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OPC UA NodeSet Ontologies as a Pillar of Representing

Semantic Digital Twins of Manufacturing Resources

Alexander Perzylo∗, Stefan Profanter∗, Markus Rickert∗, Alois Knoll†

Abstract— The effectiveness of cognitive manufacturing sys-
tems in agile production environments heavily depends on the
automatic assessment of various levels of interoperability be-
tween manufacturing resources. For taking informed decisions,
a semantically rich representation of all resources in a workcell
or production line is required. OPC UA provides means for
communication and information exchange in such distributed
settings.

This paper proposes a semantic representation of a resource’s
properties, in which we use OWL ontologies to encode the
information models that can be found in OPC UA NodeSet
specifications. We further combine these models with an OWL-
based description of the resource’s geometry and – if applicable
– its kinematic model. This leads to a comprehensive semantic
representation of hardware and software features of a manu-
facturing resource, which we call semantic digital twin. Among
other things, it reduces costs through virtual prototyping and
enables the automatic deployment of manufacturing tasks in
production lines. As a result, small-batch assemblies become
financially viable.

In order to minimize the effort of creating OWL-based
UA NodeSet descriptions, we provide a software tool for the
automatic transformation of XML-based NodeSet specifications
that adhere to the OPC Foundation’s NodeSet2 XML schema.

I. INTRODUCTION

Many industrial manufacturing companies currently face

changes in market demands regarding their products. As a

result, they have to adjust their way of manufacturing to meet

new requirements: Instead of high volume production of a

few product variants, they often have to tailor their products

to individual customers. This typically leads to a highly chal-

lenging situation, in which many different product variants

have to be produced in only small batch sizes. In order to still

maintain an economically viable production environment, the

effort of programming and adjusting production processes

needs to be reduced [1].

A promising approach to tackle this issue, is a modular

systems engineering paradigm based on a formal repre-

sentation of capabilities of manufacturing resources. These

capability descriptions are part of a more generic device

description and can be automatically interpreted by technical

systems. They are used to identify compatible manufacturing

resources for performing a given production step, and to

assist a production engineer in reconfiguring a workcell or

manufacturing line to match the requirements of a new or

updated manufacturing task.

∗A. Perzylo, S. Profanter, and M. Rickert are with fortiss, An-Institut
Technische Universität München, Munich, Germany.

†A. Knoll is with Technische Universität München, Munich, Germany.
Correspondance should be directed to perzylo@fortiss.org

The OPC Foundation1 and its members have been work-

ing on the specification of a platform-independent service-

oriented architecture called Unified Architecture (UA) that

addresses the challenges of such modular production envi-

ronments. Apart from offering a communication protocol

and discovery services [2], OPC UA features a flexible

concept for describing and providing information models that

may cover devices, particular functions, and internal system

states. Such information models are hierarchically defined

and build upon the base OPC UA data model and domain-

specific extensions called companion specifications. This

modular modeling approach allows third parties to develop

their own vocabularies that are suitable for describing new

devices and their capabilities.

The creation of OPC UA information models for the open

source OPC UA stack open625412 and other implemen-

tations currently relies on manipulating XML files either

through text editors or graphical tools. Various software

tools, e.g., the OPC Foundation’s UA Model Compiler, can

be used to generate an OPC UA NodeSet description that

complies with a corresponding XML Schema definition.

The generated NodeSet description is a graph-based data

structure that contains the content of information models,

in which typed nodes are linked through typed references.

The NodeSets can be imported and exported by OPC UA

servers and might be used by OPC UA clients to browse a

server’s address space in an offline fashion.

However, a more semantic representation would be bene-

ficial, in order to link and process these information models

in a broader context. They must be interpreted with respect

to manufacturing tasks and their requirements, as well as

domain-specific and common sense knowledge.

In this paper, we propose a semantic description language

for OPC UA NodeSets based on the Web Ontology Language

(OWL)3. As the OWL formalism is based on description log-

ics, OWL-based descriptions can be automatically interpreted

by reasoning components, which are able to check the logical

consistency of the models and derive implicit facts through

logical inference. Additionally, OWL can be serialized into

Resource Description Framework (RDF) statements. As a

result, many existing software tools, such as graph data bases

and SPARQL processors, can be used to persistently store

and query OWL models. In order to minimize extra efforts

in creating the OWL representation of UA NodeSets, we

1https://opcfoundation.org
2https://github.com/open62541
3https://www.w3.org/TR/owl2-primer/
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Fig. 1. Overview of proposed semantic digital twin architecture

developed a software tool for the automatic transformation

of existing XML-based UA NodeSet definitions to the cor-

responding OWL models.

