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Abstract

Many systems run rich analytics on sensitive data in the

cloud, but are prone to data breaches. Hardware enclaves

promise data confidentiality and secure execution of ar-

bitrary computation, yet still suffer from access pattern

leakage. We propose Opaque, a distributed data analytics

platform supporting a wide range of queries while provid-

ing strong security guarantees. Opaque introduces new

distributed oblivious relational operators that hide access

patterns, and new query planning techniques to optimize

these new operators. Opaque is implemented on Spark

SQL with few changes to the underlying system. Opaque

provides data encryption, authentication and computa-

tion verification with a performance ranging from 52%

faster to 3.3x slower as compared to vanilla Spark SQL;

obliviousness comes with a 1.6–46x overhead. Opaque

provides an improvement of three orders of magnitude

over state-of-the-art oblivious protocols, and our query

optimization techniques improve performance by 2–5x.

1 Introduction

Cloud-based big data platforms collect and analyze vast

amounts of sensitive data such as user information (emails,

social interactions, shopping history), medical data, and

financial data. These systems extract value out of this data

through advanced SQL [4], machine learning [25, 15], or

graph analytics [14] queries. However, these information-

rich systems are also valuable targets for attacks [16, 32].

Ideally, we want to both protect data confidentiality

and maintain its value by supporting the existing rich

stack of analytics tools. Recent innovation in trusted

hardware enclaves (such as Intel SGX [24] and AMD

Memory Encryption [19]) promise support for arbitrary

computation [6, 34] at processor speeds while protecting

the data.

Unfortunately, enclaves still suffer from an important

attack vector: access pattern leakage [41, 28]. Such

leakage occurs at the memory level and the network level.

Memory-level access pattern leakage happens when a

compromised OS is able to infer information about the en-

crypted data by monitoring an application’s page accesses.

Previous work [41] has shown that an attacker can extract

hundreds of kilobytes of data from confidential documents

in a spellcheck application, as well as discernible outlines

of jpeg images from an image processing application
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Figure 1: Opaque efficiently executes a wide range of distributed

data analytics tasks by introducing SGX-enabled oblivious rela-

tional operators that mask data access patterns and new query

optimization techniques to reduce performance overhead.

running inside the enclave. Network-level access pattern

leakage occurs in the distributed setting because tasks

(e.g., sorting or hash-partitioning) can produce network

traffic that reveals information about the encrypted data

(e.g., key skew), even if the messages sent over the network

are encrypted. For example, Ohrimenko et al [28] showed

that an attacker who observes the metadata of network

messages, such as source and destination (but not their

content), in a MapReduce computation can identify the

age group, marital status, and place of birth for some rows

in a census database. Therefore, to truly secure the data,

the computation should be oblivious: i.e., it should not

leak any access patterns.

In this paper, we introduce Opaque1, an oblivious dis-

tributed data analytics platform. Utilizing Intel SGX

hardware enclaves, Opaque provides strong security guar-

antees including computation integrity and obliviousness.

One key question when implementing the oblivious

functionality is: at what layer in the software stack should

we implement it? Implementing at the application layer

will likely result in application-specific solutions that are

not widely applicable. Implementing at the execution

layer, while very general, provides us with little seman-

tics about an application beyond the execution graph and

significantly reduces our ability to optimize the imple-

mentation. Thus, neither of these two natural approaches

appears satisfactory.

Fortunately, recent developments and trends in big

data processing frameworks provide us with a compelling

opportunity: the query optimization layer. Previous work

has shown that the relational model can express a wide

1The name “Opaque” stands for Oblivious Platform for Analytic

QUEries, as well as opacity, hiding sensitive information.
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variety of big data workloads, including complex graph

analytics [14] and machine learning [17]. We chose to

implement Opaque at this layer. While the techniques

we present in this paper are general, we instantiate them

using Apache Spark [4] by layering Opaque on top of

Catalyst, the Spark SQL query optimizer (see Fig. 1).

Our design requires no changes to Spark’s libraries and

requires minimal extensions to Catalyst.

The main challenge we faced in designing Opaque is

the question of how to efficiently provide access pattern

protection. It has long been known in the literature that

such protection brings high overheads. For example,

the state-of-the-art framework for oblivious computation,

ObliVM [22], has an overhead of 9.3×106x and is not

designed for distributed workloads. Even GraphSC [27],

a special-purpose platform for oblivious parallel graph

computation, reports a 105x slowdown.

To address this challenge, we propose a two-part solu-

tion. First, we introduce a set of new distributed relational

operators that protect against both memory and network

access pattern leakage at the same time. These include

operators for joins and group-by aggregates. The contri-

bution of these relational operators is to achieve oblivious-

ness in a distributed and parallel setting. One recurring

challenge here is to handle boundary conditions (when

a value that repeats in rows spans multiple machines) in

a way that is efficient and does not leak access patterns.

These operators also come with computation integrity

guarantees, called self-verifying computation, preventing

an attacker from affecting the computation result.

Second, we provide novel query planning techniques,

both rule-based and cost-based, to further improve the

performance of oblivious computation.

• Rule-based optimization. Oblivious SQL operators in

Opaque consist of fine-grained oblivious computation

blocks called Opaque operators. We observe that by

taking a global view across these Opaque operators and

applying Opaque-specific rules, some operators can be

combined or removed while preserving security.

• Cost-based optimization. We develop a cost model for

oblivious operators that lets us evaluate the cost of a

physical plan. This model introduces security as a new

dimension to query optimization. We show that it is

possible to achieve significant performance gains by us-

ing join reordering to minimize the number of oblivious

operators. One key aspect used by our cost model is that

not all tables in a database are sensitive: some contain

public information. Hence, we can query such tables

using non-oblivious operators to improve performance.

Opaque allows database administrators to specify which

tables are sensitive. However, sensitive tables can be

related with seemingly insensitive tables. To protect

the sensitive tables in this case, Opaque leverages a

technique in the database literature called inference

detection [18, 9] to propagate sensitivity through ta-

bles based on their schema information. Additionally,

Opaque propagates operator sensitivity as well for all

operators that touch sensitive tables.

We implemented Opaque using Intel SGX on top of

Spark SQL with minimal modifications to Spark SQL.

Opaque can be run in three modes: in encryption mode,

Opaque provides data encryption and authentication as

well as guarantees the correct execution of the compu-

tation; in oblivious mode, Opaque additionally provides

oblivious execution that protects against access pattern

leakage; in oblivious pad mode, Opaque improves on the

oblivious mode by preventing size leakage.

We evaluate Opaque on three types of workloads: SQL,

machine learning, and graph analytics. To evaluate SQL,

we utilize the Big Data Benchmark [1]. We also evaluated

Opaque on least squares regression and PageRank. In

a 5-node cluster of SGX machines, encryption mode’s

performance is competitive with the baseline (unencrypted

and non-oblivious): it ranges from being 52% faster to 3.3x

slower. The performance gains are due to C++ execution in

the enclave versus the JVM in untrusted mode (for vanilla

Spark SQL). Oblivious mode slows down the baseline

by 1.6–46x. Much of the oblivious costs are due to the

fact that Intel SGX is not set up for big data analytics

processing; future architectures [8, 21, 35] providing

larger and oblivious enclave memory will reduce this cost

significantly. We compare Opaque with GraphSC [27],

a state-of-the-art oblivious graph processing system, by

evaluating both systems on PageRank. Opaque is able to

achieve three orders of magnitude (2300x) of performance

gain, while also providing general SQL functionality.

