
OPC UA based IEC 61499 Device Configuration

Interface

Muddasir Shakil

LIT Cyber-Pysical Systems Lab

Johannes Kepler University Linz

Altenberger strasse 69,

4040 Linz, Austria

Email: muddasir.shakil@jku.at

Alois Zoitl

LIT Cyber-Pysical Systems Lab

Johannes Kepler University Linz

Altenberger strasse 69,

4040 Linz, Austria

Email: alois.zoitl@jku.at

Abstract—In the modern era of industrial automation, the
term Industry 4.0 is defined as the fourth industrial revolution.
This is a phenomenon where technologies from various layers
of an enterprise are interconnected and form a meshed network
of self-regulated, adaptive, re-configurable and self-optimizing
devices. These devices vary from Programmable Logic Controller,
embedded PCs, edge nodes, smart sensors, and actuators,
working as proxies or mediators for a real object in the software
domain integrating into Intelligent Enterprise Applications.
Heterogeneous configuration interfaces of these devices hinder
smooth integration and configuration process. A unified way of
interacting with the devices for configuration is well-defined in
the IEC 61499 standard. The standard defines the commands,
interaction behavior, and interface description for the control
devices and engineering tools. There are implementations of the
configuration interface in XML and Binary XML, which are
widely used for their flexible, extensible, and human-readable
nature. Whereas the OPC UA can offer an open configuration
interface for the IEC 61499 devices and software tools, with
built-in interoperability solutions. This paper introduces the
concept of a new configuration interface for the IEC 61499
devices using OPC UA information modeling concepts.

Index Terms—IEC 61499, OPC UA, Configuration interface,
Distributed Control System, interoperability.

© 2020 IEEE. Personal use of this material is

permitted. Permission from IEEE must be obtained for

all other uses, in any current or future media, including

reprinting/republishing this material for advertising or

promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

I. INTRODUCTION

Modern industrial automation systems have evolved into

a new generation of self-regulated, self-organized, and

interconnected systems. This new industrial revolution is

termed as Industry 4.0. In which it is possible to interconnect

people, resources, information, and systems to create the

Internet of things and services. Industrial Cyber-Physical

System (iCPS) is considered as one of the enabling technology

for fulfilling the vision of Industry 4.0 [1]. The iCPS is built

on the connection between the cyber and the physical world,

where cyber part is the digital representation of the real world

object, working as a proxy or mediator for a real object

in the software domain integrating into Intelligent Enterprise

Applications (IEA) [2].

To ensure seamless integration of automation systems into

an IEA, OPC UA is proposed as the communication solution

for the Reference Architecture Model for Industry 4.0 (RAMI

4.0) [3]. RAMI 4.0 is a framework of standardization and

implementation strategies for different domains, hierarchies,

and life cycles of an Industry 4.0 component. OPU UA is

an IEC standard for interoperability and data exchange also

known as IEC 62541. It provides an Object-oriented view

of automation systems and access to their functionalities by

remote method call services.

On the other hand, the IEC 61499 standard offers a

distributed control application modeling language. A Function

Block (FB) is the basic building block of the modeling

language, encapsulating the control logic and process

interface. The control applications are modeled using instances

of FBs and their interconnections, known as Function Block

Network (FBN). It is an event-driven execution environment,

in which data exchange between FBs occur with the triggering

of events [4]. The standard provides a generic management

model, interface description of the management function

block, and command syntax: for the life-cycle management

of IEC 61499 applications and interaction with engineering

tools [5, pp. 46-50]. Their concrete implementation details

are provided by so-called compliance profiles. These profiles

describe the interaction behavior, commands structures and

exchange formats. A specific compliance profile is developed

based on the structure and rules defined in IEC 61499-4. The

purpose of the compliance profile is to provide the guidelines

for IEC 61499 device, system, and software tool vendors to

support the following attributes defined in [6]:

• interoperability among multi-vendor devices.

• portability of software components and system

configuration among other software tools.

• configurability of IEC 61499 devices and systems by

multi-vendor software tools.

