
 Open access Proceedings Article DOI:10.1145/166266.166282

Open architecture multimedia documents — Source link

Brian R. Gaines, Mildred L. G. Shaw

Institutions: University of Calgary

Published on: 01 Sep 1993 - ACM Multimedia

Topics: Hypermedia, Knowledge representation and reasoning, Open architecture and Usability

Related papers:

 Research and Development in Expert Systems IX: Documents as expert systems

 An Annotation Engine for Supporting Video Database Population

 MediaWeaver—A Distributed Media Authoring System for Networked Scholarly Workspaces

 An interactive visual language for term subsumption languages

Shared Web Annotations as a Platform for Third-Party Value-Added, Information Providers: Architecture, Protocols,
and Usage Examples

Share this paper:

View more about this paper here: https://typeset.io/papers/open-architecture-multimedia-documents-
9xs4kico4g

https://typeset.io/
https://www.doi.org/10.1145/166266.166282
https://typeset.io/papers/open-architecture-multimedia-documents-9xs4kico4g
https://typeset.io/authors/brian-r-gaines-3v87jrtubo
https://typeset.io/authors/mildred-l-g-shaw-1af2j69pvj
https://typeset.io/institutions/university-of-calgary-3rbzln32
https://typeset.io/conferences/acm-multimedia-1vkcv8oj
https://typeset.io/topics/hypermedia-3q145pr9
https://typeset.io/topics/knowledge-representation-and-reasoning-2zbgbt4u
https://typeset.io/topics/open-architecture-1pm0i1gi
https://typeset.io/topics/usability-3i3uaq3a
https://typeset.io/papers/research-and-development-in-expert-systems-ix-documents-as-4enej3hw6v
https://typeset.io/papers/an-annotation-engine-for-supporting-video-database-ejjzbeuc8d
https://typeset.io/papers/mediaweaver-a-distributed-media-authoring-system-for-2wcvr5h5u7
https://typeset.io/papers/an-interactive-visual-language-for-term-subsumption-3arbcnz20h
https://typeset.io/papers/shared-web-annotations-as-a-platform-for-third-party-value-1ffx5ar8o4
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/open-architecture-multimedia-documents-9xs4kico4g
https://twitter.com/intent/tweet?text=Open%20architecture%20multimedia%20documents&url=https://typeset.io/papers/open-architecture-multimedia-documents-9xs4kico4g
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/open-architecture-multimedia-documents-9xs4kico4g
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/open-architecture-multimedia-documents-9xs4kico4g
https://typeset.io/papers/open-architecture-multimedia-documents-9xs4kico4g

Open Architecture Multimedia Documents

Brian R Gaines and Mildred L G Shaw

Knowledge Science Institute
University of Calgary

Calgary, Alberta, Canada T2N 1N4
{gaines, mildred}@cpsc.ucalgary.ca

Abstract: An open architecture multimedia document publication
system is described which integrates a number of different
representation technologies to provide a medium offering a wide
spectrum of usage, from emulation of current paper publication,
through electronic document delivery, multimedia inclusion of
video and sound, structured hypermedia linkage, and formal
knowledge representation supporting simulation and inference.
The research is targeted on exploring new forms of scholarly
communication, and the publication system supports collaborative
document development, the authentication of disseminated
material, and the citation, annotation and reuse of such material.
The document publication system provides a rich word processing
and page makeup environment with all the facilities normally
expected, and adds multimedia, hypermedia and computational
facilities incrementally and naturally, with careful attention to the
usability of the human-computer interface. The result is an
interactive document in which knowledge is represented in a
variety of ways, some targeted on human interaction, some
targeted on computational analysis, simulation and inference, and
such that the document can be printed as a conventional paper or
book losing the dynamic aspects of the material but retaining the
visual representation.

Keywords: Multimedia information systems, publication systems,
electronic books, digital journals, knowledge bases, hypermedia.