Finally, while obliviousness is fundamentally costly, we

show that our new query optimization techniques achieve

a performance gain of 2–5x.

2 Background

Opaque combines advances in secure enclaves with the

Spark SQL distributed relational dataflow system. Here

we briefly describe these two technologies, as well as

exemplify an access pattern leakage attack.

2.1 Hardware Enclaves

Secure enclaves are a recent advance in computer proces-

sor technology providing three main security properties:

fully isolated execution, sealing, and remote attestation.

The exact implementation details of these properties vary

by platform (e.g. Intel SGX [24] or AMD Memory En-

cryption [19]), but the general concepts are the same. Our

design builds on the general notion of an enclave, which

has several properties. First, isolated execution of an

enclave process restricts access to a subset of memory

such that only that particular enclave can access it. No
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other process on the same processor, not even the OS,

hypervisor, or system management module, can access

that memory. Second, sealing enables encrypting and

authenticating the enclave’s data such that no process

other than the exact same enclave can decrypt or modify

it (undetectably). This enables other parties, such as

the operating system, to store information on behalf of

the enclave. Third, remote attestation is the ability to

prove that the desired code is indeed running securely and

unmodified within the enclave of a particular device.

2.2 Access pattern leakage attacks

To understand access pattern leakage concretely, consider

an example query in the medical setting:

SELECT COUNT(*) FROM patient WHERE age > 30

GROUP BY disease

The “group by” operation commonly uses hash bucketing:

each machine iterates through its records and assigns each

record to a bucket. The records are then shuffled over the

network so that records within the same bucket are sent

to the same machine. For simplicity, assume each bucket

is assigned to a separate machine. By watching network

packets, the attacker sees the number of items sent to each

machine. Combined with public knowledge about disease

likelihood, the attacker infers each bucket’s disease type.

Moreover, the attacker can learn the disease type for

a specific database record, as follows. By observing

page access patterns, the attacker can track a specific

record’s bucket assignment. If the bucket’s disease type

is known, then the record’s disease type is also known. A

combination of page-based access patterns and network-

level access patterns thus gives attackers a powerful tool

to gain information about encrypted data.

2.3 Spark background

We implemented Opaque on top of Spark SQL [42, 4], a

popular cluster computing framework, and we use Spark

terminology in our design for concreteness. We emphasize

that the design of Opaque is not tied to Spark or Spark SQL:

the oblivious operators and query planning techniques are

applicable to other relational frameworks.

The design of Spark SQL [42, 4] is built around two

components: master and workers. The user interacts with

the master which is often running with the workers in

the cloud. When a user issues a query to Spark SQL,

the command is sent to the master which constructs and

optimizes a physical query plan in the form of a DAG

(directed acyclic graph) whose nodes are tasks and whose

edges indicate data flow. The conversion of the SQL query

into a physical query plan is mediated by the Catalyst query

optimizer.

3 Overview

3.1 Threat model and assumptions

We assume a powerful adversary who controls the cloud

provider’s software stack. As a result, the adversary can

observe and modify the network traffic between different

nodes in the cloud as well as between the cloud and the

client. The attacker may gain root access to the operating

system, modify data or communications that are not inside

a secure enclave, and observe the content and order of

memory accesses by an enclave to untrusted memory

(i.e., memory that is not part of a secure enclave). In

particular, the adversary may perform a rollback attack,

in which it restores sealed data to a previous state.

We assume the adversary cannot compromise the trusted

hardware, relevant enclave keys, or client software. In

particular, the attacker cannot issue queries or change

server-side data through the client. Denial-of-service

attacks are out of scope for this paper. A cloud provider

may destroy all customer data or deny or delay access

to the service, but this would not be in the provider’s

interest. Customers also have the option to choose a

different provider if necessary. Side-channel attacks based

on power analysis or timing attacks (including those that

measure the time spent in the enclave or the time when

queries arrive) are also out of scope.

We assume that accesses to the source code of Opaque

that runs in the enclave are oblivious. This can be achieved

either by making accesses oblivious using tools such as

GhostRider [21], or by using an enclave architecture that

provides a pool of oblivious memory [8, 21, 35]; the latter

need only provide a small amount of memory because the

relevant Opaque source code is ≈ 1.4MB.

3.2 Opaque’s architecture

Figure 2 shows Opaque’s architecture. Opaque does

not change the layout of Spark and Spark SQL, except

for one aspect. Opaque moves the query planner to the

client side because a malicious cloud controlling the query

planner can result in incorrect job execution. However,

we keep the scheduler on the server side, where it runs

in the untrusted domain. We augment Opaque with a

computation verification mechanism (§4.2) to prevent an

attacker from corrupting the computation results.

The Catalyst planner resides in the job driver and is

extended with Opaque optimization rules. Given a job,

the job driver outputs a task DAG and a unique job

identifier JID for this job. For example, the query from

§2.2 translates to the DAG shown in Fig. 3. The job driver

annotates each edge with an ID, e.g., E1, and each node

with a task ID, e.g., task 4. The input data is split in

partitions, each having its own identifier.

Oblivious memory parameter. As discussed, the cur-

rent Intel SGX architecture leaks memory access patterns
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both when accessing the enclave’s memory (EPC) and the

rest of main memory. Nevertheless, recent work, such as

Sanctum [8], GhostRider [21], and T-SGX [35], proposes

enclave designs that protect against access patterns to the

EPC. Hence, such systems yield a pool of oblivious mem-

ory, which can be used as a cache to speed up oblivious

computations. Since the size of the oblivious pool depends

on the architecture used, we parameterize Opaque with

a variable specifying the size of the oblivious memory.

This parameter can range from as small as the registers

(plus Opaque’s enclave code size) to as large as the entire

EPC [8, 35] or main memory. Bigger oblivious memory

allows faster oblivious execution in Opaque. In all cases,

Opaque provides oblivious accesses to the non-oblivious

part of the EPC, to the rest of RAM, and over the network.

3.3 Security guarantees

Encryption mode. In encryption mode, Opaque provides

data encryption and authentication guarantees. Opaque’s

self-verifying integrity protocol (§4.2) guarantees that, if

the client verifies the received result of the computation

successfully, then the result is correct, i.e., not affected

by a malicious attacker. The proof of security for the

self-verifying integrity protocol is rather straightforward,

and similar to the proof for VC3 [34].

Oblivious modes. In the two oblivious modes, Opaque

provides the strong guarantee of oblivious execution with

respect to memory, disk, and network accesses for every

sensitive SQL operator. As explained in §6.3, these are

operators taking as input at least one sensitive table or

intermediate results from a set of operators involving

at least one sensitive table. Opaque does not hide the

computation/queries run at the server or data sizes, but it

protects the data content. In oblivious mode, the attacker

learns the size of each input and output to a SQL operator

and the query plan chosen by Catalyst, which might leak

some statistical information. The oblivious pad mode,

explained in §5.3, hides even this information by pushing

up all filters and padding the final output to a public

upper bound, in exchange for more performance overhead.

