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Abstract

Recently, opacity has proved to be a very promising technique for describing security proper-
ties. Much of the work has been couched in terms of Petri nets. Here, we extend the notion of
opacity to the model of labelled transition systems and generalize opacity in order to be able to
represent information flow security as well as protocol security. We give precise links between
opacity and other information flow security definitions such as anonymity or non-interference
and between opacity and formal methods applied to protocols in the case of a bounded number
of sessions. We also detail a safe way to approximate initial opacity in the case of Petri nets
that allows efficient checking of opacity. We illustrate this by two examples, one describing
anonymity in a commercial context and the other modelling requirements upon a simple vote
system.
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Introduction
The notion of secrecy has been formulated in various ways in the computer security literature. However,
two views of security have been developed over the years by two separate communities. The first one
starts from the notion of information flow, describing the knowledge an intruder could gain in terms of
properties such as non-deducibility or non-interference. The second view was initiated by Dolev and Yao’s
work and focussed initially on security properties. The idea here is to describe properly the capability of
the intruder. Some variants of secrecy appeared, such as strong secrecy, giving more expressivity than the
security property but still lacking the expressivity of information flow concepts.

Recently, opacity has proved to be a promising technique for describing security properties. Much of
the work has been couched in terms of Petri nets. In this paper, we extend the notion of opacity to the more
general framework of labelled transition systems. When using opacity we have fine-grained control over
the observation capabilities of the players, and we show one way that these capabilities may be encoded.
The essential idea is that a predicate is opaque if an observer of the system will never be able to establish
the truth of that predicate.

In the first section, after recalling some basic definitions, we present a generalisation of opacity, and
show how this specialises into the three previously defined variants: initial opacity, final opacity and total
opacity. In Section 2, we show how opacity is related to previous work in security. We consider how
opacity may describe anonymity and non-interference, and discuss it in the context of security protocols.
In Section 3, we consider the question of opacity checking, and state a general undecidability result for
opacity. After restricting ourselves to Petri nets, we give some decidability and undecidability properties.
As opacity is undecidable as soon as we consider systems with infinite number of states, we present an
approximation technique which may provide a way of model checking even in such cases. Finally, in
Section 4, we conclude with two examples. The first, drawn from the commercial world, illustrates how
anonymity may be expressed using opacity. The second considers a voting scheme, and shows how the
approximation technique might be used.

The contributions of this paper are therefore: we present a general theory of opacity in the context of
labelled transition systems, which allows us to compare our work with other work in the security commu-
nity, and also unify the work already done with opacity. We also prove a number of (un)decidability results,
and present a technique which may allow model checking even though the problem at hand is in general
undecidable.

1 Basic Definitions
The set of finite sequences over a set A will be denoted by A∗, and the empty sequence by !. The length of
a finite sequence " will be denoted by len("), and its projection onto a set B⊆ A by " | B.

Definition 1 A labelled transition system (LTS) is a tuple # = (S,L,$,S0), where S is the (potentially
infinite) set of states, L is the (potentially infinite) set of labels, $ ⊆ S×L× S is the transition relation,
and S0 is the nonempty (finite) set of initial states. We consider only deterministic LTSs, and so for any
transitions (s, l,s′),(s, l,s′′) ∈ $, it is the case that s′ = s′′.
A run of # is a pair (s0,"), where s0 ∈ S0 and " = l1 . . . ln is a finite sequence of labels such that there
are states s1, . . . ,sn satisfying (si−1, li,si), for i= 1, . . . ,n. We will denote the state sn by s0⊕", and call it
reachable from s.
The set of all runs is denoted by run(#), and the language generated by# is defined as L(#) = {" | ∃ s 0 ∈
S0 : (s0,") ∈ run(#)}.

Let # = (S,L,$,S0) be an LTS fixed for the rest of this section, and % be a set of elements called
observables. We will now aim at modelling the different capabilities for observing the system modelled by
#. First, we introduce a general observation function and then, specialise it to reflect limited information
about runs available to an observer.

Definition 2 Any function obs : run(#) → %∗ is an observation function. It is called label-based and:
static / dynamic / orwellian / m-orwellian (m≥ 1) if respectively the following hold (below "= l 1 . . . ln):
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• static: there is a mapping obs′ : L → %∪ {!} such that for every run (s,") of #, obs(s,") =
obs′(l1) . . .obs′(ln).

• dynamic: there is a mapping obs ′ : L×L∗ → %∪{!} such that for every run (s,") of #, obs(s,") =
obs′(l1,!)obs′(l2, l1) . . .obs′(ln, l1 . . . ln−1).

• orwellian: there is a mapping obs′ : L×L∗ →%∪{!} such that for every run (s,") of#, obs(s,") =
obs′(l1,") . . .obs′(ln,").

• m-orwellian: there is a mapping obs ′ : L× L∗ → % ∪ {!} such that for every run (s,") of #,
obs(s,")= obs′(l1,&1) . . .obs′(ln,&n), where for i= 1, . . . ,n, &i = lmax{1,i−m+1}lmax{1,i−m+1}+1 . . . lmin{n,i+m−1}.

In each of the above four cases, we will often use obs(") to denote obs(s,").

Note that allowing obs′ to return ! allows one to model invisible actions. The different kinds of ob-
servable functions reflect different computational power of the observers. Static functions correspond to
an observer which always interprets the same executed label in the same way. Dynamic functions corre-
spond to an observer which has potentially infinite memory to store labels, but can only use knowledge of
previous labels to interpret a label. Orwellian functions correspond to an observer which has potentially
infinite memory to store labels, and can use knowledge (either subsequent or previous) of other labels to
(re-)interpret a label. m-orwellian functions are a restricted version of the last class where the observer
can store only a bounded number of labels. Static functions are nothing but 1-orwellian ones; static func-
tions are also a special case of dynamic functions; and both dynamic and m-orwellian are a special case of
orwellian functions.