We further show how the semantic NodeSet descriptions

can be extended to contain knowledge on the available

executable skills of a manufacturing resource and their meta-

level capability descriptions. Moreover, we combine the

semantic UA NodeSet models with a description of the

corresponding device’s geometry based on our previously

published OntoBREP CAD ontology4. By combining the

OntoBREP geometry models with an optional OWL-encoded

kinematic model, a full-fledged formal representation of

hardware and software properties – a semantic digital twin

– of a manufacturing resource can be created.

Fig. 1 depicts a visualization of the proposed ontology ar-

chitecture, in which the introduced semantic representations

of manufacturing resources are aggregated into layout and

topology models of workcells or whole production lines.

II. RELATED WORK

As motivated in the previous section, we aim at semantic

representations of all relevant aspects of manufacturing re-

sources, in order to automate the tasks of production systems

engineering and process deployment. Parts of the proposed

architecture and ecosystem have already been published.

In [3], we present an ontology for describing CAD models

in a semantic way based on the boundary representation

(BREP) paradigm, in which the mathematical models of

geometries are described instead of being approximated via

polygons. One of the core applications of our semantic digital

twins, is the automatic identification of suitable resources

for a given semantic model of an industrial manufacturing

process. The structure of our semantic process models and

an intuitive way of teaching them to a robot system is

introduced in [4]. The automatic mapping of a specific

4https://github.com/OntoBREP

manufacturing task to a compatible resource is achieved by

combining device descriptions with a semantic description

of their provided functionalities. In this context, we distin-

guish between the representation of the executable elements

of such functionalities, i.e., skills [5], and the meta-level

representation of their effects, i.e., capabilities [6].

Next to ontology-based approaches to knowledge mod-

eling in a manufacturing context, AutomationML is the

most common language for representing various kinds of

information regarding processes and manufacturing resources

that need to be shared during engineering processes. Its data

architecture is based on the Computer Aided Engineering

Exchange (CAEX) XML format [7], which typically con-

nects to various other industry data formats, e.g., Collada or

PLCOpen XML. It supports the representation of topology,

geometry, kinematics, sequencing, behaviour and control.

Some research effort was spent on the combination of Au-

tomationML and ontologies, in order to generate automation

solutions based on the robot operating system (ROS) [8].

In [9], the authors investigate the analogies between Au-

tomationML and OPC UA information models, with the aim

of AutomationML data assisting in the design of OPC UA

information models.

A set of motivating examples of scenarios, in which

OPC UA acts as an enabling technology to establish in-

teroperability between Industrie 4.0 (I4.0) components or

systems, is presented in [10]. A systematic approach to

create OPC UA information models is presented in [11].

It is based on the automatic transformation of Unified

Modeling Language (UML) models, and provides a model-

based approach to OPC UA information model design. For

conducting intelligent data analysis, the authors of [12] rely

on an OPC UA-enabled semantic aggregation of process

data of a smart factory. The integration of an ontology-

based semantic engineering and data interpretation layer

with an OPC UA-enabled loosely-coupled control system

for astronomical instrumentation is explained in [13]. In [14]

and [15], the authors present the combination of OPC UA

methods with semantic service descriptions based on OWL

for Web Services (OWL-S) and the Semantic Annotations

for WSDL and XML Schema (SAWSDL) with the goal of

automatically creating orchestration plans for manufacturing

resources.

A similar approach to ours is described in [16]. The

authors present an ontology-based concept for the seman-

tic representation of an asset administration shell of I4.0

components. While this approach currently is based on a

descriptive meta-level representation of such components,

we aim at augmenting rather administrative information

(e.g., device types, skill and skill parameter descriptions)

with deep semantic models (e.g., capability, geometry, and

kinematic models) – all in the same semantic language. We

further relate the extended administration shell to relevant

information from the manufacturing context, allowing us

to refer to specific pieces of knowledge. Utilizing such a

semantically rich representation of all relevant entities leads

to many synergy effects. For instance, a grasp task can be

2

https://github.com/OntoBREP


described and parametrized based on individual faces of a

gripper’s and an object’s geometry models instead of only

coordinate frames and transformations. In another example,

determining the compatibility of a manufacturing resource

with a given task may not only involve the evaluation of

a resource’s capability model, but at the same time respect

topological constraints of a factory.

