
Open Architecture Humanoid Robotics Platform

Fumio KANEHIRO1 Kiyoshi FUJIWARA1 Shuuji KAJITA1

Kazuhito YOKOI1 Kenji KANEKO1 Hirohisa HIRUKAWA1

Yoshihiko NAKAMURA2 Katsu YAMANE2

1National Institute of Advanced Industrial Science and Technology(AIST),
Tsukuba Central 2, 1-1-1 Umezono, Tukuba, Ibaraki, 305-8568 JAPAN

{f-kanehiro,k-fujiwara,s.kajita,kazuhito.yokoi,
k.kaneko,hiro.hirukawa}@aist.go.jp

2The Univ. of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-8656 JAPAN
{nakamura,katz}@ynl.t.u-tokyo.ac.jp

Abstract

This paper introduces an open architecture hu-
manoid robotics platform (OpenHRP for short) on
which various building blocks of humanoid robotics can
be investigated. OpenHRP is a virtual humanoid robot
platform with a compatible humanoid robot, and con-
sists of a simulator of humanoid robots and motion
control library for them which can also be applied to a
compatible humanoid robot as it is. OpenHRP is ex-
pected to initiate the exploration of humanoid robotics
on an open architecture software and hardware, thanks
to the unification of the controllers and the examined
consistency between the simulator and a real humanoid
robot.

1 Introduction

The Ministry of Economy, Trade and Industries of
Japan has run Humanoid Robotics Project (HRP for
short) since 1998 for five years [1, 2]. Four copies of a
humanoid robot (called HRP-1), teleoperations cock-
pit for them and a virtual humanoid robot platform
(V-HRP for short)[3, 4] had been developed in phase
one of HRP as the research platform, and various ap-
plications of humanoid robots are under development
in phase two on the platform. We call the organiza-
tion of the project platform-based approach. It is the
antithesis of usual robotics projects in which elemen-
tary technologies are developed at first and they are
integrated into a system at the final stage.

The architecture of the platform is being made
open, step by step. The software of HRP-1 have been
developed by Honda R&D as well as its hardware, and

it is provided as a black box. We have replaced the
controller for biped locomotion by our own one which
has been developed on V-HRP. Besides, V-HRP has
also been replaced by a new simulator on which we
can develop the controllers portable to the hardware
without any modification. Finally, a new humanoid
robot HRP-2 is to be developed, and the controllers
examined on HRP-1 will be applied to HRP-2.

The simulator is build on CORBA[5] which is a
standard software architecture, and the realtime con-
troller of the robot is run on ART-Linux[6] which is
a realtime extension of Linux. Besides, the simulator
and the controllers are now white boxes. Therefore, we
call the package of the simulator and controllers with
the compatible humanoid robot OpenHRP1 which
stands for Open Architecture Humanoid Robotics
Platform.

Because the unification of the controllers and the
consistency between the simulated and real robots are
realized, OpenHRP can be a useful virtual platform
for humanoid robotics on which various fundamental
technologies can be developed. The virtualization of
the platform is very important to inherit software li-
brary from one hardware to another efficiently.

This paper is organized as follows. Section 2
overviews the configuration of OpenHRP. Section 3
explains objects each of which constitutes OpenHRP
in detail. Section 4 introduces several applications de-
veloped on OpenHRP. Section 5 concludes the paper.

1You can download OpenHRP after user registration at
http://www.is.aist.go.jp/humanoid/openhrp/
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2 Overview of OpenHRP

2.1 Functional Features

OpenHRP has the following functional features.
[Dynamics computation] Thanks to an automatic
computation of structure change and constraints, and
to the employment of fewer coordinates, it can ef-
ficiently compute the dynamics of structure-varying
kinematic chains between open chains and closed ones
like humanoid robots[7].
[Contacts and collision computation] It can han-
dle contacts and collision between arbitrary polyhe-
dral objects. It implements two kinds of the algo-
rithms to handle contact constraints. One is based on
a conservation law of momentum which is numerically
stable. And the other is based on a spring-damper
model. Using these features, it is possible to simulate
the situation that a humanoid which has compliant
feet walks on the uneven terrain.
[Unification of controllers] This is realized by hard-
ware abstraction and synchronization mechanism and
employing ART-Linux in which realtime processing is
available at the user level[8].