It is possible to define state-based observation functions. For example, a state-based static observation
function obs is one for which there is obs ′ : S → %∪ {!} such that for every run (s, l1 . . . l1), we have
obs(s, l1 . . . ln) = obs′(s)obs′(s⊕l1) . . .obs′(s⊕l1 . . . ln).

Let us consider an observation function obs. We are interested in whether an observer can establish a
property ' (a predicate over system states and traces) for some run having only access to the result of the
observation function. We will identify ' with its characteristic set: the set of runs for which it holds.

Now, given an observed execution of the system, we would want to find out whether the fact that the
underlying run belongs to ' can be deduced by the observer (note that we are not interested in establishing
whether the underlying run does not belong to '; to do this, we would rather consider the property ' =
run(#)\').

What it means to deduce a property can mean different things depending on what is relevant or impor-
tant from the point of view of real application. Below, we give a general formalisation of opacity and then
specialise it in three different ways.

Definition 3 A predicate ' over run(#) is opaque w.r.t. the observation function obs if, for every run
(s,") ∈ ', there is a run (s′,"′) /∈ ' such that obs(s,") = obs(s′,"′). Moreover, ' is called: initial-opaque
/ final-opaque / total-opaque if respectively the following hold:

• there is a predicate '′ over S0 such that for every run (s,") of #, we have '(s,") = '′(s).

• there is a predicate '′ over S such that for every run (s,") of #, we have '(s,") = ' ′(s⊕").

• there is a predicate '′ over S∗ such that for every run (s, l1 . . . ln) of #, we have '(s, l1 . . . ln) =
'′(s,s⊕l1, . . . ,s⊕l1 . . . ln).

In the first of above three cases, we will often write s ∈ ' whenever (s,") ∈ '.

Initial-opacity has been illustrated by the dining cryptographers example (in [ 4] with two cryptogra-
phers and [3] with three). It would appear that it is suited to modelling situations in which initialisation
information such as crypto keys, etc., needs to be kept secret. More generally, situations in which confiden-
tial information can be modelled in terms of initially resolved non-determinism can be captured in this way.
Final-opacity models situations where the final result of a computation needs to be secret. Total-opacity is
a generalisation of the two other properties asking not only the result of the computation and its parameters
to be secret but also the states visited during computation.
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Proposition 1.1 Let ' and '′ be two predicates over run(#). If ' is opaque w.r.t. an observation function
obs and '′ ⇒ ', then '′ is opaque w.r.t. obs.

Proof: Follows directly from definitions.

2 Opacity in Security
The goal of this section is to show how our notion of opacity relates to other concepts commonly used in
the formal security community. We will compare opacity to forms of anonymity and non-interference, as
well as discuss its application to security protocols.

2.1 Anonymity
Anonymity is concerned with the preservation of secrecy of identity through the obscuring of the actions
of that identity. It is a function of the behaviour of the underlying (anonymising) system, as well as being
dependent on capability of the observer.

The static, dynamic and orwellian forms of observation function presented in Definition 2 model three
different strengths of observer. We now introduce two observation functions needed to render anonymity
in terms of suitable opacity properties.

Let # = (S,L,$,S0) be an LTS fixed for the rest of this section, and A = {a1, . . . ,an} ⊆ L be a set of
labels over which anonymity is being considered. Moreover, let (,( 1, . . . ,(n /∈ L be fresh labels.
The first observation function, obssA, is static and defined so that obssA(") is obtained from " by replacing
each occurrence of ai by (. The second observation function, obsdA, is dynamic and defined thus: let
ai1 , . . . ,aiq (q ≥ 0) be all the distinct labels of A appearing within " listed in the (unique) order in which
they appeared for the first time in "; then obs(") is obtained from " by replacing each occurrence of a ij by
(j. For example,

obss{a,b}(acdba) = (cd(( and obsd{a,b}(acdba) = (1cd(2(1.

2.1.1 Strong anonymity

In [18], a definition of strong anonymity is presented for the process algebra CSP. In our (LTS) context,
this definition translates as follows.

Definition 4 # is strongly anonymous w.r.t. A if L(#) = L(#′), where#′ is obtained from# by replacing
each transition (s,ai,s′) with n transitions: (s,a1,s′), . . . ,(s,an,s′).

In our framework, we have that

Definition 5 # is O-anonymous w.r.t. A if, for every sequence µ ∈ A∗, the predicate 'µ over the runs of #
defined by

'µ(s,") =
(
len(" |A) = len(µ) ∧ " |A .= µ

)

is opaque w.r.t. obssA.

We want to ensure that every possible sequence µ (with appropriate length restrictions) of anonymised
actions is a possible sequence within the LTS. In Definition 5 above, the opacity of the predicate 'µ ensures
that the sequence µ is a possible history of anonymised actions, because it is the only sequence for which
the predicate 'µ is false, and so 'µ can only be opaque if µ is a possible sequence.