Introduction

Advances in software and hardware technology in recent years
make it feasible to publish multimedia documents on a basis that
is cost-competitive with printed paper, and offers greatly extended
capabilities compared with conventional books and journals. It is
reasonable to expect that digital publication through Internet and
on CD-ROM will become very attractive in the next decade, and
at some time will grow in volume to rival paper-based publication.
However, paper-based media are currently the mainstream
vehicles for high-status publications, and it is unlikely that
revolutionary changes in publication practice will take place in the
near future. Progress is most likely to be made through parallel
publication of paper and electronic versions of the same material,
with the paper version justified by its adherence to existing
publication standards, and the electronic version justified by its
improved facilities for communicating knowledge.

Commercial vendors are already beginning to offer enhanced
multimedia capabilities within existing word processing and page
makeup packages. However, these are currently focused on audio-
visual representation facilities such as Kodak’s Photo-CD [18] and
Apple’s QuickTime [4], and do not offer open architecture support
to the very wide range of new active and interactive media that
can incorporated in computer-based documents. Active pictures in
documents can support animation, simulation, visual languages
for programming, concept maps, semantic networks, and other
interfaces to a variety of underlying applications. Multimedia
document architectures offer the possibility that any application
that interacts with the user through a window can also interact
with the user through an embedded ‘picture’ in a document.

This generality of multimedia capabilities is both exciting and
daunting. It becomes even more so when one realizes that the
various applications can be cross-coupled within the document,
and can be linked in a variety of interactive ways with the textual
components. From this perspective multimedia documents are not
just another specialist technology, but rather a highly generalized
architecture for integrating a heterogeneous range of information
technologies through the familiar user interface of a document.

These are not new insights. In 1945 Bush’s account of memex
gives a requirements specification for multimedia interactive
documents [2]. In 1970s at Xerox PARC, Kay and Goldberg [20]
brought some of the functionality of memex into being as
Dynabook, Weyer investigated an encyclopedia dynamic book
[31], and Gould and Finzer investigated educational applications
[15]. Bier and Goodison [1] presented documents as an attractive
form of general user interfaces at EP90, and Pasquier-Boltuck,
Grossman and Collaud presented an object-oriented open-
architecture implementation of the electronic book, EBook3 [26],
at ECOOP88 [25]. The major technological change in recent years
supporting multimedia publication is the massive cost decline in
CD-ROM production such that a single CD-ROM can be
produced for $25, and production runs of a 1,000 for less than $3
each. This, coupled with the availability of powerful, low-cost lap-
top computers, is making digital documents a feasible publication
medium competitive in cost and usability with printed paper and
offering interactive multimedia capabilities.

This paper describes the features, architecture and implementation
of KWrite, an interactive multimedia document publication
system, designed to support parallel paper and CD-ROM
publication of scholarly books and journal papers. The system has
been designed to appear to the user as a conventional word
processor, but to have an open architecture enabling a wide range
of interactive applications to use the document as a user interface

while appearing seamlessly embedded to the user. This approach
has been taken because it seems unlikely that any specific
multimedia document program will ever encompass all the
functionality that authors might reasonably require. What is
needed is an open architecture document ‘shell’ supporting
integration with independent applications that were written with
more conventional user interfaces in mind.

System Requirements

The major motivations for the KWrite development described in
the previous section lead to a number of system design and
implementation requirements. It should be:

1. Similar to standard word processors in user interface and
functionality. To minimize impediments to use it is essential
that the new technology deviate as little as possible from
familiar technology, and that enhanced features are
incorporated seamlessly and naturally within the existing
framework. Commercial word processors and page makeup
systems emulate the appearance of the printed page and the
keyboard of the typewriter. Acceptable multimedia systems
have to build on this, and users’ other experience of computer
interaction. Some additional interface features will usually be
necessary, but these need to be carefully designed to be
coherent and consistent with the existing document interface.

2. Capable of supporting hypertext and hypermedia linkage,
color graphics and photographs, audio and video. User
expectations of interactive multimedia systems are already
informed by many past developments such as Intermedia [33],
and the availability of QuickTime in word processors. Again,
acceptable multimedia systems have to build on this and
provide the expected functionality.

3. Capable of supporting active data and knowledge structures
for simulation, animation and inference. As discussed above,
any representational form provides a multimedia extension.
The forms of activity and interactivity available define a new
medium as much as do its modes of audio-visual access.

