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Abstract. Password-Authenticated Key Exchange (PAKE) protocols
allow two parties that only share a password to establish a shared key
in a way that is immune to offline attacks. Asymmetric PAKE (aPAKE)
strengthens this notion for the more common client-server setting where
the server stores a mapping of the password and security is required even
upon server compromise; that is, the only allowed attack in this case is an
(inevitable) offline exhaustive dictionary attack against individual user
passwords. Unfortunately, current aPAKE protocols (that do not rely on
PKI) allow for pre-computation attacks that lead to the instantaneous
compromise of user passwords upon server compromise, thus forgoing
much of the intended aPAKE security. Indeed, these protocols use – in
essential ways – deterministic password mappings or use random “salt”
transmitted in the clear from servers to users, and thus are vulnerable
to pre-computation attacks.

We initiate the study of Strong aPAKE protocols that are secure as
aPAKE’s but are also secure against pre-computation attacks. We
formalize this notion in the Universally Composable (UC) settings and
present two modular constructions using an Oblivious PRF as a main
tool. The first builds a Strong aPAKE from any aPAKE (which in turn
can be constructed from any PAKE [26]) while the second builds a
Strong aPAKE from any authenticated key-exchange protocol secure
against KCI attacks. Using the latter transformation, we show a
practical instantiation of a UC-secure Strong aPAKE in the Random
Oracle model. The protocol (“OPAQUE”) consists of 3 messages,
requires 3 and 4 exponentiations for server and client, respectively
(including a multi-exponentiation and 1 or 2 fixed-base per party),
provides forward secrecy and explicit mutual authentication, is
PKI-free, supports user-side password hardening, has a built-in facility
for password-based storage-and-retrieval of secrets and credentials, and
accommodates a user-transparent server-side threshold implementation.

1 Introduction

Passwords constitute the most ubiquitous form of authentication in the
Internet, from the mundane to the most sensitive applications. The almost

⋆ This is a revised ePrint version of the paper which appeared in Eurocrypt 2018 [33].
See revision notes in Sec. 1.2.



universal password authentication method in practice relies on TLS/SSL and
consists of the user sending its password to the server under the protection of a
client-to-server confidential TLS channel. At the server, the password is
decrypted and verified against a one-way image typically computed via hash
iterations applied to the password and a random “salt” value. Both the
password image and salt are stored for each user in a so-called “password file.”
In this way, an attacker who succeeds in stealing the password file is forced to
run an exhaustive offline dictionary attack to find users’ passwords given a set
(“dictionary”) of candidate passwords. The two obvious disadvantages of this
approach are: (i) the password appears in cleartext at the server during login1;
and (ii) security breaks if the TLS channel is established with a compromised
server’s public key (a widespread concern given today’s too-common PKI
failures2).

Password protocols have been extensively studied in the cryptographic
literature – including in the above client-server setting where the user is
assumed to possess an authentic copy of the server’s public key [27,29], but the
main focus has been on password-only protocols where the user does not need
to rely on any outside keying material (such as public keys). The basic setting
considers two parties that share the same low-entropy password with the goal
of establishing shared session keys secure against offline dictionary attacks,
namely, against an active attacker that possesses a small dictionary from which
the password has been chosen. The only viable option for the attacker should
be the inevitable online impersonation attack with guessed passwords. Such
model, known as password-authenticated key exchange (PAKE), was first
studied by Bellovin and Merritt [7] and later formalized by Bellare et al. [6] in
the game-based indistinguishability approach. Canetti et al. [15] formalized
PAKE in the Universally Composable (UC) framework [14], which better
captures PAKE security issues such as the use of arbitrary password
distributions, the inputting of wrong passwords by the user, and the common
practice of using related passwords for different services.

Whereas the cryptographic literature on PAKE’s focuses on the above basic
setting, in practice the much more common application of password protocols is
in the client-server setting. However, sharing the same password between user
and server would mean that a break to the server leaks plaintext passwords
for all its users. Thus, what’s needed is that upon a server compromise, and
the stealing of the password file, an attacker is forced to perform an exhaustive
offline dictionary attack as in the above TLS scenario. No other attack, except
for an inevitable online guessing attack, should be feasible. In particular, the

1 See [2, 3] for examples of the detrimental effect of such exposure even for servers
that are not under malicious attack.

2 PKI failures include stealing of server private keys, software that does not verify
certificates correctly, users that accept invalid or suspicious certificates, certificates
issued by rogue CAs, servers that share their TLS keys with others – e.g., CDN
providers or security monitoring software, information (including passwords) that
traverses networks in plaintext form after TLS termination; and more.
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two main shortcomings of password-over-TLS mentioned earlier - reliance on
public keys and exposure of the password to the server - need to be eliminated.
This setting, known as aPAKE, for asymmetric PAKE (also called augmented
or verifier-based), was introduced by Bellovin and Merrit [8], later formalized in
the simulation-based approach by Boyko et al. [13], and in the UC framework by
Gentry et al. [26]. Early protocols proven in the simulation-based model include
[13,42,43]. Later, Gentry et al. [26] presented a compiler that transforms any UC-
PAKE protocol into a UC-aPAKE (adding an extra round of communication and
a client’s signature). This was followed by [34] who show the first simultaneous
one-round adaptive UC-aPAKE protocol. In addition, several aPAKE protocols
targeting practicality have been proposed, most with ad-hoc security arguments,
and some have been (and are being) considered for standardization (see below).

A common deficiency of all these aPAKE protocols, including those being
proposed for practical use, is that they are all vulnerable to pre-computation
attacks. Namely, the attacker A can pre-compute a table of values based on a
passwords dictionary D, so as soon as A succeeds in compromising a server it
can instantly find a user’s password. This weakens the benefits of security
against server compromise that motivate the aPAKE notion in the first place.
Moreover, while current definitions require that the attacker cannot exploit a
server compromise without incurring a workload proportional to the dictionary
size |D|, these definitions allow all this workload to be spent before the actual
server compromise happens. Indeed, this weakening in the existing aPAKE
security definition [26] is needed to accommodate aPAKE protocols that store
a one-way deterministic mapping of the user’s password at the server, say
H(pw). Such protocols trivially fall to a pre-computation attack as the attacker
A can build a table of (H(pw), pw) pairs for all pw ∈ D, and once it
compromises the server, it finds the value H(pw) associated with a user and
immediately, in log(|D|) time, finds that user’s password. Such devastating
attack can be mitigated by “personalizing” the password map, e.g., hashing the
password together with the user id. This forces A to pre-compute separate
tables for individual users, yet all this effort can still be spent before the actual
server compromise.

Note that the standard password-over-TLS scheme prevents pre-computation
by hashing passwords with a random salt visible to the server only. In contrast,
existing aPAKE protocols that do not rely on PKI, either don’t use salt or if they
do, the salt is transmitted from server to user during login in the clear3. Given
that password stealing via server compromise is the main avenue for collecting
billions of passwords by attackers, the above vulnerability of existing aPAKE
protocols to pre-computation attacks is a serious flaw (particularly applicable to
targeted attacks), and in this aspect password-over-TLS is more secure than all
known aPAKE schemes.

3 Note that even if the aPAKE protocol runs over TLS, the transmitted salt is open
to a straightforward active attack.
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1.1 Our contributions

We initiate the study of Strong aPAKE (SaPAKE) protocols that strengthen
the aPAKE security notion by disallowing pre-computation attacks.We formalize
this notion in the Universally Composable (UC) model by modifying the aPAKE
functionality from [26] to eliminate an adversarial action which allowed such pre-
computation attacks. As we explain above, allowing pre-computation attacks was
indeed necessary to model the security of existing aPAKE protocols.

The next contribution is building Strong aPAKE (SaPAKE) protocols. For
this we present two generic constructions. The first (Section 4) builds the
SaPAKE protocol from any aPAKE protocol (namely one that satisfies the
original definition from [26]) so that one can “salvage” existing aPAKE
protocols. To do so we resort to Oblivious PRF (OPRF) functions [25, 31],
namely, a PRF with an associated two-party protocol run between a server S

that stores a PRF key k and a user U with a password pw. At the end of the
interaction, U learns the PRF output Fk(pw) and S learns nothing (in
particular, nothing about pw). We show that by preceding any aPAKE
protocol with an OPRF interaction in which U computes the value
rw = Fk(pw) with the help of S and uses rw as the password in the aPAKE
protocol, one obtains a Strong aPAKE protocol. We show that if the OPRF
and the given aPAKE protocol are, respectively, UC realizations of the OPRF
functionality we present (based on [31]) and the original aPAKE functionality
from [26], the resultant scheme realizes our UC functionality FsaPAKE.

Our second transformation (Section 5) consists of the composition of an
OPRF with a regular authenticated key exchange protocol AKE. We require
UC security (with forward secrecy) for the AKE protocol as well as resistance
to KCI attacks. The latter is a common feature of public-key AKE protocols
that ensures that an attacker that learns the secret keys of one party P, but
does not actively control P, cannot use this information to impersonate
another party P′ to P. In our OPRF-AKE composition, U first runs the OPRF
with S to compute rw = Fk(pw); then it runs the AKE protocol with S using a
private key stored, encrypted under rw, at S who sends it to U. Crucial to the
security of the protocol is a “random-key robustness” property of the
encryption function that can be ensured, for example, by adding an HMAC to
a symmetric encryption scheme. Additionally, we assume the encryption to be
formally “equivocable” which requires random-oracle, or ideal cipher, modeling
of the encryption function (these requirements can be relaxed by a variant of
OPAQUE that dispenses with the encryption of the user’s private key). We
show that the aPAKE scheme resultant from the above composition realizes
our UC functionality FsaPAKE.

We use the above second transformation to instantiate a Strong aPAKE
protocol with a very efficient OPRF and any efficient UC-secure AKE with the
KCI property. The OPRF scheme we use, essentially a Chaum-type blinded
DH computation, has been proven UC-secure by Jarecki et al. [30, 31]. We
show that this OPRF scheme, which we call DH-OPRF(called 2HashDH
in [30, 31]), remains secure in spite of changes to the OPRF functionality that
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we introduce for supporting a stronger OPRF notion needed in our setting. We
call the result of this instantiation, the OPAQUE protocol. OPAQUE combines
the best properties of existing aPAKE protocols and of the standard
password-over-TLS. On the one hand, it greatly improves on TLS by not
relying on PKI and never exposing the cleartext password to the server. At the
same time, it resolves the major flaw of existing aPAKE protocols relative to
password-over-TLS, namely, their vulnerability to pre-computation attacks.

In addition, OPAQUE offers significant features for practical deployment.
Its modularity allows for its use with different key-exchange schemes that can
provide different features and performance tradeoffs. When implemented with
the DH-OPRF scheme, its cost is one exponentiation for the server and two
for the client4 in addition to the KE protocol cost which can be as little as
2.17 exponentiations per party using HMQV [38] (with full forward secrecy and
mutual explicit authentication). The OPRF messages are piggy-backed on those
of the AKE protocol for a total of three messages. Another feature of OPAQUE
is that it allows for client-side hardening (via hashing or memory-hard functions)
that increases the cost of offline dictionary attacks upon server compromise as
well as the cost of online guessing attacks. In Fig. 12 in Section 6 we show an
instantiation of OPAQUE in the RO model with HMQV as the AKE.

Compared to the practical aPAKE protocols that have been and are being
considered for standardization (cf., [1, 48]), OPAQUE fares clearly better on
the security side as the only scheme that offers resistance to pre-computation
attacks (other aPAKE protocols can be made “strong” by using our
methodology from Section 4). Performance-wise, OPAQUE is competitive with
the more efficient among these protocols (see Section 6). OPAQUE also
provides a unique functionality among aPAKE protocols in that it allows to
store and retrieve user’s secrets such as a bitcoin wallet, authentication
credentials, encrypted backup keys, etc., thus offering a far more secure
alternative to the practice of deriving low-entropy secrets directly from a user’s
password. Furthermore, OPAQUE allows for a user-transparent server-side
threshold implementation [32] where the only exposure of the user password -
or any stored secrets - is in case a threshold of servers is compromised and even
then a full dictionary attack is required.

Finally, we comment that while OPAQUE can completely replace password
authentication in TLS, it can also be used in conjunction with TLS for
protecting account information, for bootstrapping TLS client authentication
(via an OPAQUE-retrieved client signing key), or as an hedge against PKI
failures. In other words, while we are accustomed to use TLS to protect
passwords, OPAQUE can be used to protect TLS. We expand on this aspect in
Section 6.2.

Prior protocol variants. OPAQUE is not a completely new protocol. Variants
have been studied in prior work in several settings but none of these works
presents a formal analysis of the protocol as an aPAKE, let alone as a Strong

4 A variant of the protocol discussed in Section 6.3 allows one or both of the client’s
exponentiations to be fixed-base and offline.
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aPAKE, a notion that we introduce here for the first time. While our treatment
frames OPAQUE in the context of Oblivious PRFs [30, 31], its design can be
seen as an instantiation of the Ford-Kaliski paradigm for password hardening
and credential retrieval using Chaum’s blinded exponentiation. Most related is
Boyen’s work [12] which specifies and studies an instantiation of the protocol
(called HPAKE) in the setting of client-side halting KDF [11]. Jarecki et al. [30,
31] study a threshold version (also using the OPRF abstraction) in the context
of password-protected secret sharing (PPSS) protocols. Because of the relation
between PPSS and Threshold PAKE protocols [30], this analysis implies security
of OPAQUE as a PAKE protocol in the BPR model [6] but not as an aPAKE
(let alone as a strong aPAKE).

1.2 Revision Notes

The current version of this paper introduces substantial revisions in the formal
treatment relative to the proceedings version [33]. The protocol specification has
not changed except that the necessity for forward secrecy made explicit here
implies that OPAQUE cannot be implemented with a 2-message protocol as
depicted in [33] (see footnote 13 in page 48). We list the main formal changes
here with details provided in the corresponding sections.

1. We strengthen (Section 5.1) the AKE functionality with adaptive security
for both client and server (in [33] we only did it on the server side) which, in
particular, ensures forward secrecy as needed for the security of the OPAQUE
protocol.

2. We relaxed the Strong aPAKE functionality in three ways (Section 2).
First, in the event that the attacker guesses the password correctly, we
consider sessions that were created but not completed before the guessing
event as compromised, but only if the attacker actively interfered in these
sessions. Second, the attacker is allowed one password guess after a session
is completed (if it guesses correctly, it learns that the guess is correct but it
does not learn the key output by the completed session). Third, the
attacker can test if a user’s session runs on a password matching the
server’s even if the server does not run a sub-session whose ID matches the
tested user’s sub-session. While these relaxations are necessary for proving
security, they do not seem to earn the attacker any practical advantages.

3. The composition of OPRF and AKE functionalities that form the OPAQUE
scheme require a binding mechanism between the OPRF and AKE sub-
sessions which we implement by including in the AKE’s session identifier
a prefix of the OPRF session transcript (e.g., for DH-OPRF function, this
prefix is defined as the user’s initial value a). In order to formalize this
mechanism we extend the OPRF functionality in Section 3 to output a prefix
of the function’s transcript.

4. We identify the requirement for the authenticated encryption protecting the
user’s private key stored at S to be equivocable (Section 5.2).
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5. Pending revision: The material in Section 4 (compiler from aPAKE to strong
aPAKE) will be revised shortly to adapt the proof of Theorem 1 to the
modified OPRF and SaPAKE functionalities.

2 The Strong aPAKE Functionality

In this section we present the ideal Strong aPAKE UC functionality, FsaPAKE,
shown in Fig. 2, that will serve as our definition of Strong aPAKE security;
namely, we will call a protocol a secure Strong aPAKE if it realizes FsaPAKE.
Functionality FsaPAKE is a relaxation of the Strong aPAKE notion defined in
the proceedings version of this paper [33] to which we refer as FsaPAKE+ .5

Functionality FsaPAKE and its predecessor FsaPAKE+ build on the UC
asymmetric PAKE (aPAKE) functionality FaPAKE defined by Gentry et
al. [26]6 which, in turn, adapts the (symmetric) UC PAKE defined by Canetti
et al. [15] to the asymmetric case.

We present FsaPAKE in three stages: First, we explain how the UC
functionality FaPAKE used to define asymmetric PAKE security in [26] builds on
the symmetric UC PAKE notion of [15]. Then we show how functionality
FsaPAKE+ strengthens the definition from [26] to eliminate the vulnerability to
pre-computation attacks. Lastly, we derive our UC Strong aPAKE
functionality FsaPAKE by modifying FsaPAKE+ to account for adversarial
behavior which is possible against our main protocol OPAQUE from Section 5
but, as we argue, does not compromise practical security in any significant way.

Asymmetric PAKE. The aPAKE functionality of [26], denoted here FaPAKE

and shown in Fig. 1 (full text), extends the symmetric UC PAKE functionality
from [15] to the asymmetric (user-server) setting. First, in an aPAKE scheme
the server and the user run different programs: The user runs an aPAKE
session on a password (via command UsrSession) while the server runs it on
a “password file” file[sid] that represents server’s user-specific state
corresponding to the user’s password, e.g., a password hash, which the server
creates on input the user’s password via command StorePwdFile during
aPAKE initialization. Furthermore, FaPAKE models a possible compromise of a
server, via command StealPwdFile, from which the attacker obtains file[sid].
Such compromise subsequently allows the attacker to (1) impersonate the
server to the user, via command Impersonate, and (2) find the password via
an offline dictionary attack, modeled by command OfflineTestPwd. The
way functionality FaPAKE of [26] handles the offline dictionary attack is the
focus of the Strong aPAKE functionality we define, and which we discuss next.

Strong aPAKE vs. aPAKE. As discussed in the introduction, the aPAKE
functionality from [26] is too weak to ensure resistance to offline dictionary
attacks. Protocols proven secure in that model may allow an attacker to build

5 Functionality FsaPAKE+ was denoted FsaPAKE in [33], but we argue that it is stronger
than necessary, hence we denote it here with the plus sign.

6 Functionality FaPAKE was denoted FapwKE in [26].
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In the description below, we assume P ∈ {U, S}.

Password Registration

– On (StorePwdFile, sid ,U, pw) from S, if this is the first StorePwdFile

message, record 〈file,U, S, pw〉 and mark it uncompromised.

Stealing Password Data

– On (StealPwdFile, sid) from A∗, if there is no record 〈file,U, S, pw〉, return
“no password file” to A∗. Otherwise, if the record is marked uncompromised,
mark it compromised; regardless,

• If there is a record 〈offline, pw〉, send pw to A∗.

• Else Return “password file stolen” to A∗.
– On (OfflineTestPwd, sid , pw∗) from A∗, do:
• If there is a record 〈file,U, S, pw〉 marked compromised, do: if pw∗ = pw,

return “correct guess” to A∗; else return “wrong guess.”

• Else record 〈offline, pw〉.

Password Authentication

– On (UsrSession, sid , ssid , S, pw′) from U, send (UsrSession, sid , ssid ,U, S)
to A∗. Also, if this is the first UsrSession message for ssid , record
〈ssid ,U, S, pw′〉 and mark it fresh.

– On (SvrSession, sid , ssid) from S, retrieve 〈file,U, S, pw〉, and send
(SvrSession, sid , ssid ,U, S) to A∗. Also, if this is the first SvrSession

message for ssid , record 〈ssid , S,U, pw〉 and mark it fresh.

Active Session Attacks

– On (TestPwd, sid , ssid ,P, pw∗) from A∗, if there is a record 〈ssid ,P,P′, pw′〉
marked fresh, do: if pw∗ = pw′, mark it compromised and return “correct
guess” to A∗; else mark it interrupted and return “wrong guess.”

– On (Impersonate, sid , ssid) from A∗, if there is a record 〈ssid ,U, S, pw′〉
marked fresh, do: if there is a record 〈file,U, S, pw〉 marked compromised

and pw′ = pw, mark 〈ssid ,U, S, pw′〉 compromised and return “correct guess”
to A∗; else mark it interrupted and return “wrong guess.”

Key Generation and Authentication

– On (NewKey, sid , ssid ,P, SK∗) from A∗ where |SK∗| = ℓ, if there is a record
〈ssid ,P,P′, pw′〉 not marked completed, do:
• If the record is compromised, or P or P′ is corrupted, set SK := SK∗.
• Else if the record is fresh, a (sid , ssid , SK′) tuple was sent to P′, and at

that time there was a record (ssid ,P′,P) marked fresh, set SK := SK′.
• Else pick SK ←R {0, 1}

ℓ.
Finally, mark 〈ssid ,P,P′, pw′〉 completed and send (sid , ssid , SK) to P.

– On (TestAbort, sid , ssid ,P) from A∗, if there is a record 〈ssid ,P,P′, pw′〉
not marked completed, do:
• If it is fresh and there is a record 〈ssid ,P′,P, pw′〉, send Succ to A∗.
• Else send Fail to A∗ and (abort, sid , ssid) to P, and mark
〈ssid ,P,P′, pw′〉 completed.