Theorem 2.1 # is O-anonymous w.r.t. A iff it is strongly anonymous w.r.t. A.
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Proof:We first observe that the strong anonymity w.r.t. A is equivalent to

{"′ ∈ L∗ | ∃" ∈ L(#) : obssA("
′) = obssA(")} ⊆ L(#) . (1)

We show that # is O-anonymous w.r.t. A iff (1) holds.
(=⇒) Suppose that " ∈ L(#) and "′ ∈ L∗ are such that obssA("

′) = obssA("). Clearly, if "
′ |A= " |A then

"′ = " ∈ L(#), so we assume that "′ |A .= " |A. Then, for some s ∈ S0, we have that 'µ(s,") holds, where
µ= "′ |A. Hence, by the opacity of 'µ w.r.t. obssA, there is (s′,"′′) ∈ run(#) such that obssA("

′′) = obssA(")
and 'µ(s′,"

′′) does not hold. Thus "′ = "′′ ∈ L(#). As a result, (1) holds.
(⇐=) Suppose that µ ∈ A∗ and 'µ(s,") holds. Then len(" |A) = len(µ) and " |A .= µ. Let "′ ∈ L∗ be the

unique sequence such that " ′ |A= µ and obssA("
′) = obssA("). By (1), there is s

′ such that (s′,"′) ∈ run(#).
Clearly, obssA("

′) = obssA(") and 'µ(s′,"
′) does not hold. As a result, 'µ is opaque w.r.t. obssA, and so # is

O-anonymous w.r.t. A.

2.1.2 Weak anonymity

A natural extension of strong anonymity is weak anonymity 1. This models easily the notion of pseudo-
anonymity: actions performed by the same party can be correlated, but the identity of the party cannot be
determined.

Definition 6 # is weakly anonymous w.r.t. A if )(L(#)) ⊆ L(#), for every permutation ) over the set A.

In our framework, we have that

Definition 7 # is weak-O-anonymous if, for every sequence µ ∈ A∗, the predicate 'µ over the runs of #
introduced in Definition 5 is opaque w.r.t. obsdA.

Theorem 2.2 # is weak-O-anonymous w.r.t. A iff it is weak-anonymous w.r.t. A.

Proof: We first observe that obsdA(") = obsdA("
′) iff there is a permutation ) over the set A such that

)(") = "′, and so showing weak anonymity w.r.t. A is equivalent to showing that

{"′ ∈ L∗ | ∃" ∈ L(#) : obsdA("
′) = obsdA(")} ⊆ L(#) .

The proof then follows similar lines to that of Theorem 2.1, with obsdA playing the role of obssA.

2.1.3 Other observation functions

Dynamic observation functions can model for example the downgrading of a channel. Before the down-
grade nothing can be seen, after the downgrade the observer is allowed to see all transmissions on that
channel. A suitable formulation would be as follows.

Suppose that A represents the set of all possible messages on a confidential channel, and * ∈ L\A rep-
resents an action of downgrading that channel. Then obs(") is obtained from " by deleting each occurrence
of ai which is preceded (directly or indirectly) by an occurrence of *. In other words, if the downgrade
action appears earlier in the run, then the messages on the channel are observed in the clear, otherwise
nothing is observed.

Orwellian observation functions can model conditional or escrowed anonymity, where someone can be
anonymous when they initially interact with the system, but some time in the future their identity can be
revealed, as outlined below.

Suppose that there are n identities Idi, each identity being capable of performing actions represented
by ai ∈ A. Moreover, ( /∈ L represents the encrypted observation of any of these actions, and + i ∈ L \A
represents the action of identity Idi being revealed. Then obs(") is obtained from " by replacing each
occurrence of ai by (, provided that +i never occurs within ".

1We believe that this formulation of weak anonymity was originally due to Ryan and Schneider.
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2.2 Non-Interference
Opacity can be linked to a particular formulation of non-interference. A discussion of non-interference can
be found in [9] and [20]. The basic idea is that labels are split into two sets, High and Low. Low labels are
visible by anyone, whereas High labels are private. Then, a system is non-interfering if it is not possible
for an outside observer to gain any knowledge about the presence of High labels in the original run (the
observer only sees Low labels). This notion is in fact a restriction of standard non-interference. It was
orginally called non-inference in [14], and is called strong non-deterministic non-interference in [ 10].

Definition 8 # satisfies non-inference if L(#) |Low ⊆ L(#).

In other words, for any run (s,") of #, there exists a run (s ′,"′) such that "′ is " with all the labels in
High removed.

The notion of non-interference (and in particular non-inference) is close to opacity as stated by the two
following properties. First, we show that it is possible to transform certain initial opacity properties into
non-inference properties.

Proposition 2.1 Any initial opacity problem involving static observation function can be reduced to a
non-inference problem.

Proof: Let #= (S,L,$,S0) be an LTS, obs defined through obs ′ (see Definition 2) be a static observation
function, and ' defined through ' ′ (see Definition 3) be an initial opacity predicate.
We construct a new LTS #′ = (S′,L′,$′,S′0) such that:

• S′ = S∪{s′ | s ∈ S0} where each s′ is a fresh state.

• L′ = obs′(L)∪{h} where h .∈ obs′(L) is a fresh label.

• $′ is obtained from $ by replacing each (s, l,r) ∈ $ by (s,obs ′(l),r), and adding, for each s ∈ S0, a
new transition (s′,h,s).

• S′0 = {s | s ∈ S0 \'}∪{s′ | s ∈ S0∩'}.

We then consider a non-inference problem for # ′ with Low = obs′(L) and High = {h}, and below we
show that #′ satisfies non-inference iff for # the opacity property ' w.r.t. obs holds. We assume that # ′ is
deterministic; otherwise we replace it by its deterministic version.

(=⇒) Suppose that (s,") ∈ run(#)∩'. Then (s′,h obs(")) ∈ run(#′). Thus, by non-inference of # ′,
there is (r,&) ∈ run(#′) such that obs(") = & and r ∈ S0 \ '. Hence there is (r,µ) ∈ run(#) such that
obs(µ) = &= obs("). Consequently, the opacity of ' w.r.t. obs holds.