The main aim of this paper is to define the IEC 61499

management services with OPC UA means addressing the

device configurability provisions. This is achieved by first

Device Management

Communication Interface

Process Interface

Resource A Resource BMGR

Commands:
1) Create
2) Delete
3) Read
4) Write
5) Start
6) Stop
7) Kill
8) Query
9) Reset

Manager

PARAMS
 QI

 CMD
 OBJECT

 REQ
 INIT

CNF
INITO

STATUS
QO

RESULT

SIFB

Engineering Tool

Process Interface

1

3

2

33

Fig. 1. IEC 61499 device management model (adapted from [7] [8]).

analyzing the management model, management commands,

their responses, and the data types used for configuration

data exchange in Section II. Furthermore, the overview of the

related work is provided in Section III. Moreover, a solution

for OPC UA based IEC 61499 configuration interface is

presented in Section IV. A proof of concept for validation

is presented in Section V and this paper is concluded in

Section VI.

II. IEC 61499 DEVICE MANAGEMENT MODEL

The IEC 61499 configuration approach is based on the

management model as illustrated in the Figure 1. The

model defines the configuration interface and introduces a

device management component for the life-cycle management

of resources, control applications, and contained FBs.

Furthermore, model adopts service orientation to define

management commands. Where configuration requests are

passed from an engineering tool to a device via interface

exposed by a management resource (MGR). After processing

the requested command, the device sends back a standard

defined response to the engineering tool. The execution of

management commands is handled by the Device Management

component shown in the model [4] [7] [8].

The management services are integrated into the run-time

by a generic service interface function block (SIFB) known

as ”Manager” defined in the Clause 6.3.2 of IEC 61499-1

[5]. Its ”CMD” input parameter specifies the commands for

management operation execution. While the ”OBJECT” input

defines the structure, and parameters of command. The nine

basic commands and status output values are identified in

IEC 61499-1 with basic semantics and syntax description. The

commands and their semantics are available as shown in Table

I.

The syntactic description of the necessary commands for

better understanding of the command structure is presented

here. These are the basic commands needed for downloading

control applications into an IEC 61499 run-time. Therefore,

these will be used to demonstrate the proposed solution.

1) Create FB:

CMD := CREATE

OBJECT := fb_instance_definition

fb_instance_definition ::=

fb_instance_reference ':'

fb_type_name

fb_instance_reference ::=

[app_hierarchy_name]

fb_instance_name

app_hierarchy_name :=

application_name '.'

{subapp_instance_name '.'}

2) Create Connection:

CMD := CREATE

OBJECT := connection_definition

connection_definition ::=

connection_start_point ' '

connection_end_point

connection_start_point ::=

fb_instance_reference '.'

attachment_point

connection_end_point ::=

fb_instance_reference '.'

attachment_point

3) WRITE:

CMD := WRITE

OBJECT := referenced_parameter

referenced_parameter ::=

[(resource_instance_name |

fb_instnace_name)'.'] parameter

parameter ::= parameter_name ':='value

4) Start

CMD := START

OBJECT := fb_instance_reference |

application_name

The standardized responses of the basic commands are

described in Table II. An IEC 61499 run-time can generate

any of the status output values in context of the requested

command.

III. RELATED WORK

The survey of related work in this section is divided in two

subsections. The first subsection addresses the work of The

IEC 61499 Compliance Profile for Feasibility Demonstrations,

whereas the second subsection presents a survey on different

TABLE I
IEC 61499 DEFINED BASIC SET OF COMMANDS [5]

Command Description

Create Creates a specified object

Delete Deletes a specified object

START Starts a specified object

STOP Stops a specified object

READ Read a speficied variable

WRITE Write a specified varible

KILL Kills an instance immediatly

QUERY Requests information on a specified object

RESET Resets a specified object to initial state

OPC UA information modeling approaches for IEC 61499

devices.

A. IEC 61499 Compliance Profile for Feasibility

Demonstrations

The IEC 61499 Compliance Profile for Feasibility

Demonstrations [9] is the most adopted compliance profile

with the concrete definition and implementation details of a

configuration interface. As seen in the management model

(see Figure 1), each device shall have at least one resource.

This resource shall offer application life-cycle management,

communication with engineering tools, and implementation

of command interfaces. In this compliance profile these types

of resources are called RMT RES. According to [9], each

instance of this resource shall contain a special function

block called DM KRNL. It is a composite FB that contains

an instance of a service interface FB called DEV MGR

and a TCP/IP client/server communication-based SERVER

FB. The DEV MGR specifies the concrete interface for the

MANAGER FB defined in [5, pp. 46-47]. In contrast with

the MANAGER FB, the DEV MGR combines the command

and its parameters into one “RQST” input and adds an input

parameter which is called “DST”, for request destination

specification. The result generated by device manager is

exposed by “RSP” output parameter and sent back to the

configuration application by the SERVER FB [9] [10].