We formalize and prove our obliviousness guarantees in

the extended version of this paper, and present only the

statement of the guarantees here.

Consider oblivious mode. The standard way to for-

malize that a system hides access patterns is to exhibit a

simulator that takes as input a query plan and data sizes

but not the data content, yet is able to produce the same

trace of memory and network accesses as the system. In-

tuitively, since the simulator did not take the data as input,

it means that the accesses of the system do not depend on

the data content. Whatever the simulator takes as input is

an upper bound on what the system leaks.

To specify the leakage of Opaque, consider the fol-

lowing (informal) notation. Let D be a dataset and Q a

query. Let Size(D) be the sizing information ofD, which

includes the size of each table, row, column, attribute, the

number of rows, the number of columns, but does not

include the value of each attribute. Let S be the schema

information, which includes table and column names in

D, as well as which tables are sensitive. Opaque can

easily hide table and column names via encryption. The

sensitive tables include those marked by the administra-

tor, as well as those marked by Opaque after sensitivity

propagation (§6.3). Let IOSize(D,Q) be the input/output

size of each SQL operator in Q when run on D. We

define P = OpaquePlan(D,Q) to be the physical plan

generated by Opaque. We define Trace to be the trace of

memory accesses and network traffic patterns (the source,

destination, execution stage, and size of each message) for

sensitive operators.

Theorem 1. For allD, S, whereD is a dataset and S is its

schema, and for each query Q, there exists a polynomial-

time simulator Sim such that, for P =OpaquePlan(D,Q),

Sim(Size(D), S, IOSize(D,Q),P) = Trace(D,P).

The existence of Sim demonstrates that access patterns

of the execution are oblivious, and that the attacker does

not learn the data content D beyond sizing information

and the query plan. The fact that the planner chose a

certain query plan over other possible plans for the same

query might leak some information about the statistics

on the data maintained by the planner. Nevertheless, the

planner maintains only a small amount of such statistics

that contain much less information than the actual data

content. Further, the attacker does not see these statistics

directly and does not have the power to change data or

queries and observe changes to the query plan.

Oblivious pad mode’s security guarantees are similar

to the above, except that the simulator no longer takes

as input IOSize(D,Q), but instead only a public upper

bound on the size of a query’s final output.
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Note that Opaque protects most constants in a query

using semantic security: for example it hides the constant

in “age ≥ 30”, but not in “LIMIT 30”.

Coupling oblivious accesses with the fact that the con-

tent of every write to memory and every network mes-

sage is freshly encrypted with semantic security enables

Opaque to provide a strong degree of data confidentiality.

In particular, Opaque protects against the memory and

network access patterns attacks presented in [41] and [28].

4 Opaque’s encryption mode

In this section, we describe Opaque’s encryption mode,

which provides data encryption, authentication and com-

putation integrity.

4.1 Data encryption and authentication

Similar to previous designs [6, 34], Opaque uses remote

attestation to ensure that the correct code has been loaded

into enclaves. A secure communication channel is then

established and used to agree upon a shared secret key k

between the client and the enclaves.

All data in an enclave is automatically encrypted by the

enclave hardware using the processor key of that enclave.

Before communicating with another enclave, an enclave

always encrypts its data with AuthEnc using the shared

secret key k. AuthEnc encrypts data with AES in GCM

mode, a high-speed mode that provides authenticated

encryption. In addition to encryption, this mode also

produces a 128-bit MAC to be used for checking integrity.

4.2 Self-verifying computation

Ensuring computation integrity is necessary because a

malicious OS could drop messages, alter data or computa-

tion. We call our integrity checking strategy self-verifying

computation because the computation verifies itself as it

proceeds. The mere fact that the computation finished

without aborting means that it was not tampered with.

Let us first discuss how to check that the input data was

not corrupted. As in VC3 [34], the identifier of a partition

of input data is its MAC. The MAC acts as a self-certifying

identifier because an attacker cannot produce a different

partition content for a given ID. Finally, the job driver

computes C← AuthEnck (JID, DAG, P1, . . .,Pp ), where

P1, . . .,Pp indicates the identifiers of the partitions to be

taken as input. Every worker node receives C. Opaque’s

verifier running in the enclave decrypts and checks the

authenticity of the DAG in C.

Then, to verify the integrity of the computation, each

task needs to check that the computation up to it has

proceeded correctly. First, if E1, . . .,Et are edges incoming

into task T in the DAG, the verifier checks that it has

received authentic input on each edge from the correct

previous task and that it has received input for all edges.

To ensure this invariant, each node producing an output o

for an edge E encrypts this output using AuthEnck (JID,

E,o). The receiving node can check the authenticity of

this data and that it has received data for every edge in the

DAG. Second, the node will run the correct task T because

the enclave code was set up using remote attestation and

task T is integrity-verified in the DAG. Finally, each job

ends with the job driver receiving the final result and

checking its MAC. The last MAC serves as a proof of

correct completion of this task.

This protocol improves over VC3 [34], which requires

an extra stage where all workers send their inputs and

outputs to a master which checks that they all received

complete and correct inputs. Opaque avoids the cost of

this extra stage and performs the verification during the

computation, resulting in negligible cost.

Rollback attacks. Spark’s RDDs combined with our ver-

ification method implicitly defend against rollback attacks,

because the input to the workers is matched against the

expected MACs from the client and afterwards, the compu-

tation proceeds deterministically. The computation result

is the same even with rollbacks.

4.3 Fault tolerance

In Spark, if the scheduler notices that some machine is slow

or unresponsive, it reassigns that task to another machine.

Opaque’s architecture facilitates this process because the

encrypted DAG is independent from the workers’ physical

machines. As a result, the scheduler can live entirely

in the untrusted domain, and does not affect Opaque’s

security if compromised.

5 Oblivious execution

In this section, we describe Opaque’s oblivious execution

design. We first present two oblivious building blocks,

followed by Opaque’s oblivious SQL operator designs.

5.1 Oblivious building blocks

Oblivious sorting is central to the design of oblivious

SQL operators. Opaque adapts existing oblivious sorting

algorithms for both local and distributed sorting, which

we now explain.

5.1.1 Intra-machine oblivious sorting

Sorting networks [7] are abstract networks that consist of

a set of comparators that compare and swap two elements.

Elements travel over wires from the input to comparators,

where they are sorted and output again over wires. Sorting

networks are able to sort any sequence of elements using

a fixed set of comparisons.

Denote by OM, the oblivious memory available for

query processing, as discussed in §3.2. In the worst case,

this is only a part of the registers. If the total size of

the data to be sorted on a single machine fits inside the

OM, then it is possible to load everything into the OM,
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Figure 4: Column sort, used in the distributed setting. Each

column represents a single partition, and we assume that each

machine only has one partition. The algorithm has eight steps.

Steps 1, 3, 5, 7 are sorts, and the rest are shuffle operations.

sort using quicksort, then re-encrypt and write out the

result. If the data cannot fit inside the OM, Opaque will

first partition the data into blocks. Each block is moved

into the OM and sorted using quicksort. We then run a

sorting network called bitonic sort over the blocks, treating

each one as an abstract element in the network. Each

comparator operation loads two blocks into the enclave,

decrypts, merges, and re-encrypts the blocks. The merge

operation only requires a single scan over the blocks.