Fig. 1: Functionalities FaPAKE (full text) and FsaPAKE+ ( shadowed text omitted)
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Password Registration

– On (StorePwdFile, sid ,U, pw) from S, if this is the first such message, record

〈file,U, S, pw〉, mark it uncompromised, set flag := uncompromised.

Stealing Password Data

– On (StealPwdFile, sid) from A∗, if there is no record 〈file,U, S, pw〉, return
“no password file” to A∗. Otherwise, if the record is marked uncompromised,
mark it compromised; regardless, return “password file stolen” to A∗.

– On (OfflineTestPwd, sid , pw∗) from A∗, if there is a record 〈file,U, S, pw〉
marked compromised, do: if pw∗ = pw, return “correct guess” to A∗

and set flag := compromised ; otherwise return “wrong guess.”

Password Authentication

– On (UsrSession, sid , ssid , S, pw′) from U, send (UsrSession, sid , ssid ,U, S)
to A∗. Also, if this is the first UsrSession message for ssid , record
〈ssid ,U, S, pw′〉 and mark it fresh.

– On (SvrSession, sid , ssid) from S, retrieve 〈file,U, S, pw〉, and send
(SvrSession, sid , ssid ,U, S) to A∗. Also, if this is the first SvrSession

message for ssid , record 〈ssid , S,U, pw〉 and mark it fresh.

Active Session Attacks

– On (Interrupt, sid , ssid , S) from A∗, if there is a record 〈ssid , S,U, pw〉
marked fresh, mark it interrupted and set dPT(ssid) := 1.

– On (TestPwd, sid , ssid ,P, pw∗) fromA∗, retrieve record 〈ssid ,P,P′, pw′〉 and:
• If the record is fresh then do the following: If pw∗ = pw′ return “correct

guess” to A∗ and mark 〈ssid ,P,P′, pw′〉 compromised, otherwise return
“wrong guess” and mark 〈ssid ,P,P′, pw′〉 interrupted.

• If P = S and dPT(ssid) = 1 then set dPT(ssid) := 0 and if pw∗ = pw′

then return “correct guess” to A∗ else return “wrong guess.”
In either case, if P = S and pw∗ = pw′ then set flag := compromised.

– On (Impersonate, sid , ssid) from A∗, if there is a record 〈ssid ,U, S, pw′〉
marked fresh, do: If there is a record 〈file,U, S, pw〉 marked compromised

and pw′ = pw, mark 〈ssid ,U, S, pw′〉 compromised and return “correct guess”
to A∗; otherwise mark it interrupted and return “wrong guess.”

Key Generation and Authentication

– On (NewKey, sid , ssid ,P, SK∗) from A∗ where |SK∗| = ℓ, if there is a record
〈ssid ,P,P′, pw′〉 not marked completed, do:

• If the record is compromised, or (P = S, the record is interrupted and
flag = compromised) , or either P or P′ is corrupted, set SK := SK∗.

• Else, if the record is fresh and (sid , ssid , SK′) was sent to P′ at the time
there was a record 〈ssid ,P′,P, pw′〉 marked fresh, set SK := SK′.

• Else pick SK ←R {0, 1}
ℓ.

Finally, mark 〈ssid ,P,P′, pw′〉 completed and send (sid , ssid , SK) to P.
– On (TestAbort, sid , ssid ,P) from A∗, if there is a record 〈ssid ,P,P′, pw′〉

not marked completed, do:
• If it is fresh and there is a record 〈ssid ,P′,P, pw′〉 send Succ to A∗.

• If it is fresh, P′ = S, and pw′ = pw, send Succ to A∗.

• Otherwise send Fail to A∗ and (abort, sid , ssid) to P, and mark
〈ssid ,P,P′, pw′〉 completed.

Fig. 2: Functionality FsaPAKE with marked additions relative to FsaPAKE+
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a dictionary prior to compromising a server so that when the compromise
occurs it immediately finds the user’s password (moreover, all previous
protocols proven under this functionality were indeed subject to such
pre-computation attack). In contrast, our UC Strong aPAKE functionality
FsaPAKE disallows such attacks. To explain how, we first consider functionality
FsaPAKE+ that serves as a nexus between FaPAKE and FsaPAKE. Functionality
FsaPAKE+ , presented in Fig. 1 (gray text omitted), was used to define Strong
aPAKE in the proceedings version of this paper [33] but it turns out to be too
restrictive as we explain below. As depicted in the figure, the only formal
difference between functionalities FaPAKE and FsaPAKE+ are in the actions upon
the stealing of the password file. Specifically, FsaPAKE+ omits recording the
〈offline, pw〉 pairs and does not allow for OfflineTestPwd queries made
before the StealPwdFile query. Let us explain. In FsaPAKE+ , the actions
upon server compromise, i.e., StealPwdFile, are simple. First, a flag is
defined to mark that the password file has been compromised. Second, once
this event happens, the adversary is allowed to submit password guesses and be
informed if a guess was correct. Note that each guess “costs” the attacker one
OfflineTestPwd query. This together with the restriction that these queries
can only be made after the password file is compromised ensure that shortcuts
in finding the password after such compromise are not possible, namely that
the attacker needs to pay with one OfflineTestPwd query for each password
it wants to test. Thus, pre-computation attacks are made infeasible.

Now, consider the FaPAKE functionality [26] which includes the text in gray
too. This functionality allows the attacker, via 〈offline, pw〉 records, to make
guess queries against the password even before the password file is
compromised. The restriction is that the responses to whether a guess was
correct or not are provided to the attacker only after a StealPwdFile event.
But note that if one of these guesses was correct, the attacker learns it
immediately upon server compromise. This provision was necessary in [26] to
prove their aPAKE protocol that included in the file[sid] a deterministic
publicly-computable hash of the password, thus allowing for a pre-computation
attack which lets the adversary instantaneously identify the password with a
single table lookup upon server compromise. Indeed, one can think of the pairs
〈offline, pw〉 in the original FaPAKE functionality as a pre-computed table that
the attacker builds overtime and which it can use to identify the password as
soon as the server is compromised. By eliminating the ability to get guesses
〈offline, pw〉 answered before server compromise in our FsaPAKE+

functionality, we make such pre-computation attacks infeasible in the case of a
Strong aPAKE.

Modeling Server Compromise and Offline Dictionary Queries. In
FsaPAKE+ as in FaPAKE, StealPwdFile and OfflineTestPwd messages from
A∗ to FsaPAKE+ are accounted for by the environment. This is consistent with
the UC treatment of adaptive corruption queries and is crucial to our
modeling. Note that if the environment does not observe adaptive corruption
queries then the ideal model adversary, i.e., the simulator, could immediately
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corrupt all parties at the beginning of the protocol, learning their private
inputs and thus making the work of simulation straightforward. By making the
player-corruption queries, modeled by StealPwdFile command in our
context, observable by the environment, we ensure that the environment’s view
of both the ideal and the real execution includes the same player-corruption
events. This way we keep the simulator “honest,” because it can only corrupt a
party if the environment accounts for it.

The same concern pertains to offline dictionary queries OfflineTestPwd,
because if they were not observable by the environment, the ideal adversary
could make such queries even if the real adversary does not. In particular,
without environmental accounting for these queries the FaPAKE and FsaPAKE+

functionalities would be equivalent because the simulator could internally
gather all the offline dictionary attack queries made by the real-world
adversary before server corruption, and it would send them all via the
OfflineTestPwd query to FsaPAKE+ after server corruption via the
StealPwdFile query. Such simulator would make the ideal-world view
indistinguishable from the real-world view to the environment if the
environment does not observe the sequence of OfflineTestPwd and
StealPwdFile queries.

Finally, we note that FsaPAKE+ (following FaPAKE) has effectively two
separate notions of a server corruption. Formally, it considers a static
adversarial model where all entities, including users and servers, are either
honest or corrupt throughout the life-time of the scheme. However, it adds a
crucial adaptive capability to the attacker against honest servers via the
StealPwdFile action. It results in leaking to the adversary the server’s
private state corresponding to a particular password file, but it does not give
the adversary full control over the server’s entity. In particular, the accounts on
the same server for which the adversary does not explicitly issue the
StealPwdFile command must remain unaffected. We adopt this convention
from [26] and we call a server “corrupted” if it is (statically) corrupt and
adversarially controlled, and we call an aPAKE instance “compromised” if the
adversary steals its password file from the server.

Functionality FsaPAKE: Functionality FsaPAKE+ captures the core notion of
security against pre-computation attacks for asymmetric PAKE protocols. It
also satisfies the essential property of PAKE protocols (asymmetric and
symmetric) that an attacker can only test one password guess per PAKE
session. However, this functionality is stronger than necessary in three ways.
First, it requires that an attacker who guesses a password cannot compromise
any existing session, not even those where the adversary actively tried to
impersonate a user, namely, incomplete interrupted sessions. This choice was
made by all prior UC PAKE functionality variants, symmetric [15] and
asymmetric [26], but it is an over-restrictive condition relative to definitions of
secure key-exchange protocols that do not guarantee the security of incomplete
sessions with active corruptions (e.g., if a party to a session is corrupted while
the session is open, no security is guaranteed for that session).
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Secondly, functionality FsaPAKE+ (as previous UC PAKE functionalities)
requires that a password tested in an active attack is efficiently extractable
(from adversary’s computation) before the attacked session completes. This
requirement cannot be satisfied by an aPAKE protocol where the user’s
messages are committing to a single tested password, but this password is
extractable only from the user’s computation after the protocol completes on
the server side. In this case the attacker cannot influence the computation of
the session key but it can still learn if its password guess is correct.

Third, functionality FsaPAKE+ , like FaPAKE [26], lets a man-in-the-middle
adversary observe whether some U and S sessions share the same password, by
“connecting” these two sessions, i.e. routing the messages back and forth
between them, and observing if either U or S aborts (which implies pw′ 6= pw)
or not (which might imply pw′ = pw). This is indeed a necessary information
leakage in any (sa)PAKE protocol where either party implements explicit
entity authentication, and aborts if the peer fails to authenticate. In UC
aPAKE functionality FaPAKE of [26] this password-matching test was modeled
with interface TestAbort which on input (sid , ssid ,P) replied Succ if and
only if, for the tested session 〈ssid ,P,P′, pw〉 there is a record of its
counterparty P′ running a session

〈

ssid ′,P′,P, pw′
〉

s.t. ssid ′ = ssid and
pw′ = pw. While this sub-session-specific password-equality verification makes
sense in the case of U sessions, whose each sub-sessions might run on a different
password, it seems an overkill in the case of S sub-sessions, which all run on
the same password file, a one-way function of a fixed password pw.

In our context, either requirement prevents proving security of the
protocols obtained via our general compiler from Section 5, including the
OPAQUE protocol from Section 6. For this reason we relax FsaPAKE+ to obtain
our definition of UC Strong aPAKE functionality FsaPAKE, presented in Fig. 2.
Changes with respect to FsaPAKE+ are highlighted with shadowed background.
FsaPAKE preserves the essential guarantees of FsaPAKE+ , i.e. the same level of
security against server compromise, the ability of the attacker to try at most
one password guess per session, and the security of all sessions that complete
while the user’s password is uncompromised. However, FsaPAKE relaxes the
FsaPAKE+ in three ways: First, it does not guarantee the security of sessions in
which the attacker actively interferes and which are not completed at the time
the attacker learns the password. Second, it allows for passwords tested by the
attacker in a given session to be extractable only after the session completes.
Third, it allows TestAbort to test if any U sub-session runs on the server’s
password without S running a sub-session with a matching ID.

The first relaxation is modeled by adding a flag, denoted flag, which indicates
whether the user’s password is guessed by the attacker via a TestPwd query
against some session of server S. When that occurs flag is set to compromised

and every actively attacked session of S, i.e. one whose record is set to either
interrupted or compromised, that completes when flag = compromised, is
treated as compromised and the attacker can set its session key.
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The second relaxation is modeled by adding a new query Interrupt,
which models an active attack against S session in which the adversary does
not contribute the password guess pw∗ straight away. Session (S, ssid) attacked
in this way is marked with flag dPT(ssid) set to 1, which allows the adversary
to make a delayed password test on this session. Namely, if dPT(ssid) = 1 then
an adversary can make one TestPwd query against session (S, ssid) regardless
of its status, i.e. either before this session completes via NewKey or after. In
the first case, i.e. if TestPwd is sent before the session completes and the
password guess pw∗ is correct then the adversary learns that pw∗ is correct,
flag is set to compromised, and all interrupted and still active S sessions,
including (S, ssid), are treated as compromised so the attacker can set their
session keys when they complete. In the second case, i.e. if TestPwd is sent
after the session completes, then the only thing the adversary gets is the
information whether the password guess pw∗ was correct or not, but it cannot
either influence or learn the session key output by (S, ssid).

Either way the TestPwd query sets flag dPT(ssid) to 0, and since the session
is then either interrupted or completed, no new password query can be made
against it. Note that the only new attack this mechanism allows for is that an
active attacker can make a “postponed” TestPwd query against this session,
when the session already completes, rather than making it before. However, the
password guess pw∗ is committed at the time of the active attack, because only
one pw∗ can be tested against the session; and since making the TestPwd query
after the session completes gives less power to the attacker than making it before
the session completes, and the latter is allowed by the standard (a)PAKE model,
this new attack avenue seems to offer no advantages to the attacker.

The third relaxation is modeled by allowing TestAbort on U’s sub-session
to reply Succ if U’s input pw′ matches S’s password pw, and the test proceeds
whether or not S runs a sub-session with a matching ssid .

Non-black-box Assumptions. Note that the aPAKE functionality requires
the simulator, playing the role of the ideal-model adversary, to detect offline
password guesses made by the real-world adversary. As pointed out by [26],
this seems to require a non-black-box hardness assumption on some
cryptographic primitive, e.g., the Random Oracle Model (ROM), which would
allow the simulator to extract a password guess from adversary’s local
computation, e.g., a local execution of aPAKE interaction on a password guess
and a stolen password file.

Server Initialization. We note that while FaPAKE defines password
registration as an internal action of server S, with the user’s password as a
local input, one can modify it to support an interactive procedure between user
and server, e.g., to prevent S from ever learning the plaintext password. Such
interactive initialization, would require a change in the FsaPAKE functionality to
allow the user to build the password file and send it to the server. For
simplicity, and in order to minimize changes relative to [26], we keep the
non-interactive functionality. See more about interactive initialization in
Section 6.1.
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Public Parameters: PRF output-length ℓ, polynomial in security parameter τ .
Conventions: For every i, x, value Fsid,i(x) is initially undefined, and if undefined
value Fsid,i(x) is referenced then FOPRF assigns Fsid,i(x)←R {0, 1}

ℓ.

Initialization
On message (Init, sid) from party S, if this is the first Init message for sid , set
tx = 0 and send (Init, sid , S) to A∗. From now on use tag “S” to denote the
unique entity which sent the Init message for the session identifier sid . (Ignore all
subsequent Init messages for sid .)

Server Compromise
On (Compromise, sid , S) from A∗, declare server S as compromised.
(If S is corrupted then it is declared compromised from the beginning.)
Note: Message (Compromise, sid , S) requires permission from the environment.

Offline Evaluation
On (OfflineEval, sid , i, x) from P∈{S,A∗}, send (OfflineEval, sid , Fsid,i(x))
to P if any of the following hold: (i) S is corrupted, (ii) P = S and i = S, (iii)
P = A∗ and i 6= S, (iv) P = A∗ and S is compromised.

Online Evaluation

– On (Eval, sid , ssid , S′, x) from P∈{U,A∗}, send (Eval, sid , ssid ,P, S′) to A∗.
On prfx from A∗, ignore this message if prfx was used before. Else record
〈ssid ,P, x, prfx〉 and send (Prefix, sid , ssid , prfx) to P.

– On (SndrComplete, sid , ssid ′) from S, send (SndrComplete, sid , ssid ′, S)
to A∗. On prfx′ from A∗, send (Prefix, sid , ssid ′, prfx′) to S. If there is a record
〈ssid ,P, x, prfx〉 for P 6= A∗ and prfx = prfx′, change it to 〈ssid ,P, x,OK〉, else
set tx++.

– On (RcvComplete, sid , ssid ,P, i) from A∗, ignore this message if there
is no record 〈ssid ,P, x, prfx〉 or if (i= S, tx=0, and prfx 6=OK). Else send
(Eval, sid , ssid , Fsid,i(x)) to P, and if (i= S and prfx 6=OK) then set tx−−.

Fig. 3: Functionality FOPRF with Adaptive Compromise

3 Oblivious Pseudorandom Function

An Oblivious Pseudorandom Function scheme (OPRF) is a central tool in all
our constructions. An OPRF consists of a pseudorandom function family F
with an associated two-party protocol executed between a server that holds a
key k for F and a user with an input x. At the end of the interaction, the user
learns the PRF output Fk(x) and nothing else, and the server learns nothing (in
particular, nothing about x). The notion of OPRF was introduced in [25]. The
first UC formulation of it was given in [30], including a verifiability property that
lets the user check the correct behavior of the server during the OPRF execution.
Later [31] gave an alternative UC definition of OPRF which dispensed with the
verifiability property, allowing for more efficient instantiations. The main idea
in the OPRF formulations of [30, 31] is the use of a ticketing mechanism that
ensures that the number of input values on which anyone can compute the OPRF
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on a key held by an honest server S is no more than the number of executions
of the OPRF recorded by S. This mechanism dispenses with the need to extract
users’ inputs as is typically needed in UC simulations and it allows much more
efficient OPRF instantiations.

Here we adopt the UC OPRF formulation from [31] as the basis for our
definition of adaptively secure OPRF functionality FOPRF, presented in Fig. 3.
We refer to [31,33] for detailed rationale for this functionality, but we note that
it requires PRF outputs to be pseudorandom even to the owner of the PRF
key k. This does not seem achievable under non-black-box assumptions, but it
is achievable, indeed very efficiently, in the Random Oracle Model (ROM). (In
Appendix B we show that the DH-OPRF scheme of [31] realizes FOPRF in ROM
under the same One More Diffie-Hellman assumption which was used to show
that the same protocol realizes the UC OPRF formalization of [31].) Note that
the reliance on non-black-box assumptions like ROM is called for in the aPAKE
UC context, see Section 2.

The UC OPRF definition shown in Fig. 3 is a revision of the definition given
in [33]. In Appendix A we include detailed explanations of the differences between
the UC OPRF of Fig. 3 and the UC OPRF defined in proceedings version of
this paper [33], as well as the differences between both of the above definitions
and the UC OPRF definition given in [31].

OPRF Transcript Prefixes. As we explain in Appendix A almost all changes
between UC OPRF formulation in Fig. 3 and the corresponding formulation in
the proceedings version of this paper [33] are syntactic. However, there is one
modification which is more than syntactic, which is that here we extend the UC
OPRF functionality so that both user and server sessions have additional local
output, which is a prefix of the OPRF protocol transcript. The protocol transcript
is of course application dependent, and how much of it counts as a prefix can
depend on the implementation, but the functionality FOPRF does not care what
these prefixes are except for the following constraint: If some subsession of server
S shares a protocol prefix with some subsession of user U, then the only party
which can compute function Fk(·) on some input x due to this interaction is that
U’s subsession, and not e.g. the adversary.

This property is not overly restrictive and indeed it is expected in any
implementation of OPRF. It means simply that if the man-in-the-middle
adversary forwards the messages exchanged between some U and S subsessions
until some point (that point defined how much of the OPRF transcript counts
as its prefix), then the adversary can no longer stage an active attack on S, and
use it to compute Fk(x) for x of its choice. The only choices the adversary has
in that case is to let U and S continue their interaction, which lets U compute
Fk(·) on U’s input, or interfere with it in a way which prevents everyone from
computing Fk(·) on any input in that subsession. In the OPRF scheme
DH-OPRF from [31], recalled in Appendix B, which realizes FOPRF under the
One More Diffie-Hellman assumption, the role of that prefix is played by the
user’s message a. Indeed, it is easy to see that an active attacker cannot
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succeed in computing Fk(x) on x of its choice if it forwards some honest U’s
message a to S instead of replacing it with its own message a′.

This “no successful active attack if transcript prefixes match” property of
OPRF is used in the proof of security of the Strong aPAKE protocol OPAQUE,
shown in the generic form in Fig. 8 in Section 5. In Section 5.2 we include a
more detailed explanation of how the security argument for OPAQUE uses this
property, but a general intuition is that this property forces the man-in-the-
middle attacker against an OPRF scheme to decide, for every S session, whether
to (I) make this session potentially useful for some U session or (II) make this S
session useful only to the adversary. (This is the consequence of making S and U

transcript prefixes either match or not match.) This can be useful in a higher-
level protocol (e.g., OPAQUE) because it allows the simulator of this protocol
decide whether a given S session can be “connected” to some honest U (case I)
or it is actively attacked (case II).

