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Abstract—Mobile phones and other ubiquitous technologies are
generating vast amounts of high-resolution location data. This
data has been shown to have a great potential for the public good,
e.g. to monitor human migration during crises or to predict the
spread of epidemic diseases. Location data is, however, considered
one of the most sensitive types of data, and a large body of
research has shown the limits of traditional data anonymization
methods for big data. Privacy concerns have so far strongly
limited the use of location data collected by telcos, especially
in developing countries.

In this paper, we introduce OPAL (for OPen ALgorithms),
an open-source, scalable, and privacy-preserving platform for
location data. At its core, OPAL relies on an open algorithm
to extract key aggregated statistics from location data for a
wide range of potential use cases. We first discuss how we
designed the OPAL platform, building a modular and resilient
framework for efficient location analytics. We then describe the
layered mechanisms we have put in place to protect privacy
and discuss the example of a population density algorithm. We
finally evaluate the scalability and extensibility of the platform
and discuss related work.

The code will be open-sourced on GitHub upon publication.

I. INTRODUCTION

Mobility data – containing accurate user-level trajectories
of visited places across long periods – has been extremely
valuable for researchers and organizations. Orange’s Data for
Development (D4D) demonstrated its significant potential for
the public good [1]. Mobility data has been used to monitor
crime and poverty or assess the impact of natural disasters
in real-time [2], [3]. These advancements have been possible
thanks to the widespread adoption of mobile phones, including
in developing countries where penetration rates vary from
70% in Colombia to 99.9% in Senegal. However, mobility
traces are extremely sensitive. In 2009, the Electronic Frontier
Foundation listed examples of sensitive information that can
be inferred about an individual from their location history [4].
These include the movement of a competitor sales force,
attendance of a particular church or an individual’s presence
in a motel or at an abortion clinic. These legitimate privacy
concerns for the potential misuse of mobility data need to be
addressed.

Historically, data has been anonymized through de-
identification, i.e. the process of transforming personal data
to mask the identity of participants. Fully de-identified data
is not considered personal data and can be shared or sold
without limitations. However, a large body of research has
shown that de-identification is not resistant to a wide range
of re-identification attacks [5]–[10]. This is especially true

for geolocation data, as individual mobility traces are highly
unique even among large populations, making them particu-
larly vulnerable to re-identification [7].

OPAL’s goal is to unlock the potential of mobility data
while preserving privacy. This is achieved by adopting the
query-based paradigm for data release: rather than publishing
(de-identified) data, OPAL stores the data in a protected
environment and allows analysts to send queries about the data.
Since analyses are computed using fine-grained data, OPAL
makes it possible to achieve better utility and stronger privacy
compared to de-identification techniques.

A typical use case for OPAL would be to compute the
population density of a certain area for any given time interval,
without releasing the full geolocation dataset to the analysts.
Ideally, a query-based system such as OPAL would satisfy
some important properties:

Secure. The infrastructure is secure against penetration
attacks that aim at gaining unauthorized access to data.

Privacy-preserving. The query results should consist of
aggregate data, and never disclose individual-level information
of users whose records are in the dataset. This guarantee
should hold when analysts obtain and combine outputs for
multiple queries.

Flexible. Data analysts should be able to submit different
queries that serve a large array of statistical purposes. This can
be achieved by enabling developers to propose new algorithms
that can be loaded on the platform.

Open. The code of the platform and the algorithms should
be open-source. This allows for better security, privacy and
utility, as everybody can review and contribute to the code
and the algorithms.

The contributions of this paper are the following:
• We present OPAL’s modular and scalable architecture,

designed with a combination of security and privacy
features that allows running analysis on the location data
while preserving the privacy of the participating users
(Section II). We also describe the production deployments
in Senegal and Colombia.

• We describe how OPAL’s architecture assists in making
a density algorithm privacy-preserving. We discuss the
implemented privacy mechanism, the utility trade-offs
and privacy guarantees (Section III).

• We evaluate the performance of the individual compo-
nents of the platform as we scale the system to data in
the range of billions of records and thousands of queries
per second (Section IV).



II. SYSTEM OVERVIEW

In this section, we provide an overview of the multi-layered,
modular, and scalable architecture of the OPAL platform. Each
layer consists of loosely-coupled micro-services providing
flexibility to the framework. The modularity of the architecture
and flexibility in the layers allows for horizontal scaling of
each layer independently and enables upgrade, addition, and
removal of services with zero downtime. The complete plat-
form is designed with four layers - Endpoints Layer, Storage
Layer, Management Layer, and Computation Layer as shown
in Figure 1. At the top, the Endpoints Layer provides public
APIs to interact with the platform and impart authentication,
caching, and auditing services to the platform. All the mobile
phone data and platform-specific data (e.g., user details) are
saved in the database via the Storage Layer. It supports
all the other layers by providing replicated, distributed, and
scalable storage resources. The Management Layer schedules
the computation of the analyses on to compute nodes based
on their availability and the type of analyses requested. The
Computation Layer executes the scheduled computations on
the scale-out infrastructure which can indifferently be a cluster,
a cloud or any other specialized hardware. It ensures that the
output for each analysis is privacy-preserving by enforcing the
implemented privacy measures.

Figure 1. A schematic representation of the architecture of the OPAL
platform. Solid lines represent communication between services, dashed lines
represent communication between a service and a database.