5.1.2 Inter-machine oblivious sorting

A natural way to adapt the bitonic sorting network in the

distributed setting is to treat each machine as an abstract

element in the sorting network. We can sort within each

machine separately, then run the bitonic sorting network

over the machines. However, each level of comparators

now corresponds to a network shuffling of data. Given

n machines, the sorting network will incur O(log2 n)

number of shuffles, which is high.

Instead, Opaque uses column sort [20], which sorts the

data using a fixed number of shuffles (5 in our experiments)

by exploiting the fact that a single machine can hold many

items. Column sort works as follows: given a sequence

of B input items, we split these items into s partitions,

where each partition has exactly r items (with padding if

necessary). Without loss of generality, we assume that

each machine handles one partition. We treat each parti-

tion as a column in column sort. The sorting algorithm

has 8 steps: the odd-numbered steps are per-column sorts

(implemented as intra-machine oblivious sorting), and

the even-numbered steps shuffle the data deterministically.

Figure 4 gives a visual example of how column sort works.

The sorting algorithm has the restriction that r ≥ 2(s−1)2,

which applies well to our setting because there are many

records in a single partition/column.

An important property of column sort is that, as an obliv-

ious operator, it preserves the balance of the partitions.

This means that after a sort, a partition will have exactly

the same number of items as before. Partition balance

is required to avoid leaking any information regarding

the underlying data’s distribution. However, balanced

partitioning is incompatible with co-locating all records

of a given group. Instead, records with identical grouping

attributes may be split across partitions. Operators that

consume the output of column sort must therefore be

able to transfer information between adjacent partitions

obliviously and efficiently. We address this challenge in

our descriptions of the oblivious operators.

5.2 Oblivious operators

In this section, we show how to use the oblivious building

blocks to construct oblivious relational algebra operators.

The three operators we present are filter, group-by, and

join. Opaque uses an existing oblivious filter operator [3],

but provides new algorithms for the join and group-by

operators, required by the distributed and parallel setting.

In what follows, we focus only on the salient parts of

these algorithms. We do not delve into how to make simple

structures oblivious like conditionals or increments, which

is already known (e.g., [21]).

5.2.1 Oblivious filter

An oblivious filter ensures that the attacker cannot track

which encrypted input rows pass the filter. A naïve filter

that streams data through the enclave to get rid of unwanted

rows will leak which rows have been filtered out because

the attacker can keep track of which input resulted in an

output. Instead, the filter operator [3] used in Opaque first

scans and marks each row with a “0” (record should be

kept) or a “1” (record should be filtered), then obliviously

sorts all rows with “0” before “1”, and lastly, removes the

“1” rows.

5.2.2 Oblivious Aggregate

Aggregation queries group items with equal grouping

attributes and then aggregate them using an aggregation

function. For example, for the query in §2.2, the grouping

attribute is disease and the aggregation function is count.

A naïve aggregation implementation leaks information

about group sizes (some groups may contain more records

than others), as well as the actual mapping from a record

to a group. For example, a reduce operation that sends all

rows in the same group to a single machine reveals which

and how many rows are in the group. Prior work [28]

showed that an attacker can identify age group or place of

birth from such protocols.

Opaque’s oblivious aggregation starts with an oblivious

sort on the grouping attributes. Once the sort is complete,
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all records that have the same grouping attributes are

located next to each other. A single scan might seem

sufficient to aggregate and output a value for each group,

but this is incorrect. First, the number of groups per

machine can leak the number of values in each group. A

further challenge (mentioned in §5.1.2) is that a set of rows

with the same grouping attributes might span multiple

machines, leaking such information. We need to devise a

parallel solution because a sequential scan is too slow.

We solve the above problems by designing a distributed

group-by operator that reveals neither row-to-group map-

ping nor the size of each group. The logical unit for this

algorithm is a partition, which is assumed to fit on one

machine. The intuition for this algorithm is that we want

to simulate a global sequential scan using per-partition

parallel scans. If all records in a group are in one partition,

the group will be aggregated immediately. Once the last

record in that group has been consumed in the scan, the

aggregation result is complete. If records in a group are

split across partitions, we want to pass information across

partitions efficiently and obliviously so that later partitions

have the information they need to finish the aggregation.

High-cardinality aggregation. This aggregation algo-

rithm should be run when the number of groups is large.

Stage 1 [sort]: Obliviously sort all records based on the

grouping attributes.

Stages 2–4 are the boundary processing stages. These

stages solve the problem of a single group being split

across multiple machines after column sort. Figure 5

illustrates an example.

Stage 2 [per-partition scan 1]: Each worker scans its

partition once to gather some statistics, which include the

partition’s first and last rows, as well as partial aggregates

of the last group in this partition. In Figure 5, each

column represents one partition. Each worker calculates

statistics including Ri , the partial aggregate. In partition

0, R0 = (C,2) is the partial aggregate that corresponds to

the last row in that partition, C.

Stage 3 [boundary processing]: All of the statistics from

stage 2 are collected into a single partition. The worker

assigned this partition will scan all of the statistics and

compute one global partial aggregate (GPA) per partition.

Each partition’s GPA should be given to the next partition.

Figure 5’s stage 3 shows an example of how the GPA is

computed. The first partition always receives a dummy

GPA since it is not preceded by any other partition. Parti-

tion P1 receives (C,2) from P0. With this information,

P1 can correctly compute the aggregation result for group

C, even though the records are split across P0 and P1.

Stage 4 [per-partition scan 2]: Each partition receives a

GPA, which will be used to produce the final aggregation

results. Figure 5’s stage 4 shows that P1 can aggregate

groups C, D and E using R
′

1
. Note that one record needs
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Figure 5: Stages 2 - 4 of oblivious aggregation
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Figure 6: Stages 2–4 of oblivious join.

to be output for every input record, and output rows are

marked as dummy if necessary (e.g., returning −1 for the

count result).

Stage 5 [sort and filter]: Obliviously sort the dummy

records after the real records, and filter out the dummies.

Low-cardinality group-by. If the number of groups is

small (e.g., age groups, states), Opaque provides an al-

ternative algorithm that avoids the second oblivious sort,

which we describe in the extended version of this paper.

5.2.3 Oblivious sort-merge join

Regular joins leak information about how many and which

records are joined together on the same join attributes.

For example, a regular primary-foreign key join may sort

the two tables separately, maintain a pointer to each table,

and merge the two tables together while advancing the

pointers. The pointer locations reveal information about

how many rows have the same join attributes and which

rows are joined together.

We developed an oblivious equi-join algorithm based

on the sort-merge join algorithm. While our algorithm

presented below focuses on primary-foreign key join, we

can also generalize the algorithm to inner equi-join, which

we describe in our extended paper. Let Tp be the primary

key table, and Tf be the foreign key table.

Stage 1 [union and sort]: We union Tp with Tf , then

obliviously sort them together based on the join attributes.

We break ties by ordering Tp records before Tf records.

As with oblivious aggregation, stages 2–4 are used to

handle the case of a join group (e.g., a set of rows from Tp

and Tf that are joined together) that is split across multiple

machines. We use Figure 6 to illustrate these three stages.

Stage 2 [per-partition scan 1]: Each partition is scanned

once and the last row from Tp in that partition, or a dummy

(if there is no record from Tp on that machine) is returned.

