vec with the pre-trained models from Medline and PMC. We find
that, in general, the model that has been trained on the fulltext articles in
PMC performs somewhat better than the model that has been trained on
Medline abstracts alone.

Fig. 2. AUC values for gene–disease association prediction for different methods, using

human gene–disease associations (Human) and identified mouse models of human disease

(Mouse) as evaluation sets.

2.2 Evaluating performance in predicting gene–disease

associations

As a second use case to evaluate OPA2Vec and demonstrate its utility,
we applied our approach on the PhenomeNET ontology (Rodríguez-
García et al., 2017) (see Section 4.2). PhenomeNET is a system for
prioritizing candidate disease genes based on the phenotype similarity
(Hoehndorf et al., 2011) between a disease and a database of genotype–
phenotype associations. Phenotypes refer here to concrete developmental,
morphological, physiological, or behavioral abnormalities observed in
an organism, such as signs and symptoms which make up a disease
(Gkoutos et al., 2005, 2017). PhenomeNET includes the PhenomeNET
ontology which integrates several species-specific phenotype ontologies;
it can therefore be used to compare, for example, phenotypes observed in
mouse models and phenotypes associated with human disease (Hoehndorf
et al., 2013). We used the PhenomeNET ontology and added mouse
genes and human diseases to the knowledge base as instances; we then
associated each instance with a set of phenotypes. We used the phenotypes
associated with unconditional, single gene knockouts (i.e., complete loss
of function mutations) available from the MGI database (Blake et al.,
2017) and associated them with their phenotypes, and we used the
disease-to-phenotype file from the HPO database (Köhler et al., 2017)
to associate diseases from the Online Mendelian Inheritance in Men
(OMIM) (Amberger et al., 2011) database to their phenotypes. In total,
our knowledge base consists of 18,920 genes and 7,154 OMIM diseases.

We applied our OPA2Vec algorithm to the combined knowledge base
to generate vector representations of genes and diseases, and use cosine
similarity as well as a neural network to predict gene–disease associations.
The corpus generated by OPA2Vec therefore consists of the set of asserted
and inferred axioms from the PhenomeNET ontology, the set of annotation
axioms involving labels, descriptions, synonyms, and creators, and the
gene and disease phenotype associations.

We then computed the pairwise cosine similarity between gene vectors
and disease vectors, and we also trained a neural network in a supervised
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4 Smaili et al.

manner to predict gene–disease associations. We evaluated our results
using two datasets of gene–disease associations provided by the MGI
database, one containing human disease genes and another containing
mouse models of human diseases. Figure 2 shows the AUC values for
gene–disease prediction performance of each approach on the human
disease genes and mouse models of human disease (see Supplementary
Figure 6 for the ROC curves and Supplementary Figure 7 for the PR
curves). The results utilize only labels, descriptions, synonyms, and
the created_by annotation properties as they contribute positively to
prediction of gene–disease associations (see Supplementary Table 2 and
Supplementary Figure 8) for evaluation results using each annotation
property). We compared the results to Resnik similarity and Onto2Vec, and
found that OPA2Vec outperforms Resnik similarity and Onto2Vec in both
evaluation sets. The improvement of OPA2Vec over Onto2Vec using cosine
similarity is significant (p = 0.024 and p = 0.026 for human and mouse;
one-sided Mann-Whitney U test), and the improvement of OPA2Vec using
cosine similarity over Resnik is significant (p = 0.0412 and p = 0.0307

for human and mouse; one-sided Mann-Whitney U test). Similar to our
results on predicting interactions based on GO functions associated with
gene products, we find that using the Word2Vec model trained on PMC
performs better than the model trained on Medline abstracts.

3 Discussion

3.1 Related work

OPA2Vec is a method that combined formal and informal content from
biomedical ontologies to produce vector representations of biomedical
entities. Several methods are emerging that use different types of
semantically represented biological data as well as literature to produce
similar kinds of vector representations and use them for prediction
tasks (Beam et al., 2018; Newman-Griffis et al., 2018; Alshahrani and
Hoehndorf, 2018). Most of these approaches, including the majority of
semantic similarity algorithms (Pesquita et al., 2009; Harispe et al., 2015),
are applied to graph-structured data and ignore the axioms that make
up many biomedical ontologies. Similarly, ontology-based classification
methods that have been developed to predict functions (Kulmanov et al.,
2018) or phenotypes (Kahanda et al., 2015) utilize mainly the taxonomy
of ontology, ignore other logical axioms as well as all annotation axioms.
OPA2Vec is able to utilize the rich metadata, including textual definitions
and labels, that are included in ontologies and in which the scientific
community has invested significant resources (Smith et al., 2007).