The term digital twin originally only covers aspects of

simulation. This meaning has changed in the past years to

include more aspects of a manufacturing resource and a

certain overlap with the I4.0 asset administration shell [17].

In our terminology, a semantic digital twin provides the func-

tionality of the asset administration shell, while providing a

deep semantic understanding of a resource’s properties.

III. OPC UA INFORMATION MODEL

The communication between OPC UA-enabled devices

follows a client-server paradigm. The description objects

provided by an OPC UA server that are intended to be

browsed by OPC UA clients are called the server’s address

space. Within such address spaces, OPC UA information

models are encoded in order to inform clients about offered

services and server states.

This section does not intend to explain all available

concepts provided by the OPC UA specifications, but to

introduce the structure of information models. The OPC

UA address space specification defines the base data model

of OPC UA. It contains eight different classes of nodes:

Variable, VariableType, Object, ObjectType, ReferenceType,

DataType, Method, and View. Every type of node provides

a set of mandatory and optional attributes that can be used

to further describe the node’s properties. Most importantly,

each node has a nodeId consisting of an identifier and a

namespace, which are used together to uniquely refer to

specific nodes. Nodes are connected through binary relations

called references, which span a directed graph. References

can be defined to be symmetric, so that some edges of

the graph can be bidirectional. Various types of references

have been hierarchically specified to represent different rela-

tions between nodes. As an example, a hasTypeDefinition

reference can be used to link a Variable to a particular

VariableType.

OPC UA information models use the address space con-

cepts to describe information about a particular domain

or device. They are modular and hierarchically extensible.

These features are used by a multitude of UA companion

specifications, which rely on the base UA NodeSet or other

companion specifications and extend the contained vocab-

ulary, e.g., with respect to object or reference types. For

instance, the OPC UA companion specification for robotics

is based on the companion specification for devices, which

itself is defined on top of the base UA NodeSet.

For a complete description of the OPC UA address space

and information models, please consult part 3 and 5 of the

IEC 62541 specification [18], [19].

Fig. 2. Upper taxonomy of the OPC UA core ontology.

IV. OPC UA NODESET ONTOLOGIES

For representing OPC UA information models in a se-

mantic description language, we implemented a core OPC

UA ontology using OWL. OWL can be used to define

class taxonomies and instances of classes called individuals.

Properties may be defined for classes and individuals. There

are different types of properties, which can be hierarchically

specified: object properties, data properties, and annotation

properties. While object properties are used to link two

individuals to each other, data properties link individuals to

literals, e.g., strings or numbers. Annotation properties can

be used to add meta-information to various ontology entities.

In this work, they are used to link generated object properties

to their associated UAReferenceType individual.

A. UA Core Ontology

The OPC UA core ontology describes the base classes

of the OPC UA data model as introduced in Section III.

Additional classes and properties have been added to prop-

erly represent certain parts of UA NodeSets in an OWL-

compatible way, e.g., value arrays are converted to singly

linked lists in OWL using individuals of type UAValue and

the object property nextValue. In a similar fashion, UAMetho-

dArguments are added to an UAMethod individual. The first

argument is asserted to the method through object property

firstMethodArgument, while the following arguments are

linked from the previous argument through object property

nextMethodArgument. Fig. 2 depicts a visualization of the

main OWL classes used to represent NodeSet descriptions.

Explaining all entities of the OPC UA core ontology is out

of the scope of this paper, but the associated OWL file is

available for further inspection5.

B. Generation of UA NodeSet Ontologies

To avoid the tedious task of manually modeling OWL

ontologies for OPC UA base concepts and additional com-

panion specifications, we developed a software tool for the

5https://github.com/OntoUA

3

https://github.com/OntoUA


TABLE I

ONTOLOGY METRICS FOR THE OPC UA CORE ONTOLOGY AND THE INTRODUCED UA NODESET ONTOLOGIES REGARDING THE NUMBER OF AXIOMS

PLEASE NOTE: TOTAL NUMBER OF AXIOMS INCLUDES ADDITIONAL TYPES OF AXIOMS; NUMBERS ALSO INCLUDE IMPORTED DEPENDENCIES.