We call this the boundary record.

Figure 6 explains stage 2 with an example, where Tp.x

indicates a record from the primary key table with join
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attribute x, and Tf.x indicates a record from the foreign

key table with join attribute x. In partition P0, Tp.b is the

last record of Tp in that partition, so the boundary record

is set to Tp.b. P1 does not contain any row from Tp , so

its boundary record is set to a dummy value.

Stage 3 [boundary processing]: In stage 3, we want to

generate primary key table records to give back to each

data partition so that all of the foreign key table records

in each partition (even if the information spans across

multiple machines) can be joined with the corresponding

primary key record. We do so by first collecting all of the

boundary records to one partition. This list is scanned

once, and we output a new boundary record for every

partition. Each output is set to the value of the most

recently encountered non-dummy boundary.

For example, Fig. 6’s stage 3 shows that three boundary

records are collected. Partition 0 will always get a dummy

record. Record Tp.b is passed from partition 0 to partitions

1 and 2 because d1 is a dummy. This ensures that any

record from Tf with join attribute b (e.g., the first record

of partition 2) will be joined correctly.

Stage 4 [per-partition scan 2]: Stage 4 is similar to a

normal sort-merge join, where the worker linearly scans

the tables and joins primary key records with the corre-

sponding foreign key records. There are some variations

to preserve obliviousness. First, the initial record in the

primary key table should come from the boundary record

received in stage 3 (except for the first partition). Second,

during the single scan, we need to make sure that one

record is output for every input record, outputting dummy

records as necessary.

Figure 6’s stage 4 shows how the algorithm works on

partition 2. The boundary record’s value is Tp.b, which is

successfully joined with the first row of partition 2. Since

P2’s second row is a new record from Tp , we change the

boundary record to Tp.c, and a dummy is output.

Stage 5 [sort and filter]: Oblivious sort to filter out the

dummies.

5.3 Oblivious pad mode

Oblivious execution provides strong security guarantees

and prevents access pattern leakage. However, it does

not hide the output size of each relational operator. This

means that in a query with multiple relational operators,

the size of each intermediate result is leaked. To solve this

problem, Opaque provides a stronger variant of oblivious

execution: oblivious with padding.

The idea is to never reduce the output size of a relational

operator until the end of the query. This can be easily

achieved by using “filter push up.” For example, a query

that has a join followed by an aggregation will skip stage

5 of the join. After the aggregation, all dummies will be

filtered out in a single sort with filter. We also require the

user to provide an upper bound on the final result size, and

Opaque will pad the final result to this size. In this case,

the query plan also no longer depends on data statistics,

as we discuss in §6.4.

Note that this mode is more inefficient because Opaque

cannot take advantage of selectivity (e.g., of filters), and we

provide an evaluation in our extended paper. Therefore, we

recommend using padding on extremely sensitive datasets.

6 Query planning

Even with parallelizable oblivious algorithms, oblivious-

ness is still expensive. We now describe Opaque’s query

planner, which reduces obliviousness overheads by in-

troducing novel techniques that build on rule-based and

cost-based optimization, as well as entity-relational mod-

eling. We first formalize a cost model for our oblivious

operators to allow a standard query planner to perform

basic optimizations on oblivious plans. We then describe

several new optimizations specific to Opaque, enabled

by a decomposition of oblivious relational operators into

lower-level Opaque operators. Finally, we describe a

mixed sensitivity setting where a database administrator

can designate tables as sensitive. Opaque applies a tech-

nique in databases known as second path analysis that uses

foreign-key relationships in a data model to identify tables

that are not sensitive, accounting for inference attacks. We

also demonstrate that such sensitivity propagation occurs

within a single query plan, allowing us to substantially

speed up certain queries using join reordering.

6.1 Cost model

Cost estimation in Opaque differs from that of a tradi-

tional SQL database because sorting, the core database

operation, is more costly in the oblivious setting than oth-

erwise. Oblivious sorting has very different algorithmic

behavior from conventional sorting algorithms because

the sequence of comparisons can be constructed based

only on the input size and not the input data. Therefore,

our cost model must accurately model oblivious sorting,

which is the dominant cost in our oblivious operators.

Similarly to a conventional sort, the cost of an oblivious

sort depends on two factors: the number of input items

and the padded record size. Even for datasets that fit in

memory, cost modeling for an oblivious sort is similar

to that of a traditional external sort because the latency

penalty incurred by the enclave for accessing pages outside

of the oblivious memory or EPC effectively adds a layer

to the memory hierarchy. We therefore use a two-level

sorting scheme for oblivious sort, described in §5.1.1,

having a runtime complexity of O(n log2 n).

We now formalize the cost of oblivious sort and use

this to model oblivious join. The costs of other oblivious

operators can be similarly modeled.
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Figure 7: Catalyst oblivious query planning.

Let T be a relation, and r be a padded record. We

denote |T | to be the size of the relation T , and |r | to be

the size of a padded record. Let |OMem| be the size

of the oblivious memory, and K a constant scale factor

representing the cost of executing a compare-and-swap

on two records. We denote n to be the number of records

per block, and B to be the required number of blocks. We

can estimate n, B, and the resulting sort cost Co-sort and

join cost Co-join as follows:

n =
|OMem|

2 |R|
, B = |T | /n, Co-join ≈ 2 ·Co-sort

Co-sort( |T | , |R|) =





K |T | log |T | if |T | · |R| ≤ |OMem|

K
[

Bn logn+ nB log B(1+ log B)/2
]

otherwise

The number of records n per block follows from the fact

that two blocks must fit in oblivious memory at a time for

the merge step. The expression for the sort cost follows

from the two-level sorting scheme. If the input fits inside

the oblivious memory, we bypass the sorting network and

instead use quicksort within this memory, so the estimated

cost is simply the cost of quicksort. Otherwise, we sort

each block individually using quicksort, run a sorting

network on the set of blocks and merge blocks pairwise.

The sorting network performs B log B(1+ log B)/4 merges,

each incurring a cost of 2n to merge two blocks. We

experimentally verify this cost model in §8.4.

6.2 Oblivious query optimization

We now describe new optimization rules for a sequence of

oblivious operators. Our rules operate on the lower-level

operations within each oblivious operator, which we call

Opaque operators.

6.2.1 Overview of the query planner

Before describing the Opaque operators, we provide an

overview of the planning process, illustrated in Fig. 7.

Opaque leverages the Catalyst query planner to transform

a SQL query into an operator graph encoding the logical

plan. Opaque interposes in the planning process to mark

all logical operators that process sensitive data as oblivious.

Catalyst can apply standard relational optimizations to the

logical plan such as filter pushdown and join reordering.

Catalyst then generates a physical plan where each log-

ical operator is mapped to one or more physical operators

representing the choice of execution strategy. For example,

a logical non-oblivious join operator could be converted

to a physical hash join or a broadcast join based on the

input cardinalities. Oblivious operators are transformed

into physical Opaque operators at this stage, allowing

us to express rules specific to combinations of oblivious

operators. Similar to Catalyst, generating these physical

operators allows Opaque to select from multiple imple-

mentations of the same logical operator based on table

statistics. For example, if column cardinality is available,

Opaque may use it to decide which oblivious aggregation

algorithm to use. Catalyst then applies our Opaque rules

to the physical plan.