The configuration commands and results are encoded in

XML format according to the Request and Response elements

described and defined in the Clauses 6.4 and 6.5 of the

Compliance Profile [9]. The extensible property of XML

format became the basis of extending the basic configuration

commands of IEC 61499 to support the reconfiguration tasks.

The newly introduced reconfiguration services shall be mapped

to XML structure of management commands [4, pp. 79-83].

TABLE II
IEC 61499 DEFINED STATUS OUTPUTS [5]

Value Status Description

0 RDY Command executed succesfully

1 BAD PARAMS Requested command has invalid
input PARAMS value

2 LOCAL TERMINATION Application-initiated
terminination

3 SYSTEM TERMINATION System-initiated termination

4 NOT READY Manager is not ready to process
the command

5 UNSUPPORTED CMD Command is not supported

6 UNSUPPORTED TYPE Requested object is of
unsupported type

7 NO SUCH OBJECT Instance of a requested object is
not present

8 INVALID OBJECT Syntax description of the
command object is invalid

9 INVALID OPERATION Requested operation is invalid
for specified object

10 INVALID STATE Specified object is in invalid
state for requested operation

11 OVERFLOW Previous transactions are still
pending

DM_KRNL

 INIT

 QI

 ID

 INITO

 QO

 STATUS

 INIT

 REQ CNF

 INITO INIT

 RSP IND

 INITO

 QI

 DST

 RQST

 QO

 RSP

 QI

 ID

SD_1

 QO

STATUS

RD_1

RD_2

DEV_MGR
SERVER_1_2

MGR SVR

Fig. 2. The IEC 61499 Compliance Profile for Feasibility Demonstrations
DM KRNL Function Block (adapted from [9] [10])

The XML structure of request element consists of Action

and ID attributes. ID is a unique identifier assigned to each

request to align the responses with their requests and the

values of Action attribute specifies the requested command

(e.g., CREATE, DELETE, START). The commands require

additional data such as FB instance definition or connection

definition. The compliance profile used the syntax definition

of the command objects from IEC 61499-2 [11].

The work of [10] and [12] compared the textual XML

encoding with binary XML encoding. The results suggested

that the encapsulation of requests and responses in Binary

XML had decreased the parsing effort by the device manager

and the size of the request/response message was reduced as

well. Both showed that the higher performance can be achieved

by switching to Binary XML from String XML format. In

the Compliance profile [9], Efficient XML Interchange (EXI)

based binary XML encoding has been proposed as FBMGT2

encoding scheme. Binary XML encoding is supported by

a new configuration interface called DEV MGR2, which in

contrast with DEV MGR introduced two new structural data

types MGT REQ and MGT RSP to model the request and

response elements [9].

B. OPC UA Information Modeling Concepts for IEC 61499

OPC UA is being utilized in the IEC 61499 system for

various purposes such as data exchange between information

systems, service orientation and orchestration, and monitoring

and control of the production processes. One approach to

create an information model from IEC 61499 FB network

was proposed in [13]. They used IEC 61499 Service Interface

FB (SIFB) to create, manage, and update OPC UA nodes.

The benefit of this approach is that the IEC 61499 control

application can actively interact with an OPC UA server. In

[14] a new information model for IEC 61499 is proposed,

which includes devices, resources, FB, their data variables,

events, and connection information. The information model

is hosted by a wrapper (OPC UA server), which works as

a service mediator between IEC 61499 devices and other

software tools. They suggested the concept of using OPC UA

information model and node management services to manage

IEC 61499 applications. Another mapping between IEC 61499

and OPC UA information model was presented in [3]. The

model was proposed to support the interoperability among

various systems and devices. The mapped model can be used

to explore the IEC 61499 device hierarchy by any generic

OPC UA client. In [15], they also proposed a similar approach

modeling IEC 61499 FBs with the OPC UA programs for

dynamic discovery and orchestration. Their solution is based

on mapping IEC 61499 FBs and applications on to the OPC

UA programs. They suggested standard methods in OPC UA

programs to deploy the instances of the IEC 61499 FBs.

Another mapping suggested in [16], used OPC UA programs

to represent IEC 61499 application. Their main objective

was to provide a skill-based information model for ease of

orchestration and control their execution.

All the approaches proposed different information models to

map the IEC 61499 application onto OPC UA. However, there

is not a clear guide on how to model IEC 61499 management

services in OPC UA address space.