A. Endpoints Layer

The Endpoints Layer provides the only public interface
to run analyses over the OPAL data sets. It ensures that
only verified and valid requests are processed, all requests
are logged, and that the system is responsive at all times.
The layer is composed of Interface, Authentication, Cache
and Auditing services. Upon successful authentication, if the

answer is available with the Cache service then it is sent back.
Otherwise, the job request is created in the database for the
Management Layer to schedule.

The Interface service provides the public APIs for query and
user management. A query is a request for running an analysis
against the data available for the requested time interval and an
answer is OPAL’s output for the requested analysis. Each query
must contain the analysis name, start and end date for the data
on which it needs to run and other parameters required by the
analysis. Interface service validates each query by checking
that all the required parameters are well-defined.

The Cache service stores the answers for all the computed
queries with the query parameters and other metadata (date
and duration of computation, etc.). They are served directly
from the Cache if any of those queries are requested again.

The Auditing service logs the queries. The log of valid
queries must be difficult to modify, even for system administra-
tors. Meanwhile, invalid query logs must be easily accessible
to enable periodic analyses to detect possible attacks on the
system (see Section III). Thus, the valid queries are logged in
an append-only text file, making it harder to modify it without
physical access to the system, while the invalid query logs are
stored in the database.

B. Storage Layer

The Storage Layer manages the mobile phone and platform-
specific data. Mobile Phone Data consists of pseudonymized
CDRs captured by the telecommunication service provider and
the GPS coordinates of antennas. A CDR contains 9 fields
(see Table I) that forms the basis for the development of an
algorithm on the platform. An antenna is defined by a unique
antenna ID, location details (borough, commune, and region)
and the presence interval (installation and removal times).
Storing installation and removal times is essential for mobile
antennas which can be moved from one location to another
and have different locations at different times. Analysts can
retrieve antenna locations through an API call.

Field Definition
Timestamp Datetime at which record is captured by the

telecom operator
User ID Pseudonymized ID of the user whose record

was captured
User Country Country code of the user
Correspond ID Pseudonymized ID of corresponding user
Correspond Country Country code for corresponding user
Antenna ID ID of the antenna the user was connected to

during the initiation of interaction
Interact Type Type of interaction - call or text
Interact Direction Out if user initiated the interaction, In oth-

erwise
Duration Duration of call in seconds, -1 for text

Table I
STRUCTURE OF A CALL DETAIL RECORD (CDR).

The platform-specific data consists of the analyst credentials
and permissions, available analyses, query parameters, answers
to previously requested queries, status of each micro-service
including the available compute nodes, logged invalid requests,
and status of each computation (including output and error
logs).



The mobile phone data is pseudonymized and ingested
periodically into the database by the system administrators. A
small to medium-sized country contains billions of records for
a year of data [1]. Each computation fetches the data within the
requested time interval and can typically range from hundreds
to billions of records. The database, for mobile phone data,
needs to scale to terabytes of data without significant decreases
in performance and provide high-speed data retrieval capa-
bility for each concurrent request. However, ingestion speeds
can be slower without compromising the overall performance
of the platform. Based on these requirements and detailed
evaluation (see Section IV) we chose Timescale [11] for
storing mobile phone data.

Each service periodically generates significant amount of
unstructured data like health status update, query update, etc.
MongoDB [12] provides a schema-less data storage with high
insertion speed that makes it tailored for our requirements. On
top of that, the correctness of our Scheduling service relies on
the consistency of the data fetched and MongoDB’s ability to
provide consistency of data across replicas ensure that we can
scale without compromising on the correctness of the system.

C. Management Layer

The Management Layer is the cornerstone of the OPAL
platform. It is responsible for monitoring jobs and compute
nodes, and scheduling the job requests for computation. It
is crucial for the Management layer to have zero downtime,
use the new compute nodes as soon as they are available,
and to periodically purge the unresponsive compute nodes. To
achieve this, we avoid architectures prone to single points of
failure. Therefore, unlike master-slave architecture pursued by
schedulers such as IBM’s LSF [13] or OpenLava [14], OPAL’s
scheduler is an extension from previous work [15] to provide
concurrent multi-master capabilities.

The Management Layer is composed of multiple Scheduling
& Management services running independently in parallel.
Each service periodically fetches the jobs and compute nodes
from the database for scheduling. As the schedulers run
independently, a soft-lock mechanism has been developed to
manage the concurrent access to the jobs’ and the compute
nodes’ records in the database. This prevents inconsistencies
like the same job getting scheduled multiple times or a single
node receiving multiple jobs at the same time. The soft locks
are set in the database by the Scheduler fetching the records.
It periodically fetches the unlocked IDLE compute nodes and
QUEUED jobs. For each fetched job, it checks if a compute
node is available to execute it. On a successful check, it tries to
set the soft lock on the record and the selected compute node.
If successful, a job request is sent to execute the job. The
locks are removed once the request is acknowledged by the
compute node. This internal concurrency management and the
loosely coupled design are the enablers for the multi-master
scheduling capabilities of the Management Layer.

The Scheduling & Management service guarantees that the
system works efficiently. To avoid getting bottle-necked with
unresponsive jobs or nodes, it flags unresponsive compute

nodes and purges failed or stuck jobs. The scheduling of jobs
happen each second, purging once a day, and flagging of nodes
each minute.