The physical plan is then converted into an encrypted

representation to hide information such as column names,

constants, etc. Finally, Catalyst transforms the encrypted

physical plan into a Spark DAG containing a graph of

RDDs and executes it on the cluster.

6.2.2 Opaque operators

The following is a sampling of the physical Opaque oper-

ators generated during planning:

• SORT(C): obliviously sort on columns C

• FILTER: drop rows if predicate not satisfied

• PROJECT-f: similar to FILTER, but projects filtered out

rows to 1, the rest to 0; preserves input size

• HC-AGG: stages 2–4 of the aggregation algorithm

• SORT-MERGE-JOIN: steps 2–4 of the sort-merge join al-

gorithm

6.2.3 Query optimization

In this section, we give an example of an Opaque-specific

rule:

SORT(C2,FILTER(SORT(C1,PROJECT-f(C1))))

= FILTER(SORT(C1,C2,PROJECT-f(C1)))

Let us take a look at how this rule would work with

a specific query. We use the example query from §2.2,

which translates to the following physical plan:

LC-AGG(disease,

SORT(disease, FILTER(dummy,

SORT(dummy_col,PROJECT-f(age,patient)))))

The filter will first do a projection based on the column

age. To preserve obliviousness, the projected column

is sorted and a real filter is applied. Since a sort-based

aggregation comes after the filter, we need to do another

sort on disease.

We make the observation that the second sort can be

combined with the first sort into one oblivious sort on

multiple columns. Since PROJECT-f always projects a

column that is binary (i.e., the column contains only “0”s

and “1”s), we can first sort on the binary column, then on
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Figure 8: Example medical schema.

the second sort’s columns (in this example, the disease

column). Therefore, the previous plan becomes:

LC-AGG(disease,FILTER(dummy_col,

SORT({dummy_col,disease},

PROJECT-f(age,patient))))

This optimization is rule-based instead of cost-based.

Furthermore, our rule is different from what a regular

SQL optimizer applies because it pushes up the filter,

while a SQL optimizer pushes down the filter. Filter push-

down is unsafe because it does not provide obliviousness

guarantees. Applying the filter before sorting will leak

which records are filtered out.

6.3 Mixed sensitivity

Many applications operate on a database where not all

of the tables are sensitive. For example, a hospital may

treat patient information as sensitive while information

about drugs, diseases, and various hospital services may

be public knowledge (see Figure 8).

6.3.1 Sensitivity propagation

Propagation on tables. In a mixed sensitivity environ-

ment, tables that are not marked as sensitive could still be

sensitive if they reveal information about other sensitive

tables. Consider the example schema in Fig. 8. The

Disease, Medication, and Gene tables are public datasets

or have publicly known distributions in this example and

therefore are not sensitive. Meanwhile the Patient table

would likely be marked as sensitive. But what about Treat-

ment Plan and Treatment Record? It turns out these tables

are also sensitive because they implicitly embed patient

information. Each treatment record belongs to a single

patient, and each patient’s plan may contain multiple treat-

ment records. If an attacker has some prior knowledge,

for example regarding what type of medication a patient

uses, then observing only the Treatment Record table may

allow the attacker to use an inference attack to gain fur-

ther information about that patient such as their treatment

frequency and other medication they may be taking.

To prevent such attacks, we use a technique from

database literature called second path analysis [18]. The

intuition for the inference attack is that information prop-

agates along primary-foreign key relations: since each

treatment record belongs to one treatment plan and one

patient, the treatment record contains implicit information

about patients. The disease table is connected to the

patient table as well, except it has a primary key pointing

into patient. This means that the disease table does not

implicitly embed patient information.

Second path analysis accomplishes table sensitivity

propagation by first directly marking user-specified tables

as sensitive. After this is done, it recursively marks all

tables that are reachable from every sensitive table via

primary-foreign key relationships as sensitive as well.

As in Fig. 8, such relationships are marked in an entity-

relationship diagram using an arrow from the primary key

table to the foreign key table.

This approach has been generalized to associations other

than explicit foreign keys and implemented in automated

tools [9]. We do not reimplement such analysis in Opaque,

instead referring to the existing work.

Propagation on operators. Another form of sensitivity

propagation occurs when an operator (e.g., join) involves

a sensitive and a non-sensitive table. In this case, we

must run the entire operator obliviously. Additionally, for

every leaf table that is marked sensitive in a query plan,

sensitivity propagates on the path from the leaf to the root,

and Opaque runs all the operators on this path obliviously.

6.3.2 Join reordering

Queries involving both sensitive and non-sensitive tables

may contain a mix of oblivious and non-oblivious opera-

tors. Due to sensitivity propagation on operators, some

logical plans may involve more oblivious operators than

others. For example, a three-way join query where one

table is sensitive may involve two oblivious joins if the

sensitive table is joined first, or only one oblivious join if

it is joined last (i.e., the non-sensitive tables are pushed

down in the join order).

Join reordering in a traditional SQL optimizer centers

on performing the most selective joins first, reducing

the number of tuples that need to be processed. The

statistics regarding selectivity can be collected by running

oblivious Opaque queries. In Opaque, mixed sensitivity

introduces another dimension to query optimization be-

cause of operator-level sensitivity propagation and the fact

that oblivious operators are much more costly than their

non-oblivious counterparts. Therefore, a join ordering

that minimizes the number of oblivious operators may in

some cases be more efficient than one that only optimizes

based on selectivity.

Consider the following query to find the least costly

medication for each patient, using the schema in Fig. 8:
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Figure 9: Join reordering in mixed sensitivity mode.

SELECT p_name, d_name, med_cost

FROM patient, disease,

(SELECT d_id, min(cost) AS med_cost

FROM medication

GROUP BY d_id) AS med

WHERE disease.d_id = patient.d_id

AND disease.d_id = med.d_id

We assume that the Patient table is the smallest, followed

by Disease, then Medication (|P | < |D | < |M |), as might

occur when considering only currently hospitalized pa-

tients and assuming there are multiple medications for

each disease. The aggregation query reduces the cardi-

nality of Medication to that of Disease and ensures a

one-to-one relationship between the two tables.

Figure 9 shows two join orders for this query. A tradi-

tional SQL optimizer will execute the most selective join

first, joining Patient with Disease, then with Medication.

The optimal ordering for Opaque will instead delay joining

Patient to reduce the number of oblivious joins. To see

this, we now analyze the costs for both join orders.

Let CSQL be the cost of this query using the SQL join

order, COpaque the cost using the Opaque join order, and R

the padded row size for all input tables. Note that the size

of the Medication aggregate table is |D |.

CSQL = 2Co-join(|P |+ |D | ,R)

COpaque = Cjoin(2 |D | ,R)+Co-join( |P |+ |D | ,R)

Assuming Cjoin ≪ Co-join,

CSQL

COpaque

≤
2Co-join(|P |+ |D | ,R)

Co-join( |P |+ |D | ,R)
= 2

Thus, this query will see at most 2x speedup from

join reordering. However, other queries can benefit still

further from this optimization. Consider a three-way join

of Patient, Disease, and Gene to extract the gene mutation

affecting each patient. We assume Gene is a very large

public dataset, so that |P | < |D | < |G |. Because Disease

contains a foreign key into Gene, the three-way join occurs

only on primary-foreign key constraints with no need for

aggregation. As before, a traditional SQL optimizer would

execute (P 1 D) 1G while Opaque will run (G 1 D) 1 P.