There are several text-mining systems that extract or predict gene–
disease or gene–phenotype associations from literature and which rely
on ontologies as background knowledge (Kahanda et al., 2015). We
have compared OPA2Vec to the BeFree text-mining system (Bravo et al.,
2014, 2015) that also identifies gene–disease associations. We limit our
evaluation set to those diseases for which both OPA2Vec and BeFree can
make predictions and obtain an AUC of 0.7961 for OPA2Vec and 0.7543

for BeFree, demonstrating that OPA2Vec performs better than BeFree
(p = 0.0365, one-sided Mann-Whitney U test).

3.2 Potential for discovery of novel disease-associated

genes

We apply OPA2Vec to re-analyze data obtained from high-throughput
(Meehan et al., 2017) and literature-curated (Blake et al., 2017) mouse
phenotyping experiments in order to discover new mouse models of
human disease as well as candidate genes for human genetically based
diseases. The main advantage of OPA2Vec in comparing human and mouse
phenotypes is the ability to “discover” orthologous phenotypes whereas
previously applied methods (Meehan et al., 2017; Hoehndorf et al., 2011)

generally rely on explicitly encoded background knowledge to determine
how phenotypes in mouse and human are related.

We predict candidate genes for over 3,000 orphan diseases in OMIM
(all predictions are available from our project website), many of which have
not received a prediction previously (Meehan et al., 2017). We manually
analyzed some of the prediction results for candidate genes of orphan
disease predicted by OPA2Vec but none of the competing methods. One
of our predictions is E2F transcription factor 5 (E2f5, MGI:105091) for
an autosomal dominant variant of hydrocephalus (OMIM:123155). The
disease is related to a larger deletion on chromosome 8 (8q12.2-q21.2)
where it has been hypothesized that a gene associated with an autosomal
dominant form of hydrocephalus can be found (Vincent et al., 1994).
Homozygous E2f5 knockout mice develop nonobstructive hydrocephalus
(Lindeman et al., 1998) as well as several other related abnormalities
(Danielian et al., 2016); the human ortholog of E2f5 in mice is located
in the predicted region at 8q21.2, suggesting a possible involvement of
E2F5 in hydrocephalus.

Similarly, we predict an involvement of DiGeorge syndrome
critical region gene 8 (Dgcr8, MGI:2151114) in Cayler cardiofacial
syndrome (OMIM:125520). Cayler cardiofacial syndrome is associated
with deletions in 22q11 (Pasick et al., 2013) and associated with
abnormalities in facial features and the cardiovascular system (Cayler,
1969). Cardiomyocyte-specific deletion of Dgcr8 in mice leads to
left ventricular malfunction, dilated cardiomyopathy, and consequently
premature lethality (Rao et al., 2009), and the human ortholog of Dgcr8
is also located specifically at 22q11.21, i.e., in the region to which Cayler
cardiofacial syndrome maps, making Dgcr8 a likely candidate for Cayler
cardiofacial syndrome. While determining whether these associations
are genuine causal relations will require further functional validation,
we believe that our predictions are likely candidates as they are further
supported by evidence that is not used in OPA2Vec.

3.3 Limitations and future work

Our approach has several limitations, some of which we intend to address
as future work. While OPA2Vec can utilize OWL axioms for feature
learning and prediction, it does not capture information beyond direct
associations well; for these purposes, knowledge graph embeddings are
more suitable as they can capture information that is more “distant” (Nickel
et al., 2016b). One interesting approach in the future may be to combine the
axiom- and annotation-based methods such as OPA2Vec with knowledge
graph embeddings that also rely on Word2Vec such as those using random
walks to explore graphs (Alshahrani et al., 2017).