D. Computation Layer

The Computation Layer provides execution capabilities to
the OPAL platform. Running jobs, generating results, and
ensuring the privacy of the users is the role of this layer.
It applies a combination of security and privacy features to
computations.

OPAL relies on the MapReduce [16] paradigm for defining
and executing analysis algorithms (see Section III). Each
analysis is a Map function that runs on the data of an individual
user and a Reduce method to aggregate the Map results over all
the users. For example, a Map function could receive a user’s
CDRs and return the antenna id with most occurrences. A
Reduce method would then return the count of the occurrences
of each antenna id across the Map outputs. All algorithms are
audited before being added to the platform (see Section III).

The Map function runs in a sandboxed environment. This
guarantees that the computations run independently over the
users (see Section III) by ensuring that the Map function
interacts with only one user’s data in one system process.

Privacy mechanisms mitigate the risk that an attacker can
infer details about an individual from an output or a com-
bination of outputs from various analyses on the platform.
We provide the functionality to add algorithm-specific privacy
modules which help maximize utility and privacy for specific
use cases (see Section III).

The Computation Layer comprises the Compute, the Algo-
rithm and the Aggregation & Privacy services. The Algorithm
service manages and versions the analysis algorithms, the
Compute service fetches data and executes the map functions,
the Aggregation & Privacy service aggregates the outputs
from the Compute and applies privacy mechanisms on the
aggregated result. Each Compute service is associated with
a list of type of jobs it can execute, e.g., Python3, R, Spark.

E. Data Flow

The data flow is designed to meet strict privacy require-
ments. Figure 2 describes the flow of data and the subsequent
transformations it undergoes from the raw data to the query
output.

The raw data, extracted from the data curator’s database,
consists of Call Detail Records (CDRs) and antenna details.
Records for the users who chose to opt-out are removed and
the remaining data is distributed across files. Multiple parallel
workers are created for data ingestion. Each worker fetches
a file from a shared queue, extracts the country code from
the phone number in each record, pseudonymizes the phone
numbers, and adds the modified record to a list. Records in
the list are ingested in batches. The batch size and number
of workers are tuned as per the system configuration. All
pseudonymization steps are done using a salt and MD5 [17]
hashing function. MD5 has a sufficiently large domain space
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Figure 2. A schematic representation of the flow of the data from the raw data to the OPAL platform’s output. 1. Pseudonymizing and ingesting data 2. Data
Fetching for compute and creation of user specific CSVs 3. Executing Map function 4. Outputs aggregation and applying privacy mechanisms

to avoid any collision while being small enough to minimize
the impact on storage.

The compute nodes create a unique salt for each job
execution and the fetched data is pseudonymized again using
this salt. This ensures that distinct computations receive data
for the same user with different user IDs, making attacks
using multiple queries harder to accomplish. Each record is
joined with the antenna database to add antenna location to the
records. Precaution is taken to ensure that the record timestamp
is between the antenna installation and removal time. The
fetched data for each unique user is stored in a separate CSV
file to sandbox the computations for each user.

F. Development and Deployment

All the micro-services of the OPAL Project follow EC-
MAScript 8 and use ExpressJS and NodeJS. Docker Compose
(in auto-restart mode) is used for the deployment of the
services to maximize the platform up-time. It also allows
services to be deployed multiple times, across different host
machines, for scalability and resilience purposes.

The Compute service currently only supports the algorithms
written in Python3 and uses Python 3.5 (because of await-
/async) to execute them. A new Python library opalalgorithms
has been developed using Codejail [18] for sandboxing and the
Bandicoot [19] toolbox for processing the CDRs of each user.

OPAL has been deployed in production environments in
Senegal and Colombia in a two-server setup. The first server
hosts the Endpoints Layer and the MongoDB, while the second
server hosts the Management Layer, the Compute Layer and
the Timescale. This division minimizes the platform surface
exposed to external threats. The break-up of Storage Layer
across two servers furthermore allows the platform to still
serve the answers via the Cache Service, in case the second
server goes down. Those deployments are actively being used
by around a dozen people (from the Senegalese government,
United Nations, Agence Nationale de Statistique et de la
Démographie, researchers from Orange and Telefònica among
others) in each country. These deployments are testimonies to
the scalability and robustness of the platform.

III. PRIVACY OF THE PLATFORM

OPAL belongs to the class of query-based systems, offering
data analysts a remote interface to ask questions and receive
answers aggregated from many records. Granting access to the

data only through queries, without releasing the underlying
raw data, mitigates the risk of typical re-identification attacks
[5]–[10]. Yet, a malicious analyst can often submit a series of
seemingly innocuous queries whose outputs, when combined,
will allow them to infer private information about participants
in the dataset [20], [21]. In section V, we give an overview of
the literature on privacy attacks and privacy-preserving mech-
anisms. In this section, we describe the different protection
layers put in place to protect privacy in query outputs and
mitigate the risk of attacks potentially attempted by malicious
analysts.

OPAL manages risks using a combination of server-side
security, authentication, audit, and network security. However,
those protections are only the core layer upon which adopters
can rely on and further extend it to meet the most stringent
requirements.