(⇐=) Suppose that (r,&) ∈ run(#′) and & |Low .= &. Then &= h+ and r = s′, for some + and s ∈ S0∩'.
Hence there is (s,") ∈ run(#) such that obs(") = + and, by the opacity of ' holding for obs, there is
(r,,) ∈ run(#) such that r /∈ ' and obs(,) = obs("). In turn, this means that (r,obs(,)) ∈ run(# ′). We
finally have & |Low= += obs(") = obs(,), and so #′ satisfies non-inference.

A kind of converse result also holds, in the sense that one can transform any non-inference property to
a general opacity property.

Proposition 2.2 Any non-inference problem can be reduced to an opacity problem.

Proof: Let (S,High∪Low,$,S0) be an LTS. We define ' as a predicate over run(#) so that '(s,") holds
iff " |Low .= ". Moreover, obs is defined as a static observation function such that obs(") = " | Low. Below
we show that # satisfies non-inference iff for # the opacity property ' w.r.t. obs holds.

(=⇒) Suppose that (s,") ∈ run(#)∩'. Then " |Low .= " and so, by the non-inference of #, there is s ′
such that (s′," |Low) ∈ run(#). Clearly, (s′," |Low) /∈ ' and obs(s′," |Low) = obs(s,"), since (" |Low) |Low=
" |Low. As a result, the opacity of ' w.r.t. obs holds.

(⇐=) Suppose that (s,") ∈ run(#) and " |Low .= ". Then (s,") ∈ run(#)∩' and so, by the the opacity
property ' w.r.t. obs, there is (s′,"′)∈ run(#)\' such that obs(") = obs("′). Thus "′ |Low= "′ and "′ |Low=
" |Low. Hence " |Low∈ L(#). As a result, # satisfies non-inference.
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Non-interference in general makes a distinction between public (Low) and private (High) messages,
and any revelation of a high message breaks the non-interference property. We believe that the ability to
fine-tune the obs function may make opacity better suited to tackling the problem of partial information
flow, where a message could provide some partial knowledge and it may take a collection of such leakages
to move the system into a compromised state.

2.3 Security Protocols
Opacity was introduced in the context of security protocols in [ 13]. With one restriction, the current version
of opacity is still applicable to protocols. Namely, since we require the number of initial states to be finite,
the initial choices made by the various honest agents must come from bounded sets.

To formalise opacity for protocols in the present framework, labels will be messages defined by the
simple grammar

m ::= a | 〈m,m〉 | {m}m

where a ranges over a set A of atomic messages; 〈m1,m2〉 represents the pairing (concatenation) of mes-
sages m1 and m2; and {m1}m2 is the encoding of message m1 using message m2. A subset K of A is the set
of keys, each key k in K having an inverse denoted by k−1. The notation E 3 m, where m is a message and
E is a finite set of messages (environment), comes from Dolev-Yao theory [ 7] and denotes the fact that m
is deducible from E.

Two messages,m1 andm2, are similar for environmentE iff E 3m1 ∼m2 where∼ is the smallest (w.r.t.
set inclusion) binary relation satisfying the following:

a ∈ Atoms
a∼ a

u1 ∼ u2 v1 ∼ v2
〈u1,v1〉 ∼ 〈u2,v2〉

E 3 k−1 u∼ v
{u}k ∼ {v}k

¬ E 3 k−1 ¬ E 3 k′−1
{u}k ∼ {v}k′

In other words, messages are similar if it is not feasible for an intruder to distinguish them using the
knowledge E. Such a notion was introduced in [2], where it was shown to be sound in the computational
model, and its generalisation including the case of equational theories appears in [ 1].

To state which part of a message is visible from the outside, we will use the notion of a pattern [ 2],
which adds a newmessage! to the above grammar, representing undecryptablemessages. Then, pattern(m,E)
is the accessible skeleton of m using messages in E as knowledge and E 3 m 1 ∼ m2 ⇔ pattern(m1,E) =
pattern(m2,E). It is defined thus:

pattern(a,E) = a
pattern(〈m1,m2〉,E) = 〈pattern(m1,E),pattern(m2,E)〉

pattern({m1}m2 ,E) =

{
{pattern(m1)}m2 if E 3 m2
! otherwise .

To simplify the presentation, we assume that a security protocol is represented by an LTS#= (S,L,$,S 0)
(for protocols semantics, see [11]). As protocols are commonly interested in initial opacity (opacity on the
value of one of the parameter, e.g., a vote’s value), the predicate ' will be a suitable subset of S 0. The
observation function obs will be orwellian with obs(l i,") = pattern(li,E), where E is the set of messages
appearing in ". (note that, in the case of a bounded protocol, an m-orwellian function will be sufficient).
Then, opacity of ' w.r.t. obs is equivalent to the concept introduced in [ 13].

3 Opacity Checking
Opacity is a very general concept and many instantiations of it are undecidable. This is even true when
LTSs are finite. We will formulate such a property as Proposition 3.2 (part 4), but first we state a general
non-decidability result.
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Proposition 3.1 Opacity is undecidable.

Proof: We will show that the reachability problem for Turing machines is reducible to (final) opacity.
Let TM be a Turing machine and s be its (non-initial) state. We construct an instance of the final opacity
as follows: # is given by the operational semantics of TM, the observation function obs is constant, and '
returns true iff the final state of a run is different from s. Since s is reachable in TM iff ' is final opaque
w.r.t. obs, opacity is undecidable.