A related topic are the representation patterns that associate biological
entities with classes in ontologies. If the entities and their relations to
ontology classes are included in an OWL ontology, OPA2Vec will generate
a representation for them. However, there are multiple design patterns to
express particular types of information, including associations between
proteins and their functions or genes and their phenotypes (Santana da Silva
et al., 2017; Hoehndorf et al., 2016), and OPA2Vec and similar methods
will enable their evaluation not only with regard to quality metrics used to
evaluate ontologies (Duque-Ramos et al., 2014) but also with respect to
their potential to be used in machine learning and prediction.

Finally, a major limitation in OPA2Vec is the reliance on Word2Vec
which is agnostic to the semantics of operators which have a well-defined
meaning in OWL. In the future, we expect to find better approaches to
utilize the semantics of operators and quantifiers in OWL ontologies.

4 Conclusions

We developed the OPA2Vec method to produce vector representations
for biological entities in ontologies based on the formal logical content in

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

d
v
a
n
c
e
-a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/b

io
in

fo
rm

a
tic

s
/b

ty
9
3
3
/5

1
6
5
3
8
0
 b

y
 K

in
g
 A

b
d
u
lla

h
 U

n
iv

e
rs

ity
 o

f S
c
ie

n
c
e
 a

n
d
 T

e
c
h
n
o
lo

g
y
 u

s
e
r o

n
 1

2
 N

o
v
e
m

b
e
r 2

0
1
8



OPA2Vec 5

ontologies combined with the meta-data and natural language descriptions
of entities in ontologies. We applied OPA2Vec to two ontologies,
the GO and PhenomeNET, and we demonstrated that OPA2Vec can
significantly improve predictive performance in applications that rely on
the computation of semantic similarity. We also evaluated the individual
contributions of each ontology annotation property to the performance
of OPA2Vec-generated vectors. Our results illustrate that the annotation
properties that are used to describe details about an ontology class in
natural language, in particular the labels and descriptions, contribute most
to the feature vectors. We could show that transfer learning, i.e., assigning
“meaning” to words by pre-training a Word2Vec model on a large corpus
of biomedical literature abstracts, could further significantly improve
OPA2Vec performance in our two applications (prediction of protein–
protein interactions and prediction of gene–disease associations. OPA2Vec
can comprehensively encode for information in ontologies. Our method is
based on accepted standards for encoding ontologies, in particular the Web
Ontology Language (OWL), and has the potential to include or exclude any
kind of annotation property in the generation of its features. OPA2Vec also
exploits major developments in the biomedical ontologies community: the
use of ontologies as community standards, and inclusion of both human-
and machine-readable information in ontologies as standard requirements
for publishing ontologies (Smith et al., 2007; Matentzoglu et al., 2018).
We therefore believe that OPA2Vec has the potential to become a highly
useful, standard analysis tool in the biomedical domain, supporting any
application in which ontologies are being used.

5 Methods

5.1 Encoding ontologies plus annotations as vectors

Ontologies formalized in the Web Ontology Language (OWL) (Grau
et al., 2008) are based on a Description Logic (Baader et al., 2003). In
Description Logics, an ontology is described as the combination of a
TBox and an ABox (Horrocks et al., 2006). The TBox is a set of axioms
that formally characterize classes (e.g., behavior SubClassOf:

’biological process’), while the ABox contains a set of axioms
that characterize instances (e.g., SAMN01832237 instanceOf:

Biosample). The TBox and ABox together are used by the Onto2Vec
method (Smaili et al., 2018) to generate dense vector representations; to
achieve this goal, Onto2Vec treats asserted or inferred axioms as sentences
which form a corpus, and vectors are generated using Word2Vec (Mikolov
et al., 2013b,a).

In addition to the TBox and ABox (i.e., to the formal, logical axioms
characterizing the domain), ontologies contain a large amount of meta-
data in the form of annotation axioms (Hoehndorf et al., 2015b; Smith
et al., 2007), and while the axioms are important for automated processing
of ontologies, the annotation axioms provide crucial information for
humans. OWL annotation axioms relate OWL entities (classes, instances,
properties, or axioms) to a literal using an OWL annotation property;
we call the literal the “value” of the annotation property (W3C OWL
Working Group, 2009). Ontology meta-data consist of the set of non-
logical annotation axioms that describe different aspects of ontology
classes, relations, or instances. For example, most ontologies associate
entities with a label, a natural language description, several synonyms,
etc. While such meta-data are distinct from the formal content of an
ontology and therefore not exploited by methods such as Onto2Vec,
they nevertheless provide valuable information about ontology classes,
relations, and instances.