2.2 Implementation Features

OpenHRP is implemented as a distributed object
system on CORBA(Common Object Request Broker
Architecture)[5]. A user can implement a controller
using an arbitrary language on an arbitrary operat-
ing system if it has a CORBA binding. A lot of im-
plementation of ORB exist, ORBacus[9] is adopted
in OpenHRP. Because ORBacus has C++ and Java
binding and supports several operating systems.

OpenHRP consists of several CORBA objects and
they can be distributed on the Internet and ex-
ecuted in parallel. Each server can be replaced
with another implementation if it has the same in-
terface defined by IDL (Interface Definition Lan-
guage). Using the language independence feature
of CORBA, some of objects are implemented using
Java and Java3D, the others are implemented using C
and C++. Currently, OpenHRP supports Windows
NT4.0/2000/98/Me and Linux.

The activation of each server is done using an
IMR(Implementation Repository) function automat-
ically on demand. Each server consists of a CORBA
interface part, a native language interface part and an
core logic part which are shown in Fig.1. A realtime
routine uses native interface and a non realtime rou-
tine does CORBA interface. As a result, lots of codes

are shared between the simulator and the controller,
and this sharing let the development more efficient.

Core Logic

Native Language 
     Interface

CORBA Interface 
 defined by IDL

RealTime Routine

Non-RealTime Routine

Figure 1: Internal Structure of OpenHRP servers

2.3 Configuration of OpenHRP

The configuration of OpenHRP is shown in Fig.2.
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Figure 2: CORBA Objects of OpenHRP

A simulation is controlled by a CORBA client
which has a graphical interface shown in Fig.3 which is
called ISE(Integrated Simulation Environment). ISE
uses services provided by four CORBA servers, i.e.
collision checker, model parser, dynamics and view
simulator. A user can implement a realtime control
algorithm which is to be embedded in a CORBA skele-
ton prepared beforehand.

The functions of each server are as follows.

ModelParser This server loads a VRML file describ-
ing the geometric models and dynamics parame-
ters of robots and their working environment, and
provides these data to other servers.

CollisionChecker The interference between two sets
of triangles is inspected, and the position, normal
vector and the depth of each intersecting point
are found. RAPID[10] is enhanced to this end.

Dynamics The forward dynamics of the robots are
computed.
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Figure 3: Integrated Simulation Environment(ISE)

Controller This server is the controller of a robot,
which is usually developed by the users of
OpenHRP.

View Simulator A field of view from cameras on a
humanoid is generated.

Pattern Generator A dynamically stable walking
motion is calculated and trajectories of joint an-
gles and ZMP(Zero Moment Point) are generated.

Motion Planner A motion path which is collision
free and dynamically stable is computed.

Input Device A status of an input device such as a
joystick is provided.

3 Building blocks of OpenHRP

3.1 Dynamics simulator

Using the servers, the forward dynamics of the
robots are computed in the following procedure.

Setting up of the simulation environment
(1) ModelParser reads a VRML file via HTTP
protocol. The kinematics and dynamics parame-
ters are sent to DynamicsServer and the geomet-
ric model is to CollisionChecker.

Execution of the dynamics simulation
(2) Controller reads the outputs of the
simulated sensors while communicating with
DynamicsServer.
(3) Controller and DynamicsServer execute the
computations. Note that these computations can
be run in parallel. The outputs of Controller
are the torques of the actuators, and those of
DynamicsServer are the updated states of the
robot.
(4) While the forward dynamics is computed,
CollisionChecker is called to find the position,
normal vector, and the depth of each intersecting
point.
(5) After these computations, Controller sends
the control outputs to DynamicsServer.

Visualization and recording
(6) ISE acquires the current states of the world
from DynamicsServer, visualizes the simulated
world and records it.

In order to evaluate the performance of OpenHRP,
biped locomotion of a humanoid robot is simulated.
The sample humanoid robot has 6DOF arms, 6DOF
legs, 3DOF waist, 2DOF neck and 29DOF in to-
tal. The interference between every links of the hu-
manoid and the ground is checked and the inter-
ference between a foot link and the ground always
occurs during the simulation. The specifications of
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the platform computer include CPU:Intel PentiumIII
933MHz, Memory:512MB, and OS:Linux-2.2.17. The
computation time except the visualization is 25[ms]
per the unit integration time, which is usually set
around 1 [ms].