Server-side security. Many attacks on privacy employ a
relatively large number of queries to circumvent privacy pro-
tections, e.g. by averaging out noise [20]. To mitigate this risk,
OPAL includes a query rate limitation mechanism (e.g. 100
queries in 7 days). The architecture supports secure execution
of algorithms in sandboxed environments through CodeJail.
CodeJail (through AppArmor [22]) allows for the creation of
a collection of fine-grained rules for limiting the access any
executable has over the system. It is designed primarily for
Python execution but can be extended to other languages.

Authentication. All requests are verified by the Authenti-
cation service using OAuth-like tokens. A unique token is as-
sociated with each user account and must be supplied through
the request. Each user is assigned an access level during their
registration. The access level defines the restrictions on the
user for algorithms they can access, the limit of spatial and
temporal resolution in each query, and other settings defined by
the data curator. Upon successful authentication, the Interface
service validates the request. Further restrictions can also be
implemented such as maximum sampling size for an analysis.

Audit. The Auditing service provides access to the valid
and the invalid requests made to the system. Auditing is an
important part of the security of the platform as it enables
system administrators and governance board members for
ethical oversight to review all previous queries and detect any
potentially suspicious request or sequence of requests.

Network security. The layers are deployed into two differ-



ent VLANs to shield the platform from external brute force
attacks. This siloing enables to expose only the Interface
service in the Endpoints Layer to client’s applications while
the data and services are safely hidden from the rest of the
network. The platform is hosted behind a firewall and only the
Interface service is exposed to the internet.

MapReduce. OPAL relies on the MapReduce [16]
paradigm for computation. The Reduce methods currently
supported are count, sum and median. The use of MapReduce
helps privacy in two ways. First, it is easier to audit algorithms,
since the Map function is applied independently to each user
in the dataset, and hence it makes it hard for an attacker to
hide conditions that try to re-identify specific records. For
example, an IF statement that checks whether the user made a
call with duration 5m23s on 10/07/2018 would look suspicious
and raise a flag in the auditing phase. Second, the MapReduce
paradigm ensures that every output is the result of a final
aggregation step (i.e. the Reduce method). For example, if
the count function is selected, this ensures that every user
can contribute by at most 1 to the final output. While this
is not enough to guarantee privacy, it offers a first layer of
protection and simplifies the design of additional privacy-
preserving measures.

Algorithm auditing. All algorithms are evaluated by a
committee before being installed on the platform. Only system
administrators can install an algorithm. Further, if an algorithm
needs to use its own privacy module (see below), a special
token has to be passed in the request body that is verified
against the token in the Algorithm service configuration file.
This token is made available only to algorithm auditors and,
hence, it ensures that no algorithm with custom privacy module
is added without being audited.

Privacy module. Every OPAL algorithm consists of two
components:

1) The analysis algorithm, composed of the Map function
and Reduce method (see Section II).

2) An optional privacy module providing privacy-
mechanisms for the query.

The privacy module receives the output of the analysis
algorithm and has to ensure that the final output of each
query does not disclose personal data. This is typically
achieved via noise addition, query set size restriction, and
other techniques. The privacy module can provide differential
privacy [23] or any other privacy protection that the developer
wants to implement. Although solutions for general-purpose
privacy-preserving data analytics have been proposed [24]–
[29], they present limitations for utility, flexibility, or privacy
[21], [29], [30]. Algorithm-specific techniques can give strong
privacy protections and yield accurate results but need to be
designed and tuned for each new algorithm. OPAL allows
every algorithm to include a privacy module specific to that
algorithm, allowing developers to achieve a better privacy/u-
tility tradeoff in their algorithms. In this section, we present
a privacy module for the density algorithm that gives good
privacy protections and provides good utility. In particular, the

algorithm enforces geo-indistinguishability (GI) [31], a variant
of differential privacy (DP) [23].

A. The population density algorithm

The density algorithm is used to release the number of
users who spent most of their time in a certain area in a given
time interval. The algorithm accepts five parameters from the
analyst: resolution, keySelector, startDate, endDate, sample.

The keySelector is a list of areas for which the density needs
to be computed. This could be, for example, the id of a specific
borough or the name of a city. The resolution parameter
selects the spatial resolution of the requested locations. There
are three different resolution levels: borough, commune and
region. The list of all available areas and corresponding
resolution level is made available in the API documentation.

The startDate and endDate parameters specify the time
interval of interest. Both parameters can select any day and any
time of the form hh:00:00. The sample parameter is a value
between 0 and 1 that specifies the (random) fraction of users
sampled by the algorithm to compute the query. There are
three available values: 0.01, 0.1, 1. Larger sample parameters
yield better accuracy but require more time to compute, as the
platform needs to process more users. In density, sampling is
not used to improve privacy guarantees.

The output of the density query is a list of (key, value)
pairs, where each key is one of the areas specified in keySelec-
tor and value represents the number of users that spent most
of their time in that area during the specified time interval.
Note that a user might visit multiple locations in the same time
interval, but our algorithm adopts a winner-takes-all approach,
i.e. it assigns each user to at most one area (where the user
spent most of their time in the requested interval). A user can
thus contribute to count of only one element in the keySelector.