4 A Compiler from aPAKE to Strong aPAKE via OPRF

Under revision. This section is to be revised to adapt the proof to the
modified SaPAKE functionality from Fig.2 and OPRF functionality from
Fig. 3. We’ll do so shortly.

In Fig. 4 we specify a compiler that transforms any OPRF and any aPAKE
into a Strong aPAKE protocol. In UC terms the Strong aPAKE protocol is
defined in the (FOPRF,FaPAKE)-hybrid world, for FOPRF with the output length
parameter ℓ = 2τ . The compiler is simple. First, the user transforms its
password pw into a randomized value rw by interacting with the server in an
OPRF protocol where the user inputs pw and the server inputs the OPRF key.
Nothing is learned at the server about pw (i.e., rw is indistinguishable from
random as long as the input pw is not queried as input to the OPRF). Next,
the user sets rw as its password in the given aPAKE protocol. Note that since
the password rw is taken from a pseudorandom set, then even if the size of this
set is the same as the original dictionary D from which pw was taken, the
pseudorandom set is unknown to the attacker (the attacker can only learn this
set via OPRF queries which require an online dictionary attack). Thus, any
previous ability to run a pre-computation attack against the aPAKE protocol
based on dictionary D is now lost.

We assume that A always simultaneously sends queries (Compromise, sid)
and (StealPwdFile, sid) for the same sid , resp. to FOPRF to FaPAKE, because
in any instantiation of this scheme the server’s OPRF-related state and aPAKE-
related state would be part of the same file[sid]. Consequently, for a single sid ,
S’s status (compromised or not) in FOPRF and FaPAKE is always the same.
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Password Registration

On input (StorePwdFile, sid ,U, pw), S sends (Init, sid , pw) to FOPRF. On
FOPRF’s response (Init, sid , rw), S sends (StorePwdFile, sid ,U, rw) to FaPAKE.

Server Compromise

Message (StealPwdFile, sid) from A to functionality FsaPAKE is interpreted as if
A sent two messages: (1) a (StealPwdFile, sid) message to functionality FaPAKE

and (2) a (Compromise, S) message to functionality FOPRF.

Password Authentication and Key Generation

1. On input (UsrSession, sid , ssid , S, pw′), U sends (Eval, sid , ssid , S, pw′)
to FOPRF. On FOPRF’s response (Eval, sid , ssid , rw′), U sends
(UsrSession, sid , ssid , S, rw′) to FaPAKE.

2. On input (SvrSession, sid , ssid), S sends (SndrComplete, sid , ssid) to
FOPRF and (SvrSession, sid , ssid) to FaPAKE.

3. On (sid , ssid , SK) or (abort, sid , ssid) from FaPAKE, the recipient, either U or
S, outputs this message.

Fig. 4: Strong aPAKE Protocol in the (FOPRF,FaPAKE)-Hybrid World

4.1 Proof of Security

Theorem 1. The protocol in Fig. 4 UC-realizes the FsaPAKE functionality
assuming access to the OPRF functionality FOPRF and aPAKE functionality
FaPAKE.

Proof. For any adversary A, we construct a simulator SIM as in Fig. 5 and
Fig. 6. Following [14], without loss of generality, we may assume that A is a
“dummy” adversary that merely passes all its messages and computations to the
environment Z. We omit all interactions with corrupted U and S where SIM acts
as FOPRF and FaPAKE, since the simulation is trivial (SIM gains all information
needed and simply follows the code of FOPRF/FaPAKE). To keep notation brief we
denote functionality FsaPAKE as F .

We now show that the distinguishing advantage of Z between the real
world and the simulated world is negligible. The argument uses a sequence of
games, starting from the real world and ending at the simulated world; for any

two adjacent games Gi and Gi+1, let Dist
Gi,Gi+1

Z denote the distinguishing
advantage of Z between them, i.e.,

Dist
Gi,Gi+1

Z = |Pr[Z outputs 1 in Gi]− Pr[Z outputs 1 in Gi+1]|.

(Dist
Gi,Gi+1

Z is a function of the security parameter τ , but we omit τ below.)
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Z U/S

A FOPRF/FaPAKE

oo //
OO

��

OO

��
oo //

(a) real world

Z U/S

FsaPAKE

A SIM

oo //
OO

��

OO

��

OO

��
oo //

(b) simulated world

Initialization
(SIM assumes knowledge of server identity S and session identifier sid s.t. S

initialized the SaPAKE instance via message StorePwdFile to FsaPAKE.)
Set tx := 0 and tested := ∅ and send (Init, S, sid) to A as a message from FOPRF.

Stealing Password Data and Offline Queries

1. On (Compromise, sid) from A aimed at FOPRF and (StealPwdFile, sid)
from A aimed at FaPAKE, send (StealPwdFile, sid) to F .
If F returns “no password file,” pass it to A as a message from FaPAKE.
If F returns “password file stolen,” mark S and 〈file,U, S, ·〉 compromised
(record 〈file,U, S,⊥〉 and mark it compromised if there is no such record).
Furthermore, if · is a string rw and rw ∈ tested, then send rw to A as a message
from FaPAKE; else send “password file stolen” to A as a message from FaPAKE.

2. On (OfflineEval, sid , S, x) from A aimed at FOPRF, if S is corrupted
or marked compromised, send (OfflineEval, sid , FS(x)) to A as a
message from FOPRF (pick FS(x) ←R {0, 1}ℓ if it is undefined) and
(OfflineTestPwd, sid , x) to F . If F returns “correct guess,” retrieve
〈file,U, S, ·〉 (there must be such record, since if S is marked compromised, A
must have sent (Compromise, sid) aimed at FOPRF and (StealPwdFile, sid)
aimed at FaPAKE previously, and at that time 〈file,U, S, ·〉 was recorded); if
the last item is ⊥, replace it with FS(x).

3. On message (OfflineTestPwd, sid , rw∗) from A aimed at FaPAKE, add rw∗

to tested. If there is a record 〈file,U, S, rw〉 marked compromised, do:
– If rw = rw∗, send “correct guess” to A as a message from FaPAKE.
– Else send “wrong guess” to A as a message from FaPAKE.

Fig. 5: The Simulator SIM in the Stealing Password Data Phase
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Password Authentication

1. On (UsrSession, sid , ssid ,U, S) from F , send (Eval, sid , ssid ,U, S) to A as
a message from FOPRF. Also, if this is the first UsrSession message for ssid ,
record 〈ssid ,U, S〉 and mark it fresh.

2. On (SvrSession, sid , ssid ,U, S) from F , if there is no record 〈file,U, S, ·〉,
record 〈file,U, S,⊥〉 and mark it uncompromised; regardless, send
(SndrComplete, sid , ssid , S) and (SvrSession, sid , ssid ,U, S) to A as
messages from resp. FOPRF and FaPAKE. Also, if this is the first SvrSession

message for ssid , set tx++, record 〈ssid , S,U〉 and mark it fresh.
3. On (RcvComplete, sid , ssid , i∗) from A aimed at FOPRF, retrieve 〈ssid ,U, S〉;

ignore this message if (i) there is no such record, or (ii) i∗ = S and
tx = 0. Else augment the record to 〈ssid ,U, S, i∗〉 and mark it fresh, send
(UsrSession, sid , ssid ,U, S) to A as a message from FaPAKE, and if i∗ = S then
set tx−−.

Active Session Attacks

1. On (TestPwd, sid , ssid ,P, rw∗) from A aimed at FaPAKE, if there is a record
〈ssid ,U, S, i∗〉 (if P = U) or 〈ssid , S,U〉 (if P = S) marked fresh, mark it stale
and check if there is an x such that rw∗ = Fi∗(x) (if P = U) or rw∗ = FS(x)
(if P = S).
– If there are more than one such x’s, output collision and abort.
– If there is a unique such x, send (TestPwd, sid , ssid ,P, x) to F and pass

it to A as a message from FaPAKE.
Also, if P = S and F returns “correct guess,” retrieve 〈file,U, S, ·〉, and
if the last item is ⊥, replace it with rw∗.

– If there is no such x, send “wrong guess” to A as a message from FaPAKE.
2. On (Impersonate, sid , ssid) from A aimed at FaPAKE, if there is a record
〈ssid ,U, S, i∗〉 marked fresh, mark it stale and do:
– If i∗ = S, send (Impersonate, sid , ssid) to F , and pass F ’s response

(“correct guess” or “wrong guess”) to A as a message from FaPAKE.
– Else send “wrong guess” to A as a message from FaPAKE.

Key Generation and Authentication

1. On (NewKey, sid , ssid ,P, SK∗) or (TestAbort, sid , ssid ,P) from A aimed
at FaPAKE, if there is a record 〈ssid ,U, S, S∗〉 (if P = U) or 〈ssid , S,U〉 (if
P = S) not marked completed, pass the message from A to F . In the case
of (TestAbort, sid , ssid ,P), also pass F ’s response (Succ or Fail) to A as
a message from FaPAKE. Finally, mark the record above completed.

Fig. 6: The Simulator SIM in the Login Phase
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Games G0 and G1: G0 is the real world. In G1, on
(UsrSession, sid , ssid , S, pw′) from Z to U and (RcvComplete, sid , ssid , i∗)
from A to FOPRF, record 〈ssid ,U, S, i∗, rw′〉 (instead of 〈ssid ,U, S, rw′〉).
Obviously,

DistG0,G1

Z = 0.

Game G2: On (TestPwd, sid , ssid ,P, rw∗) from A to FaPAKE, if there is a
record 〈ssid ,U, S, i∗, rw′〉 (if P = U) or 〈ssid , S,U, rw〉 (if P = S) marked fresh,
check if there is an x such that rw∗ = Fi∗(x) (if P = U) or rw∗ = FS(x) (if
P = S).

– If there are more than one such x’s, output collision and abort.
– If there is a unique such x and x = pw′ (if P = U) or x = pw (if P = S), send

“correct guess” to A as a message from FaPAKE.
– In all other cases (i.e., x 6= pw′/pw or there is no such x), send “wrong guess”

to A as a message from FaPAKE.

First consider event collision. collision occurs if and only if there are more
than one x’s such that rw∗ = Fi∗(x) (if P = U) or rw∗ = FS(x) (if P = S). This
means that there are x1 6= x2 such that Fi∗(x1) = Fi∗(x2) or FS(x1) = FS(x2).
Note that FS(·) and Fi∗(·) are both random functions onto {0, 1}2τ . Assuming
that A sends qF Eval and OfflineEval messages aimed at FOPRF in total and
there are qU U sub-sessions, there are at most qF + qU + 1 F values defined in
total (qF defined by A’s actions, qU defined by U’s input to the protocol, and 1
by S’s input to the protocol), so we have that

Pr[collision] ≤
(qF + qU + 1)2

22τ+1
.

Next assume that collision does not occur. Consider the first message of
type (TestPwd, sid , ssid ,P, rw∗) (note that A receives a reply for the first
such message only, since 〈ssid ,P,P′, ·〉 becomes either compromised or
interrupted after the first message). In both G1 and G2, A receives “correct
guess” if and only if rw∗ = Fi∗(pw

′) (if P = U) or rw∗ = FS(pw) (if P = S), so
Z’s views in G1 and G2 in this case are identical. We have that

DistG1,G2

Z ≤ Pr[collision] ≤
(qF + qU + 1)2

22τ+1
,

which is a negligible function of τ .

Game G3: On (Impersonate, sid , ssid) from A to FaPAKE, if there is a record
〈ssid ,U, S, i∗, rw′〉 marked fresh, send “correct guess” to A if S is marked
compromised, i∗ = S and pw′ = pw; otherwise send “wrong guess.”

Similar with above, A receives a reply for the first Impersonate message
only, so we only consider the first such message. Note that in G2 A receives
“correct guess” if and only if S is compromised and rw′ = rw, where rw′ =
Fi∗(pw

′) and rw = FS(pw). Z’s views in G2 and G3 are identical unless (i∗ 6=
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S ∨ pw′ 6= pw) ∧ Fi∗(pw
′) = FS(pw) (in which case A receives “correct guess” in

G2 and “wrong guess” in G3). Since i∗ 6= S or pw′ 6= pw, Fi∗(pw
′) and FS(pw)

are two independent random strings is {0, 1}2τ ; therefore, for a single U session,
the probability that Fi∗(pw

′) = FS(pw) is at most 1/22τ . We have that

DistG2,G3

Z ≤
qU
22τ

,

which is a negligible function of τ .

Game G4: After Z sends (StorePwdFile, sid ,U, pw) to S, record
〈file,U, S,⊥〉 (instead of 〈file,U, S, rw := FS(pw)〉); replace ⊥ with
rw := FS(pw) in the following two cases: (i) when A sends
(OfflineEval, sid , S, pw) to FOPRF, and S is corrupted or marked
compromised; (ii) when A sends (TestPwd, sid , ssid , S, rw∗) to FaPAKE, and
rw∗ = rw.

If neither (i) nor (ii) happens, rw = FS(pw) is a random string in {0, 1}2τ in
Z’s view. Therefore, replacing rw with ⊥ in this case creates a 1/22τ

distinguishing advantage. We have that

DistG3,G4

Z ≤
1

22τ
,

which is a negligible function of τ .

Game G5: Postpone the recording of 〈file,U, S, ·〉 until (i) A sends
(Compromise, sid) to FOPRF and (StealPwdFile, sid) to FaPAKE, or (ii) S

sends (SvrSession, sid , ssid) to FaPAKE. Note that if neither (i) nor (ii)
happens, G4 does not retrieve 〈file,U, S, ·〉. Therefore,

DistG4,G5

Z = 0.

Note that in G5, rw = FS(pw) and rw′ = Fi∗(pw
′) are defined no matter A

queries them (i.e., A sends (OfflineEval, sid , S, pw) to FOPRF when S is
corrupted or marked compromised; or A sends (Eval, sid , ssid , pw′) and then
(RcvComplete, sid , ssid ,A, i∗) to FOPRF) or not.

Game G6: Leave rw (resp. rw′) undefined unless and until A queries FS(pw)
(resp. Fi∗(pw

′)).
If A does not query FS(pw) (resp. Fi∗(pw

′)), rw (resp. rw′) is a random string
in {0, 1}2τ in Z’s view. Since there is 1 rw and qU rw′’s, we have that

DistG5,G6

Z ≤
qU + 1

22τ
,

which is a negligible function of τ .

Game G7: G7 is the simulated world. We can see that the change from G6

to G7 is merely conceptual, with the game challenger split into the SaPAKE
functionality F and the simulator SIM. We have that

DistG6,G7

Z = 0.
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Summing up all results above, we conclude that Z’s distinguishing advantage
between the real world and the simulated world is a negligible function of τ . This
completes the proof.

5 A Compiler from AKE-KCI to Strong aPAKE via OPRF

Our second transformation for building a Strong aPAKE protocol composes an
OPRF with an Authenticated Key Exchange (AKE) protocol, “glued” together
using authenticated encryption. We require the AKE to be secure in the UC
model, namely, to realize the UC KE functionality of [18], and to also be “KCI
secure.” The latter notion was defined in [38] under a game-based formulation
and formalized in Section 5.1 below in the UC setting.

5.1 UC Definition of AKE-KCI

The notion of KCI (for “key-compromise impersonation”) security for KE
protocols, concerns an attacker A who learns party P’s long-term keys but
otherwise does not actively control P. Resistance to KCI attacks, or “KCI
security” for short, postulates that even though A can impersonate P to other
parties, sessions which P itself runs with honest peers are unaffected and
remain secure. A game-based definition of KCI security appears in [38], and
here we formalize it in the UC model through functionality FAKE−KCI, shown in
Fig. 7.7

Functionality FAKE−KCI extends the standard KE functionality of [18] with
two adversarial actions. The first, Compromise, when issued at a party P

models the leakage of P’s secret keys to the attacker. In contrast to the case
where P is corrupted, a compromised P is not controlled by the attacker A
but A can actively impersonate P in sessions with P′ by virtue of knowing P’s
keys. The second action, Impersonate, represents this ability of the attacker:
it is directed at sessions 〈ssid ,P′,P〉 where P is compromised and the result is
that A gets to choose the session key via the NewKey action. Note that if P is
compromised but not corrupted then sessions 〈ssid ,P,P′〉 with an
uncompromised and uncorrupted P′ are not considered compromised. This
captures the resistance to KCI attacks. All other elements in FAKE−KCI are the
same as in the basic UC KE functionality, except of syntactic adjustments to
the user-server setting.

Instantiations of AKE-KCI secure protocols. For concreteness we
consider two examples of key-exchange protocols that can satisfy AKE-KCI
security as defined above. While we do not include explicit proofs for these
protocols here, we argue their security based on known results. The first

7 The UC KCI-AKE functionality in Fig. 7 revises the UC KCI-AKE functionality
which appeared in [33] by handling adaptive compromise of either party, and not only
the server. The “two-sided adaptive” security of AKE is indeed needed in SaPAKE
protocol shown in Section 5.2, as we explain in Section 5.3.
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In the description below, we assume P,P′ ∈ {U, S}.

– On (UsrSession, sid , ssid , S) from U, send (UsrSession, sid , ssid ,U, S) toA∗.
If ssid was not used before by U, record 〈ssid ,U, S〉 and mark it fresh.

– On (SvrSession, sid , ssid ,U) from S, send (SvrSession, sid , ssid ,U, S) to A∗.
If ssid was not used before by S, record 〈ssid , S,U〉 and mark it fresh.

– On (Compromise, sid ,P) from A∗, mark P compromised.
– On (Impersonate, sid , ssid ,P) from A∗, if P is marked compromised and

there is a record 〈ssid ,P′,P〉 marked fresh, mark this record compromised.
– On (NewKey, sid , ssid ,P, SK∗) from A∗ where |SK∗| = τ , if there is a record
〈ssid ,P,P′〉 not marked completed, do:
• If the record is compromised, or P or P′ is corrupted, set SK := SK∗.
• If the record is marked fresh, a (sid , ssid , SK′) tuple was sent to P′, and

at that time record 〈ssid ,P′,P〉 was marked fresh, set SK := SK′.
• Else pick SK ←R {0, 1}

τ .
Finally, mark 〈ssid ,P,P′〉 completed and send (sid , ssid , SK) to P.

Fig. 7: Adaptively Secure Functionality FAKE−KCI

protocol we consider is the SIGMA protocol from [37] which is the basis for the
key exchange protocols behind TLS 1.3 and IKEv2. SIGMA has been proven
secure in [17] in the UC AKE formalization of [18]. While this formalization
does not include the KCI property, KCI can easily be argued for SIGMA based
on the unforgeability of the signature scheme. A second example is the HMQV
protocol from [38] whose KCI property was proved in [38] in the game-based
Canetti-Krawczyk model [16] extended to include KCI security. Here we
require UC security, namely, a protocol that realizes functionality FAKE−KCI.
Fortunately, [18] proves the equivalence of the game-based definition of [16]
and their UC AKE formulation (in particular, this equivalence applies to the
three-message HMQV with explicit authentication). While this UC formulation
does not include KCI security, the equivalence with the game-based definition
extends to the KCI case. Indeed, since the original equivalence from [18] holds
even in the case of adaptive party corruptions, the Compromise and
Impersonate actions introduced here – which constitute a limited form of
adaptive corruptions – follow as a special case. Finally, we note that the
equivalence between the above models also preserves forward secrecy, so this
property (proved in the game-based Canetti-Krawczyk model in [38]) holds in
the UC too. The security of HMQV (without including security against the
leakage of ephemeral exponents) is based on the CDH assumption in the RO
model [38].
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Public Components:

– KCI-secure AKE protocol Π with private/public keys denoted ps, Ps, pu, Pu;
– Random-key robust and equivocable authenticated encryption scheme AE =

(AuthEnc,AuthDec) with (2τ)-bit keys;
– Functionality FOPRF with output length parameter ℓ = 2τ .

Password Registration

1. On input (StorePwdFile, sid ,U, pw), S generates public key pairs (ps, Ps)
and (pu, Pu), and sends (Init, sid) and (OfflineEval, sid , S, pw) to FOPRF.

2. On FOPRF’s response (OfflineEval, sid , rw), compute c ←
AuthEncrw(pu, Pu, Ps) and record file[sid ] := (ps, Ps, Pu, c).

Server Compromise

– On (StealPwdFile, sid) from A, S retrieves file[sid ] and sends it to A.