IV. OPC UA FOR IEC 61499 MANAGEMENT SERVICES

The solution for IEC 61499 configuration interface based on

OPC UA standard is presented in this section. It is achieved by

presenting the analysis and developed concepts of OPC UA,

which are utilized to build the resulting OPC UA based IEC

61499 configuration interface.

A. Analysis of the OPC UA

1) Decoupling Management Services: Generally, the IEC

61499 management commands are based on request and

response behavior. The service requester sends a command and

expects returned results. Zoitl [4, pp. 225-236] has proposed

dedicated SIFB for each management request with a command

specific interface. This introduces decoupled implementation

for the IEC 61499 application management commands, which

can be realized in OPC UA through their implementation

with methods and call service set. The OPC UA methods

encapsulate the internal functionalities, which is useful for

protecting the intellectual properties of the device vendor.

Moreover, they support independently deployable management

commands, which can be remotely invoked with OPC UA call

service set. On other side, with the OPC UA browse service

set, engineering tools can dynamically discover the device

configuration interfaces. Therefore, in this paper OPC UA

methods are adopted to encapsulate and expose the IEC 61499

management requests. The configuration interface inherits

OPC UA’s built in features like error-handling, and timeout

handling.

2) Device Manager: By analyzing IEC 61499 device

management model in Figure 1, it was realized that all

management commands are contained and organized by the

Device Management component. It is the point of interaction

between the communication interface and internal logic of

commands. Therefore, “Device Manager” node of base object

type is introduced in the OPC UA information model. The

purpose of this node is to organize and provide a dedicated

browse path to the command method nodes. All the command

methods are organized under this object node.

3) Application Hierarchy: In the OBJECT element of the

create and write commands the fb_instance_reference

and referenced_parameter data types are used to

specify the hierarchical structure of the control application.

They usually start with resource instance name followed

by application, sub-application instance names, and finally

fb instance name. In case of referenced_parameter,

it ends with the parameter name of the specified object.

OPC UA’s dynamic array of string data type can be

used to represent the fb_instance_reference and

referenced_parameter. Dynamic arrays can be utilized

to handle the varying IEC 61499 application hierarchy. The

value on each index of the array refers to an element of the

application hierarchy. The last index of the array points to the

fb instance name for create commands and parameter name in

case of referenced_parameter.

4) Destiniation Parameter: The control applications are

created, managed, and executed inside a resource; therefore,

resource instance name is specified for each command using

the destination parameter. The destination of the management

request is specified by “DST” input variable (Figure 2) in IEC

61499 Compliance Profile for Feasibility Demonstrations [9].

If the value is an empty string, meaning that device is the target

or if it contains a resource identifier than the specified resource

is the request’s target [17, p. 177]. A similar approach is

adapted by introducing a destination input argument for device

management OPC UA methods. OPC UA specific string data

type known as “UA STRING” is assigned to the destination

parameter.

5) Output Status: The returned output STATUS codes

define the semantic of the results. These status codes are

mapped to an enumeration list. The enumeration values point

to their respective IEC 61499 specific STATUS output codes.

The values, status codes, and their semantics are shown

in Table II. Enumerated values are exchanged like numeric

values over the connection and therefore, impose less traffic

as compared to string data types. Another advantage of

enumerated values that they help programmers to write logical

code on values.

6) Change State Commands: IEC 61499 currently defines

four state changing commands: start, stop, kill, and reset.

At the interface level all state related commands are

homogeneous. Grouping them with a dedicated OPC UA

method is the next logical step. The newly introduced method

is called “mgm changeState”. State commands are mapped

to an enumeration list known as “enumStateCommand”,

TABLE III
ENUMERATION LIST FOR THE STATE RELATED COMMANDS

Value State Description

0 Start Starts an object

1 Stop Stops an object

2 Kill Kills an object

3 Reset Resets an object

OPC UA Server
Addressspace

Communication Interface

Process Interface

Resource A Resource B

Device Manager

mgm_createResource

mgm_createFB

mgm_createConnection

mgm_deleteResource

mgm_deleteFB

mgm_deleteConnection

mgm_writeParameter

mgm_readParameter

mgm_changeState

Engineering Tool

OP
C UA Call Services

OP
C U

A C
a ll S

erv
ice

s

OPC UA Call Service

Fig. 3. Device management model based on proposed solution

which are passed as input argument for “‘mgm changeState”

method. This approach reduces the number of methods to

be implemented for IEC 61499 configuration interface and

simplifies the extension of state related commands because

less effort will be required to extend the list at interface

level without adding new methods. The base state values are

presented in the Table III.