We denote by density(L, T1, T2, ρ) the output of the
density algorithm for the location L in the interval [T1, T2]
with sampling parameter ρ. To simplify the exposition, in the
rest of this section we present the details of density when a
single location L is selected. L denotes a generic geographic
area for an arbitrary resolution, and we denote by L the set
of locations at the resolution of L. So, for example, L could
be a set of cities or a set of regions. If keySelector contains
a list of locations (L1, . . . , Ln) that belong to L, the density
algorithm (including its privacy module) is run independently
on each Li.

B. Privacy module for density

We now present our design of the privacy module for the
density query. This serves as an example to demonstrate the
flexibility of the OPAL platform and offers a starting point for
the development of other algorithms.

The density algorithm employs three layers of protection:
geo-indistinguishability, low-count suppression, and output
noise addition. The specific combination and implementation
of these layers integrate flawlessly with OPAL’s infrastructure
and distributed computation flow.



Geo-indistinguishability. GI is a formal notion of location
privacy [31] to obfuscate single user locations. The formal
definition of GI depends on a parameter ε that controls how
quickly the privacy guarantees vanish for points that are far
from the true location. The parameter ε is called privacy loss.

Definition 1 (ε-geo-indistinguishability): Let X be a set of
locations and let A : X → X be a randomized algorithm.
Denote by d(·, ·) the Euclidean distance. A satisfies ε-geo-
indistinguishability if, for all x, x′ ∈ X and S ⊆ X ,

Pr[A(x) ∈ S] ≤ eεd(x,x
′) Pr[A(x′) ∈ S].

Definition 2 (Planar Laplace distribution): Let ε ∈ R+ and
x ∈ R2. The planar Laplace distribution centered at x is the
probability distribution on R2 with pdf

Dε(x)(x
′) =

ε2

2π
e−εd(x0,x).

Consider the mechanism that, on each input x, outputs x′

drawn from Dε(x)(x
′). One can prove that this mechanism

satisfies ε-GI. In practice, the obfuscated location x′ is ob-
tained by adding to the true location a noise value sampled
from a planar Laplace distribution centered in zero (see [31]).

In density, the location associated with every CDR is obfus-
cated using planar Laplace noise with parameter ε, producing
a sanitized dataset (this method is discussed in [32]). In our
implementation, we sanitize the data on-the-fly, using pseudo-
random generators, to avoid the need to store a sanitized
copy of the dataset and give more flexibility to developers
(see next paragraphs). Nevertheless, to simplify the exposition,
sometimes we use the expression “sanitized dataset” to refer
to the dataset that we would obtain if we saved every user
location obfuscated while executing the algorithm. By default,
every algorithm uses this sanitized dataset, but can also request
access to the original dataset.

Low-count suppression. The algorithm counts how many
users spent most of their time in the selected area. The count
is computed on the dataset sanitized with GI. If the count for
a certain area is below a fixed threshold B, then the count is
suppressed and the value associated with that area is set to
ValueTooLow in the output.

Output noise addition. Finally, density adds random noise
to every count that is not suppressed. The random noise value
is drawn from a normal distribution N (0, σ2), and is sampled
using a pseudo-random number generator. The seed is set to:

seed = hash(L, T1, T2, ρ,salt),

where salt is a long string known only to the data curator but
accessible from any algorithm, and the default hash function
is SHA-512. This ensures that the noise value is the same for
the selected area and time interval, and hence it cannot be
averaged out by repeating the same query [28].

The full algorithm is presented in detail in Procedure
density. In the algorithm, the majority element (or location)
of a list is the element with most occurrences. If there is a
tie, then the majority element is selected at random among
the most frequent.

Procedure density(L, T1, T2, ρ; ε, B, σ)
Input: Defined by analyst: location L ∈ L, time start T1,

time end T2, sampling parameter ρ.
Defined by data curator: GI parameter ε,
minimum threshold B, noise stdev σ

Output: number of sampled users who spent most of
their time in L during [T1, T2]

1 D ← fraction ρ of total users, selected at random
2 density ← 0
3 for i← 1 to |D| do
4 {x1, . . . , xn} ← locations with timestamps of useri

between T1 and T2
5 for j ← 1 to n do
6 seed← hash(useri, xj .time, xj .loc,salt)
7 x′j ← random location drawn from planar

Laplace pdf Dε(xj)(·) seeded with seed
8 lj ← nearest location from x′j in L
9 For each 10min interval in [T1, T2] select the

majority location Lj for that interval
10 {L1, . . . , Lm} ← majority locations, one for each

10min interval
11 L∗ ← majority location of {L1, . . . , Lm}
12 if L∗ = L then
13 density ← density + 1
14 if density < B then
15 return ValueTooLow
16 else
17 seed← hash(L, T1, T2, ρ,salt)
18 noise← draw random value from N (0, σ2) seeded

with seed
19 return density + noise

Choice of privacy parameters. The density algorithm
depends on three parameters: ε, B and σ. As these parameters
determine the privacy protections of the mechanism, they must
be fixed by the data curator. The defaults are:
• ε = 10 km−1. This ensures that the obfuscated locations

are statistically indistinguishable with confidence ε from
all the other locations within distance d. For the exact
meaning of this guarantee, we refer to [31]. In particular,
the expected distance between the true and obfuscated
location is 2/ε.

• B = 50. We believe that such a high value does not affect
utility significantly, as data analysts are not generally in-
terested in precise density values for populations smaller
than 50 individuals.