OPA2Vec (Ontologies Plus Annotations to Vectors) is a novel machine
learning method that combines both the formal content of ontologies and
the meta-data expressed as OWL annotation axioms to generate feature

vectors for any named entity in an ontology; the vectors encode for both
the formal and informal content that characterize and constrain the entities
in an ontology. OPA2Vec further uses an OWL reasoner, with a choice of
either the Elk (Kazakov et al., 2014) or HermiT reasoner (Shearer et al.,
2008), to access the deductive closure of an ontology. While HermiT
supports the complete OWL 2 DL standard (W3C OWL Working Group,
2009), its worst case complexity is exponential (Horrocks et al., 2006);
Elk only supports the OWL 2 EL subset of OWL 2 (W3C OWL Working
Group, 2009) but has polynomial complexity and can therefore be applied
to larger or more complex ontologies (while losing some of the possible
inferences).

Our algorithm generates sentences from OWL annotation axioms
to form a corpus. From the assertion that an OWL class C has a
label L (using the rdfs:label annotation property in the OWL
annotation axiom) we generate the sentence C rdfs:label L (using
the complete Internationalized Resource Identifier (IRI) for C and
rdfs:label), and expressing L as string literal. For example, the
relation between class Nuclear periphery (GO:0034399) and its label is
expressed as the sentence “<http://purl.obolibrary.org/obo/GO_0034399>
<http://www.w3.org/2000/01/rdf-schema#label> nuclear periphery”. If C
has an annotation axioms relating it to multiple words or sentences,
we generate a single sentence in which we ignore sentence or
paragraph delimiters. Some annotation properties do not relate entities
to strings, but, for example, to dates, numbers, or other literals.
An ontology may contain information about the creation date of
a class or axiom; we also generate sentences from these OWL
annotation axioms and render the value of the annotation property as
a string. For example, the class Transcription initiation from RNA

polymerase I promoter (GO:0006361) has an annotation axiom that
relates it to the date it was created within the GO ontology, and
we generate the sentence “<http://purl.obolibrary.org/obo/GO_0006361>
<http://www.geneontology.org/formats/oboInOwl#:creation_date> 2011-
08-15T03”.

In OPA2Vec, we combine the corpus generated from the meta-data
(i.e., OWL annotation axioms) and the inferred and asserted logical axioms
(using the Onto2Vec algorithm). We then apply a Word2Vec skipgram
model on the combined corpus to generate vector representations of all
entities in the ontology (for technical details, see Section 4.4).

Natural language words that are used in annotation axioms have a real
world linguistic meaning which cannot easily be derived from their use
within an ontology alone. Therefore, we use transfer learning in OPA2Vec
to assign a semantics to natural language words based on their use in a large
corpus of biomedical text. In particular, we pre-train a Word2Vec model
on all Medline abstracts, and another model on all open-access fulltext
articles available on PubMed Central (PMC), so that natural language
words are assigned a semantics (and vector representation) based on
their use in biomedical literature (see Section 4.3). The vocabulary in
biomedical literature overlaps with the values of annotation properties
(e.g., the natural language words used to describe entities in ontologies, or
the labels of the entities) but is disjoint with the vocabulary used to refer
to the classes, relations, and instances in an ontology (which consists of
IRIs). In OPA2Vec, we therefore update the pre-trained Word2Vec model
to generate vectors for the entities in the ontology, and we update the
representations of words that overlap between literature and the ontology
annotations.

Supplementary Figure 1 illustrates the OPA2Vec algorithm. The input
of the algorithm is an ontology O in OWL format as well as a set A of
instances and their associations with classes in the ontology. The output
of OPA2Vec is a vector representation for each entity in O and A that
encodes for the logical axioms and meta-data in O and A.
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6 Smaili et al.