Password Authentication and Key Generation

1. On (UsrSession, sid , ssid , S, pw′), U sends (Eval, sid , ssid , S, pw′) to FOPRF

and records FOPRF’s response (Prefix, ssid , prfx).
2. On (SvrSession, sid , ssid), S parses file[sid ] = (ps, Ps, Pu, c), sends (ssid , c)

to U and (SndrComplete, sid , ssid) to FOPRF. On FOPRF’s response
(Prefix, ssid , prfx′), S runs Π on (ps, Ps, Pu) and ssidΠ := [ssid ||prfx′].

3. On (Eval, sid , ssid , rw′) from FOPRF and c from S, U decrypts m :=
AuthDecrw′(c). If m can be parsed as (p′u, P

′

u, P
′

s) then U retrieves
(Prefix, ssid , prfx) and runs Π on input (p′u, P

′

u, P
′

s) and ssidΠ := [ssid ||prfx];
Else U outputs (abort, sid , ssid) and halts.

4. Given Π’s local output SK, each party, either U or S, outputs (sid , ssid , SK).

Fig. 8: OPRF-AKE: Strong aPAKE based on AKE-KCI and OPRF

5.2 Strong aPAKE Construction from OPRF and AKE-KCI

In Fig. 8 we present the Strong aPAKE protocol we call OPRF-AKE, because
it is based on OPRF and AKE-KCI, “glued” with the equivocable robust
symmetric encryption. The protocol uses the same OPRF tool as the Strong
aPAKE construction of Section 4, for length parameter ℓ = 2τ , which defines
the “randomized password” value rw = Fk(pw) for user U’s password pw and
OPRF key k held by server S. We assume that in the AKE-KCI protocol Π
each party holds a (private,public) key pair, and that the each party runs the
Login subprotocol using its key pair and the public key of the counterparty as
inputs. In Password Registration phase, server S generates the user U’s keys,
and S’s password file contains S’s key pair ps, Ps; U’s public key Pu; and a
ciphertext c of U’s private key pu, and the public keys Pu and Ps created using
an Authenticated Encryption scheme using rw = Fk(pw) as the key. After
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creating the password file, value pu is erased at S. In Login phase, S runs
OPRF with U, which lets U compute rw = Fk(pw), it sends c to U, who can
decrypt it under rw and retrieves its key-pair pu, Pu together with the server’s
key Ps, at which point both parties have appropriate inputs to the AKE-KCI
protocol Π to compute the session key.

Role of Authenticated Encryption. Protocol OPRF-AKE utilizes an
authenticated encryption scheme AE = (AuthEnc,AuthDec) to encrypt and
authenticate U’s AKE “credential” m = (pu, Pu, Ps). We encrypt the whole
payload m for simplicity; in fact, unlike U’s private key pu, values Pu, Ps could
be public and need to be only authenticated, not encrypted. However, the
authentication property of AE must apply to the whole payload. Intuitively, U
must authenticate S’s public key Ps, but if U derived even its key pair (pu, Pu)
using just the secrecy of rw = Fk(pw), e.g., using rw as randomness in a key
generation, and U then executed AKE on such (pu, Pu) pair, the resulting
protocol would already be insecure. To see an example, if an AKE leaks U’s
public key input Pu (note that AKE does not guarantee privacy of the public
key) then an adversary A who engages U in a single protocol instance can find
U’s password pw via an offline dictionary attack by running the OPRF with U

on some key k∗, and then given Pu leaked in the subsequent AKE it finds pw

such that the key generation outputs Pu as a public key on randomness
rw = Fk∗(pw).

Thus the role of the authentication property in authenticated encryption is
to commit A to a single guess of rw and consequently, given the OPRF key
k∗, to a single guess pw. (Note that our UC OPRF notion implies that F is
collision-resistant.) To that end we need the authenticated encryption to satisfy
the following property which we call random-key robustness:8 For any efficient
algorithm A,

AdvRBST,AE
A = Pr

k1,k2←R{0,1}τ
[c← A(k1, k2) s.t. AuthDeck1

(c) 6=⊥,AuthDeck2
(c) 6=⊥]

is a negligible function of τ . In other words, it must be infeasible to create an
authenticated ciphertext that successfully decrypts under two different randomly
generated keys. This property can be achieved in the standard model using
e.g., encrypt-then-MAC with a MAC that is collision resistant with respect to
the message and key, a property enjoyed by HMAC with full hash output. In
the RO model used by our aPAKE application one can also enforce it for any
authenticated encryption scheme by attaching to its ciphertext c a hash H(k, c)
for a RO hash H with 2τ -bit outputs.

Encryption Equivocability. In the security argument we also need the
authenticated encryption scheme to be equivocable in the following sense: In
the scenario where the adversary gets a ciphertext followed by the key, there is

8 This notion is a weakening of full robustness (FROB) from [23] where the attacker is
allowed to choose k1, k2 (in our case these keys are random). An even weaker notion,
Semi-FROB, is defined in [23] where k1, k2 are random but only k1 is provided to A.
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a simulator who first creates the ciphertext with no information about the
plaintext, and then creates the key given the plaintext. Formally, an
authenticated encryption scheme AE is equivocable if for any efficient
algorithm A, there is an efficient stateful simulator SIMEQV such that the

distinguishing advantage of A’s views in the following two games, AdvEQV,AE
R ,

is a negligible function of τ :

– The real game: A sends out message m, and computes its final output given
(c, k) produced as k ←R {0, 1}

τ and c← AuthEnck(m).
– The ideal game: A sends out message m, and computes its final output given

(c, k) produced as c← SIMEQV(|m|) and k ← SIMEQV(m).

(Since SIMEQV is stateful, we assume that when computing c← SIMEQV(|m|) it
creates an internal state which it then utilizes to compute k ← SIMEQV(m).)

Common encryption modes are equivocable under some idealized
assumption. For example, an encryption scheme that xor’s the message m with
a pad generated by a pseudorandom generator G is equivocable if we model G
as a random oracle. In this case, in response to an AuthEnc query, SIMEQV will
choose the ciphertext c at random; then, to respond to a corresponding Reveal

query with message m, SIMEQV programs G’s output to c ⊕ m. If the PRG is
implemented in counter mode using a block cipher a similar strategy works but
in the ideal cipher model. The above can be extended to Authenticated
Encryption modes. For example, if a MAC is computed on the ciphertext,
SIMEQV responds to an AuthEnc query by choosing a random MAC key k and
outputting (c,mack(c)) where c is chosen as above. To output the MAC key
upon a Reveal query with message m, SIMEQV outputs k (which is independent
of the message hence it works with any message).

Note on not utilizing FAKE−KCI. In Fig. 8 we abstract the OPRF protocol
as functionality FOPRF, but we use the real-world AKE-KCI protocol Π, rather
than functionality FAKE−KCI. The reason for this presentation is that in the KE
functionality of [18], of which FAKE−KCI is an extension, it is not clear how to
support a usage of the KE protocol on keys which are computed via some other
mechanism than the intended KE key generation. The KE functionality of [18]
assumes that each entity keeps its private key as a permanent state, authenticates
to a counterparty given its identity, and a KE party cannot specify any bitstring
as one’s own private key and a counterparty’s public key. This is not how we
use AKE in protocol OPRF-AKE in Fig. 8 precisely because U does not keep
state and has to reconstruct its keys from a password (via OPRF). However, we
can still use the real-world protocol Π, which UC-realizes FAKE−KCI, giving it
the OPRF-computed information as input. In the proof of security we utilize the
simulator SIMAKE, which shows that Π UC-realizes FAKE−KCI, in our simulator
construction, but we rely on its correctness only if U runs Π on the correctly
reconstructed (pu, Ps, Ps), and if the adversary causes U to reconstruct a different
string we interpret this as a successful attack on U’s login session.

Role of OPRF Transcript Prefixes. As discussed in Section 3, the UC OPRF
functionality FOPRF used here extends the corresponding functionality of the
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proceedings version of this paper [33] by having OPRF parties U and S output
an OPRF transcript prefix, whose implications are that for every S session the
adversary must follow one of the following paths: (I) If the transcript prefix
output by some S session matches the transcript output by some U session, then
this S session can only be used to let U compute Fk(pw

′) on U’s input pw′; or
(II) If the transcript prefix output by S does not match any prefix output by
some U, then this S session can only be used by the adversary, and in particular
it cannot be “connected” to some honest U session.

This property helps in the security proof of the SaPAKE protocol of Fig. 8.
The difference between that protocol and its variant shown in the proceedings
version of this paper [33], is that when U and S complete their OPRF interaction,
each party outputs an OPRF transcript prefix prfx, and when each party starts its
end of the AKE (sub)protocol, it runs the AKE with (sub)session ID’s computed
as ssidΠ := [ssid ||prfx], where ssid is the identifier of a particular instance of the
SaPAKE login protocol.

The security property of AKE, see Fig. 7, implies that U and S cannot
establish a shared session key unless they run on the same (sub-)session ID’s.
With sub-session ID’s defined as above, this implies that they cannot establish
a shared key unless their OPRF transcript prefixes match. This can be useful
in a security proof because for each server S session the adversary has to decide
if this S session can be “connected” to some honest U, because its OPRF
transcript prefixes match (case I), or this S session is actively attacked, and
cannot be matched with any U session, because its OPRF transcript prefix
does not match that of any U session (case II). This can help in the security
argument, because it lets the simulator decide which S session is (potentially)
actively attacked (case II), and which one is not (case I).

Here is why the simulator needs to be able to make this decision, and why
without this “no active attack if transcript prefixes match” property the security
argument does not quite work. (Indeed, this problem appears in the variant of
this protocol which was in the proceedings version of this paper [33], and this
is why we modify this protocol as described above.) Consider an adversary A
playing a man-in-the-middle attack between n simultaneous U sessions and n
S sessions. Consider an OPRF protocol which, like the DH-OPRF scheme of
Fig. 13 in Appendix B, is malleable, i.e. A can blind U’s messages to S and de-
blind S’s responses, and even though U-A and A-S communications cannot be
externally linked, A actually lets U compute the correct outputs in the OPRF
protocol with S. In the case of protocol DH-OPRF, the adversary A can do this
by replacing U’s message a with message a′ = (a)t to S, for t ←R Zq, and then
replacing S’s reply b′ = (a′)k with reply b = (b′)1/t to U. Note that b = ak so
U’s interaction with A is just as good as an interaction with S, but the U-A
interaction cannot be linked, by an external observer, to any unique S session.

This creates a problem in the simulation because if the simulator observes
that A locally computes Fk(pw

∗) for some pw∗, e.g. by observing A’s hash
function queries, the simulator needs to make (TestPwd, ..., S, pw∗) query
against some session of S, to program the Fk(pw

∗) output depending on
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whether pw∗ = pw or not. However, once the simulator sends TestPwd to S

session, that session becomes interrupted (assume pw∗ 6= pw), and cannot be
then connected, i.e. output the same session key, with any U session. If the A-S
and U-A interactions are unlinkable then the simulator can only choose S

session for TestPwd query at random. If A makes half of S session connect to
half of U sessions, while using the other half for local computation of Fk(·) on
n/2 password tests, the simulator needs to make too many guesses to be
successful with non-negligible probability. Fortunately, using (the hash of) the
OPRF transcript prefix (defined as the value a in this case) in the AKE
protocol solves this problem because now to make any U and S session connect
in the AKE instance the adversary has to make a′ = a, which the simulator
can detect. Since the modified OPRF security property says that such
prefix-matched OPRF sessions cannot be used by A to compute Fk(·), if the
simulator detects such computation by A, it can be tested against any S

session whose prefix does not match message a sent by any user U.

Role of Strong aPAKE Model Relaxations. As discussed in Section 2,
our notion of Strong aPAKE functionality FsaPAKE, Fig. 2, is a relaxation of a
variant of this notion presented in the proceedings version of this paper [33],
which we denote here as FsaPAKE+ , Fig. 1. We introduced these relaxations
because they model the adversarial behavior that is possible in protocol
OPRF-AKE, and although in Section 2 we explain that these relaxations are
mild and should be insignificant in practice, they are nevertheless necessary,
and in particular, protocol OPRF-AKE cannot be shown to realize the
stronger functionality FsaPAKE+ .

Recall from Section 2 that there are two relaxations which are introduced
in functionality FsaPAKE: (1) An attacker who tests the correct password guess
on some server S session can compromise all other open, i.e. not completed, S
sessions, even if the adversary already effectively tested other passwords on these
sessions; (2) An attacker must commit to a tested password for each S session,
but that tested password might be efficiently extractable, by the simulator, only
after the attacked session completes (although the attacker in that case learns
only if its password guess was correct or not, and learns no information about
the session key SK which that S session outputted, even if its password guess
was correct).

The need for both relaxations with regards to protocol OPRF-AKE stem
from two features of our notion of UC OPRF. The first one is a lack of a
binding between the server-side and client-side view of OPRF instances. Note
that instances of server S OPRF evaluation are indexed by (sub)session ID’s
ssids, and each of them allows the FOPRF-hybrid world adversary A to compute
function Fk on one argument x, as modeled by a sequence of queries
(Eval, sid , ssid∗, S, x) and (RcvComplete, sid , ssid∗,A, S) from A. However,
the OPRF functionality does not enforce any correspondence between the
server-side (sub)session ID ssids of S and the client-side “session” pointer ssid∗

used by A. Therefore if the environment opens n S sessions simultaneously
(note that all of them operate on the same password pw), then when A
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evaluates Fk(pw
∗) through Eval+RcvComplete commands above this

constitutes a password test (note that if pw∗= pw then rw=Fk(pw
∗) can

decrypt user-credentials (pu, Pu, Ps) from the authenticated ciphertext c), but
each such test is in effect a test against all open S sessions, because if n
OPRF-AKE S instances trigger n OPRF S instances then A can test n
passwords pw∗1, . . . , pw

∗
n, and if any of these tests is correct then A can use the

decrypted credentials (pu, Pu, Ps) as inputs to AKE subprotocols of all of these
n S sessions, and learn/determine the sessions keys SK∗1 , ..., SK

∗n on all of
them.

Note that this behavior is not allowed in the standard notion of UC
(Sa)PAKE: There each of the n simultaneously open S sessions are treated
separately, and the adversary can determine/learn only SK∗i for pw∗i = pw,
whereas the other secret keys, on sessions corresponding to the n − 1 incorrect
password guessess pw∗j 6= pw, would remain secure. As described in Section 2,
the relaxed functionality FsaPAKE allows A to compromise all incomplete
sessions if one of them is compromised, and the OPRF-AKE simulator SIM

utilizes this relaxation by sending (TestPwd, sid , ssid ′, S, x) to FsaPAKE, given
A’s queries (Eval, ..., x) and RcvComplete to FOPRF, for ssid

′ corresponding
to any S session which is not completed. (See step (4c) in SIM in Fig. 10.)

Note also that the above disconnection between the server-side and the
client-side OPRF evaluation is not only a feature of our abstract OPRF
functionality FOPRF, but also of protocol DH-OPRF, see Appendix B, which
implements this OPRF notion. (Indeed, this is implied by the fact that
protocol DH-OPRF realizes FOPRF.) Server-side instances of DH-OPRF are
formed by an in-coming message a, a random group element, and the server
response b = ak, while the client evaluation of Fk(x) is constitued by a hash
function query H2(x, v) for v = (H1(x))

k, thus there is no link between the
client-side evaluation of (H1(x))

k for any particular argument x, with any
particular instance of server S OPRF evaluation.

The second relaxation reflects the fact that A can evaluate Fk on a
password guess pw∗ after it interacts with S in the AKE’s sub-protocol, at
which point S session completes. If none of the on-line password tests succeeded
so far this AKE instance is secure, and hence is this overall OPRF-AKE
instance, because A doesn’t know the user’s authentication keys (pu, Pu, Ps).
However, if A evaluates Fk(pw

∗) after this session ends it still learns if
pw∗= pw, because A can test if Fk(pw

∗) correctly decrypts ciphertext c. In the
standard UC (Sa)PAKE functionality this would not be simulatable, and thus
we relax FsaPAKE so it allows such “delayed” password test. The OPRF-AKE
simulator SIM relies on this relaxation by sending Interrupt on all actively
attacked S sessions in step (2a) in Fig. 10, and by reacting to (Eval, . . . , x)
message in step (4c) by doing (TestPwd, . . . , x) on any non-completed S

session if any exist, and if they are not then doing a “postponed” password test
on some completed (and previously untested) S session in step (4(c)i).

Role of Adaptive Security of AKE and of Equivocable Encryption. Let
us also explain why we need the AKE protocol Π to allow adaptive compromise
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for both parties, and why we need the authenticated encryption scheme AE to be
equivocable. Assume for now that the two parties’ passwords match, i.e., pw′ =
pw. Recall that an adversary A may compromise S at any time and perform an
offline dictionary attack, and that A can perform an on-line dictionary attacks
by running the authentication protocol protocol with different password guesses.
Observe the following facts:

– If A does not compromise S, then Z learns no information about ps. On the
other hand, if A compromises S, then Z learns ps as part of file[sid ]. This is
equivalent to S being compromised in Π.

– If A does not run an either online or offline dictionary attack then rw =
FS(pw) is a random string in Z’s view, so by security of AE, Z learns no
information about pu. On the other hand, if A succeeds in either online or
offline dictionary attack and learns rw = FS(pw), then Z learns pu by parsing
m = AuthDecrw(c). This is equivalent to U being compromised in Π.

Note that A may compromise S and/or compute FS(pw) at any time. Hence,
we need the AKE protocol Π to tolerate adaptive corruptions of either party.

This also shows why we need AE to be equivocable. Consider an adversary
A who first sees c (in a message from S to U) and then learns rw (via an offline
attack). The security of Π relies on the condition that pu is kept random in A’s
view until U is compromised (which, as argued above, is equivalent to A learning
rw). However, A first sees the ciphertext c, and then learns the decryption key rw,
so two things must hold about encryption AE: (1) Ciphertext c = AE(rw,m) must
hide all information about the encrypted plaintextm until rw is revealed; (2) The
adversary might at some point learn the decryption key rw s.t. c = AE(rw,m).
Standard encryption security does not guarantee the security in this adaptive
setting, and in particular the standard simulation strategy of replacing c with
an encryption of an unrelated value m′ would fail requirement (2) above. The
equivocability of AE is exactly what is needed here, because it implies an efficient
simulator which can create ciphertext c given only the length of the encrypted
plaintext (hence until rw is revealed c leaks nothing about pu), and then given
any plaintextm, e.g.m = (pu, Pu, Ps), it can produce rw s.t. c = AuthEnc(rw,m).

5.3 Proof of Security

We state and prove the Strong aPAKE security of the generic composition
protocol OPRF-AKE from Fig. 8 in the following theorem:

Theorem 2. If protocol Π UC-realizes functionality FAKE−KCI, and AE is a
random-key robust and equivocable authenticated encryption scheme, then the
protocol in Fig. 8 UC-realizes functionality FsaPAKE in the FOPRF-hybrid model.

Overview of Simulation Strategy. We start with a high-level description of
the simulation strategy, whereas the detailed simulation algorithm SIM is
contained in Fig. 9, 10, and 11, each figure dealing with the different aspect of
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protocol OPRF-AKE and hence the simulation as well. Recall that the security
proof must construct a simulator SIM which interacts as an ideal-world
adversary with functionality FsaPAKE, and creates an indistinguishable view to
the environment as that of a real-world adversary A interacting with the
honest parties in protocol OPRF-AKE.

Consider first the simulation of the password file storage, i.e., the offline
security of OPRF-AKE. The actions of simulator SIM regarding this phase are
described in Fig. 9, but the idea is that SIM generates a virtual FOPRF instance
FS (instead of computing rw := FS(pw)) and generates c using simulator
SIMEQV assumed by the equivocability of encryption AE. If server S later
becomes compromised, A learns file[sid ] (which SIM obtains by sending
(Compromise, sid , S) to SIMAKE) and also gains offline evaluation access to the
FOPRF instance simulated by SIM. At this point A can stage an offline
dictionary attack on the password file, by sending (OfflineEval, sid , S, x)
queries aimed at FOPRF. The simulator SIM services each such query by
sending (OfflineTestPwd, sid , x) to FsaPAKE. If FsaPAKE replies “wrong
guess” then SIM replies to A with FS(x) ←R {0, 1}

ℓ. If, however, FsaPAKE

replies “correct guess” then SIM learns that A’s password guess x is equal to
the password pw for which this FsaPAKE instance was initialized, and in this
case SIM lets SIMEQV reveal rw s.t. c = AuthEnc(rw, (pu, Pu, Ps)) and
“programs” value FS(x) on x = pw to rw.9 By the “random even to the key
holder” property of UC OPRF, the adversary’s view of FS outputs set as above
is identical to those in the real protocol.