C i OP j DP k AP l I m CAn OPAo DPAp AAq Total

OPC UA core ontology 17 15 39 2 0 0 0 0 0 160

Base UA NodeSet 17 86 39 2 6067 6067 23166 41565 74 77296

Companion Spec. Devices 17 90 39 2 6271 6271 23967 43045 80 80097

Companion Spec. Robotics 17 94 39 2 6585 6585 25326 45622 84 84758

fortiss Devices 17 90 39 2 6537 6537 25399 45334 80 84421

fortiss Robotics 17 94 39 2 7007 7007 27619 49313 84 91720

fortiss Kuka iiwa robot 17 94 39 2 7240 7240 28613 51335 84 95277

fortiss GEP1402 gripper 17 90 39 2 6657 6657 25855 46207 80 86044

iClass jObject property kData property lAnnotation property mIndividual nClass assertion oObject property assertion pData property assertion
qAnnotation assertion

Kuka iiwa robot
Node Set ontology 

fortiss Robotics 
Node Set ontology 

fortiss Devices  
Node Set ontology

OPC UA Devices
companion spec.

Node Set ontology 

OPC UA Robotics
companion spec.

Node Set ontology 

GEP1402 Gripper
Node Set ontology

OPC UA core
ontology

OPC UA base  
Node Set ontology

Fig. 3. Example of hierarchical dependencies of UA NodeSet ontologies
including the OPC UA core ontology, base UA NodeSet and official OPC
UA companion specifications for Devices and Robotics, fortiss extensions to
these two companion specifications, and device-specific NodeSet ontologies
for the Kuka iiwa robot and the GEP-1402 gripper. The arrows denote an
owl:imports relation.

automatic generation of these ontologies in OWL. Given

an UA NodeSet2 description in the official XML dialect6,

the corresponding XML Schema definition contained in

UANodeSet.xsd, and the OPC UA core ontology, which has

been described in the previous section, the transformation to

OWL can be carried out automatically. The transformation

tool uses XMLBeans7 to parse the NodeSet2 description and

to check it for conformity to its XML Schema. The parsed

data is then encoded in OWL using the OWL API library8

and the OWL concepts that have been defined in the OPC UA

core ontology. For every node in the NodeSet description,

an OWL individual is created. The node’s attributes are

converted to OWL data properties that are asserted to the

newly created individuals. As part of the transformation

process, new OWL object properties are generated based on

the references that are contained in the NodeSet description.

These object properties are then asserted to the OWL indi-

6https://github.com/OPCFoundation/UA-Nodeset
7https://xmlbeans.apache.org/
8https://github.com/owlcs/owlapi

viduals according to the list of references for each node.

For the base OPC UA NodeSet, each companion spec-

ification, and each manufacturing resource’s NodeSet de-

scription, a separate OWL ontology is generated. Hierarchi-

cal dependencies are automatically analyzed and resolved

through topological sorting based on the NodeSets’ model

URIs (Uniform Resource Identifiers) given in the Model

and RequiredModel tags. As an example, Fig. 3 shows the

hierarchical dependencies of UA NodeSet ontologies for a

Kuka iiwa robot and a Sommer Automatic GEP1402 parallel

gripper.

Table I provides ontology metrics for the OPC UA core

ontology and the introduced NodeSet ontologies, showing

the number of specific OWL axioms per ontology. The

Kuka iiwa robot’s NodeSet ontology roughly takes 4 s to

realize using the HermiT reasoner (1.3.8.413) in the Protégé

ontology editor9 (5.5.0) on an Intel i5-8600K CPU running at

a base clock of 3.6GHz. As most of the corresponding OWL

axioms belong to its generic dependency on the base UA

NodeSet ontology, adding additional resource descriptions

to a workcell increases the total number of axioms only to

a relatively small extent.

V. TOWARD A SEMANTIC DIGITAL TWIN

In this section, we introduce various elements of our

proposed semantic digital twin architecture. We describe

how the introduced NodeSet ontologies can be extended

with models of device or component skills. Our concept is

further augmented with capability models, in order to enable

flexible production systems engineering. In our nomencla-

ture, we distinguish between the terms skill and capability:

The former representing the executable part of a device’s

functionality, and the latter being a meta-description of

potential effects that the invocation of a skill may cause.