It follows from the above proposition that the undecidability of the reachability problem for a class of
machines generating LTSs renders opacity undecidable. We will therefore restrict ourselves to Petri nets,
a rich model of computation in which the reachability problem is still decidable [ 17]. Furthermore, Petri
nets are well-studied structures and there is a wide range of tools and algorithms for their verification.

3.1 Petri Nets
We will use Petri nets with weighted arcs [17], and give their operational semantics in terms of transition
sequences.2 Note that this varies slightly from the one used in [4] where the step sequence semantics
allowed multiple transitions to occur simultaneously. Here, transitions are clearly separated.

A (weighted) net is a triple N = (P,T,W) such that P and T are disjoint finite sets, and W : (T ×P)∪
(P× T) → N. The elements of P and T are respectively the places and transitions, and W is the weight
function of N. In diagrams, places are drawn as circles, and transitions as rectangles. If W(x,y) ≥ 1 for
some (x,y) ∈ (T×P)∪ (P×T), then (x,y) is an arc leading from x to y. As usual, arcs are annotated with
their weight if this is 2 or more. The pre- and post-multiset of a transition t ∈ T are multisets of places,
PREN(t) and POSTN(t), respectively given by

PREN(t)(p) =W(p, t) and POSTN(t)(p) =W(t,p),

for all p ∈ P. A marking of a net N is a multiset of places. Following the standard terminology, given a
marking M of N and a place p ∈ P, we say that p is marked if M(p) ≥ 1 and that M(p) is the number of
tokens in p. In diagrams, M will be represented by drawing in each place p exactly M(p) tokens (black
dots). Transitions represent actions which may occur at a given marking and then lead to a new marking.
A transition t is enabled at a markingM if M ≥ PREN(t). Thus, in order for t to be enabled at M, for each
place p, the number of tokens in p under M should at least be equal to the total number of tokens that are
needed as an input to t, respecting the weights of the input arcs. If t is enabled atM, then it can be executed
leading to the markingM ′ =M− PREN(t)+ POSTN(t). This means that the execution of t ‘consumes’ from
each place p exactlyW(p, t) tokens and ‘produces’ in each place p exactlyW(t,p) tokens. If the execution
of t leads from M to M ′ we write M[t〉M′ and call M′ reachable from M. A marked Petri net - = (N,S0)
comprises a net N = (P,T,W) and a finite set of initial markings S0. It generates the LTS#- = (S,T,$,S0)
where S is the set of all the markings reachable from the markings in S 0, T is the set of labels, and $ is
defined by (M, t,M ′) ∈ $ if M[t〉M′. The language of - is that of #-.

In the case of Petri nets, there are still some undecidable opacity problems.

Proposition 3.2 The following problems are undecidable for Petri nets:

1. Initial opacity when considering a static observation function.

2. Initial opacity when considering a state-based static observation function.

3. Initial opacity when considering an orwellian observation function even in the case of finite LTSs
generated by marked nets.

4. Opacity when considering a constant observable function even in the case of finite LTSs generated
by a marked nets.

2 It should be stressed that the transitions in the Petri net context correspond to the labels rather than arcs in the LTS framework.
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Proof: Below we reduce three undecidable problems to suitable variants of opacity, in each case defining a
marked Petri net - as well as observation function obs and opacity predicate ' for the runs of# -. The first
two are related to Petri nets: the language inclusion problem [12], and the reachable markings inclusion
problem [16]. The third one is the Post Correspondence Problem (PCP).

(1) Let -i = (Ni,{Mi}), for i= 1,2, be two marked Petri nets. We first construct their isomorphic copies
-′i = (N′

i ,{M′
i}), for i = 1,2, in such a way that each transition or place x in - i is renamed to (x, i), and

M′
i = {(s1, i), . . . ,(ski , i)} whereMi = {s1, . . . ,ski}. Then:

• -= (N,{M′
1,M

′
2}) is a marked net such that N is the union of N ′

1 an N ′
2.

• obs is static and given by obs′(t, i) = t, for each transition (t, i) in -.

• ' is true iff the first marking of a run is M ′
1.

Since the language of -1 is included in that of -2 iff ' is initial opaque w.r.t. obs, part (1) holds.
(2) Let -i = (Ni,{Mi}), for i = 1,2, and - be the three marked Petri nets as in the proof of part (1).

Then:

• We modify - in such a way that each transition (t, i) is replaced by two identically connected copies,
(t′, i) and (t′′, i). We then add to - three fresh places, p ′, p and p′′, and two fresh transitions, u
and u′, in such a way that their arcs are as follows: W(p ′,u) =W(u,p) =W(p,u′) =W(u′,p′′) = 1,
W(p′,(t′, i)) =W((t′, i),p′) = 1 andW(p′′,(t′′, i)) =W((t′′, i),p′′) = 1, for each transition (t, i) of -.
Next, to obtain the initial markings, we add one copy of p ′ to bothM′

1 andM′
2.

• obs is state-oriented and given by obs ′(M)= {s1, . . . ,sm} for anymarkingM= {p,(s1, i1), . . . ,(sm, im)},
and obs′(M) = ! otherwise. (Note that such an observation function allows one to inspect at most
one state of a given run.)

• ' is true iff the first marking of a run is M ′
1+{p′}.

Since the set of reachable markings of -1 is included in that of -2 iff ' is initial opaque w.r.t. obs, part (2)
holds.

(3) Let us consider an instance of PCP with (ai,bi), for i= 1, . . . ,n. Then:

• - consists of a net ({s,s′},{(a1,1),(b1,1), . . . ,(an,n),(bn,n)},W) and the initial markings S0 =
{{s},{s′}}, with the arcs given by

W(s,(ai, i)) =W((ai, i),s) =W(s′,(bi, i)) =W((bi, i),s′) = 1

for i= 1, . . . ,n. Clearly, #- is finite.