Regarding the login phase, i.e., the online security of OPRF-AKE, let us
first fix some notation. We use i∗ to denote the function pointer used by A
in (RcvComplete, sid , ssid ,U, i∗) for U’s OPRF session, and c∗ to denote the
ciphertext in the message which A passes to U after OPRF evaluation. As in
functionality FsaPAKE, Fig. 2, we use pw to denote S’s password, and pw′ to denote
U’s password. The details of the simulation procedure regarding the online phase
are divided between Fig. 10, where we show how SIM reacts to A’s messages to
the OPRF functionality FOPRF (recall that A is an adversary in the FOPRF-hybrid
world), and Fig. 11, where we show how SIM reacts to A’s messages related to
AKE protocol Π. However, the main ideas of the simulation can be explained
by considering the two cases of the man-in-the-middle adversary, who can (1)
emulate the server to honest user U instances and (2) emulate the user to honest
server S instances, and below we overview how SIM handles each case.

When A plays as the server to some user instance (sid , ssid ,U), the key
observation is that U outputs (abort, sid , ssid) with overwhelming probability,
except for either of the following two cases:

– Case (∗) corresponds to line (1a) in AKE Simulation part of Simulator SIM
in Fig. 11, and it involves the following two conditions: (i) A is passive until
the execution of Π begins, i.e., i∗ = S and c∗ = c, and (ii) the two parties’
passwords match, i.e., pw′ = pw. (Note that SIM can test if pw′ = pw via a

9 Note that after S compromise, A could also guess the correct password pw in an
online attack, but as we argue below SIM we can handle that in a similar way.
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TestAbort message.) In this case U’s input is the “correct” (pu, Pu, Ps), so
SIM can outsource the simulation of AKE protocol Π on behalf of this U’s
instance, denoted Πu, to SIMAKE.

– Case (∗∗) corresponds to line (1(b)iii) in AKE Simulation part of Simulator
SIM in Fig. 11, involves the condition that A computes rw′ = Fi∗(pw

′),
which can happen (i) in an online OPRF instance between A and S if
i∗ = S, or (ii) via offline computation (OfflineEval, sid , i∗, pw′) if i∗ = S

and S is compromised or corrupted, or (iii) via offline computation
(OfflineEval, sid , i∗, pw′) if i∗ 6= S. In all of these cases Z can choose
(p∗u, P

∗
u , P

∗
s ) and set the ciphertext c∗ as c∗ ← AuthEncrw′(p∗u, P

∗
u , P

∗
s ).

However, SIM, who sees A’s OPRF queries, will learn the same information
as well, so it can simulate U’s behavior by running Πu on the same inputs
as the real-world U would use. Here the random-key robustness of AE is
needed, because it guarantees that c∗ decrypts to m 6=⊥ for at most one
key (with overwhelming probability), which allows SIM to determine
(i∗, pw′) such that c∗ is a valid encryption under key rw′ = Fi∗(pw

′).

When A plays as the user to some server instance (sid , ssid , S), the input of S
is always the “correct” (pu, Pu, Ps). Therefore, SIM can outsource the simulation
of AKE protocol Π on behalf of this S’s instance, denoted Πs, to SIMAKE. Note
that user’s AKE authentication token pu is hidden to A unless and until A
computes rw = FS(pw), via either guessing pw and then evaluating OPRF on
pw, or by compromising S and then running an offline dictionary attack. In
both cases SIM can extract pw by observing A’s interaction with FOPRF, send
(TestPwd, sid , ssid , S, pw) to FsaPAKE and learn that pw is S’s password, and
then send (Compromise, sid , ssid ,U) to SIMAKE.

Simulation Components. Since protocol OPRF-AKE relies on the UC
security of two components, OPRF and AKE, we briefly describe how the real
world and the ideal world interactions involve the protocols, functionalities, or
simulators of these components. We describe these two scenarios schematically
in a diagram below, where for simplicity we call the FOPRF-hybrid world
execution the “real world”. However, since it is an execution in the
FOPRF-hybrid world, it involves an interaction between A and U/S via
functionality FOPRF, while the direct interaction between A and U/S pertains
to the other two components of OPRF-AKE, namely the AE ciphertext c, and
the AKE protocol Π. Regarding the ideal world execution, recall that protocol
Π realizes functionality FAKE−KCI, hence there is a simulator SIMAKE which can
be used to simulate Π’s execution. Indeed, our simulator SIM uses simulator
SIMAKE as a sub-routine, essentially “outsourcing” to SIMAKE the interactions
of A with (1) all Π executions run by S instances, and (2) those Π executions
run by U instances which fall into case (∗) above, i.e. where U runs on its
intended inputs (pu, Pu, Ps). On these Π instances SIM passes all the messages
between A and SIMAKE, which we denote in part (b) of the diagram below as
the direct link between A and SIMAKE. All the other aspects of the simulation,
namely (1) the AuthEnc ciphertext c, (2) the emulation of the OPRF
functionality FOPRF, and (3) Π executions of U instances which fall into case
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(∗∗), will be handled directly by SIM. Finally, note that simulator SIMAKE,
while interacting with A, expects to communicate with the ideal AKE
functionality FAKE−KCI. Simulator SIM will therefore internally emulate two
functionalities: The OPRF functionality FOPRF, used for interactions with A,
and the AKE functionality FAKE−KCI, used for interactions with SIMAKE.

Z U/S

A FOPRF

oo //
OO

��

OO

��
oo //
}}

c+Π

==

(a) real world

Z Ū/S̄

FsaPAKE

A SIM

SIMAKE

oo //
OO

��

OO

��

OO

��
oo c+FOPRF+Π(∗∗) //

OO

FAKE−KCI

��

gg
Π

''

(b) simulated world

Proof by Game Changes. As is standard in UC security proofs, we assume
w.l.o.g. that A is a “dummy” adversary who merely passes through all its
messages to and from Z. To keep notation brief we denote functionality
FsaPAKE as F , and we use Πu and Πs for, respectively, U’s and S’s algorithm in
the execution of protocol Π. We use S and sid to denote the unique server
entity and session identifier such that S initialized this SaPAKE instance via
command (StorePwdFile, sid , ...) to FsaPAKE, and we assume that SIM knows
both identifiers.

Let AdvEQV,AE
R , AdvAUTH,AE

R , and AdvRBST,AE
R denote an advantage of

algorithm R in, respectively, the equivocability game, authenticity game, and
random-key robustness game of authenticated encryption scheme AE. Fix an
efficient environment Z, and a dummy adversary A, and let qF be the number
of Eval and OfflineEval messages sent by A or Ū given this Z, and let qU
be the number of U SaPAKE instances, i.e. the number of UsrSession queries
sent to all user U entities by Z. We will show that the advantage of Z in
distinguishing between the real world and the simulated world executions is
negligible, and we do so using a sequence of games, starting from the real world
and ending at the simulated world. For any two adjacent games we use

Dist
Gi,Gi+1

Z to denote the advantage of Z in distinguishing Gi and Gi+1.

Game G0: G0 is the real world.

Note that in G0, an instance of U and sub-session ID ssid results in U

outputting (abort, sid , ssid) if and only if it receives (ssid , c∗), A specifies
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Initialization
Set tx := 0. Initialize SIMAKE and function family {Fi} s.t. for all (i, x), including
i= S, Fi(x) is undefined. Whenever SIM references undefined value Fi(x) below,
set Fi(x) ←R {0, 1}

ℓ. Set c ← SIMEQV(kpr + 2kpb), where kpr, kpb are the lengths
of private/public AKE keys, and record file[sid ] := (⊥,⊥,⊥, c).

Stealing Password Data and Offline Queries

1. On (Compromise, sid) aimed at FOPRF and (StealPwdFile, sid) aimed
at S from A (we assume A sends these commands together), send
(StealPwdFile, sid) to F . If F returns “no password file,” pass this
message to A on behalf of S. Otherwise declare S compromised, send
(Compromise, sid , S) to SIMAKE, and on response (ps, Ps, Pu) reset file[sid ] :=
(ps, Ps, Pu, c) and send it to A on behalf of S.

2. On (OfflineEval, sid , i∗, x) from A aimed at FOPRF, do the following:
– If i∗ = S and S is not compromised, ignore this message.
– If i∗ = S and S is compromised, send (OfflineTestPwd, sid , x) to F .

If F returns “correct guess,” send (Compromise, sid ,U) to SIMAKE, and
on response (pu, Pu, Ps) set rw ← SIMEQV(pu, Pu, Ps) and FS(x) := rw,
record 〈file,U, S, x〉, and declare U compromised.

Finally, send (OfflineEval, sid , Fi∗(x)) to A on behalf of FOPRF.

Fig. 9: Simulator SIM for SaPAKE of Fig. 8: Initialization and Offline Attack

index i∗ in the (RcvComplete, sid , ssid ,U, i∗) message aimed at FOPRF, and
AuthDecrw′(c∗) = ⊥ (where rw′ = Fi∗(pw

′)). In the following five games (G1 –
G5) we gradually change this condition.

Game G1 (user aborts if A is passive before Π starts but passwords
do not match): In the case that (c∗ = c ∧ i∗ = S) and pw′ 6= pw, U outputs
(abort, sid , ssid).
Z’s views in G0 and G1 are identical unless on some U sub-session event

c∗ = c ∧ i∗ = S ∧ pw′ 6= pw occurs but AuthDecrw′(c) 6= ⊥: In this case U

outputs (sid , ssid , SK) in G0 and (abort, sid , ssid) in G1). Since
c← AuthEncrw(pu, Pu, Ps), we have that AuthDecrw(c) 6= ⊥. But rw

′ and rw are
independent random strings in {0, 1}2τ ; therefore, we can construct a reduction
RRBST1 to the random-key robustness of AE where rw′ and rw are the
challenge AE keys: RRBST1 runs the code of G0 except that it uses its input as
rw′ and rw. In every sub-session RRBST1 checks if AuthDecrw(c) 6= ⊥ and
AuthDecrw′(c) 6= ⊥, and if so, it outputs c (and breaks the game). We have that

DistG0,G1

Z ≤ AdvRBST,AE
RRBST1

,

which is a negligible function of τ .

Game G2 (abort the entire game if c∗ is valid under two different
keys): In the case that ¬(c∗ = c ∧ i∗ = S), the game outputs halt and aborts
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OPRF Evaluation

1. On (UsrSession, sid , ssid ,U, S) from F , send (Eval, sid , ssid ,U, S) to A on
behalf of FOPRF. On prfx from A, record 〈ssid ,U, prfx〉 if prfx is new, else reject.

2. On (SvrSession, sid , ssid ′,U, S) from F , retrieve file[sid ] = (·, ·, ·, c), send
(SndrComplete, sid , ssid ′, S) and c to A on behalf of, respectively FOPRF

and S, and given A’s response prfx′ do the following in order:
(a) If there is record 〈ssid ,U, prfx′〉 then replace it with 〈ssid ,U,OK〉;

Else record 〈ssid ′, act〉, set tx++, send (Interrupt, sid , ssid ′, S) to F .
(b) Record 〈ssidΠ , ssid ′, S,U〉 and mark it fresh for ssidΠ := ssid ′|prfx′, and

send (SvrSession, sid , ssidΠ ,U, S) to SIMAKE.
3. On (RcvComplete, sid , ssid ,U, i∗) from A aimed at FOPRF, retrieve
〈ssid ,U, prfx〉 (ignore the message if such record not found) and do in order:
(a) If i∗ = S, S is not compromised, and there is no record 〈ssid ,U,OK〉, then

do: Ignore this message if tx = 0, else set tx−−.
(b) Augment record 〈ssid ,U, prfx〉 to 〈ssid ,U, prfx, i∗〉.

4. On (Eval, sid , ssid , S, x) followed by (RcvComplete, sid , ssid ,A, i∗) from
A to FOPRF (string prfx chosen by A for this Eval can be ignored), send
(Eval, sid , ssid ,A, S) to A on behalf of FOPRF and do in order:
(a) If i∗ 6= S then send (Eval, sid , ssid , Fi∗(x)) to A.
(b) If i∗ = S and tx > 0, but there is no record 〈ssid ′, act〉 then output halt.
(c) If i∗ = S and there are some records 〈ssid ′, act〉 then do in order:

i. If there is record 〈ssid ′, act〉 which is not marked completed then
choose ssid ′ of any such record, but if all records 〈ssid ′, act〉 are
marked completed then choose ssid ′ of any of those.

ii. Ignore this message if tx = 0, else set tx−− and send (TestPwd, sid ,
ssid ′, S, x) to F .

iii. If F returns “correct guess,” send (Compromise, sid ,U) to SIMAKE,
and on response (pu, Pu, Ps) set rw ← SIMEQV((pu, Pu, Ps)) and
FS(x) := rw, record 〈file,U, S, x〉, and declare U compromised.

iv. Send (Eval, sid , ssid , FS(x)) to A on behalf of FOPRF, and modify the
chosen record 〈ssid ′, act〉 into 〈ssid ′, used〉.

Fig. 10: Simulator SIM for SaPAKE of Fig. 8: OPRF Evaluation
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AKE Simulation

1. For any ssid , as soon as 〈ssid ,U, prfx〉 is augmented to 〈ssid ,U, prfx, i∗〉 and A
sends (ssid , c∗) to U, retrieve file[sid ] = (·, ·, ·, c) and do one of the following:
(a) If (c∗, i∗)=(c, S), then send (TestAbort, sid , ssid ,U) to F .

If F replies Succ, record 〈ssidΠ , ssid ,U, S〉 marked fresh, and send
(UsrSession, sid , ssidΠ ,U, S) to SIMAKE for ssidΠ := [ssid ||prfx].

(b) Otherwise for every x s.t. y = Fi∗(x) is defined, check if AuthDecy(c
∗)

output parses as (p∗u, P
∗

u , P
∗

s ), and do one of the following:
i. If there is no such x, send (TestPwd, sid , ssid ,U,⊥) followed by

(TestAbort, sid , ssid ,U) to F .
ii. If there are more than one such x’s, output halt and abort.
iii. If there is a unique such x, send (TestPwd, sid , ssid ,U, x) to F .

- If F replies “wrong guess,” send (TestAbort, sid , ssid ,U) to F .
- If F replies “correct guess,” do:
(1) set (p∗u, P

∗

u , P
∗

s ) := AuthDecy(c
∗);

(2) run Πu on (p∗u, P
∗

u , P
∗

s ) and ssidΠ = [ssid ||prfx];
(3) when Πu outputs SK∗, send (NewKey, sid , ssid ,U, SK∗) to F .

2. On all AKE-related interactions of A with all AKE sessions started by SIM’s
SvrSession and UsrSession queries to SIMAKE above, pass all messages
between A and SIMAKE, and react to messages sent by SIMAKE’s interface
with FAKE−KCI as follows:
– On (Impersonate, sid , ssidΠ , S), if S is declared compromised and there

is record 〈ssidΠ , ssid ,U, S〉 marked fresh, then mark it compromised

and send (Impersonate, sid , ssid) to F .
– On (Impersonate, sid , ssidΠ ,U), if U is declared compromised and there

is record 〈ssidΠ , ssid , S,U〉 marked fresh, then mark it compromised,
retrieve 〈file,U, S, pw〉 and send (TestPwd, sid , ssid , S, pw) to F .

– On (NewKey, sid , ssidΠ ,P, SK∗), if there is a record 〈ssidΠ , ssid ,P,P′〉
not marked completed, do:
• If the record is compromised, or P or P′ is corrupted, set SK := SK∗.
• If the record is fresh, and SIM sent (NewKey, sid , ssid ,P′, SK′) to
F while record 〈ssidΠ , ssid ,P′,P〉 was marked fresh, set SK := SK′.

• Otherwise pick SK ←R {0, 1}
τ .

Finally, mark 〈ssidΠ , ssid ,P,P′〉 completed and send (NewKey, sid ,
ssid ,P, SK) to F .

Fig. 11: Simulator SIM for SaPAKE of Fig. 8: AKE Simulation
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if there are x1 6= x2 such that A queries both y1 = Fi∗(x1) and y2 = Fi∗(x2),
and AuthDecy1

(c∗) 6= ⊥ and AuthDecy2
(c∗) 6= ⊥.

Here are throughout the proof below we say that “A queries Fi∗(x),” where
index i∗ may or may not be S, if (i) A sends (Eval, sid , ssid , x) and then
(RcvComplete, sid , ssid ,A, i∗) to FOPRF and if FOPRF replies to this query
with Fi∗(x) (note that if i∗ = S then FOPRF replies with FS(x) if and only if
tx > 0, because FOPRF’s record 〈ssid ,A, x, prfx〉 corresponding to A’s evaluation
query can never satisfy prfx = OK), (ii) if A sends (OfflineEval, sid , i∗, x) to
FOPRF and if FOPRF replies to this query with Fi∗(x) (note that if i∗ = S then
FOPRF replies with FS(x) if and only if S is corrupted or compromised). This
terminology is reused in subsequent games. Moreover, we refer to case (i) as “A
queries Fi∗(x) online,” and to case (ii) as “A queries Fi∗(x) offline.”

Note that y1 and y2 are independent random strings in {0, 1}2τ . Therefore,
we can construct a reduction RRBST2 to the random-key robustness of AE where
y1 and y2 are the challenge AE keys: RRBST2 picks a random pair (j1, j2) where
j1, j2 ∈ {1, . . . , qF} and j1 < j2

10 (a guess that y1 and y2 are the results of A’s
j1-th and j2-th queries), and runs the code of G1 except that it uses its input as
the results of A’s j1-th and j2-th queries. In every sub-session RRBST1 checks if
AuthDecrw(c

∗) 6= ⊥ and AuthDecrw′(c∗) 6= ⊥, and if so, it outputs c∗ (and breaks
the game). We have that

DistG1,G2

Z ≤ Pr[halt] ≤

(

qF
2

)

·AdvRBST,AE
RRBST2

,

which is a negligible function of τ .

Game G3 (user aborts if A does not compute rw′, password match,
and A does not change the OPRF index but changes c): In the case that
(c∗ 6= c ∧ i∗ = S) and pw′ = pw, U outputs (abort, sid , ssid) if A does not
query Fi∗(pw).
Z’s views in G2 and G3 are identical unless A does not query rw = FS(pw)

but on some U sub-session we have c∗ 6= c ∧ i∗ = S ∧ pw′ = pw and
AuthDecrw(c

∗) 6= ⊥: In this case U outputs (sid , ssid , SK) in G2 and
(abort, sid , ssid) in G3. Since A does not query FS(pw), rw is a random string
in {0, 1}2τ in Z’s view. Z additionally learns c ← AuthEncrw(pu, Pu, Ps), but
A’s message is restricted to c∗ 6= c. Therefore, we can construct a reduction
RAUTH1 to the authenticity of AE where rw is the challenge AE key: RAUTH1

runs the code of G2, except that it uses its encryption oracle to compute
c← AuthEncrw(pu, Pu, Ps), and its decryption oracle to compute AuthDecrw(c

∗)
in every U sub-session (1) which runs on input pw′ = pw and (2) where the
OPRF function index is i∗ = S. In each such sub-session RAUTH1 checks if
c∗ 6= c and AuthDecrw′(c∗) 6= ⊥, and if so, it outputs c∗ (and breaks the game).
We have that

DistG2,G3

Z ≤ AdvAUTH,AE
RAUTH1

,

10 To be precise, RRBST2 picks j′1 ←R {1, . . . , qF}, j
′

2 ←R {1, . . . , qF} \ {j
′

1}, and sets
j1 := min(j′1, j

′

2) and j2 := max(j′1, j
′

2).
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which is a negligible function of τ .

Game G4 (user aborts if A does not compute rw′, and either passwords
do not match or A changes the OPRF index): In the case that (c∗ 6=
c ∧ pw′ 6= pw) ∨ i∗ 6= S, U outputs (abort, sid , ssid) if A does not query
Fi∗(pw

′).
Z’s views in G3 and G4 are identical unless on some U sub-session (c∗ 6= c ∧

pw′ 6= pw) ∨ i∗ 6= S, and A does not query rw′ = Fi∗(pw
′) but AuthDecrw′(c∗) 6=

⊥: In this case U outputs (sid , ssid , SK) in G3 and (abort, sid , ssid) in G4

on that sub-session. Call the event that such U sub-session exists E. For each
i ∈ {1, . . . , qU} define Ej as the event that on the j-th U sub-session, in the
order determined by the initialization calls from Z, it holds that (1) (c∗ 6= c ∧
pw′ 6= pw) ∨ i∗ 6= S, (2) A does not query Fi∗(pw

′), (3) this is the first occurrence
of pair (i∗, pw′) on any U sub-session, and (4) AuthDecrw′(c∗) 6= ⊥. Note that E
is the union of events Ej for j = 1, . . . , qU. Since for (i∗, pw′) in the j-th U sub-
session A does not query Fi∗(pw

′), rw′ is not used anywhere else (in particular,
Z learns c← AuthEncrw(pu, Pu, Ps), but rw is independent of rw′) and hence is a
random string in {0, 1}2τ in Z’s view. Therefore, for each Ej we can construct a
reduction RAUTH2,j to the authenticity of AE where rw′ in the j-th U sub-session
is the challenge AE key: RAUTH2,j runs the code of G3. In the j-th U sub-session,
RAUTH2,j uses the decryption oracle to check if Ej occurs, and if so, it outputs
c∗ (and breaks the game). We have that

DistG3,G4

Z ≤ Pr[E] ≤

qU
∑

j=1

Pr[Ej ] ≤ qU ·AdvAUTH,AE
RAUTH2

,

which is a negligible function of τ .