• σ = 10. Seen as an application of the Gaussian mecha-
nism [23], this corresponds to the protection level guar-
anteed by (ξ, δ)-differential with privacy loss ξ = 0.6
and parameter δ = 2.5 · 10−7 for a single query,
which is generally believed to provide meaningful privacy
[33]. Note that density does not really enforce DP
in general, as we do not limit the privacy budget over
multiple queries. We discuss this more in detail later on.

The utility of density. The density algorithm
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Figure 3. Percent error for queries computed using different time interval
lengths. In blue: Only geo-indistinguishability is applied (no output noise
addition). In red: Both geo-indistinguishability and output noise addition are
applied.

presents several advantages for utility, especially with respect
to accuracy of the outputs and running time. We tested
density on a real mobility dataset with millions of users
and thousands of antennas, using antenna-level resolution and
setting ε = 10 km−1. We ran density across all antennas
over 100 different time intervals of length 1 hour, 6 hours, 1
day, 3 days and 10 days. When σ = 0 (i.e. there is no output
noise addition), the median relative error between density
outputs larger than B = 50 and the true density values (i.e.
without defenses) is between 3-6% for all different lengths.
Setting the default σ = 10, the median relative error goes
up to 6-9%. This is because, even for longer time intervals,
a significant fraction of the outputs are rather small, but the
parameter σ for the Gaussian noise is not scaled to the output.
This is needed to provide stronger privacy guarantees [34]. As
for the computational efficiency, the average overhead due to
the GI sanitization is only 3%.

The privacy guarantees of density. The density al-
gorithm relies on GI as a formal notion of privacy. The specific
choice of GI as an obfuscation method is due, among other
things, to some of its mathematical properties. Most notably, it
abstracts from the adversary’s background knowledge and the
total privacy loss grows naturally (linearly) with the number
of observed user locations [31]. Additionally, GI’s guarantees
are preserved under multiple queries and specifically, they
are compatible with sampling: running the same query with
different sampling parameters does not affect the privacy
protection provided by GI.

Although inspired by DP, GI is fundamentally different.
It is easy to check that simply releasing aggregate statistics
computed on a dataset sanitized with GI does not enforce DP.
Similarly, the density algorithm is not designed to enforce
DP. Although the addition of Gaussian noise to each query
output ensures (ξ, δ)-DP on that output, the total (theoretical)
privacy loss for DP increases linearly with the number of
queries. In the current implementation of density, we do
not limit the privacy budget, hence the theoretical total privacy
loss for DP is unbounded. However, the overall rate of queries

per analyst is limited by OPAL’s Interface service. The default
limit is 50 queries/week.

Applying DP to mobility data provides very strong guar-
antees, but it is extremely challenging to preserve utility and
flexibility. One example is the mechanism by Acs et al. [35]
to release the population density in Paris. While the proposed
solution enforces DP, it presents two important limitations that
make it impractical for our use case. First, the data is available
only for one week. This allows to pre-sample a limited number
of locations for each user, hence improving privacy while
preserving good utility. In contrast, our algorithm can be used
to query data that spans several months or even years. Second,
the density is computed for slots of one hour. To obtain the
density across larger time frames, one would then take the sum
over the selected one-hour slots. However, this leads to biased
estimates for larger time intervals, as the same user may be
counted multiple times in different slots.

Attacks. We test the the privacy protections of density
against the membership inference attack (MIA) by Pyrgelis et
al. [36], [37]. This is a state-of-the-art membership attack on
aggregate mobility data: the attacker receives the outputs of
some density queries, and her goal is to determine whether
a certain user’s data was used to compute the outputs. MIA
assumes that the attacker has some auxiliary information. In
our experiments we use the subset of location prior. Due to
space constraints, we refer the reader to [37] for the attack
details.

We run the attack in a setting similar to [37] (using our
implementation, based on the original one). We consider 4
weeks of data for a city, and remove all the users with less
than 10 recorded activities across 4 weeks, obtaining a dataset
with 260k users. We note that MIA is less effective on users
with lower activity, thus removing them increases the average
success rate of the attack. Following the choice of parameters
in the original paper, we assume that the attacker has access
to 20% of the dataset (α = 0.2) and we run MIA on three
groups of 50 targets each, sampled from the highly, mildly,
and somewhat mobile groups respectively. We investigate the
results for several aggregation sizes (m), choosing logistic
regression as classifier as it gives the best results.

Pyrgelis et al. measure MIA’s effectiveness with a target-
specific AUC score. In Figure 4 we report the average AUC
over the 150 targets when the attack is run against density
(using default privacy parameters) and against an algorithm
that releases the true density values (without defenses). Fol-
lowing Pyrgelis et al., we additionally measure the robustness
of density by computing the privacy gain (PG). This metric
measures the normalized difference in the attack’s performance
when run against density and when run against an algo-
rithm that releases the true density values. The privacy gain can
vary between 0 (the attack attains the same effectiveness with
or without defenses) and 1 (the attack is completely ineffective
against defenses). We report the results in Figure 5 and find
that density protects against MIA. The average privacy
gain is almost 1 for every large aggregation size implying
that density provides strong privacy protection to almost
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Figure 5. Privacy gain of density for various aggregation sizes.

every target. We note that the privacy gain slightly decreases
for larger aggregation sizes. This is due to some “artificial”
regularity that improves the effectiveness of the attack when
run on larger aggregation sizes. We refer to [36] for the details.