• obs is orwellian and depends only on the sequence " = (x 1, i1) . . . (xm, im) returning x1 . . .xmi1 . . . im
(note that x1 . . .xm is the concatenation of labels which are words).

• ' is true iff the first marking of a run is {s}.

Since the instance of PCP has a solution iff ' is initial opaque w.r.t. obs, part (3) holds.
(4) Let us consider an instance of PCP with (ai,bi), for i= 1, . . . ,n. Then:

• - consists of a net ({s},{1, . . . ,n},W) and the initial marking S0 = {{s}}, where the arcs are given
byW(s, i) =W(i,s) = 1 for i= 1, . . . ,n. Clearly,#- is finite.

• obs always returns !.

• '({s}, i1 . . . im) is true iff m≥ 1⇒ ai1 . . .aim .= bi1 . . .bim .

Since the instance of PCP has a solution iff ' is opaque w.r.t. obs, part (4) holds.

An analysis of the proof of the last result identifies two sources for the complexity of the opacity
problem. The first one is the complexity of the studied property, captured through the definition of '. In
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particular, the latter may be used to encode undecidable problems and so in practice one should presumably
restrict the interest to relatively straightforward versions of opacity, such as the initial opacity. The second
source is the complexity of the observation function, and it is presumably reasonable to restrict the interest
to some simple classes of observation functions, such as the static observation functions. This should
not, however, be considered as a real drawback since the initial opacity combined with an n-orwellian
observation function yields an opacity notion which is powerful enough to deal, for example, with bounded
security protocols (section 2.3).

What now follows is a crucial result stating that initial opacity with an n-orwellian observation function
is decidable provided that the LTS generated by a marked Petri net is finite 3. In fact, this result could be
generalised to any finite LTS.

Proposition 3.3 In the case of a finite LTS, initial opacity w.r.t. an n-orwellian observation function is
decidable.

Proof: The result was shown in [4] using regular language inclusion for n = 1. Here, we will re-use this
result after reducing the case of n = 2 to that of n = 1 (the proposed reduction can easily be extended to
any n> 2).

Let # = (S,L,$,S0) be a finite LTS, for which a 2-orwellian observation function obs, and initial
opacity predicate ', are given. We define an LTS # ′ = (S′,L′,$′,S′0) together with a static observation
function obs′ and initial opacity predicate '′ for the runs of #′, as follows.

• S′ comprises all triples ((,s,.) such that s ∈ S and one of the following holds:

– ( is the label of an arc incoming to s and . is the label of an arc outgoing from s.

– ( is the label of an arc incoming to s and .= !.

– s ∈ S0, (= ! and . is the label of an arc outgoing from s.

Moreover, the triples from the third case form S ′
0.

• $′ comprises all
(
((,s1,.), l,(.,s2,/)

)
such that (s1,.,s2)∈ $ and one of the following holds (below

we also give the value of obs′(l)):

– (= != /, l= . and obs′(l) = obs(.).

– (= ! .= /, l= ./ and obs′(l) = obs(./).

– ( .= != /, l= (. and obs′(l) = obs((.).

– ( .= ! .= /, l= (./ and obs′(l) = obs((./).

• '′ is true for ((,s,.) ∈ S′0 iff ' was true for s.

We then observe that the opacity problem for ' w.r.t. obs is equivalent to the opacity problem for ' ′ w.r.t.
obs′. Hence, since the new LTS is finite, the former is decidable.

The last result is an extension of the main result given in [4] which stated the same property for n= 1
(as well as for two other kinds of opacity mentioned earlier on).

3.2 Approximation of Opacity
As initial opacity is, in general, undecidable when LTSs are allowed to be infinite, we propose in this
section a technique which might allow to verify it, at least in some cases, using a technique close to
abstract interpretation [5, 6]. It uses an abstraction of opacity called under/over-opacity.

3 Note that the finiteness of LTS is decidable, and can be checked using the standard coverability tree construction [17].
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Definition 9 For i = 1,2,3, let #i be an LTS. Moreover, let obsi be an observation function and ' i a
predicate for the runs of #i such that the following hold:

(∀0 ∈ run(#1)∩'1) (∃0′ ∈ run(#2)∩'2) obs1(0) = obs2(0′)
(∀0 ∈ run(#3)\'3) (∃0′ ∈ run(#1)\'1) obs3(0) = obs1(0′) .

Then '1 is under/over-opaque (or simply uo-opaque) w.r.t. obs 1 if for every 0 ∈ run(#2)∩ '2 there is
0′ ∈ run(#3)\'3 such that obs3(0) = obs1(0′).

Intuitively, #2 provides an over-approximation of the runs satisfying ' 1, while #3 provides an under-
approximation of those runs that do not satisfy '1.

Proposition 3.4 Uo-opacity w.r.t. obs1 implies opacity w.r.t. obs1.

Proof: Follows directly from definitions.

Given #1, obs1 and '1, the idea then is to be able to construct an over-approximation and under-
approximation to satisfy the last definition. A possible way of doing this in the case of marked Petri nets is
described next.

Uo-opacity for Petri nets

Suppose that - = (N,S0) is a marked Petri net, #1 = #-, obs1 is a static observation function for #1 and
'1 ⊆ S0 is an initial opacity predicate for#1.

Deriving over-approximation The over-approximation is obtained by generating the coverability graph
#2 of - (see [8] for details), starting from the initial nodes in S0∩'1. The only modification of the original
algorithm needed is that in our setup there may be several starting nodes S 0 ∩ '1 rather than just one.
However, this is a small technical detail. The observation function obs 2 is static and defined in the same
way as obs1. The predicate '2 is true for all the initial nodes S0∩'1. Crucially, #2 is always a finite LTS.