Note that the combined conditions introduced in G3 and G4 are equivalent
to the following: In the case that ¬(c∗ = c ∧ i∗ = S), U outputs (abort, sid , ssid)
if A does not query Fi∗(pw

′).

Game G5 (extract A’s password guess on U interactions): In G4, after
U computes rw′ = Fi∗(pw

′) and receives (ssid , c∗) and (Prefix, ssid , prfx), it tests
if AuthDecrw(c

∗) can be parsed as (p∗u, P
∗
u , P

∗
s ), and either runs Πu on these

decrypted AKE keys and ssidΠ := [ssid ||prfx], or outputs (abort, sid , ssid) if
the parsing fails. Here we replace the above with the following (ssidΠ does not
change from G4 to G5, so we omit it in the description of G5 below):

1. If c∗ = c ∧ i∗ = S, then do: (I) if pw′ = pw (which is case (∗)), then U runs
Πu on inputs (pu, Pu, Ps); (II) otherwise U outputs (abort, sid , ssid).

2. If ¬(c∗ = c ∧ i∗ = S), and there are x1 6= x2 such that A queries both y1 =
Fi∗(x1) and y2 = Fi∗(x2), and AuthDecy1

(c∗) 6= ⊥ and AuthDecy2
(c∗) 6= ⊥,

output halt and abort the entire game.
3. If ¬(c∗ = c ∧ i∗ = S) and A queries rw′ = Fi∗(x) for a unique x such that

AuthDecrw′(c∗) can be parsed as (p∗u, P
∗
u , P

∗
s ), then do: (I) if x = pw′ (which

is case (∗∗)), then U runs Πu on inputs (p∗u, P
∗
u , P

∗
s ); (II) otherwise U outputs

(abort, sid , ssid).
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4. Otherwise, i.e., ¬(c∗ = c ∧ i∗ = S) but A makes no Fi∗(x) query as in case
2 or 3 above, U outputs (abort, sid , ssid).

We argue that this modification does not change Z’s view. First consider
the case that c∗ = c ∧ i∗ = S. In G4, if pw′ = pw, then U runs Πu on
AuthDecrw′(c∗) = AuthDecrw(c) = (pu, Pu, Ps), which is replicated in case 1(I)
of G5; otherwise U outputs (abort, sid , ssid) by the condition introduced in
G1, which is replicated in case 1(II) of G5. Now consider the case that
¬(c∗ = c ∧ i∗ = S). Then if case 2 occurs, i.e., A queries two distinct Fi∗

outputs which both decrypt c∗, then G4 outputs halt by the condition
introduced in G2, which is the same as in G5. If A makes no Fi∗(pw

′) query,
then U outputs (abort, sid , ssid) by the conditions introduced in G3 and G4,
which is replicated in cases 3(II) and 4 of G5. The only remaining case is that
A queries Fi∗(pw

′) and this is the unique query such that AuthDec′rw(c
∗) can be

parsed as (p∗u, P
∗
u , P

∗
s ), in which case in G4 U runs Πu on (p∗u, P

∗
u , P

∗
s ), which is

replicated in case 3(I) in G5. It follows that

DistG4,G5

Z = 0.

Comparison of G5 and the Simulated World. We argue that in G5, when
A sends (ssid , c∗) aimed at U and decides on the index i∗ for which U computes
Fi∗ , the way that the game emulates U’s response to (c∗, i∗) is the same as in the
simulated world, except that G5 runs the AKE protocol Πu on behalf of U in
case this user instance encounters either case (∗) or (∗∗), while the simulator SIM
executes Πu only in case (∗∗), while in case (∗) the execution of Πu is replaced
by a simulation by SIMAKE.

Disregarding the differences due to Πu execution vs. Πu simulation, the
simulation of U instances acts based on the following two cases:

(i) If c∗ = c ∧ i∗ = S then SIM sends (TestAbort, sid , ssid ,U) to F .

• If F returns Succ, i.e., pw′ = pw11 then SIM proceeds to simulate Πu.
We call this case (∗), and it corresponds to case 1(I) in G5, while SIM

handles it in step (1a) in Fig. 11.
• If F returns Fail, i.e., pw′ 6= pw, F sends (abort, sid , ssid) to U (who

outputs this message). This corresponds to case 1(II) in G5, while SIM

handles it in the same step as above.

(ii) If ¬(c∗ = c ∧ i∗ = S), then for every x such that y = Fi∗(x) was queried by
A, SIM checks if AuthDecy(c

∗) can be parsed as (p∗u, P
∗
u , P

∗
s ).

• If there are two or more such x’s, i.e., x1 6= x2 s.t. A queries both y1 =
Fi∗(x1) and y2 = Fi∗(x2), and AuthDecy1

(c∗) 6= ⊥ and AuthDecy2
(c∗) 6=

⊥, then SIM outputs halt and aborts. This corresponds to case 2 in G5,
and SIM handles it in in step (1(b)ii) in Fig. 11.

11 Note that our UC saPAKE functionality F does not check if S runs a session with a
sub-session ID ssid matching the tested session of U. Indeed, our protocol allows the
adversary to test if pw′ = pw without regards to the ssid on the U’s tested session.
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• If there is a unique such x, then SIM sends (TestPwd, sid , ssid ,U, x)
to F . If F returns “correct guess,” i.e., x = pw′, SIM runs Π on the
decrypted values (p∗u, P

∗
u , P

∗
s )← AuthDecy(c

∗). We call this case (∗∗), it
corresponds to case 3(I) in G5, and SIM handles it in step (1(b)iii).

• If F returns “wrong guess,” i.e., x 6= pw′, then SIM sends
(TestAbort, sid , ssid ,U) to F , and F sends (abort, sid , ssid) to U

(who outputs this message). This corresponds to case 3(II) in G5, and
SIM handles it in the same step as above.

• If there is no such x, then SIM sends (TestPwd, sid , ssid ,U,⊥) and
then (TestAbort, sid , ssid ,U) to F , and F sends (abort, sid , ssid) to
U (who outputs this message). This corresponds to case 4 in G5, and
SIM handles it in step (1(b)i).

We can see that if we omit the interaction between SIM and F above, and
view SIM and F combined as the game challenger who interacts with Z and A,
then the behavior of this game challenger when A sends (ssid , c∗) aimed at U is
exactly the same with the behavior of G5, except for Πu execution replaced by
Πu simulation in case (∗).

In the next four games (G5 – G9) we replace AKE credential generation and
login protocol execution with the simulation by SIMAKE.

Game G6 (outsource the generation of c and rw to SIMEQV): At the
beginning of the game, let SIMEQV simulate c and leave rw undefined, and let
SIMEQV “open” rw when A computes it. Concretely,

(1) At the beginning of the game, set c← SIMEQV(kpr + 2kpb);
(2) When A queries FS(pw), set rw← SIMEQV(pu, Pu, Ps).
Observe that in G5, Z sees c← AuthEncrw(pu, Pu, Ps), and unless and until

A queries FS(pw) (and thus learns rw), rw is not used by any party except in
generating c, hence is a random string in {0, 1}2τ independent of everything
else (except for c) in Z’s view. In particular, in G5 U does not evaluate F on
any input, and all processing is based on whether c∗ = c ∧ i∗ = S, whether
pw′ = pw, and on A’s queries to Fi∗ , which in the case i∗ = S are A’s queries to
FS. Therefore, in G5 c followed by rw in case A queries FS(pw), are formed as
in the “real game” in the encryption equivocability experiment for AE, where A
sees the encryption c of (pu, Pu, Ps) under key rw followed by the key rw (in case
of A’s query to FS(pw)). On the other hand, in G6 ciphertext c followed by key
rw are formed as in the “ideal game” in the encryption equivocability experiment
for AE. Therefore, we can construct a reduction REQV to the equivocability of
AE: REQV runs the code of G5 except that it uses its input as c and rw, and
copies Z’s output. We have that

DistG5,G6

Z ≤ AdvEQV,AE
REQV

,

which is a negligible function of τ .

Game G7 (outsource the generation of pu, Pu, ps, Ps to SIMAKE): G7

lets SIMAKE generate the two parties’ key pairs in the AKE protocol Π, pu, Pu,
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ps, Ps, instead of generating them on its own. Concretely, at the beginning of
the game, send (Compromise, sid , S) and (Compromise, sid ,U) to SIMAKE and
obtain pu, Pu, ps, Ps; ignore all subsequent messages from SIMAKE.

Clearly, an environment distinguishing between G6 and G7 can be turned
into an environment ZAKE1 distinguishing between the real execution of Π and
the simulation of Π by SIMAKE. Therefore,

DistG6,G7

Z ≤ Dist
Π,{FAKE−KCI,SIMAKE}
ZAKE1

,

where Dist
Π,{FAKE−KCI,SIMAKE}
ZAKE1

denotes the distinguishing advantage of ZAKE1

between the real execution of Π and the simulation of Π by SIMAKE, and is a
negligible function of τ .

Game G8 (leave pu, Pu, ps, Ps undefined until they are used): At the
beginning of the game, do not send (Compromise, sid , S) or
(Compromise, sid ,U) to SIMAKE, and leave pu, Pu, ps, Ps undefined. However,

(1) When A sends (StealPwdFile, sid) to S, send (Compromise, sid , S)
to SIMAKE to obtain (ps, Ps, Pu);

(2) When A queries FS(pw), send (Compromise, sid ,U) to SIMAKE to obtain
(pu, Pu, Ps).

Observe that in G7, ps is not used unless and until A sends
(StealPwdFile, sid) to S (at which time the game challenger must send ps at
part of its response file[sid ]); therefore, postponing generating ps to the time
when A sends (StealPwdFile, sid) to S does not change the game. Similarly,
pu is not used unless and until A queries FS(pw) (at which time the game
challenger must invoke SIMEQV(pu, Pu, Ps) to generate rw as the response to
A); therefore, postponing generating pu to the time when A queries FS(pw)
does not change the game. We have that

DistG7,G8

Z = 0.

Comparison of G8 and the Simulated World. We argue that in G8, pu,
Pu, ps, Ps, rw and c are generated in the same way as in the simulated world.
In the simulated world SIM sets c← SIMEQV(kpr + 2kpb) and pu, Pu, ps, Ps and
rw are undefined until one of the two cases happen:

Case 1: When the adversary compromises the server, i.e. when A sends
(StealPwdFile, sid) to S (step 1 of “Stealing Password Data and Offline
Queries”), SIM sends (Compromise, sid , S) to SIMAKE to obtain (ps, Ps, Pu).

Case 2: When the adversary makes either a successful password test attack.
This can happen in one of the following two ways. First, if A queries FS(pw)
offline (step 2 of “Stealing Password Data and Offline Queries”; note that A
can query FS(pw) offline only after compromising S), SIM sends
(OfflineTestPwd, sid , pw) to F , which replies “correct guess” (because pw

is correct). Second, if A queries FS(pw) online (step 4 of “OPRF Evaluation”),
SIM checks if the FOPRF ticket counter tx is non-zero (recall that SIM emulates
FOPRF), and if so then SIM sends (TestPwd, sid , ssid ′, pw) to F where ssid ′ is
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a sub-session ID of some S session for which SIM holds record
〈

ssid ′, act
〉

. Since
password pw is correct F will reply “correct guess” if F holds a server session
record

〈

ssid ′, S,U, pw
〉

s.t. dPT(ssid) = 1. In either case, given F ’s response
“correct guess”, SIM declares U compromised, sends (Compromise, sid ,U) to
SIMAKE, and on SIMAKE’s response (pu, Pu, Ps), SIM gets
rw← SIMEQV(pu, Pu, Ps) and sets FS(pw) := rw.

Observe that this interaction creates the same view to Z and A as G8 does,
at least with regards to A’s view in case A evaluates FS(pw), assuming that in
the online query case SIM never encounters the case that A queries FS(pw) online
but either (1) tx = 0 or (2) tx > 0 but SIM holds no record

〈

ssid ′, act
〉

or (3)

SIM holds a record
〈

ssid ′, act
〉

but F does not hold a record
〈

ssid ′, S,U, pw
〉

s.t.
dPT(ssid ′) = 1. Below we argue that this event cannot happen, and consequently
the simulator SIM interacting with functionality F creates exactly the view that
G8 does in the case A evaluates FS(pw).

Note that SIM emulates FOPRF, and in particular it increments tx at each
SndrComplete with prfx′ that does not match any U’s evaluation record
〈ssid ,U, x, prfx〉, and it decrements it whenever tx > 0 and A sends
(RcvComplete, sid , ssid ,U, S) where 〈ssid ,U, x, prfx〉 is one of such
unmatched U records, or A sends (RcvComplete, sid , ssid ,A, S)
corresponding to some A’s record 〈ssid ,A, x, prfx〉. This is the same as FOPRF

does, so tx in SIM’s emulation of FOPRF has always the same value as in FOPRF,
and if FOPRF replies to A’s online query FS(x) then event (1) cannot happen in
the simulation. Next, note that when SIM increments tx at some
(SndrComplete, sid , ssid ′, S) query, see step (2a) in Fig. 10, it marks this S

session as actively attacked by recording
〈

ssid ′, act
〉

, and the only way SIM can

change this record to
〈

ssid ′, used
〉

, see step (4(c)iv), is when it sends FS(x) and
decrements tx. Therefore if tx > 0 then there must be some S sessions whose
status is act, thus event (2) cannot happen in the simulation. Finally, note that
when SIM records

〈

ssid ′, act
〉

it sends (Interrupt, sid , ssid ′, S) to F , see step
(2a), at which point F sets dPT(ssid ′) := 1, and the only way F sets
dPT(ssid ′) := 0 is if SIM sends (TestPwd, sid , ssid ′, S, ·) to F . Since SIM

sends such TestPwd query, in step (4(c)ii), only if it holds record
〈

ssid ′, act
〉

,
event (3) also cannot happen.

Now the only difference between G8 and the simulated world lies in the
simulation of Π.

Game G9 (outsource to SIMAKE the simulation of all Πu instances of
case (∗) and of all Πs instances): Replace each execution of Πs with their
simulation by SIMAKE, and replace the executions of Πu with their simulation
by SIMAKE for each all U sub-sessions which fall into case (∗), i.e., sub-sessions
where c∗ = c ∧ i∗ = S ∧ pw′ = pw. Specifically, modify the game in case (*) as
follows:

1. When U’s OPRF sub-session is completed and A sends c∗(= c) to U, send
(UsrSession, sid , ssidΠ ,U, S) to SIMAKE for ssidΠ = [ssid ||prfx] where prfx
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was determined by A in the Eval handling of this U sub-session, and record
〈ssidΠ , ssid ,U, S〉 marked fresh;

2. When Z inputs (SvrSession, sid , ssid) to S, send (SvrSession, sid ,
ssidΠ ,U, S) to SIMAKE for ssidΠ = [ssid ||prfx] where prfx was determined
by A in the SndrComplete handling of this S sub-session, and record
〈ssidΠ , ssid , S,U〉 marked fresh;

3. On (Impersonate, sid , ssidΠ ,P) from SIMAKE, if there is a record
〈ssidΠ , ssid ,P′,P〉 marked fresh and G9 sent (Compromise, sid ,P) to
SIMAKE before, mark this record compromised;

4. While SIMAKE simulates Π instances, pass messages between SIMAKE and A;
5. On (NewKey, sid , ssidΠ ,P, SK∗) from SIMAKE, if there is a record
〈ssidΠ , ssid ,P,P′〉 not marked completed, do:
– If the record is compromised, or P or P′ is corrupted, set SK := SK∗.
– Else if the record is marked fresh, a (sid , ssid , SK ′) tuple was sent to

P′ while record 〈ssidΠ , ssid ,P′,P〉 was fresh, set SK := SK ′.
– Else pick SK ←R {0, 1}

τ .
Finally, mark 〈ssidΠ , ssid ,P,P′〉 completed and send (sid , ssid , SK) to P.

Clearly, an environment distinguishing between G8 and G9 can be turned
into an environment ZAKE2 distinguishing between the real execution of Π and
the simulation of Π by SIMAKE. Therefore,

DistG8,G9

Z ≤ Dist
Π,{FAKE−KCI,SIMAKE}
ZAKE2

,

which is a negligible function of τ .

Comparison of G9 and the Simulated World. We argue that G9 is
identical to the simulated world, i.e., to the ideal world interaction where the
game challenger is split into the simulator SIM and the SaPAKE functionality
F . Note that G9 decides in the same way as G5 whether a U sub-session
results in U outputting (abort, sid , ssid) or falls into cases (∗) and (∗∗), and it
generates the AKE keys pu, Pu, ps, Ps and the AE ciphertext c in the same way
as in G8, and we argued above that G5 and G8 execute these parts in the
same way as SIM interacting with F . The remaining part is to argue that G9

also emulates SIM interacting with F with respect to the session keys SK
output by U and S.12 The case that either U or S is corrupted are easiest to see
because in that case F passes the key received by SIM to the corresponding
party, thus below we assume that neither U nor S is corrupted.

Consider first U’s output SK in case (∗∗). In G9, SK is determined by the
output of protocol Πu executed on behalf of U on inputs (p∗u, P

∗
u , P

∗
s ), which are

in turn determined by (c∗, i∗) and A’s queries to Fi∗ , as described in G5. In the
simulated world, as we argued in G5, SIM runs Πu on the same inputs, hence
SK computed by SIM is identically distributed. At the end of Πu, SIM sends

12 Recall that S’s output is always of the form (sid , ssid , SK), while U’s output is
(sid , ssid , SK) in cases (∗) and (∗∗), and (abort, sid , ssid) otherwise; but we argued
that these cases are handled in the simulated world in the same way as in game G5.
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(NewKey, sid , ssid ,U, SK) to F , who will pass SK in message (sid , ssid , SK)
to U because case (∗∗) happens only if SIM sends (TestPwd, sid , ssid ,U, x) to
F (see step (1(b)iii) in Fig. 11) and F replies “correct guess,” at which point F
marked this SaPAKE-layer sub-session record 〈ssid , S,U, pw〉 compromised.

Secondly, consider all Π executions which are outsourced to SIMAKE in G9,
i.e., instances of Πu which fall into case (∗) and all instances of Πs. In G9, SK
output by party P ∈ {U, S} is determined by (1) the status of record
〈ssidΠ , ssid ,P,P′〉 kept for this sub-session, (2) SIMAKE’s message
(NewKey, sid , ssidΠ ,P, SK∗), and (3) whether (sid , ssid , SK ′) was sent to P′

at the time there was a fresh record 〈ssidΠ , ssid ,P′,P〉. Game G9 uses the
same factors to decide on P’s output by emulating functionality FAKE−KCI. In
the simulated world, SK determined by SIM is identically distributed, because
SIM also emulates FAKE−KCI and uses the same rules to determine the status of
each AKE-layer session, hence factors (1)-(3) play exactly the same role in the
simulated world. However, similarly to case (∗∗) discussed above, SIM does not
output message (sid , ssid , SK) directly to P, but sends (NewKey,
sid , ssid ,P, SK) to F , who then “post-processes” these keys, using its own
records for these sub-sessions, resp. 〈ssid ,P,P′, pw◦〉 and 〈ssid ,P′,P, pw◦◦〉.

We argue that this post-processing by F always implements the same logic
for determining SK on a given sub-session as SIM does. Specifically, we argue
that the following three invariants hold:

1. If SIM passes SIMAKE’s key SK∗ to F , i.e., if the AKE-layer sub-session
record 〈ssidΠ , ssid ,P,P′〉 is compromised, then the SaPAKE-layer
sub-session record 〈ssid ,P,P′, pw◦〉 is either compromised, or, if P = S, it
is interrupted but flag = compromised.

2. If there are two AKE-layer sub-session records with matching AKE-layer
sub-session ID’s, i.e., 〈ssidΠ , ssid ,P,P′〉 and

〈

ssid ′Π , ssid ′,P′,P
〉

such that
ssidΠ = ssid ′Π , then it holds that (a) their SaPAKE-layer sub-session ID’s
match as well, i.e., ssid = ssid ′, and (b) the passwords in the corresponding
SaPAKE-layer sessions also match, i.e., F records for these sub-sessions,
〈ssid ,P,P′, pw◦〉 and

〈

ssid ′,P′,P, pw◦◦
〉

, satisfy pw◦ = pw◦◦.
3. If two AKE-layer sub-sessions 〈ssidΠ , ssid ,P,P′〉 and

〈

ssid ′Π , ssid ′,P′,P
〉

are
“connected” by the FAKE−KCI emulated by G9 (and by SIM), in the sense
that step 5 in FAKE−KCI emulation in G9 (and step 2 in Fig. 11) output
the same key SK to both sessions, then the corresponding SaPAKE-layer
sub-sessions 〈ssid ,P,P′, pw◦〉 and 〈ssid ,P,P′, pw◦〉 are fresh.