The costs are as follows:

CSQL = Co-join(|P |+ |D | ,R)+Co-join(|P |+ |G | ,R)

COpaque = Cjoin(|G |+ |D | ,R)+Co-join(|D |+ |P | ,R)

Assuming Cjoin ≪ Co-join and |P | < |D | ≪ |G |,

CSQL

COpaque

=

Co-join( |P |+ |G | ,R)

Cjoin(|G |+ |D | ,R)
≈

Co-join(|G | ,R)

Cjoin(|G | ,R)

The maximum theoretical performance gain for this

query therefore approaches the performance difference

between the Opaque and non-oblivious join operators. We

demonstrate this empirically in Fig. 12b.

Limitations. Note that sensitivity propagation optimizes

efficiently when the large tables in a database are not

sensitive. This makes intuitive sense because computation

on larger tables contributes more to the query runtime. If

the larger tables are sensitive, then join reordering cannot

help because any join with these tables must always be

made oblivious. Therefore, the underlying schema will

have a large impact on the effectiveness of our cost-based

query optimizations.

6.4 Query planning for oblivious pad mode

As discussed in §3.3, the fact that the planner chose a

query plan over another plan leaks some information

about the selectivity of some operators. For example,

generalized inner joins’ costs depend on join selectivity

information. This is not a problem for primary-foreign

key joins because these costs can be estimated using only

the size of each table: the output size of such a join is

always the size of the foreign key table.

Oblivious pad mode does not leak such statistics infor-

mation. All filters are pushed up and combined together at

the end of the query. The optimizer does not need to use

selectivity information because the overall size will not

be reduced until the very end. Thus, our query planning

stage only needs to use publicly-known information such

as the size of each table.

7 Implementation

Opaque is implemented on top of Spark SQL, a big data

analytics framework. Our implementation consists of

7000 lines of C++ enclave code and 3600 lines of Scala.

We implemented the Opaque operators and query op-

timization rules from §6 by extending Catalyst using its

developer APIs with minimal modifications to Spark. Our

operators are written in Scala and execute in the untrusted

domain, making trusted calls to the enclave when neces-

sary through JNI. For example, the SORT operator performs

inter-machine sorting using an RDD-based implementa-

tion of distributed column sort in the untrusted domain

(§5.1.2). Within each partition, the SORT operator seri-

alizes the encrypted rows and passes them using JNI to

the worker node’s enclave, which then performs the local

sort in the trusted domain (§5.1.1). Our implementation

currently does not support arbitrary user-defined functions

(UDFs) due to the difficulty in making them oblivious.
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Figure 10: Sort microbenchmarks. (a) Non-oblivious sort in

SGX. Exceeding EPC size causes a dramatic slowdown. (b)

Oblivious sort in SGX. Larger blocks improve performance until

the EPC limit in HW mode, or indefinitely in simulation mode.

Opaque encrypts and integrity-protects data on a block-

level basis using AES in GCM mode, which provides data

confidentiality as well as integrity. We pad all rows within

a table to the same upper bound before encrypting. This

is essential for tables with variable-length attributes as it

prevents an attacker from distinguishing between different

rows as they move through the system.

8 Evaluation

In this section, we demonstrate that Opaque represents

a significant performance improvement over the state of

the art in oblivious computation, quantify its overhead

compared to an insecure baseline, and measure the gains

from our query planning techniques.

8.1 Experimental setup

Single-machine experiments were run using SGX hard-

ware on a machine with Intel Xeon E3-1280 v5 (4 cores

@ 3.70GHz, 8MiB cache) with 64GiB of RAM. This is

the maximum number of cores available on processors

supporting SGX at the time of writing.

Distributed experiments were run on a cluster of 5

SGX machines with Intel Xeon E3-1230 v5 (4 cores @

3.40GHz, 8MiB cache) with 64GiB of RAM.

8.2 Impact of oblivious memory size

We begin by studying the impact of the secure enclave

memory size and show that Opaque will benefit signif-

icantly from future enclave implementations with more

memory. SGX maintains an encrypted cache of memory

pages called the Enclave Page Cache, which is small com-

pared to the size of main memory. Once a page is evicted

from the EPC, it is decrypted if it was not entirely in CPU

cache, re-encrypted under a different key, and stored in

main memory. When an encrypted page in main memory

is accessed, it needs to be decrypted again. This paging in

and out of the EPC introduces a large overhead. Current

implementations of SGX have a maximum effective EPC

size of 93.5MiB, but this will be significantly increased

in upcoming versions of SGX.

Sorting is the core operation in Opaque, so we studied

how SGX affected its performance. In Fig. 10a, we

benchmark non-oblivious sorting (introsort) in SGX by

sorting arrays of 64-bit integers of various sizes using

EPCs of various sizes. We also measure the overhead

incurred by decrypting input data and encrypting output

data before and after sorting using AES-GCM-128. We

see that exceeding the EPC size even by just a little incurs

a 50 ∼ 60% overhead. When below the EPC limit, the

overhead of encryption for I/O is just 7.46% on average.

The overhead of the entire operation versus the insecure

baseline is 31.7% on average.

Having a part of EPC that is oblivious radically im-

proves performance. In §3.2, we discussed existing and

upcoming designs for such an EPC. In Fig. 10b, we call

this an oblivious block size, and we benchmarked the

performance of oblivious sort with varying block sizes

(§5.1.1). Within a block, regular quicksort can happen

which speeds up performance. The case when only the

registers are oblivious (namely an oblivious block of the

same size as the available registers) did not fit in the graph:

the overhead was 30x versus when the L3 cache (8MB) is

oblivious. We see that in hardware mode, more oblivious

memory improves performance until a sort block size

of 40 MB, when the working set (two blocks for merg-

ing) exceeds the hardware EPC size, causing thrashing,

as occurred in Fig. 10a near EPC limits. In simulation

mode, no thrashing occurs. In sum, Opaque’s performance

will improve significantly when run with more oblivious

memory as a cache.

8.3 System comparisons

8.3.1 Comparison with Spark SQL

We evaluated Opaque against vanilla Spark SQL, which

provides no security guarantees, on three different work-

loads: SQL, machine learning, and graph analytics.

For the SQL workload, we benchmarked both systems

on three out of four queries of Big Data Benchmark [1], a

popular benchmark for big data SQL engines. The fourth

query is an external script query and is not supported by

our system. The three queries cover filter, aggregation

(high cardinality), and join. For the machine learning

workload, we chose least squares regression on 2D data;

this query uses projection and global aggregation. Finally,

we chose to benchmark PageRank for the graph analytics

workload; this query uses projection and aggregation.

We show our results in two graphs, Figure 11a and

Figure 11b. Figure 11a shows the performance of each

of Opaque’s security modes on the Big Data Benchmark

in the distributed setting. Higher security naturally adds

more overhead. Encryption mode is competitive with

Spark SQL (between 52% improvement and 2.4x slow-

down). The performance gain comes from the fact that
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Opaque runs C++ in the enclave, while Spark SQL incurs

overhead from the JVM. Opaque’s oblivious mode adds

20–46x overhead.