Proposition 3.5 (∀0 ∈ run(#1)∩'1)(∃0′ ∈ run(#2)∩'2) obs1(0) = obs2(0′).

Proof: Recall that the nodes in #2 are 1-markings, where a place can be assigned the value 1 to indicate
an unbounded number of tokens; moreover, consuming/producing a token from/to 1 leads to 1.

It suffices to prove {" ∈ L∗ | ∃s0 ∈ S0 : (s0,") ∈ '}⊆ L(#2). Suppose that (s0,") ∈ run(#1)∩'1. We
will show, by induction on the length of ", that there is (s ′0,") ∈ run(#2) such that s′0 = s0 and s0⊕" is
covered by s′0⊕" (i.e., for every place p the value assigned by s 0⊕" is not greater than that assigned by
s′0⊕").

Since the base case trivially holds, assume that the property is true for (s 0,") ∈ run(#1)∩'1 and that
(s0," t) ∈ run(#1). Then, by the induction hypothesis, there is (s ′0,") ∈ run(#2) such that s′0 = s0 and
s0⊕" is covered by s′0⊕". Since t is enabled in - at marking s0⊕", and s′0⊕" covers the latter, t labels an
arc outgoing from s′0⊕", leading to some state s. Clearly, s covers s0⊕(" t) since no 1 entry in s0⊕" can
be replaced by a finite value in s.

Deriving under-approximation A straightforward way of finding under-approximation is to impose a
maximal finite capacitymax for the places of - (for example, by using the complement place construction),
and then deriving the LTS #3 assuming that the initial markings are those in S0 \ '1. The observation
function obs3 is static and defined in the same way as obs1. The predicate '3 is false for all the initial nodes
S0 \'1.

Clearly, #3 is always a finite LTS. However, for some Petri nets with infinite reachability graph (as
shown later on by the second example), this under-approximation may be too restrictive, even if one takes
arbitrarily large bound max. Then, in addition to using instance specific techniques, one may attempt to
derive more generous under-approximation, in the following way.
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We assume that there are some (invisible) transitions in -mapped by obs 1 to ! transitions, and propagate
the information that a place could become unbounded due to infinite sequence of invisible transitions. The
construction resembles the coverability graph generation.

As in the case of the reachability graph, the states in #3 are 1-markings (see the proof of Proposi-
tion 3.5). Then#3 is built by starting from the initial states S0\'1, and performing a depth-first exploration.
At each visited 1-markingM, we find (for example, using a nested call to a coverability graph generation
restricted to the invisible transitions starting from M) whether there exists M ′ > M reachable from M
through invisible transitions only4; then we set M(p) = 1, for every place p such thatM ′(p) >M(p).

Note that the above algorithm may be combined with the capacity based approach and then it always
produces a finite #3. In general, however,#3 is not guaranteed to be finite.

It should be pointed out that #3 generated in this way will not, in general, be a deterministic LTS, but
this does not matter as the only thing we will be interested in is the language it generates.

Proposition 3.6 (∀0 ∈ run(#3)\'3)(∃0′ ∈ run(#1)\'1) obs3(0) = obs1(0′).

Proof: It suffices to show that obs3(L(#3)) ⊆ obs1(L(#1)).
Suppose that s0t1s1 . . . tnsn is a path in #3 starting from an initial state. We will show, by induction on n
that, for every k ≥ 1, there is (s0,") ∈ run(#1) such that obs1(") = obs3(t1 . . . tn) and, for every place p,
either sn(p) ≤ (s0⊕")(p) or 1= sn(p) > (s0⊕")(p) ≥ k.

Since the base case trivially holds, assume that the property holds for n, s 0t1s1 . . . tnsnts is a path in #3
starting from an initial state, and k ≥ 1. Moreover, let t ′1 . . . t′q (q≥ 0) be a sequence of invisible transitions
which was ‘responsible’ for replacing the marking resulting from executing t in s n by s.
Given now an arbitrarym≥ 1 we can choose sufficiently large k ′ ≥ k such that, after applying the induction
hypothesis, there is (s0,") ∈ run(#1) satisfying:

• obs1(")= obs3(t1 . . . tn) and, for every place p, either sn(p)≤ (s0⊕")(p) or1= sn(p)> (s0⊕")(p)≥
k′.

• t followed by m repetitions of the sequence t ′1 . . . t′q is executable in - from the marking s0⊕".

The latter, in particular, means that the overall effect of the sequence t ′1 . . . t′q on the marking of any place
is that the number of tokens never decreases (otherwise ‘negative’ place markings would be eventually
generated which is impossible). This in turn means that, by executing t ′1 . . . t′q sufficiently many times from
the marking s0⊕(" t), we may reach a marking s ′ such that, for every place p, either s(p) ≤ s ′(p) ∈ N or
1= s(p) > s′(p) ≥ k.

Deciding uo-opacity Assuming that we have successfully generated over- and under-approximations# 2
and #3, uo-opacity holds iff

obs2(L(#2)) ⊆ obs3(L(#3))

And the latter problem is decidable whenever #2 and #3 are finite LTSs as it then reduces to that of
inclusion of two regular languages.

4 Examples
To illustrate our work, we give two examples. The first one is inspired by an anonymity requirement
required in the chemical industry. The second describes a simple voting system.