3.2 View Simulator

3.2.1 Modeling for view image synthesis

View image synthesis consists of three parts, that is,
modelings of illumination, shapes and materials of ob-
jects in a scene, and cameras.

Illumination Among them, illumination is rela-
tively easier to model than the rest, since IES format
data[11] can provide color, initial strength and ray dis-
tribution of many kinds of artificial light source. These
data for natural light are also available. We employ
IES data to model illumination.

Shapes and materials The shapes of artificial ob-
jects can also be obtained from CAD data, but it is
hard to obtain the material model of objects’ surface.
Sato, Wheeler and Ikeuchi have been studying how to
get reflectance data from observation[12].

Cameras The modeling of cameras is neither
straightforward. It is desirable to calibrate images ac-
cording to the zoom, focus and iris of cameras. Asada,
Baba and Amano have been investigating these cali-
bration problem [13].

Though the exact modeling of reflectance and the
camera calibration are important to synthesize re-
alistic images, we have not considered these prob-
lems so far. Because our goal of a view simulator of
a humanoid robot is not having realistic images for
humans, but equivalent images to real ones for im-
age processing included in object recognition, objects
tracking and/or navigation.

3.2.2 Rendering

Recalling that the viewpoints of a humanoid robot is
changing frequently, it is easy to notice that usual
ray tracing algorithm must take too much time for
generating a view image. This is because usual ray
tracing process is invoked from the scratch when the
viewpoint is changed. The next option is employing
simple graphics software capable of hidden surface re-
moval, shading etc. But then it is not straightforward
to model illumination, because no standard model is
available for illumination in the case and the number
of lights is limited to a small number for the real-time
computation of the lighting equation.

The third option is radiosity rendering. IES for-
mat data mentioned above can be used for modeling

Figure 4: Example of the simulated view

illumination in several kinds of commercially available
software based on this rendering algorithm. Besides,
a resulting solution of radiosity rendering computa-
tion is a 3D model of a scene and it is possible to
generate images at the frame rate when a viewpoint
is given, because radiosity rendering computes Lam-
bertian reflection only which does not depend on a
viewpoint. A bad news of radiosity rendering is that
the synthesized images lack to have the effect from
specular reflection. When the surfaces of objects in a
scene is smooth like metal surface, the effect of specu-
lar reflection has become more dominant and the syn-
thesized images look significantly different from the
corresponding real ones.

Figure 4 is a snapshot of a screen of the view simu-
lator. The middle and the right figures in the first row
show the field of view from the left and right cameras
respectively on the server, and those in the second row
are the copies at the client. The figures in the third
row are the corresponding depth images.

3.3 Graphical user interface

ISE provides functions to set up a simulation envi-
ronment and analyze the simulation result.

At the simulation preparation stage, a user can
load/unload models constituting the simulation world,
and set initial position/attitude and joint angles us-
ing GUI interactively. The integration method and an
integration timestep of the forward dynamics compu-
tation and the assignment of a controller can also be
set using GUI, and these settings can be saved in a
project file and reused. While executing the simula-
tion, a progress is displayed in a 3D screen and it is
possible to stop in the middle at need, change setting
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and execute it again. When the simulation finishes,
the result can be examined using graphs and converted
into a movie.

3.4 Model editor

A robot and an environment model are described
in an enhanced VRML97 format. It is based on a
format which is decided by h-anim(Humanoid Anima-
tion) WG[14] and enhanced partly by ourselves. Using
this format, all information which is required by the
dynamics simulation such as a shape, kinematics pa-
rameters, dynamics parameters and so on is embedded
in a single file. H-anim format defines three prototype
nodes, Humanoid, Joint and Segment. They expresses
one whole humanoid, a joint and a link. The following
is a part of a model definition of a humanoid.� �
DEF HRP1 Humanoid {
humanoidBody [
DEF WAIST Joint {
jointType "free"
translation 0 0 0
rotation 0 0 1 0
children [
DEF BODY Segment {
mass 0.5
momentsOfInertia [1 0 0 0 1 0 0 0 1]
children [
Inline {url "shape.wrl"}

]
}
DEF LEG_JOINT0 Joint {
jointType "rotate"

....
� �

There are many tools which can edit shapes and
output it in VRML format. But there is few tools
comprising the function that can read VRML and edit
a scene graph. In addition, there is no tool which
supports a prototype node perfectly. Because it is
difficult that a user edit a format as the above with a
normal text editor, the model editor shown in Fig.5 is
provided as a part of OpenHRP. This editor is used
to assemble shapes that is made with a commercial
tool and input the parameter that is necessary for a
simulation.