Figure 11b shows Opaque’s performance on five queries.

Hatched areas show the time spent in oblivious sort, the

dominant cost. The left side of Figure 11b shows Opaque

running on a single machine using SGX hardware com-

pared to Spark SQL, while the right side shows the dis-

tributed setting. In the single-machine setting, Opaque’s

encryption mode performance varies from 58% perfor-

mance gain to 2.5x performance loss when compared with

the Spark SQL baseline. The oblivious mode (both net-

work and memory oblivious) slows down the baseline by

1.6–62x. The right side shows Opaque’s performance on a

distributed SGX cluster. Encryption mode’s performance

ranges from a 52% performance improvement to a 3.3x

slowdown, while oblivious mode adds 1.2–46x overhead.

In these experiments, Opaque was configured with oblivi-

ous memory being the L3 cache and not the bulk of EPC.

As discussed in §8.2, more oblivious memory would give

better performance, and such hardware proposals already

exist (see §3.2).

8.3.2 Comparison with GraphSC

We use the same PageRank benchmark to compare with

the existing state-of-the-art graph computation platform,

GraphSC [27]. While Opaque is more general than graph

computation, we compared Opaque with GraphSC instead

of its more generic counterpart ObliVM [22], because

ObliVM is about ten times slower than GraphSC.

We used data from GraphSC and ran the same experi-

ment on both systems on our single node machine, with

Opaque running in hardware mode with obliviousness.

Figure 11c shows that Opaque is faster than GraphSC for

all data sizes. For 8K graph size, Opaque is 2300x faster

than GraphSC. This is consistent with the ObliVM and

GraphSC papers: ObliVM reports a 9.3×106x slowdown,

and GraphSC [27] a slowdown of 2× 105x to 5× 105x.
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Figure 12: Query planning benchmarks. (a) Our cost model

closely approximates the empirical results for oblivious joins

across a range of input sizes. (b) Join reordering provides up to

5x speedup for some queries.

Though GraphSC and Opaque share the high-level threat

model of an untrusted service provider, they relax the threat

model in different ways, explaining the performance gap.

Opaque relies on trusted hardware, while GraphSC relies

on two servers that must not collude and are semi-honest

(do not cheat in the protocol) and so must use garbled cir-

cuits and secure two-party computation, which are much

slower for generic computation than trusted hardware.

8.4 Query planning

We next evaluate the query planning techniques proposed

in §6. First, we evaluate the cost model presented in

§6.1 using a single-machine microbenchmark. We run an

oblivious join and vary the input cardinality. We then fit

the equation from §6.1 to the empirical results. Figure 12a

shows that our theoretical cost model closely approximates

the actual join costs.

Second, to evaluate the performance gain from join

reordering, we run the two queries from §6.3.2. Fig-

ure 12b shows the speedup from reordering each query

with varying sizes of the sensitive patient table. The

medication query sees just under 2x performance gain

because two equal-sized oblivious joins are replaced by
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one oblivious and one non-oblivious join. The gene query

sees a 5x performance gain when the sensitive table is

small because the larger oblivious join is replaced with

a non-oblivious join. As the sensitive table increases in

size, the benefit of join reordering approaches the same

level as for the medication query.

9 Related work

9.1 Relevant cryptographic protocols

ORAM. Oblivious RAM [13, 37, 38, 36] is a crypto-

graphic construct for protecting against access pattern

leakage. However, ORAM does not fit in Opaque’s set-

ting because it has an intrinsically different computation

model: serving key-value pairs. We show this problem by

devising a simple strawman design using ORAM: put all

data items in an in-memory ORAM in Spark.

How can ORAM be utilized if we attempt to sort data,

which is an essential operation in SQL? One way to

implement sorting on top of ORAM is to simply treat a

sorting algorithm’s compare-and-swap operation as two

ORAM reads and two ORAM writes. This is not viable

for three reasons. First, making an ORAM access for each

data item is very slow. Second, current ORAM designs are

not parallel and distributed, which means that the ORAM

accesses will be serialized. Third, we cannot use a regular

sorting algorithm because the number of comparisons may

be different when run on different underlying data values.

This could leak something about the encrypted data and

would not provide obliviousness. Therefore, we must

use a sorting network anyway, which means that adding

ORAM will add an extra polylog(n) factor of accesses.

Other protocols. Fully homomorphic encryption [11, 12]

permits computing any function on encrypted data, but

is prohibitively slow. Oblivious protocols such as sorting

and routing networks [7] are more relevant to Opaque,

and Opaque builds on these as discussed in §5.1.

9.2 Non-oblivious systems

A set of database systems encrypt the data so that the ser-

vice provider cannot see it. These databases can be classi-

fied into two types. The first type are encrypted databases,

such as CryptDB [33], BlindSeer [31], Monomi [39],

AlwaysEncrypted [26], and Seabed [30], that rely on cryp-

tographic techniques for computation. The second type

are databases, such as Haven [6], VC3 [34], TrustedDB [5],

TDB [23] and GnatDb [40], that require trusted hardware

to execute computation.

The main drawback of these systems is that they do

not hide access patterns (both in memory and over the

network) and hence leak data [41, 28]. Additionally, most

of these systems do not fit the distributed analytics setting.

9.3 Oblivious systems

Non-distributed systems. Cipherbase [2] uses trusted

hardware to achieve generic functionality for encrypted

databases. The base Cipherbase design is not oblivious,

but Arasu and Kaushik [3] have proposed oblivious pro-

tocols for SQL queries. However, unlike Opaque, their

work does not consider the distributed setting. In partic-

ular, the proposed oblivious operators are not designed

for a parallel setting resulting in sequential execution in

Opaque, and do not consider boundary conditions. In

addition, Cipherbase’s contribution is a design proposal,

while Opaque also provides a system and an evaluation.

Ohrimenko et al. [29] provide oblivious algorithms for

common ML protocols such as matrix factorization or

neural networks, but do not support oblivious relational

operators or query optimization. Their focus is not on

the distributed setting, and parts of the design (e.g., the

choice of a sorting network) and the evaluation focus on

single machine performance.

Distributed systems. ObliVM [22] is a platform for

generic oblivious computation, and GraphSC [27] is a

platform specialized to distributed graph computations

built on ObliVM. As we show in §8.3, these systems

are three orders of magnitude slower than Opaque. As

explained there, they have a different threat model and use

different techniques resulting in this higher overhead.

Ohrimenko et al. [28] and M2R [10] provide mecha-

nisms for reducing network traffic analysis leakage for

MapReduce jobs. Their solutions do not suffice for

Opaque’s setting because they do not protect in-memory

access patterns. Moreover, they are designed for the sim-

pler setting of a MapReduce job and do not suffice for

Opaque’s relational operators; further, they do not provide

global query optimization of oblivious operators.

10 Conclusion

In this paper, we proposed Opaque, a distributed data

analytics platform providing encryption, oblivious com-

putation, and integrity. Opaque contributes a set of

distributed oblivious relational operators as well as an

oblivious query optimizer. Finally, we show that Opaque

is three orders of magnitude faster than state-of-the-art

specialized oblivious protocols.
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