4.1 A Scenario from Chemical Engineering
Figure 1 is a Petri net representation of a scenario in the chemical industry. It is adapted from an example
presented in [15]. In the example, a chemical development company A asks company B (transition a 1) to

4 This search does not have to be complete for the method to work, however, the more markings M′ we find, the better the overall
result is expected to be.
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Figure 1: Petri Net for the chemical industry scenario.

prepare a feasibility study into the development of a new chemical. When this is completed (transition
b1) company A is informed of the conclusions (transition a 2). On the basis of these conclusions company
A decides to commission a chemical safety report, from either company C (transition a 3) or company C ′

(transition a′3). The relevant law allows the chosen company to question company B on aspects of the
feasibility study. However, the chosen company is not allowed to reveal its identity to company B, in order
to protect the integrity of B’s answers. In our example, there are only two possible companies, C and C ′, so
our intention is that from B’s point of view, the visible interactions do not reveal the identity of the chosen
company.

We may assume that the actions a3,a′3,a4 and a′4 are not visible to B, as these actions concern only
companies A and B.

We choose the (static) observation function of B to be the identity function, except for

obs′(a3) = obs′(a4) = ! obs′(c1) = /
obs′(a′3) = obs′(a′4) = ! obs′(c′1) = /

We now demonstrate the set of transitions {c1,c′1} to be O-anonymous.
If "= li . . . ln, the properties that we require to be opaque w.r.t. obs are:

'(s,") = (∃ i : li = c1) and '′(s,") = (∃ i : li = c′1)

The two possible sequences of actions of this system are a1b1a2a3c1a4 and a1b1a2a′3c′1a′4, and so the
two possible observations of the system are

obs(a1b1a2a3c1a4) = a1b1a2!/!
obs(a1b1a2a′3c′1a′4) = a1b1a2!/!
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which are observationally equivalent. The properties ' and ' ′ are therefore opaque, and the set {c1,c′1}
is strongly anonymous w.r.t. obs.

4.2 A Simple Voting Scheme

NV

V1 V2

C

C1 C2

A1 A2

Waiting

Results1 Results2

Voting

Counting

1 2

Figure 2: Net for the voting system.

In this example, we consider a vote session allowing only two votes: 1 and 2. We then describe a simple
voting scheme in the form of a Petri net (see figure 2). The voting scheme contains two phases. The first
one called voting phase (when there is a token in Voting) allows any new voter to enter the polling station
(transition NV) and vote (transitions V1 and V2). Votes are stored in two places Results1 and Results2. A
particular voter A is identified, and we formulate our properties with respect to A. After an indeterminate
time, the election enters the counting phase (when there is a token in Counting, after executing transition
C, and no token in Voting). Then the different votes are counted. Votes for 1 are seen via transition C1 and
vote for 2 via C2. This net has one obvious limitation. At the end, there still can be some tokens left in
places Results1 and Results2 so this scheme does not ensure that every vote is counted.

We want to verify that the vote cast by A is secret: the two possible initial markings are {Voting,1} and
{Voting,2}. We prove that it is impossible to detect that “1” was marked (a symmetric argument would
show that it is impossible to detect whether “2” was marked). The observation function is static and only
transitions C1 and C2 are visible, i.e., obs(C1) =C1, obs(C2) =C2 and obs(t) = ! for any other transition
t.

To verify opacity, we will use the under/over approximation method. The coverability graph (over-
approximation) can be computed (see figure 3) using, for example, Tina [19]. After application of the
observation function and simplification, we obtain that obs 2(L(#2)) = {C1,C2}∗(see section 3.2 for the
definition of #2.)

However, the simple under approximation using bounded capacity places will not work in this case, as
for any chosen maximal capacity max, the language L(# 3) will be finite whereas obs2(L(#2)) is infinite.
Thus, we use the second under approximation technique. The following array represents the reachable
states of the system starting from marking {Voting,2} using this technique.
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Figure 3: Coverability graph for the voting system.

Waiting Voting Results1 Results2 1 2 Counting
A N 1 N N 0 1 0
B N 1 N N 0 0 0
C N 0 N N 0 1 1
D N 0 N N 0 0 1

The behaviour of this reachability graph, i.e. obs 3(L(#3)), is simple:

C1C2 C1 C2

A

C

B

D

!

!!

Thus, the under-approximation is in this case: obs3(L(#3)) = {C1,C2}∗, and so obs2(L(#2)) ⊆
obs3(L(#3)) holds. We can now conclude that opacity of ' w.r.t. obs is verified and so the vote cast
by A is kept secret.

5 Conclusions and Future Work
We have presented a general definition of opacity that extends previous work. This notion is no longer
bound to the Petri net formalism and applies to any labelled transition system. However, restricting our-
selves to initial opacity in the case of Petri nets allows us to find some decidability results. Furthermore, in
this general model we can show how opacity relates to other information flow properties such as anonymity
or non-inference.

However, non decidability results show that the opacity problem is a complex one. Its complexity is
related to the complexity of the checked property, the complexity of the adversary’s observational capabili-
ties and the complexity of the system. The first point can be addressed by considering initial opacity which
is still very expressive. The second one can be simplified by considering only n-orwellian observation
functions. To solve the third problem, we can restrict ourselves to finite automata but this causes us to lose
significant expressive power.

In the case of infinite Petri nets, over- and under- approximating gives a way of checking opacity.
This technique works well in the case of the second example. We intend in future work to find a better
abstraction for Petri nets and some well suited abstractions for other formalisms.

A current restriction of opacity is that it only tells you that an adversary cannot deduce for sure that
a property is verified. The adversary cannot put probabilities on the likelihood of ' and ¬ '. A potential
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further line of research is therefore to consider probabilistic opacity, by introducing probabilities on the
initial parameters and considering probabilistic LTSs.
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