Invariant (1) implies that if AKE-layer sub-session record
〈ssidΠ , ssid ,P,P′〉 is compromised then F will pass SK∗ output by SIMAKE

to P, hence key SK output by P in the simulated world is the same as in G9.
Invariants (2) and (3) together imply that if AKE-layer sub-session records
〈ssidΠ , ssid ,P,P′〉 and

〈

ssidΠ , ssid ′,P′,P
〉

(assume w.l.o.g. that the latter
sub-session completes first) output the same key SK, chosen at random either
by G9 or by SIM in the FAKE−KCI emulation, then F will replicate this
behavior: First, when 〈ssid ,P′,P, pw◦◦〉 completes, F picks a random key
SK ′ ← {0, 1}τ as SK because, by invariant (3) this SaPAKE-layer sub-sessions
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is fresh. Second, when 〈ssid ,P,P′, pw◦〉 completes, F will assign to it the
same key SK ′ because, by invariant (3) that session will also be fresh, and by
invariant (2) since these two sub-sessions have the same AKE-layer ID’s ssidΠ

(otherwise they wouldn’t be connected on the AKE-layer), then their
SaPAKE-layer ID’s match too, i.e., ssid = ssid ′, and so do their passwords, i.e.,
pw◦ = pw◦◦. In all other cases both G9 and SIM pick a random key SK for
session 〈ssidΠ , ssid ,P,P′〉, therefore in the simulated world regardless if F
passes that key to P, or it replaces it with a new choice SK ′ of a random key,
party P outputs (sid , ssid , SK ′) for a random key SK ′, which matches the
distribution of its outputs in G9

We argue that the three invariants indeed hold. We start from invariant (1).
Note that a fresh AKE-layer session 〈ssidΠ , ssid ,P,P′〉 turns compromised

if SIMAKE sends (Impersonate, sid , ssidΠ ,P′) and P′ is declared
compromised. Consider case P′ = S first. S is declared compromised by SIM

(and G9) only if A sends (StealPwdFile, sid), see step 1 in Fig. 9, in which
case F marks the password file compromised. If SIMAKE then sends
(Impersonate, sid , ssidΠ , S) then SIM sends (Impersonate, sid , ssid) to F ,
at which point F marks the SaPAKE-layer session 〈ssid ,U, S, pw′〉 as
compromised if this SaPAKE-layer session is fresh. However, note that U

session in case (∗) does not start unless F replies Succ to SIM’s query
(TestAbort, sid , ssid ,U), see step (1a) in Fig. 11, which means that the
SaPAKE-layer U session remained fresh after SIM’s TestAbort query, and
hence it became compromised after SIM’s Impersonate query.

Consider now the case when P′ = U. If U is declared compromised then A
queried FS(pw), either offline or online, so SIM holds a record 〈file,U, S, pw〉,
hence if SIMAKE sends (Impersonate, sid , ssidΠ ,U) then SIM sends
(TestPwd, sid , ssid , S, pw) to F , and since the tested password is correct, F
will process the SaPAKE-layer session 〈ssid , S,U, pw〉 as follows: If this
SaPAKE-layer session was fresh then it will become compromised, and if it
was interrupted then it will remain interrupted. However, note that if A
queries FS(pw) either offline or online, this means that either some
OfflineTestPwd query to F in step 1, Fig. 9, or some TestPwd query to F
in step 4c, Fig. 10, received F ’s response “correct guess”, but at this point F
sets flag := compromised. This means that SaPAKE-layer S session is either
compromised or it is interrupted but flag = compromised, as claimed.

As for invariant (2), part (a) is immediate because ssidΠ is formed as
[ssid ||prfx] on each session, so equality of ssidΠ ’s implies equality of ssid ’s. As
for part (b), note that U session in case (∗) runs only if TestAbort does not
make it abort, see step 1a, Fig. 11, which means that pw′ = pw.

We turn to invariant (3). Note that FAKE−KCI emulation, by either G9 or SIM,
connects these two AKE-layer session only if their AKE-layer ssid’s match, i.e.
ssidΠ = ssid ′Π . Note also that ssidΠ == [ssid ||prfx] and ssidΠ == [ssid ′||prfx′],
which implies that ssid = ssid ′ and that the OPRF transcript prefixes of this U
and S sessions matched as well, i.e. prfx = prfx′. Note that U’s AKE-layer session
〈ssidΠ , ssid ,U, S〉 starts fresh in case (∗), and if that session remains fresh
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until NewKey message for it (as must be the case for FAKE−KCI to “connect” it
to the S session), then SIM does not send to F any queries which would change
the status of the SaPAKE-layer session, i.e. the corresponding SaPAKE-layer
session stays fresh. Regarding S’s AKE-layer session

〈

ssid ′Π , ssid ′, S,U
〉

, note
that when this session starts, in step 2a in Fig. 10, if prfx = prfx′ then SIM does
not write record 〈ssid , act〉. Consequently SIM does not send Interrupt for that
session to F , and also SIM will never choose that session in step 4(c)i, Fig. 10,
and hence will not send TestPwd for that session to F in step 4(c)ii. (These
are all consequences of the fact that if OPRF transcript prefixes match then SIM

cannot, and does not, use this S session to evaluate S’s random function FS.)
Consequently, the corresponding SaPAKE-layer session stays fresh as well, as
we claimed.

Summing up all results above, we conclude that Z’s distinguishing advantage
between the real world and the simulated world is a negligible function of the
security parameter τ , which completes the proof.

6 OPAQUE: A Strong Asymmetric PAKE Instantiation

Fig. 12 shows OPAQUE, a concrete instantiation of the generic OPRF+AKE
protocol from Fig. 8. The OPRF is instantiated with the DH-OPRF scheme
from [31] recalled in Appendix B, while the AKE protocol can be instantiated
with any AKE protocol that realizes the FAKE−KCI functionality from Fig. 7. In
Fig. 12 this is illustrated with HMQV [38]. Note that the two messages of DH-
OPRF and the first two messages from HMQV run “in parallel” hence the OPRF
does not add to the total number of messages exchanged in the protocol. In this
case, the number of messages is three as needed for HMQV to instantiate the
FAKE−KCI functionality (see Section 5.1). The third component of the protocol is a
random-key robust authenticated encryption scheme AE which can accommodate
multiple instantiations as discussed below.

By Theorem 2 on the security of the generic OPRF+AKE construction, by
Lemma 1 in Appendix B on the security of DH-OPRF, the security of HMQV
as AKE-KCI, and assuming a random-key robust and equivocable instantiation
of AE, we get that protocol OPAQUE realizes functionality FsaPAKE. Hence it is
a provably-secure Strong aPAKE protocol, under the One-More Diffie-Hellman
assumption [5, 31] in the random oracle model. A similar result can be argued
on the basis of the SIGMA protocol from [37] – see Section 5.1.

6.1 Protocol Details and Properties

We expand on the specification of OPAQUE and the protocol’s properties.

• Password registration. Password registration is the only part of the protocol
assumed to run over secure channels where parties can authenticate each other.
We note that while OPAQUE is presented with S doing all the registration
operations, in practice one may want to avoid that. Instead, we can let S choose
an OPRF key ks and U choose pw, and then run the OPRF protocol between
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Public Parameters and Components

– Security parameter τ
– Group G of prime order q, |q| = 2τ and generator g (G∗ denotes G \ {1}).
– Hash functions H(·, ·), H ′(·) with ranges {0, 1}2τ and G, respectively.
– Pseudorandom function (PRF) f(·) with range {0, 1}2τ .
– OPRF function defined as Fk(x) = H(x, (H ′(x))k) for key k ∈ Zq.
– Random-key robust authenticated encryption scheme (AuthEnc,AuthDec).
– Key exchange formula KE defined below.

Password Registration

1. (StorePwdFile, sid ,U, pw): S computes ks ←R Zq, rw := Fks
(pw),

ps ←R Zq, pu ←R Zq, Ps := gps , Pu := gpu , c← AuthEncrw(pu, Pu, Ps);
it records file[sid ] := 〈ks, ps, Ps, Pu, c〉.

Login

1. (UsrSession, sid , ssid , S, pw): U picks r, xu ←R Zq; sets α := (H ′(pw))r and
Xu := gxu ; sends α and Xu to S.

2. (SvrSession, sid , ssid): On input α from U, S proceeds as follows:

(a) Checks that α ∈ G∗. If not, outputs (abort, sid , ssid) and halts;

(b) Retrieves file[sid ] = 〈ks, ps, Ps, Pu, c〉;

(c) Picks xs ←R Zq and computes β := αks and Xs := gxs ;

(d) Computes K := KE(ps, xs, Pu, Xu) and sets: ssid ′ := H(sid , ssid , α),
SK := fK(0, ssid′), As = fK(1, ssid′);

(e) Sends β, Xs, c and As to U;

3. On input β, Xs, c and As from S, U proceeds as follows:

(a) Checks that β ∈ G∗. If not, outputs (abort, sid , ssid) and halts;

(b) Computes rw := H(pw, β1/r);

(c) Computes AuthDecrw(c). If the result is ⊥, outputs (abort, sid , ssid) and
halts. Otherwise sets (pu, Pu, Ps) := AuthDecrw(c);

(d) Computes K := KE(pu, xu, Ps, Xs) and sets: ssid ′ := H(sid , ssid , α),
SK := fK(0, ssid′), As = fK(1, ssid′), Au = fK(2, ssid′);

(e) Verifies that As is same as received from S. If not, it outputs
(abort, sid , ssid) and halts.

(f) Sends Au to S and outputs (sid , ssid , SK).

4. On input Au from U, S verifies that Au = fK(2, ssid′). If not, it outputs
(abort, sid , ssid) and halts; else it outputs (sid , ssid , SK).

Key exchange formula KE with HMQV instantiation (if any of Xu, Pu, Xs, Ps /∈ G∗

the receiving party outputs (abort, sid , ssid) and halts)

For S: KE(ps, xs, Pu, Xu) = H
(

(XuP
eu
u )xs+esps

)

For U: KE(pu, xu, PS , XS) = H
(

(XsP
es
s )xu+eupu

)

where eu = H(Xu, S, ssid
′) mod q, es = H(Xs,U, ssid

′) mod q.

Fig. 12: Protocol OPAQUE with DH-OPRF and HMQV
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U and S so only U learns its secrets (pw, rw, pu). The server chooses its pair
(ps, Ps) and provides Ps to U who builds the ciphertext c and sends to S. In this
way the server never sees the user’s password, a major benefit, for example to
avoid accidental storage of plaintext passwords that has affected also security-
conscious companies [2, 3]. Note that this prevents S from checking password
rules, an operation that can be moved to the client side (restricted server-side
checks such as preventing the repeat of a recent password can be implemented).

• Authenticated encryption. As specified in Section 5.2, the authenticated
encryption scheme AE used in the protocol needs to satisfy the random-key
robustness property defined there. In practice, using an encrypt-then-mac
scheme with HMAC-256 (or larger) as the MAC provides this property (in
particular, any AE scheme can be made robust by computing HMAC on top of
the ciphertext output by AuthEnc). We note that the standard GCM mode for
authenticated encryption is not random-key robust but it can be adapted to
achieve this property.

• Key exchange and forward secrecy. The generic AKE representation in Fig. 12
via the KE formula is done for simplicity and since it applies to HMQV and, more
generally, to protocols that follow the implicit authentication approach. Other
protocols may require additional operations, such as signatures in the case of the
SIGMA as mentioned above. It follows from our analysis that any KE protocol
used with OPAQUE must resist KCI attacks and enjoy full forward secrecy
(against active attacks). The latter condition implies that OPAQUE must have
at least three messages13.

• User iterated hashing. OPAQUE can be strengthened by increasing the cost
of a dictionary attack in case of server compromise. This is done by changing
the computation of rw to rw = Hn(Fk(pw)), that is, the client applies n
iterations of the function H on top of the result of the OPRF value Fk(pw). In
practice, the iterations Hn would be replaced with one of the standard
password-based key derivation functions, such as PBKDF2 [36] or bcrypt [46],
or by more modern memory-hard functions such as Argon2 [10] or Scrypt [44].
This forces an attacker that compromises the password file at the server to
compute for each candidate password pw′ the function Fk(pw

′) as well as the
additional n hash iterations. Note that n needs not be remembered by the user;
it can be sent from S to U in the server’s message. Furthermore, one can follow
Boyen’s design and apply the probabilistic Halting KDF function [11] as used
in [12] so that the iterations count is hidden from the attacker and even from
the server. An additional benefit of client-side hardening is that not only it
slows down offline attacks upon server compromise but also online
password-guessing attacks. On the other hand, clients running on weak
machines are limited in the amount of hardening they can apply.

13 To achieve full forward secrecy one of the client messages must depend on the user’s
private key [38]. So at the minimum one needs a first message from the client with
user account information, followed by a message from the server with the user’s
envelope, and a third from the client that depends on the user’s private key.
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• Performance. OPAQUE takes three messages, one exponentiation for S, two
and a hashing-into-G for U, plus the cost of KE. With HMQV, the latter cost is
one offline fixed-base exponentiation and one multi-exponentiation (at the cost of
1.17 regular exponentiations) per party (about three exponentiations in total for
the server and four for the user). All exponentiations are in regular DH groups,
hence accommodating the fastest elliptic curves (e.g., no pairings). It is common
in PAKE protocols to count number of group elements transmitted between the
parties. In OPAQUE, U sends two while S sends three (one, Pu, can be omitted
at the cost of one fixed-based exponentiation at the client). See also Section 6.3.

• Performance comparison. The introduction presents background on OPAQUE
and other password protocols. Here we provide a comparison with the more
efficient among these protocols, particularly those that are being, or have been,
considered for standardization. Clearly, OPAQUE is superior security-wise as
the only one not subject to pre-computation attacks, but it also fares well in
terms of performance.

AugPAKE [49, 50], is computationally very efficient with only 2.17
exponentiations per party; however, it uses 4 messages and does not provide
forward secrecy. In addition, the protocol has only been analyzed as a PAKE
protocol, not aPAKE [50]. Another proposed aPAKE protocol,
SPAKE2+ [4, 19], uses two messages only and 3 multi-exponentiations (or
about 3.5 exponentiations) per party which is similar to OPAQUE cost. The
security of the protocol has only been informally argued in [19] and to the best
of our knowledge no formal analysis has appeared. We also mention SRP which
has been included in TLS ciphersuites in the past but is considered outdated as
it does not have an instantiation that works over elliptic curves (the protocol is
defined over rings and uses both addition and multiplication). Its
implementations over RSA moduli is therefore less efficient than those over
elliptic curve; it also takes 4 messages.

Recently, a few protocols have been presented with proofs of aPAKE
security but, as the rest, they are vulnerable to pre-computation. The protocol
VTBPEKE in [45] uses 3 messages and 4 exponentiations per party and was
proven secure in the non-UC aPAKE model of [9], while AuCPace [28] requires
4 messages and 4 (resp. 3) exponentiations for the server (resp. client) and is
proven in the UC aPAKE model of [26]. Also proven in this model is [34], a
simultaneous one-round scheme that works over bilinear groups and requires 4
exponentiations and 3 pairing per party. We note that the above protocols
require an initial message from server to user in order to transmit salt, which
may result in one or two added messages to the above message counts (except
for VTBPEKE which already includes the salt transmission in its 3 messages).
All these protocols, like OPAQUE, work in the RO model.

• Threshold implementation. We comment on a simple extension of OPAQUE
that can be very valuable in large deployments, namely, the ability to implement
the OPRF phase as a Threshold OPRF [32]. In this case, an attacker needs to
break into a threshold of servers to be able to impersonate the servers to the user
or to run an offline dictionary attack. Such an implementation requires no user-
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side changes, i.e., the user does not need to know if the system is implemented
with one or multiple servers.

• OPAQUE as a general secret retrieval mechanism. An important feature of
OPAQUE is that it can serve not only as an aPAKE protocol but more generally
as a means for retrieving a secret or credential from a server (such a secret is
protected under ciphertext c stored at the server). In this functionality, OPAQUE
acts as a 1-out-of-1 implementation of the PPSS scheme from [32]. The retrieved
secret can be used to protect information such as a bitcoin wallet, serve as a user-
controlled encryption key for a backup or other information repository (e.g., a
password manager), used as an authentication or signing key, and more. This
offers a far more secure alternative to the practice of deriving low-entropy secrets
directly from a user’s password.

6.2 OPAQUE and TLS: Client authentication and hedging against
PKI failures

As discussed earlier, OPAQUE offers a much more secure alternative to
password-authenticated key exchange than the current practice of transmitting
passwords over TLS. Yet, OPAQUE (as any other aPAKE) still requires
additional mechanisms for negotiating cryptographic parameters (such as
crypto algorithms) and for establishing the means needed to encrypt and
authenticate communications using the keys generated by OPAQUE. Thus, it
is natural to compose OPAQUE with the TLS protocol to offer strong
password security while leveraging the standardized negotiation and
record-layer security of TLS. Moreover, TLS can offer an initial
server-authenticated channel to protect the privacy of account information,
such as user name, transmitted between client and server. Here we discuss
possible schemes for composing OPAQUE and TLS. We consider TLS 1.3 [47]
as the upcoming and more secure version of TLS although some of the
mechanisms can be implemented via prior versions of TLS.

The simplest TLS-OPAQUE combination is one where U’s private key pU
stored by OPAQUE at S is used as a signature key for TLS client authentication.
In this case, the OPAQUE-extended handshake protocol includes the following
sequential steps (for a total of 5 messages): (i) a 1-RTT run of TLS 1.3 handshake
protocol that produces a session key authenticated by S’s TLS certificate; (ii) the
first two OPAQUE messages exchanged between client and server excluding the
KE values gx, gy (these were already exchanged as part of the TLS 1-RTT run);
(iii) TLS 1.3 client authentication using U’s private signature key pU retrieved
from S in step (ii).

These steps result in mutual authentication where server’s authentication
is accomplished based on a TLS certificate. The client can either trust such a
certificate or it can verify equality of the certificate’s public key against PS as
retrieved by OPAQUE. In case of a mismatch the client can request a signature
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of S using PS which is computed on the TLS transcript14. In the latter case,
the protocol does not rely on PKI certificates except for protecting account
information. In all cases, the security of passwords and password authentication
does not rely on PKI but on OPAQUE only.

Variants of the above scheme include the use of a TLS 1.3 0-RTT exchange for
sending the first OPAQUE message (including protected account information)
in which case steps (i) and (ii) are executed concurrently for a total of three
messages (flights in TLS jargon) as in regular TLS. This variant, while more
efficient, relies on 0-RTT which is available only to clients and servers that have
previously shared a key (negotiated in a previous handshake). A 0-RTT variant
independent of pre-shared keys and based instead on a server’s public key is
possible (e.g., [40]) but it is not standardized by TLS 1.3. Finally, if protecting
the secrecy of user’s account information is not considered necessary then steps
(i) and (ii) can run concurrently (without using the 0-RTT scheme); in this case
server’s authentication is based on OPAQUE’s server key PS . This setting also
allows for a more efficient scheme using HMQV as illustrated in Fig. 12 (with
additional key derivation and record layer processing based on TLS).

We note that the security of the above variants and composition rely on the
modularity of OPAQUE that can compose the OPRF steps with arbitrary
key-exchange protocols (with KCI and forward security). We remark that the
security of TLS 1.3 has been analyzed in multiple works (cf. [20–22, 24, 35, 41])
with client authentication via exported authentication (or “post-handshake
authentication”) studied in [39].

6.3 An OPAQUE variant: Multiplicative blinding

A variant of OPAQUE is obtained by replacing the user’s exponential blinding
operation α := H ′(pw)r in DH-OPRF with α := H ′(pw)·gr. The server responds
as before with β = αks . Assuming that U knows the value y = gks (previously
stored or received from S), it can compute the same “hashed Diffie-Hellman”
value H ′(pw)ks as β/yr. The advantage of this variant is that while the number
of client exponentiations remains the same, one is fixed-base (gr) and the other
(yr) can also be fixed-base if U caches y, a realistic possibility for accounts where
the user logs in frequently (e.g., a personal email or social network). Computing
yr can also be done while waiting for the server’s response to reduce latency.
Moreover, both exponentiations can be done offline although only short-term
storage is recommended as the leakage of r exposes H ′(pw) (hence opens pw

to a dictionary attack). If U does not store y, it needs to be transmitted to U

by S together with the response β. This still allows for fixed-base optimization
for computing gr but not for yr. Note that the two OPAQUE variants (with
exponential or multiplicative blinding) compute the same value rw, hence an
implementation can support both and leave it up to the client to choose one
(and request y from S if needed).