4 Applications of OpenHRP

4.1 Development of motion pattern gen-
erator

The walking pattern generator which based on the
3d linear inverted pendulum mode is developed on
OpenHRP. A distinguished feature of this generation
technique compared with others[15] is that it is able to

Figure 5: OpenHRP Model Editor

generate a pattern at very high speed since it doesn’t
use an iterative calculation. Using this feature, it is
not only able to generate a pattern with offline but
also with online when necessary. Fig.6 shows an ex-
ample of a generated pattern. The robot walks for-
ward(rightward in the figure) at first, turn left, go
backward, turn right and go forward again in this pat-
tern. Small circles, a solid line and a broken line indi-
cate foot places, a trajectory of ZMP and a trajectory
of a waist of the robot respectively.
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Figure 6: Example of a Generated Pattern

This walking pattern generator is also implemented
by the structure that shown in Fig.1, and the identical
code can be used in a CORBA server used in an offline
fashion as well as in a realtime controller.
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4.2 Development of feedback controller

A humanoid can’t walk stably when a generated
pattern is playbacked simply, because of modeling er-
rors and an influence of compliant elements built in
the feet of the robot. So a walking stabilization con-
troller is developed on OpenHRP. This controller con-
sists of two parts. Each foot’s desired position and
orientation are adjusted in order to compensate the
body inclinations assuming the robot body as an in-
verted pendulum. The horizontal position of the torso
is modified in order to reduce the error between the
desired ZMP and the actual ZMP.

The result of a walk simulation using the sta-
bilization controller is shown in Fig.7. Upper two
graphs show angles of inclination of the body around
roll/pitch axis while walking. These angles are esti-
mated by the kalman filter using outputs of a gyrom-
eter and an accelerometer. The lower one shows a
vertical element of the ground reaction force which is
measured by a force/torque sensor which is embedded
in a foot.
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Figure 7: Simulation Result of Walking Pattern

The developed controller is applied to the real
robot platform hardware HRP-1S which is shown in
Fig.8[16]. HRP-1S has 1600[mm] height, 600[mm]
width and 99[kg] weight excluding batteries. It is con-
trolled by a Intel PentiumIII based VME CPU board
which is in its backpack. ART-Linux is running on it.

This application doesn’t need porting of the con-

troller thanks to the controller unification mechanism
of OpenHRP. This mechanism is realized by intro-
ducing an adaptor which generalizes interfaces of the
hardware body and the software body in the simu-
lation world. Therefore, this application is done by
simply replacing an adaptor for the simulated body
with one for the real one.

Figure 8: Humanoid Robot Platform HRP-1S

Figure 9 shows its result. Both of body inclination
angles and a ground reaction force show the behavior
that resembled very well with the simulation.
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Figure 9: Experimental Result of Walking Pattern
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5 Conclusions

This paper presented an open architecture hu-
manoid robotics platform OpenHRP. The results can
be summarized as follows.

• Thanks to the architecture based on CORBA, re-
search and development becomes possible with-
out dependency on programming languages and
operating systems.

• It is possible to simulate humanoid behaviors
fast and precisely by the introduction of an ef-
ficient dynamics computation, an efficient con-
tacts/collision computation, which can handle an
arbitrary shape, and a contact model which can
treat a compliant element.

• Thanks to the unification, the controllers can
share softwares with the dynamics simulator in-
cluding the parameter parser, kinematics and dy-
namics computations and the collision detector.
This feature can make the development of the
controllers more efficient and the developed con-
trollers more reliable.

• Consistency with an actual robot and a simula-
tion is confirmed by a simulation and an experi-
ment of a walking motion.

We claim that a humanoid robot platform deserves
to be called a platform if the identical software can
be used either on the simulator or on the robot and
if the consistency between them is satisfactory kept.
We believe that OpenHRP is expected to be the first
humanoid robot platform in this sense and that it can
initiate the exploration of humanoid robotics on an
open architecture hardware and software.
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