Additionally, we propose deep semantic device models,

which include a mathematical representation of their geome-

tries and – if applicable – their kinematic structure. Individual

devices or components can be used as building blocks of

9https://protege.stanford.edu/
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workcell or factory models, in which device instances are

placed in an environment. Their poses as well as topological

connections are semantically encoded and can be queried to

analyze the flow of materials.

A key aim of this approach is to make knowledge explicit

that typically is hidden either in the heads of employees,

software implementations, or natural language specifications.

By doing so, maintaining and reusing this knowledge can

be more easily accomplished. Moreover, technical systems

are enabled to process the knowledge and make informed

decisions, resulting in a higher degree of automation and

system resilience.

In the following sections, we describe the introduced

aspects of our semantic digital twin architecture in more

detail, and whenever possible provide references to our

previous publications on individual submodels.

A. Device and Component Skills

Every device and component in a production system

should provide a hardware-agnostic interface. This interface

should be modeled in a generic way, independent of the

component’s functionality, i.e., its skills.

In [5], we present a corresponding skill model. It is

completely modeled in an OPC UA NodeSet description

and uses separate state machines for each offered skill, in

order to represent their internal states. State transitions can

be controlled through dedicated UA methods, which are the

same for every skill. Before the invocation of a skill, its

skill parameters need to be set. The referenced paper shows

that such a skill model can be used to create a generic

interface to the functionality of hardware as well as software

components. Component skills can be hierarchically arranged

in order to combine them into higher-level functionalities,

while still relying on the same skill interface.

With this skill model, it is possible to simply exchange

system components, as long as they provide the same subset

of required skill types. The system’s higher-level function-

alities and its task control do not have to be changed. For

instance, [5] demonstrates that an industrial robot can be

replaced by a robot from a different manufacturer without

requiring any changes to the task implementation.

Since our skill model is encoded in the NodeSet2 de-

scription of a device or component, it is part of the auto-

matically generated UA NodeSet ontologies, as described in

Section IV-B. The available skill and parameter types are

also modeled in the NodeSet, therefore, a mapping from

ontology parameters to the corresponding skill parameters

can be created.

In order to support a more flexible compatibility evaluation

of manufacturing resources, skill models can be augmented

with a meta-level capability description.

B. Capability Models

Capability models are required to determine the compat-

ibility of a manufacturing resource with a requested task.

Many approaches rely on using standardized property sets to

Fig. 4. Visualization of an excerpt of a deep semantic model of a cylinder’s
geometry based on the OntoBREP ontology.

describe the effects of a resource. These properties are pro-

vided as part of a resource model, and aggregated in groups

that relate to specific skills. An ontology-based approach to

capability modeling enables a cognitive production system to

not only match requirements and offered capabilities, but to

also automatically derive orchestrated capabilities from basic

ones [6].

The semantic depth of these models directly influences the

level of confidence of such an evaluation. As a purely sym-

bolic investigation cannot guarantee a successful execution of

a task, more (subsymbolic) evaluation techniques are needed,

e.g., using analytic means or simulations. A symbolic capa-

bility matching process can be seen as a prefilter for potential

solutions, thus reducing the search space of computationally

expensive simulations. An engineered solution provided by

a single party will most likely not be able to tackle this issue

completely. As a result, we suggest an open ontology-based

concept for capability matching, in which different parties

may extend the core concepts according to their own needs.

C. Geometry Models

For describing geometric properties of products and man-

ufacturing resources alike, we rely on our OntoBREP ontol-

ogy [3]. As the name implies, the ontology follows a BREP

paradigm, in which faces, edges, and vertices are typically

specified by defining an infinite geometry and corresponding

bounds that make it finite. For instance, the top face of the

cylinder depicted in Fig. 4 (represented by OWL individual

Face1) has been specified by an infinite plane (Plane1) that

is bounded by an edge (Edge1) of type circle (Circle1). The

individual Wire1 represents a topological BREP structure,

which may hold multiple connected edges. The given edge

itself is bounded by two vertices (Vertex1 and Vertex2), which

happen to be at the exact same position, resulting in Edge1

being a complete circle.