5.2 Ontology and annotation resources

We downloaded the Gene Ontology (GO) (Ashburner et al., 2000) in OWL
format from http://www.geneontology.org/ontology/ on
September 13, 2017. We downloaded the GO protein annotations
from the UniProt-GOA website (http://www.ebi.ac.uk/GOA) on
September 26, 2017. We removed all annotations with evidence code
IEA as well as ND. For validation, we used the STRING database
(Szklarczyk et al., 2017) to obtain protein–protein interaction (PPI)
data for human (Homo sapiens) and yeast (Saccharomyces cerevisiae),
downloaded on September 16, 2017. The yeast PPI network contains
2,007,135 interactions with 6,392 unique proteins, while the human PPI
network contains 11,353,057 interactions for 19,577 unique proteins.

We downloaded the PhenomeNET ontology (Hoehndorf et al., 2011;
Rodríguez-García et al., 2017) in owl format from the AberOWL
repository http://aber-owl.net (Hoehndorf et al., 2015a) on
February 21, 2018. We downloaded the mouse phenotype annotations
from the Mouse Genome Informatics (MGI) database http://www.

informatics.jax.org/ (Smith and Eppig, 2015) on February 21,
2018. We obtained a total of 302,013 unique mouse phenotype annotations.
We obtained the disease to human phenotype annotations on February
21, 2018 from the Human Phenotype Ontology (HPO) database http:
//human-phenotype-ontology.github.io/ (Robinson et al.,
2008). We downloaded only the OMIM disease to human phenotype
annotations which resulted in a total of 78,208 unique disease-phenotype
associations. For gene–disease association prediction validation, we used
the MGI_DO.rpt file from the MGI database. This file contains 9,506
mouse gene-OMIM disease associations and 13,854 human gene-OMIM
disease associations. To map mouse genes to human genes we used the
HMD_HumanPhenotype.rpt file from the MGI database; the mapping
between mouse and human genes is necessary because gene–disease
associations are reported for human genes (in one of our evaluation sets)
while the phenotypes and phenotype-based predictions are made for mouse
genes.

To process our ontologies (GO and PhenomeNET), we used the OWL
API 4.2.6 (Horridge and Bechhofer, 2011) and the Elk OWL reasoner
(Kazakov et al., 2014).

5.3 Text corpora

We retrieved the entire collection of article abstracts in the MEDLINE
format from the PubMed database https://www.ncbi.nlm.nih.
gov/pubmed/ on February 6, 2018. The total number of abstracts
collected is 28,189,045. For each abstract, we removed the meta-data
(publication date, journal, authors, PMID, etc.), and only kept the title
of the article and the text of the abstract for training a Word2Vec model.

PubMed Central (PMC) is a repository provided by the NCBI
containing full texts of peer-reviewed journal articles in the life sciences.
We have downloaded all the open-access PMC articles on June 10, 2018
which resulted in a total of 4,985,333 full-text articles. We used these
articles to pre-train a Word2Vec model that can be compared to the model
trained on Medline.

5.4 Word2Vec

We used the ontologies, the entity annotations as well as the Medline
abstracts and PMC full-text articles as the text corpora. To process this
text data we used Word2Vec (Mikolov et al., 2013b,a). Word2Vec is a
machine learning model based on neural networks that can be used to
generate vector representations of words in a text. Word2Vec is optimized
in such a way that the vector representations of words with a similar context
tend to be similar. Word2Vec is available in two different models: the
continuous bag of word (CBOW) model and the skip-gram model. In this

work, we opted for the skip-gram model which has the advantage over the
CBOW model of creating better quality vector representations of words
which are infrequent in the corpus. This advantage is quite useful in our
case since the biological entities we want to get representations for do
not necessarily occur frequently in our text corpora. In this work, we pre-
trained the Word2Vec model on the set of PubMed abstracts and save the
obtained model which we eventually retrained on the ontology studied
(the GO ontology and the PhenomeNET ontology). We used gridsearch to
optimize the set of parameters of the skip-gram model used in this work.
We used the same parameters to train Word2Vec on Medline and PMC
and the ontologies data set, except for the min_count which has a value
of 25 for the pre-trained model on both Medline and PMC, but which we
changed to 1 before training on the ontology corpus. The parameters we
chose are shown in Supplementary Table 3.

5.5 Similarity

5.5.1 Cosine Similarity

To calculate similarity between the vectors produced by Word2Vec, we
used the cosine similarity which measures the cosine angle between the
two vectors. Cosine similarity cossim between two vectors A and B is
calculated as cossim(A,B) = A·B

||A||||B||
where A ·B is the dot product

of A and B.