Naturally, these results do not guarantee that density is
robust against any possible attack. However, we believe that
such a high resilience to the state-of-the-art attack on aggregate
mobility data is a good indication that density protects
individual’s privacy well.

IV. SCALABILITY OF THE PLATFORM

In this section, we study the performance of the individual
layers as the platform scales.

A. Management Layer

We evaluated the performance and resilience of the Manage-
ment Layer as the system scales. For both evaluations, a single
instance of MongoDB was deployed with 1000 concurrent
compute nodes. Requests are submitted to execute a sleep
job of 1s. Each job is scheduled, computed, and the results
are stored in MongoDB. A large number of compute nodes
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Figure 6. Left: Performance of a single scheduler w.r.t. the submission size.
Each point represents the average running time of 10 experiments along with
the standard deviation. Right: Performance of the Management Layer as the
number of schedulers decreases. Each point is the average running time of 3
experiments along with the standard deviation.

ensure that the time measured truly evaluates performance of
the Management Layer and not the computation bottleneck.
All the experiments were run on a single machine (48 cores,
250GB RAM, 256GB storage RAID 1 @7200RPM).

To evaluate the scaling capacity of the Managament Layer
as the number of concurrent jobs increases, we submit N
batches (N = 1, 10, 50 and 100) with 100 jobs per batch to a
single scheduler. A scenario of more than 10k jobs is unlikely
in a production environment as each job takes time (in hours)
to process. Figure 6 left plot shows that that submission and
scheduling scales linearly with a large number of requests.

To evaluate the resilience of the Management Layer as
the system horizontally scales, we submit a total of 10k
jobs with a varying number of schedulers. Five independent
clients (batches of size 100) insert jobs in MongoDB with
M schedulers (M=5,..,1) running in the background. Figure 6
right plot shows that computation time increases slightly as
the number of schedulers decreases. This behavior re-asserts
the resilience of our Management Layer, enabled by its multi-
master design, by showing that failure of multiple schedulers
has a negligible effect on performance.

B. Storage Layer

A key requirement of the platform is to be able to store
and serve billions of CDRs efficiently (see Section II-B). We
benchmarked various potential existing solutions, and evalu-
ated the performance of the chosen database with the scale
of data. We shortlisted four candidates after thorough review:
MongoDB, Timescale, InfluxDB, and Druid. To evaluate the
candidates, we conducted following benchmarks:

1) Insert a month of CDRs (74GB, this is typical size for a
month of data in a small to medium size country, stored
in a single CSV file) in a single process with batch size
10k. Evaluated time is average of 2 runs.

2) Run 5 different select queries fetching records in random
5 min intervals. Each retrieval fetched 60k records on
average. Average time over all the queries is reported.

Each solution was deployed in a container and the bench-
marks were executed sequentially using two identical ma-
chines (24 cores, 100GB RAM, 7200RPM storage), one hosted
the containers while the other one executed the scripts.



Databases Insertion time Select Time
MongoDB 13h 34m
Timescale 46h 0.7s
InfluxDB 34h 7s
Druid >48h 16m

Table II
BENCHMARKS FOR THE FOUR POTENTIAL DATABASE SOLUTIONS.
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Figure 7. Performance of select queries for Timescale w.r.t time interval
of the query. The fetching overheads are significant for smaller queries but
become marginal as the query interval size increases.

From Table II, we can see that Timescale provides an
order of magnitude lesser select time compared with the
other solutions while still having acceptable performances for
insertion time. The select is of key importance for OPAL as it
allows for faster computations of the requests in a production
environment. It is for these reasons that we chose Timescale
as the database. Timescale also provides us with standard SQL
engine and the extensibility capabilities of PostgreSQL.

Further, we evaluated the performance of Timescale in a
single deployment instance as the scale of data increases.
All the experiments were performed with Timescale-0.11,
Postgres-10, Python 3.5 and asyncpg [39] deployed in a
container on a single machine (48 cores, 189 GB RAM, 8
TB storage RAID 5 @10k RPM). We had 6 months of data
with more than 8 billion unique records.

First, we evaluated the insertion speeds (total data inserted
divided by the total time taken) to store an increasing number
of records in the database. The raw data was stored in
compressed CSV files, each containing an hour of data. Eight
workers ran in parallel, each retrieving a CSV file from a
shared queue and pseudonymizing each record before inserting
them in the database in batches of 2 million. We found that
insertion speed remained stable ∼13MB/s (average over 3
runs) as the amount of data inserted increased from 0 to
973 GB. This can be attributed to the transparent time-space
partitioning provided by Timescale [11]. Overall, 6 months of
data was inserted in less than a day.

Then, we evaluated the selection speed as the data is fetched
for increasing time intervals of 30 mins., 1 hr., 6 hrs., 1 day, 7
days, and 30 days. For each interval we measure the time taken
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Figure 8. Performance of the Compute layer for queries with various interval
range sizes and sampling parameters (blue: 1%, red: 10%, brown: 100%). We
also plot the number of users for each interval range.

from sending a query to completely parse the result and the
number of records fetched, averaged over 20 queries. Figure 7
shows speed remains largely similar as the intervals go from 1
day to 1 month. The lower speeds for smaller interval lengths
can be attributed to the database overheads which become
negligible as the interval length increases.