Using deep geometry models, it is possible to annotate any

subelement of an encoded resource or object with additional

information. For instance, this can be used to geometrically

describe regions of interest on a device, e.g., where to put a

workpiece or which areas to avoid due to moving parts. In

assembly specifications, the OntoBREP-based representation

can be combined with semantically specified geometric in-

terrelational constraints [3], e.g., stating that two faces must

be coincident after a particular assembly step.
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Individual: cell:KUKA_iiwa_7_R800_1_body2

Types:

rob:KUKA_iiwa_7_R800_body2

Facts:

swdl:succeedingJoint cell:KUKA_iiwa_7_R800_1_joint2,

brep:shape link2:Solid1,

Individual: cell:KUKA_iiwa_7_R800_1_joint2

Types:

swdl:RevoluteJoint

Facts:

swdl:succeedingLink cell:KUKA_iiwa_7_R800_1_frame3,

swdl:transformation cell:RigidTransformationMatrix_12

Individual: cell:RigidTransformationMatrix_12

Types:

brep:RigidTransformationMatrix

Facts:

brep:a11 "1.0"ˆˆxsd:double,

brep:a12 "0.0"ˆˆxsd:double,

...

brep:a44 "1.0"ˆˆxsd:double

Fig. 5. Excerpt of the kinematic model of a Kuka iiwa robot in Manchester
OWL syntax. It shows a body of the robot, a succeeding revolute joint, and
the corresponding transformation matrix.

D. Kinematic Models

The kinematic and dynamic behavior of robot manipu-

lators, grippers, and other manufacturing resources can be

described via multibody systems [20]. Such a definition

includes references to rigid bodies that are connected via a

number of either fixed or actuated transformation elements.

A rigid body is described via its mass, center of gravity, and

inertia properties. It directly relates to an element of its geo-

metric model via its calculated 3D position and orientation in

world coordinates. A transformation between individual rigid

bodies describes the relative position and orientation to each

other, leading to a tree structure or in case of closed loops

even a graph structure. Different joint types such as revolute,

prismatic, spherical, or even 6-DOF joints can be used to

describe the system’s state based on its current state vector.

This includes the individual joint’s position, velocity, and

acceleration values. Each joint includes additional properties

such as maximum and minimum joint angles, or maximum

allowed speed.

The kinematics model in our ontology is based on the

one used in the Robotics Library [21], which supports all

properties described above and includes a matching C++ im-

plementation of kinematics and dynamics algorithms. Other

existing specifications on how to describe multibody systems

include Gazebo’s SDF10 and ROS’ URDF11 formats.

Fig. 5 provides an insight into the kinematic model

of a Kuka iiwa robot. It shows a particular body

cell:KUKA iiwa 7 R800 1 body2 being linked to its geom-

etry model link2:Solid1 via the brep:shape object property.

Furthermore, property swdl:succeedingJoint links to OWL

individual cell:KUKA iiwa 7 R800 1 joint2, which is of

type swdl:RevoluteJoint. The corresponding transformation

is given through matrix cell:RigidTransformationMatrix 12.

10http://sdformat.org/
11http://wiki.ros.org/urdf

Fig. 6. Excerpt of the topology of a pallet conveyor system inside of a cold
rolling mill consisting of multiple roller conveyors, two transfer carriages
(024, 010), a rotary roller conveyor (025), and a furnace (009).

Fig. 7. Partial screenshot of the Protégé ontology editor showing explicitly
modeled object property assertions (white background) and a subset of
inferred property assertion (yellow background) for a selected manufac-
turing resource RollerConveyorPE05, which is an instance of OWL classes
RollerConveyor and Frame.

The matrix values are asserted by 16 data properties,

brep:a11 to brep:a44.

E. Factory and Workcell Models

The semantic representations of manufacturing resources

can be further combined into workcell or even factory

models. The presented approach consists of an OWL-based

layout and topology model. While the layout model specifies

where resources are located with respect to each other and

within a given environment, the topology model contains

the logical connectivity information regarding the flow of

materials between resources.

In a layout model, a device’s location is given as a

rigid transformation matrix that encodes the transformation

between an environment’s reference frame and the device’s

coordinate frame. The transformation matrix itself is encoded

in OWL, which also enables the calculation of absolute

positions of devices along a kinematic chain of relative

transformations via SPARQL-based matrix multiplications.

Topology models use dedicated OWL object properties,

e.g., connectedWith, connectedTo, and connectedFrom, which

encode bidirectional and the two possible unidirectional

logical connections between two manufacturing resources.