B. Resulting IEC 61499 Configuration Interface

The new IEC 61499 device model based on OPC UA

configuration interface is shown in Figure 3. The management

resource is now replaced with the OPC UA server, in which

IEC 61499 management commands are modeled using OPC

UA method nodes.

The Table IV, shows the OPC UA methods implementing

dedicated IEC 61499 management commands. These methods

are developed based on the concepts discussed in Section

IV-A. Input parameters with “ Name” suffix are simple

identifiers of string data type. They are used to specify

type of a resource or FB, instance name of a resource, and

destination of the targeted FB. If resource is the request’s

target than, Destination Name must be an empty string. In IEC

61499 the connection between two FB instances in different

resources is not allowed. This condition checking is guaranteed

by introducing destination parameter in connection request

methods. The application and resource hierarchy of a FB as

discussed in Section IV-A is defined by input arguments with

“ Reference” suffix. The hierarchy is upgraded by dynamic

arrays of OPC UA string data type. The STATUS output codes

are mapped to the enumeration list as discussed in Section

IV-A and assigned as output arguments to the methods. OPC

UA String data type is assigned to the Value parameter and a

proper conversion must be provided in the device from string.

V. PROTOTYPE IMPLEMENTATION

A prototype was developed with 4diac FORTE [18] for the

validation of the concept. 4diac FORTE is an open source

IEC 61499 run-time environment. An OPC UA server using

Open62541 [19] stack was implemented in the 4diac FORTE.

The IEC 61499 configuration interface was implemented

using methods in the information model of this server.

The run-time has already integrated Open62541’s [19] stack

through communication layer and handler. A deployment

client was also built in the 4diac IDE [18] using Eclipse-Milo

[20] open source OPC UA Java based stack. The deployment

client handles the exchange of the command requests and

responses between 4diac IDE and the OPC UA server hosted

by 4diac FORTE. For demonstration of the developed solution,

a generic OPC UA client called UaExpert provided by Unified

Automation [21] is used. In the demonstration, UaExpert

represents any IEC 61499 configuration tool that can integrate

OPC UA as a deployment client. It shows the broader

applicability and interoperability of the developed solution.

Figure 4 shows the basic deployment process using OPC

UA methods. It shows the interfaces of the developed OPC

UA methods to create resources, FBs and connections, and

changing the state of a device, resource, and FB. In Figure 4,

the configuration command sequence contains creating a

resource instance in the device (4a), creating FB instances

by calling “mgm createFB” method (4b), creating connections

between FBs (4c), and triggering execution of FBs by starting

the Resource (4d). Although a simple IEC 61499 application

was chosen but it allowed testing the operation of the prototype

implementation and validation of the developed concept of

OPC UA based IEC 61499 device configuration interface.

VI. CONCLUSION AND OUTLOOK

This paper describes an approach for a service-oriented

IEC 61499 device configuration interface using OPC UA.

It enabled to develop an interoperable and a generic

communication solution for IEC 61499 architecture. Moreover,

the IEC 61499 management commands can be modeled with

OPC UA methods. These methods allowed to implement

device management commands in a decoupled fashion. With

TABLE IV
OPC UA METHODS FOR IEC 61499 MANAGEMENT REQUEST

Method BroweseName Input Argument Output Argument

mgm createResource
Instance Name
Type Name

STATUS output code
mgm createFB

Destination Name
Instance Reference
Type Name

mgm createConnection

Destination Name
Source Reference
Destination Reference

mgm deleteResource Instance Name

mgm deleteFB
Destination Name
Instance Reference

mgm deleteConnection

Destination Name
Source Reference
Destination Reference

mgm writeParameter

Destination Name
Parameter Reference
Value

mgm changeState

Destination Name
Instance Reference
State

mgm readParameter Parameter reference
STATUS output code
Value

(a) Creating a Resource (b) Creating a FB

(c) Creating a connection (d) Starting the Resource

Fig. 4. UaExpert views for developed OPC UA methods

the use of OPC UA methods, the configuration interface

becomes browsable, which can be discovered dynamically

by other IEC 61499 configuration tools. In the end, the

interoperability of the solution is demonstrated by a prototype

implemented in an IEC 61499 run-time, and interacted with it

through a generic OPC UA client.

The future work is related to investigating the OPC UA

programs in regard with the IEC 61499 device configuration

and integrating OPC UA methods to control the execution of

the deployment process. Furthermore, the performance of the

developed solution and other approaches for IEC 61499 device

configuration will be analyzed and compared. Moreover, the

security of the configuration interface will be investigated, and

suitable solutions will be presented.