5.5.2 Semantic similarity

Resnik semantic similarity measure (Resnik et al., 1999) is one of the
most widely used semantic similarity measures for ontologies. Resnik’s
measure is based on the notion of information content which quantifies the
specificity of a given class in the ontology. The information content of a
class c is defined as the negative log likelihood, − log p(c), where p(c)

is the probability of encountering an instance of class c. Resnik similarity
is formally defined as sim(c1, c2) = − log p(cMICA) where cMICA

is the most informative common ancestor of c1 and c2 in the ontology
taxonomy, defined as the common ancestor with the highest information
content. Biological entities can have several concept annotations within an
ontology. For instance, as a protein can be involved in different biological
processes and can carry several molecular functions, it can be annotated
by more than one GO class. Therefore, to calculate semantic similarity
between a pair of proteins, we use the best match average strategy (Pesquita
et al., 2009).

5.6 Supervised learning and evaluation dataset

To improve our PPI prediction and gene–disease association prediction
performance, we used a neural network algorithm to train our prediction
model. For our PPI prediction, we used 1,015 proteins from the yeast data
set for training and 677 randomly selected proteins for testing while we
used 2,263 proteins from the human data set for training and 1,509 for
testing. We considered as positives the pairs in the STRING database and
we randomly sub-sampled negatives among all the pairs not occurring in
STRING; we ensure that the cardinality of the positives and negatives are
equal for the testing and the training datasets.

When predicting gene–disease associations observed in mouse models,
we used 6,710 gene–disease associations for training (2,030 diseases and
all their associations) and 2,876 for testing (870 diseases and all their
associations); for gene–disease associations observed in humans, we used
9,698 associations for training (2,978 diseases) and 4,196 for testing (1,276
diseases). We used the gene–disease associations from the MGI_DO.rpt
available at MGI; we consider all other associations as negatives.

We evaluate and compare all methods on the same testing data that
we obtained through the random selection: 667 yeast proteins (and all
their interactions), 1,509 human proteins (and all their interactions), 870
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diseases from gene–disease associations in mice, and 1,276 diseases gene–
disease associations in human.

We chose our neural network to be a feed-forward network with four
layers: the first layer contains 400 input units; the second and third layers
are hidden layers which contain 800 and 200 neurons, respectively; and
the fourth layer contains one output neuron. We optimized parameters
using a limited manual search based on best practice guidelines (Hunter
et al., 2012). We optimized the ANN using binary cross entropy as the loss
function.

5.7 Text-mining based prediction method

We compare OPA2Vec to the text-mining based prediction method
BeFree (Bravo et al., 2014, 2015). BeFree extracts sets of biological
associations from scientific articles. We downloaded the BeFree gene–
disease prediction from the DisGeNet database (Piñero et al., 2015,
2016) on September 30, 2018. The BeFree gene–disease associations are
represented using UMLS concept identifiers. We use the Disease Ontology
(DO) (Schriml et al., 2011; Kibbe et al., 2014) to map the UMLS identifiers
to OMIM identifiers. Since not all diseases have both an OMIM and
a UMLS identifier, we use a limited evaluation set consisting of 1,194
diseases shared between BeFree and our evaluation set.

5.8 Evaluation using ROC curve and AUC

To evaluate our PPI and gene–disease prediction, we used the receiver
operating characteristic (ROC) curve (Yin and Vogel, 2017) which is a
widely used evaluation method to assess the performance of prediction
and classification models. It plots the true positive rate (TPR or sensitivity)
as a function of the false-positive rate (FPR or 1−specificity). As we do
not have genuine negative instances (i.e., pairs of proteins that do not
interact, or gene–disease pairs that are not associated) available, we treat
all unknown associations as negatives. To compute the (FPR, TPR) pairs,
we use the similarity values (or the output of the sigmoid classification
layer). When predicting protein–protein interactions, for each protein we
rank all other proteins based on their similarity value; when predicting
gene–disease associations, we rank, for all diseases, all genes based on
their similarity value. We then compute the FPR and TPR for each rank.
The similarity value itself is used to rank entities while FPR and TPR is
only based on the rank obtained. We report the area under the ROC curve
as quantitative measure of the performance of the different methods (Yin
and Vogel, 2017).
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