C. Computation Layer

We evaluate the scalability of the Computation Layer to
process large amounts of data using Codejail sandbox. This
experiment was conducted with two weeks of data containing
over 44 million records for 320k users on a single machine
(8 cores, 64 GB RAM, 7200 RPM storage). We measured the
time to compute density for 3 different intervals (1 hour, 1 day
and 1 week) over 3 different user sampling parameters (1%,
10%, and 100%). For each computation, the data is fetched in
batches of 50k users, and the map algorithm runs in parallel
over each fetched user. We used 6 workers for user processing
and 1 for fetching the data.

Figure 8 shows that the increase in compute time for
intervals of 1 hour to 1 day to 1 week is directly proportional
to the number of users in that interval. This behavior is
attributed to the fact that sandboxing is the bottleneck in the
computation. Sandboxing requires each user data to be saved
as a distinct file, and a new process is spawned for processing
data of each user, making it IO and CPU intensive. It takes
less than 1.5hrs to compute density for all the users for a week
of data while the analysis on 10% of the users over the same
period requires less than 9 minutes. Sampling is thus tailored
for scenarios when quick answers are required and utility can
be slightly compromised.

V. RELATED WORK

A large range of attacks on query-based systems have been
developed since the late 70’s [40], [41]. Most of these attacks
show how to circumvent privacy safeguards (e.g. query set



size restriction and noise addition) in specific setups. In 2003,
Dinur et al. [42] proposed the first example of an attack that
works on a large class of query-based systems. Since then,
numerous other attacks have been proposed in the literature.
These attacks address different limitations of previous ones,
particularly the computational time required to perform them.
A recent survey from Dwork et al. [43] gives a detailed
overview of attacks on query-based systems.

Privacy research has been increasingly focused on providing
provable privacy guarantees to defend query-based systems
against such attacks. However, the development of a privacy-
preserving platform for general-purpose analytics is still an
open problem [29]. General-purpose analytics usually refers
to systems that allow analysts to send many queries of dif-
ferent type, using a rich and flexible query language. Some
solutions based on differential privacy have been proposed, the
main ones being PINQ [24], wPINQ [25], Airavat [26], and
GUPT [27]. All of these systems however present limitations
[29], e.g. in simplicity of use for the analyst, which must
provide additional query parameters to the differential privacy
implementation. In particular, Airavat is based on MapReduce
like OPAL and enforces differential privacy by using a simple
application of the Laplace mechanism [23]. Like other general
differentially private mechanisms, a straightforward applica-
tion of the Laplace mechanism often destroys the utility of the
data for multiple queries [34]. Specifically, every aggregation
method supported by OPAL (count, sum, median) could be
easily made differentially private with the standard Laplace
or exponential mechanisms [23], [44], but this solution would
require to add a lot of noise to outputs in order to provide
meaningful guarantees.

In 2017, Johnson et al. [29] proposed a framework for
general-purpose analytics, called FLEX, which enforces dif-
ferential privacy for SQL queries without requiring any knowl-
edge about differential privacy from the analyst. However, the
actual utility achieved – level of noise added – by FLEX
has been questioned [30]. Diffix, a patented commercial
solution that acts as an SQL proxy between the analysts and
a protected database [28], [45] has recently been proposed
as an alternative to differential privacy. However, Diffix’s
anonymization mechanism has been shown to be vulnerable
to some re-identification attacks [21], [46], [47].

VI. DISCUSSION AND FUTURE WORK

The current implementation presents few challenges.
System. There is currently no live ingestion of new data,

as the data gets loaded periodically in bulk. This limits the
platform’s capabilities to, e.g., monitor a crisis and provide
adequate information for search and rescue parties.

The current implementation is targeted to scale up to the
medium-sized countries (e.g. up to 50M people). In order to
scale up to the larger countries, further work would be required
on the database side to ensure the efficient storage and retrieval
of the data across the different workers and further improve
the computation performances in the sandboxed environment.

Privacy. A more generic approach to privacy on the plat-
form is another challenge. Currently, generic noise addition,
strict caching and query set size restriction offer only a
basic layer of protection. Privacy is mainly provided by the
privacy module, which is algorithm-specific. General privacy-
preserving mechanisms that apply automatically to the outputs
of any query could simplify the development of new algo-
rithms. However, preserving good utility for general-purpose
analytics is still an open research problem (see section V).

In the future, we plan to test the robustness of density
against other attacks from the literature, profiling attacks [48]
and trajectory recovery attacks [49]. Finally, more investiga-
tion is required to assess the viability of GI for algorithms
other than density, from both the privacy and utility perspec-
tives.

VII. CONCLUSION

In this paper, we presented OPAL’s architecture for the
efficient and scalable analysis of massive amounts of loca-
tion data in a secure and privacy-preserving fashion. The
production deployments in Senegal and Columbia show that
the OPAL platform provides a flexible, scalable and robust
solution for large scale data analysis in the context of location
data analysis. The algorithms provided as part of the platform
aim at providing a privacy compliant solution while retaining
a high utility owing to the different privacy mechanisms that
have been put in place.
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