REFERENCES

[1] K. Henning, “Recommendations for implementing the strategic initiative
industrie 4.0,” 2013.

[2] D. Repta, A. M. Stanescu, M. A. Moisescu, I. S. Sacala, and M. Benea,
“A cyber-physical systems approach to develop a generic enterprise
architecture,” in 2014 International Conference on Engineering,

Technology and Innovation (ICE), June 2014, pp. 1–6.

[3] W. Dai, Y. Song, Z. Zhang, P. Wang, C. Pang, and V. Vyatkin,
“Modelling industrial cyber-physical systems using iec 61499 and
opc ua,” in 2018 IEEE 16th International Conference on Industrial

Informatics (INDIN), July 2018, pp. 772–777.

[4] A. Zoitl, Real-Time Execution for IEC 61499. ISA, 2008.

[5] IEC 61499-1, Function Blocks - Part 1: Architecture, International
Electrotechnical Commission Std., 2011.

[6] IEC 61499-4, Function Blocks - Part 4: Rules for Compliance Profiles,
Geneva: International Electrotechnical Commision Std., 2012.

[7] T. I. Strasser, M. N. Rooker, G. Ebenhofer, and A. Zoitl, “Standardized
dynamic reconfiguration of control applications in industrial systems,”
2014.

[8] F. Andrén, T. Strasser, A. Zoitl, and I. Hegny, “A reconfigurable
communication gateway for distributed embedded control systems,” in
IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics

Society, Oct 2012, pp. 3720–3726.

[9] “IEC 61499 Compliance Profile for Feasibility Demonstrations,”
Jan 2019, [Online; accessed 18. Jun. 2019]. [Online]. Available:
https://www.holobloc.com/doc/ita/index.htm

[10] A. Zoitl, I. Hegny, and A. Schimmel, “Utilizing binary xml
representations for improving the performance of the iec 61499
configuration interface,” in 2009 7th IEEE International Conference on

Industrial Informatics, June 2009, pp. 66–71.
[11] IEC 61499-1, Function Blocks - Part 2: Software requirements,

International Electrotechnical Commission Std., 2011.
[12] F. Noack, “Evaluation of binary xml for configuring industrial control

systems,” Bachelor’s Thesis, Technische Universität München, 02 2016.
[13] T. Terzimehic, M. Wenger, A. Zoitl, A. Bayha, K. Becker, T. Müller,

and H. Schauerte, “Towards an industry 4.0 compliant control software
architecture using iec 61499 opc ua,” in 2017 22nd IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA),
Sep. 2017, pp. 1–4.

[14] I. Seilonen, V. Vyatkin, and U. D. Atmojo, “Opc ua information model
and a wrapper for iec 61499 runtimes,” in 2019 IEEE 17th International

Conference on Industrial Informatics (INDIN), vol. 1. IEEE, 2019, pp.
1008–1013.

[15] M. Kaspar, J. Bock, Y. Kogan, P. Venet, M. Weser, and U. E.
Zimmermann, “Tool and technology independent function interfaces by
using a generic opc ua representation,” in 2018 IEEE 23rd International

Conference on Emerging Technologies and Factory Automation (ETFA),
vol. 1. IEEE, 2018, pp. 1183–1186.

[16] K. Dorofeev and A. Zoitl, “Skill-based engineering approach using opc
ua programs,” in 2018 IEEE 16th International Conference on Industrial

Informatics (INDIN). IEEE, 2018, pp. 1098–1103.
[17] A. Zoitl and R. Lewis, Modelling control systems using IEC 61499.

IET, 2014, vol. 95.
[18] “Eclipse 4diac - The Open Source Environment for Distributed Industrial

Automation and Control Systems,” Sep 2019, [Online; accessed 11.
Sep. 2019]. [Online]. Available: https://www.eclipse.org/4diac

[19] “open62541: an open source implementation of OPC UA,” Sep
2019, [Online; accessed 11. Sep. 2019]. [Online]. Available:
https://open62541.org

[20] eclipse, “milo,” Aug 2019, [Online; accessed 11. Sep. 2019]. [Online].
Available: https://github.com/eclipse/milo

[21] “UaExpert ”UA Reference Client”,” Feb 2019,
[Online; accessed 16. Sep. 2019]. [Online]. Available:
https://www.unified-automation.com/products/development-tools.html