14 Such additional server authentication and the client authentication in step (iii)
can be implemented using TLS exported authenticators as defined in [51] (client
authentication in this case corresponds to post-handshake authentication in [47]).
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However, it turns out that this multiplicative mechanism results in an
OPRF protocol that does not realize our OPRF functionality FOPRF. Thus,
our analysis here does not imply the security of the multiplicative OPAQUE
variant in general. If rw is redefined as rw := H(pw, y,H ′(pw)ks), i.e., if y is
included under the hash, then the resulting OPRF does realize our
functionality, and OPAQUE remains secure as SaPAKE under both blinding
variants. This change, however, introduces a (slight) overhead of having to
transmit y even if the client implements the exponential blinding operation. An
alternative approach would be to replace the OPRF functionality FOPRF with a
weaker form F ′OPRF and to show that (i) F ′OPRF is realized by the multiplicative
variant (even without hashing y) and (ii) F ′OPRF is sufficient for proving
Theorem 2 hence implying the security of OPAQUE as SaPAKE. We intend to
investigate this weakening of FOPRF.
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A UC OPRF Definition: Discussion of Revisions

In Section 3 we showed a definition of the adaptive UC OPRF functionality,
FOPRF, shown in Fig. 3. The definition of FOPRF in Fig. 3 diverges from the
definition of the same functionality we gave in the proceedings version of this
paper [33], and the definition there was itself a revision of the UC OPRF
definition given in [31]. Below we first explain the modifications which both the
UC OPRF of Fig. 3 and the UC OPRF of [33] share vis-a-vis the UC OPRF
version of [31], and then we explain the revisions made by the UC OPRF of
Fig. 3 in comparison to the UC OPRF definition in [33].

Changes from OPRF Functionality of [31]. To use UC OPRF in our
application(s) we need to make some changes to the way functionality FOPRF

was defined in [31], as described below. Changes (3) and (4) are essentially
syntactic and require only cosmetic changes in the security argument. Change
(2) makes the functionality weaker. Change (1) is the only one which influences
the security argument in a more essential way. Fortunately, the DH-OPRF
protocol that we use for OPRF instantiation in our protocols, shown in [31] to
realize their version of the OPRF functionality FOPRF, also realizes our
modified FOPRF functionality. We recall the DH-OPRF protocol in Fig. 13 in
Appendix B, adapting its syntax to our changes in FOPRF, and we argue that
the security proof of [31] which shows that it realizes FOPRF defined by [31]
extends to the modified functionality FOPRF presented here.

(1) We extend the OPRF functionality to allow the adaptive compromise of a
server holding the PRF key via a Compromise message. Such action is needed
in the aPAKE setting where the attacker can compromise a server’s password file
that contains an OPRF key. After the compromise, A is allowed to compute that
server’s PRF function on any value of its choice using command OfflineEval.
We note that functionality FOPRF distinguishes between (statically) corrupted
servers and (adaptively) compromised sessions (the latter representing different
OPRF keys at the same server), in consistency with the aPAKE functionality
from Fig. 2 that distinguishes between an entirely corrupted server and particular
aPAKE instances that can be adaptively compromised by an adversary.

(2) We eliminate the condition that FOPRF aborts on message
(RcvComplete, ssid , i), denoted (RcvComplete, ssid , S∗) in [31], if (i)
server S is honest, (ii) i 6= S, and (iii) this OPRF sub-session was initialized by
U via command (Eval, ssid , S′, x) for S′ = S, where S is the server which
initialized the OPRF instance with session ID sid . The OPRF protocol of [31]
makes use of an authenticated channel, hence the user U aborts if the
adversary does not relay the messages from the server S if U ran this protocol
with S and S is honest. In contrast, we implement UC OPRF without relying
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on authenticated channels, so such clause must be deleted. This does not affect
the security of our Strong aPAKE protocols, which are password-only AKE’s
and are thus intended to be used over insecure channels.

(3) We change the SndrComplete message so that it is sent from S if S is
uncompromised, and from of A only if S is compromised. This allows an honest
aPAKE server to enforce a single OPRF execution, and thus e.g. a single
password guess per aPAKE sub-session, which is crucial for aPAKE security.

(4) We add an Initialization phase to the functionality, which models a server
picking an OPRF key. This interface simplifies the usage of OPRF in aPAKE
application where teh server picks an OPRF key for each new user. This modeling
differs from [31] who framed OPRF initialization as an interactive procedure
through an Eval call while here it is performed locally by the server.

Syntactic Differences from Adaptive OPRF Functionality in [33]. In
the definition of the Adaptive OPRF functionality in Fig. 3 we introduce several
modifications to the way this functionality was defined in the proceedings version
of this paper [33]. The purpose of these changes is to simplify some functionality
interfaces and to clarify some ambiguities in the definition of FOPRF in [33]. In the
explanation below we will refer to the OPRF functionality as defined in Fig. 3 as
a “revised” functionality FOPRF, and to the same functionality as defined in [33]
as a “proceedings-version” functionality FOPRF.

The most important difference introduced by the revised functionality
FOPRF is that it uses variable i to index random function instances, denoted
Fsid,i(x), whereas the proceedings-version of FOPRF used variable S to index
these functions, denoted Fsid,S therein.15 Indeed, a sequence of works on UC
OPRF [30–33] used the same convention of indexing random functions kept by
FOPRF by variable S. However, this notation for function indices has an
unfortunate effect of using the same variable to denote data, i.e. an index of a
random function, and to denote real-world entities. For example, in the
proceedings-version FOPRF the adversary can make an honest client U output
Fsid,S∗(x) for any bitstring S∗ which does not correspond to an honest server S,
but the proceedings-version FOPRF models this with SndrComplete message
sent by a corrupt entity S∗ to FOPRF, followed by message (RcvComplete, ...,
S∗) sent by A. This seemingly requires the adversary to create a “virtual
corrupt entity” for every function it creates, and is not compliant with UC
conventions [14]. We stress that this new notation for the OPRF functionality
requires only syntactic changes in the security arguments given for the UC
OPRF schemes in [31, 33]. Indeed, the UC OPRF notation proposed above is a
better fit for these security arguments.16

15 In Fig. 3 we use notation Fi instead of Fsid,i, but all records of functionality FOPRF

are implicitly indexed by the session identifier sid .
16 In particular, the simulators shown for the UC OPRF protocol in [31] treats

variables S′ and S∗ as data, not “virtual corrupt entities”, and the messages
(SndrComplete, sid , ssid) pertaining to S′ 6= S were sent by the simulator, i.e.
the ideal-world adversary, as required by the revised FOPRF syntax.
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This change of function-indexing variable is reflected in the modified syntax of
functionality commands OfflineEval, SndrComplete, and RcvComplete.
We explain this new syntax below, and we note that all these commands use
variable S to denote the identifier of a unique entity which initializes an OPRF
instance with session id sid by sending (Init, sid) to FOPRF.

(1) Off-line evaluation of function Fsid,i on argument x is executed via command
(OfflineEval, sid , i, x). This command can be issued by server S, in which case
if S is honest then it is allowed only if i = S, since an honest server S evaluates
only its own function Fsid,S, while a corrupt server S can evaluate an arbitrary
function instance. The adversary A can also issue this command, but if S is not
compromised (or corrupted) then A can send it only for i 6= S, since an adversary
cannot evaluate function Fsid,S without compromising server S.

(2) Command (SndrComplete, sid , ssid) models the execution of the server-
side OPRF protocol using S’s keys, and its effect is to increment counter tx

which counts the server-side OPRF executions for the “honest server function”
Fsid,S. This command can be issued by S, or by A if S is compromised because
S compromise allows A to run the server-side OPRF protocol using S’s keys.

A key difference from the proceedings-version FOPRF model is that in the
revised FOPRF command SndrComplete is used to model the sender-side
OPRF evaluation only if it is executed on the keys held by S, hence (1) the
revised FOPRF does not keep counters tx(sid , i) for adversarial functions Fsid,i,
i 6= S,17 and (2) neither the adversary nor any “virtual corrupt server” need to
send a SndrComplete message to represent the server-side execution of the
OPRF protocol on adversarially-chosen keys. (See also item 4 below.)

(3) Command (RcvComplete, sid , ssid , i), issued by A, models the adversary
letting server-side OPRF messages pass to the party P who runs the user-side
OPRF protocol, in which case P outputs Fsid,i(x) for the argument x which P

entered via command (Eval, sid , ssid , S′, x). The adversary can make P output
Fsid,i for any i 6= S because in the real-world a network adversary interacting
with P can run the server-side OPRF protocol using arbitrary (O)PRF keys.
Adversary A can also set i = S, which represents letting the real-world P receive
the server-side OPRF messages executed on S’s keys, but then the protocol
succeeds only if tx≥ 0, i.e. if there is an “unclaimed” S’s session which A can
pair with P’s session. In this case P outputs Fsid,S(x) and the functionality
decrements counter tx.

Other Syntactic Differences from UC OPRF of [33] Other syntactic
differences between our revised OPRF functionality of Fig. 3 and the
proceedings-version OPRF functionality of [33] include the following:

(4) The revised FOPRF keeps a counter only for the “honest” function FS,
whereas the proceedings-version FOPRF kept it for each adversarial function.
We eliminate the counters for adversarially-controlled functions from the
revised model because they appear not to play a meaningful role in the

17 In the proceedings-version functionality these counters were indexed by “virtual
corrupt server” identities denoted “S” therein.
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proceedings-version OPRF functionality since the functionality allows the
adversary to increment such counters at will via command SndrComplete.

(5) The revised FOPRF models offline computation of any adversarial function
Fsid,i, for i 6= S, via call OfflineEval, whereas the proceedings-version FOPRF

modeled it using a sequence of adversarial calls Eval, SndrComplete,
RcvComplete, i.e. as an instance of on-line protocol running “in the head”.18

(6) The revised functionality FOPRF splits the initialization of random function
Fsid,S via command Init from offline evaluation of Fsid,S on some argument
x via command (OfflineEval, sid , i, x) for i = S, whereas the proceedings-
version FOPRF combined initialization with one offline evaluation call.

B The DH-OPRF Protocol Realizing Revised FOPRF

Fig. 13 shows the DH-OPRF protocol of [31], called 2HashDH therein,
syntactically modified to realize the adaptive OPRF functionality FOPRF

defined in Fig. 3 in Section 3. Recall that the FOPRF functionality we show in
Section 3 is a revision of the (static) OPRF functionality defined in [31], but it
is also a revision of the earlier version of the adaptive OPRF functionality
which appeared in the conference version of this paper [33]. The protocol
shown below is essentially the same as in [31] and requires the same One-More
Diffie-Hellman assumption [5, 31] for security. The only differences between
2HashDH in Fig. 13 and in [31] are syntactic: First, we eliminate the user’s
“input-output caching” mechanism used in [31]. Second, the protocol in Fig. 13
outputs the OPRF protocol prefix, namely the U-to-S message a, to both U

and S instances. As explained in Section 3 outputting these protocol transcript
prefixes provides a better “glue” which a higher-level protocol can use to
compose OPRF with some other protocol, as protocol OPRF-AKE of Section 5
does by composing OPRF with AKE.

Modifications in the Proof of [31]. The proof of Lemma 1 is very similar to
the proof of security given in [31], so we only briefly discuss how our modifications
to FOPRF influence the security proof. The ideal-world adversary, i.e., simulator
SIM, is shown in Fig. 14. Fig. 14 denotes functionality FOPRF as F for brevity,
and it makes the following notational assumptions: (1) F ’s initialization message
(Init, S, sid) fixes the identifier S and session ID sid for the rest of the simulation,
and all messages to and from F and all its internal records are implicitly tagged
with sid ; (2) If S is corrupted then SIM acts as if S was compromised from
the very beginning; (3) The identifier S of the server for which F sends the
initialization message (Init, S, sid) is encoded as a different binary string than
any integer value; (4) There is integer N s.t. the number of hash function H ′

18 For example, the simulator shown in [31] reacts to the real-world adversary’s
local computation of hash function H2(x, v), v 6= H1(x)

k where k is the key of
server S, with three messages to the functionality: (Eval, sid , S′, x) for arbitrary S′,
(SndrComplete, sid , p) for a unique index p associated with an adversarial “public
key” yp s.t. (g, yp, H1(x), v) is a DDH tuple, and (RcvComplete, sid , p).
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Components: Hash functions H(·, ·), H ′(·) with ranges {0, 1}ℓ and G, respectively.
Functions H,H ′ are specific to the OPRF instance initialized for a unique session
ID sid , and they should be implemented by folding sid into their inputs.

Initialization: On input (Init, sid), S picks k ←R Zq and stores (sid , k).

Server Compromise: On (Compromise, sid , S) from the adversary, reveal key k.

Offline Evaluation

– On input (OfflineEval, sid , S, x) for sid matching record (sid , k), S outputs
(OfflineEval, sid , y) for y = H(x, (H ′(x))k).

Online Evaluation

– On input (Eval, sid , ssid , S′, x), U picks r ←R Zq, records (sid , ssid , r), sends
(ssid , a) for a = H ′(x)r to S′, and outputs (Prefix, ssid , a).

– On input (SndrComplete, sid , ssid ′) and message (ssid , a) from U s.t. a ∈ G,
S retrieves pair (sid , k) with matching sid , aborts if such pair is not found,
else sends (ssid , b) for b = ak to U and outputs (Prefix, ssid ′, a).

– On message (ssid , b) s.t. b ∈ G, U retrieves tuple (sid , ssid , r), aborts if tuple
not found, else outputs (Eval, sid , ssid , y) for y = H(x, b1/r).

Fig. 13: Adaptive OPRF Protocol DH-OPRF

queries made by the real-world adversary A is upper-bounded by N/2, and the
number of online OPRF evaluation sub-sessions started by Z via command Eval

to some honest user U is also upper-bounded by N/2.

Lemma 1. The DH-OPRF protocol shown in Fig. 13 realizes functionality
FOPRF of Fig. 3 under the One-More Diffie Hellman assumption in ROM.

Using these assumptions, the simulator acts in a similar way as the one
shown in [31]: SIM picks a random key k as S does, and uses it by computing
b = ak for every incoming message a ∈ G in SndrComplete. SIM embeds a
discrete-log trapdoor in every H ′ output, setting H ′(x) := gr for random r, and
recording this choice as 〈H ′, x, r〉. SIM similarly embeds a discrete-log trapdoor
in OPRF messages a sent on behalf of any honest U session (sid , ssid ,U), by
setting a ← gr for random r, and recording this choice as 〈ssid ,U, r〉. SIM also
keeps track of all Random Function indexes which are evaluted by adversary A
either offline, through H queries, or online, through A’s responses b to user U’s
message a. Each function is equated with its “public key” z = gk. First, SIM
records the honest S’s function this way as 〈F, 0, k, z〉 for z = gk, identifying
this function with index “0”. Secondly, every time A queries H on new point
(x, u), SIM checks if there is record 〈F, i, ·, z′〉 and 〈H ′, x, r〉 s.t. z′ = u1/r,
because this is equivalent to DL(H ′(x), u) = DL(g, z′). If this holds for i 6= 0
then A offline evaluates some adversarial function of its choice, hence in that
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case SIM sends (OfflineEval, sid , i, x) to F and embeds value Fsid,i(x)
returned by F into H(x, u). If this holds for i = 0 and S is not compromised
then A must be completing some OPRF instance as the user, hence in that
case SIM sends (Eval, sid , ssid ′,⊥, x) and (RcvComplete, sid , ssid ′, SIM, S)
to F for some fresh ssid ′ value. If F does not return any answer this means
that F ticket counter is 0, and that this local computation of Fsid,S(x) by A
violated the security properties of FOPRF, in which case SIM halts, and the
simulation obviously diverges from the real world execution. Otherwise SIM

embeds value Fsid,S(x) returned by F into H(x, u).

1. Pick r1, . . . , rN ←R Zq. Set g1 := gr1 , . . . , gN := grN , and J := 1 and I := 1.
2. On (Init, S, sid) from F pick k ← Zq and record 〈F, 0, k, z = gk〉.
3. On (Compromise, sid) from A, declare S as compromised, retrieve tuple
〈F, 0, k, z〉, send (Compromise, sid) to F , and send (sid , k) to A.

4. On A’s fresh query x to H ′, set H ′(x)← gJ , record 〈H
′, x, rJ〉, and set J++.

5. On (Eval, sid , ssid ,U, S′) from F , set a ← gJ , respond with prfx = a to F ,
send (sid , ssid , a) to A as U’s message to S′, record 〈ssid ,U, rJ〉, and set J++.

6. On (SndrComplete, sid , S) from F and message (sid , ssid , a) (where a ∈ G)
from A sent on behalf of some user to server S, respond with prfx = a to F ,
retrieve 〈F, 0, k, z〉, and send (sid , ssid , b) for b = ak to A as S’s response.

7. On message (sid , ssid , b) (where b ∈ G) from A sent on behalf of some server
to user U, retrieve records 〈ssid ,U, r〉 and 〈F, i, ·, z′〉 for z′ = b1/r.
If there is no record 〈F, i, ·, z′〉, set i := I, record 〈F, i,⊥, z′〉, and set I++.
In either case send (RcvComplete, sid , ssid ,U, i) to F .

8. On A’s fresh query (x, u) to H, retrieve record 〈H ′, x, r〉. If there is no such
record, then pick H(x, u)←R {0, 1}

ℓ. Otherwise do the following:
(1) If record 〈F, 0, k, z〉 satisfies that z = u1/r then

i. If S is compromised, send (OfflineEval, sid , S, x) to F , and on F ’s
response (OfflineEval, sid , y) set H(x, u) := y.

ii. If S is not compromised, pick a fresh identifier ssid∗ and send
(Eval, sid , ssid∗,⊥, x) and (RcvComplete, sid , ssid∗, SIM, S) to F .
If F ignores the last message then output halt and abort.
Else on F ’s response (Eval, sid , ssid∗, y) set H(x, u) := y.

(2) Else, if there is tuple 〈F, i,⊥, u1/r〉 for i 6=0 then send (OfflineEval, sid ,
i, x) to F , and on F ’s response (OfflineEval, sid , y) set H(x, u) := y.

(3) Else, record 〈F, i,⊥, u1/r〉 for i = I, send (OfflineEval, sid , i, x) to F ,
and on F ’s response (OfflineEval, sid , y) set H(x, u) := y and set I++.

Fig. 14: Simulator SIM for Protocol DH-OPRF (with FOPRF denoted as F)

Finally, if (x, u) query to H ′ does not match any recorded function 〈F, i, ·, z′〉
s.t. z′ = u1/r, then SIM defines a new function 〈F, i′,⊥, z′〉 for fresh index i′

and z′ = u1/r. SIM interprets A’s OPRF responses b to messages a = gr which
SIM sends on behalf of some honest user U in a similar way: Note that if a = gr

then z′ = b1/r = gDL(a,b). Therefore SIM can identify the function computed by
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U on this OPRF interaction with the public key z′ = b1/r. As in the case of
responding to H queries, SIM first checks if there exists record 〈F, i, ·, z′〉, and
otherwise it creates a new record 〈F, i′,⊥, z′〉 for fresh i′.

The only non-syntactic changes in the argument that under OMDH
assumption this simulation presents the same view as in the real execution,
compared to the simimlar argument given in [31], is that (1) A may at any
time compromise server S for a specific sid and learn key k; and (2) that if
some user session (sid , ssidu,U) and some server session (sid , ssids, S) output
the same prefixes prfx = a, then this interaction does not increase the ticket
counter, and does not count to the pool of OPRF interactions which A can use
to compute Fsid,S(x) on some input x.

Regarding (1), note that after server compromise A can compute the server’s
function on any argument, but SIM can detect that by catchingH query on (x, v)
for v = (H ′(x))k, and can simulate this by sending (OfflineEval, sid , S, x) to
FOPRF. Furthermore, note that event halt may only occur if server S is not
marked compromised at that time; hence the argument which upper-bounds
Pr[halt] given in [31] is not affected by this change because it assumes that S

is not compromised at the time. Regarding (2), it is easy to see that if A who
forwards to some server session the message a = gr sent by SIM on behalf of
some honest user U session, the security reduction can respond to such message
with b = zr, where z is the OMDH challenge public key z = gk. Therefore
the reduction will not need to query the One-More Diffie-Hellman oracle (·)k

on all such S sessions, and thus these sessions will not increase the number of
arguments x on which adversary A can compute u = (H ′(x))k, by querying H
on (x, u), without breaking the OMDH assumption.
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