The connectedWith property has been defined to be transitive

and symmetric, the connectedTo and connectedFrom prop-

erties are asymmetric and subproperties of connectedWith.

connectedTo is the inverse property of connectedFrom. Only

the connectedTo property is used for the explicit modeling of

pairwise connected resources. The other property types and

the associated transitive hull can be automatically inferred.

Fig. 6 depicts an overview of the topology of various

resources of a pallet conveyor system inside of a cold rolling
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PREFIX mil: <http://www.fortiss.org/basys/rollingmill.owl>

ASK {

mil:FurnacePX09 mil:connectedWith mil:RollerConveyorPE11

}

Fig. 8. SPARQL query to check whether two resources are topologically
connected or not. The ASK query will be evaluated to yes for the introduced
topology example.

PREFIX mil: <http://www.fortiss.org/basys/rollingmill.owl>

SELECT ?r WHERE {

mil:RollerConveyorPE05 mil:connectedTo* ?r .

?r mil:connectedTo* mil:FurnacePX09 .

}

Fig. 9. SPARQL query to retrieve the route from resource mil:Roller-

ConveyorPE05 to target resource mil:FurnacePX09. The returned bindings
for variable ?r are mil:RollerConveyorPE05, mil:RollerConveyorPE08, and
mil:FurnacePX09.

mill. Black, orange, blue, and red boxes represent roller

conveyors, transfer carriages, rotary roller conveyors, and

a furnace, respectively. A transfer carriage can move the

associated roller conveyor so that it can be part of different

routes. Rotary roller conveyors cannot only transport material

coils, but they can also change the coils’ orientation by

rotating them in steps of 180 degrees. A furnace is used

to control the temperature of transported material coils prior

to processing them further.

Exploiting the logical formalism of OWL, the topology

model can be efficiently queried using OWL reasoners and

the SPARQL query language. A subset of inferable object

property assertions for a specific instance of a roller conveyor

resource is shown in Fig. 7. When inferred statements are

materialized, SPARQL processors can consider them when

they evaluate queries. For instance, it can be queried whether

two resources are topologically connected or not (see Fig. 8),

or which resources are part of a connecting route (see Fig. 9).

In this experiment, GraphDB12 was used for persistent

storage of the topology model and as materialization and

querying engine.

In order to achieve the same functionality with Automa-

tionML, more complex XPath/XQuery expressions would

need to be combined with a dedicated software compo-

nent that knows about the implications of topological re-

lations [22].

VI. CONCLUSION AND FUTURE WORK

This paper introduces a novel way of representing OPC

UA information models in a semantic way based on UA

NodeSet ontologies. We presented our automatic transfor-

mation tool that is able to generate ontologies for the

base UA NodeSet, OPC UA companion specifications, and

arbitrary information models. By describing executable skills

within NodeSet descriptions, they are automatically present

in the generated OWL representation as well. With the help

of capability models, the effects of skills are semantically

12https://www.ontotext.com/products/graphdb/

described, enabling manufacturing systems to reason about

the compatibility of resources with the requirements of

manufacturing tasks.

We further explained our envisioned concept of a semantic

digital twin that combines the already mentioned types of

information with a semantic description of hardware features,

such as a BREP representation of a resource’s geometry

and a kinematic model for its moving parts. Additionally,

we presented an example of how individual resources can

be arranged in a production environment. This includes the

physical location of resources and their topological connec-

tivity.

While many submodels of our semantic digital twin archi-

tecture are currently interpreted individually, we work toward

a highly integrated setup that is able to better showcase the

additional benefits of a common language for representing

diverse aspects of manufacturing environments.

In summary, the semantic digital twin aims at providing

access to all relevant information of a manufacturing re-

source in a formal language that can be easily maintained

and flexibly interpreted. Instead of restricting the use of

ontologies to provide an upper-level semantic integration

layer, we combine such a layer with deep semantic models

of relevant entities of the production systems engineering

domain. This approach enables the flexible representation of

semantic relations between any high-level or low-level aspect

of the overall manufacturing system.

Using the logical formalism behind the semantic de-

scription languages, the consistency of encoded models can

be automatically checked and implicit facts derived. The

ontology ecosystem is open and can be easily extended,

allowing represented knowledge to be seamlessly related to

external sources of information.
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