4. Open architecture such that an area in a document can be
treated as a window pane by another application. The natural
junction between an interactive computer application and a
document is the picture frame within a document.
Conventional pictures contain tables, diagrams, mathematical
and chemical formulae, photographs and so on. The picture
areas interact typographically with the text so that it runs
around or jumps over them in page makeup. They are
‘windows’ in the documents that naturally transform to
become windows into another application.

5. Open architecture such that the structure and contents of any
document component may be accessed by another application.
The natural interface to supply parameters to an external
application is the content of the existing document. It may be
necessary to supply additional interface capabilities for
particular applications but, as far as possible, the parameters
required should be part of the document.

6. Versioned such that the authenticity and integrity of the
original document is preserved while being fully editable by
the reader. This is not a standard issue in multimedia
publication, but it is of vital importance to the publication of
scholarly documents [8]. It is essential to scholarship that
documents received are precisely those published by their
authors so that citations and critical commentaries by others
reference a well-defined publication. However, it is also
important to the effective use of electronic documents that full
advantage may be taken of their active availability, for
example, for annotation and personal commentary.

Another consideration in developing the multimedia document
publication system was the need in CD-ROM publication for very
low cost publication software. Until universal standards are
available and commercially supported, systems will need to be
available that can be supplied with the CD-ROM at virtually zero
cost if they are not to constitute the dominant production cost.

System Architecture

KWrite is implemented as a class library in THINK C on the
Apple Macintosh platform. As with Dynabook [20], Intermedia
[23], EBook3 [25], and other compound document systems [17],
the object-oriented library implementation is used to enable
principled software engineering to provide a very open and
flexible environment that is easy to enhance and maintain. The
dependence on the Macintosh is a limitation to usage on other
platforms that will eventually have to be overcome, but it is
currently important in giving access to the excellent typographic,
graphic, sound and vision managers that the Macintosh supports.
In particular, the availability of standard formats for multimedia
material supported by a wide range of commercially supported
editors has enabled us to provide users with much greater
functionality than would have been possible if we had to support
proprietary formats and provide such tools as an integral part of
the publication system.

The logical unit supported by the system is a generalized
‘document’ with a highly open architecture providing links to
material in a wide range of media as shown in Figure 1, and itself
being accessible both to human readers and computer programs.
At the top level the structure of the documents conforms very
closely with those of conventional word processor and page layout
documents. All the enhancements are linked at lower levels to
existing features of a conventional document. This is not only a
convenience in implementation but also an important contributor
to the naturality of the user interface since the user’s cognitive
model of the document is extended rather than violated.

Text

Diagrams

Pictures

Movies

Sound

Animation

Concept Maps

Digitization

Typography
&

Text Layout

Links
&

Indexing

Page
Layout

Multi-Media
Document

Print

Network

CD-ROM

Interact

Read
Semantic Nets

Simulation

Figure 1 Multimedia document production

Figure 2 shows the internal document architecture with a flow
from a top level of conventional features to a lower level of multi-
media, hypertext, and application integration extensions.

In the left column, the text component of the document is
represented very simply as a linear string of characters in Apple’s
international script format. No style, pagination, or other material
is embedded in this basic text structure which makes it as simple
as possible to search, index and analyze.

Open Architecture Document

Text
Component

Style
Component

Layout
Component

Linear string of
text in

international
script format

No embedded
material, simple
to search, index

and analyze

Pointers to
strips of text

Font size, face
and style control

Links to text and
sound annotation

Links to sections
of this and other

documents

ParagraphPage

Width, height,
columns, border,

header, footer

Displayable and
printable unit

Pane

Width,
indentation,

tabulation, line
spacing, border

Version
derivation
tracking

Links to material
displayed in
panes and
associated
applications

Bit map graphics,
line graphics,

quicktime videos,
visual knowledge

structures

Width, height,
position, border

Figure 2 Internal document architecture

In the second column, the style component is represented by
pointer and length structures delimiting strips of text in the text
component. The attached data structures define the normal
typographic enhancements of the text, such as font size, face and
style. They also support links to text and sound annotation, and
hypertext links to sections of the current document, to other
documents, and to arbitrary data structures and programs. The
hypertext functionality is modeled on that of Intermedia but we do
not specify a special ‘link marker’. Any typographic enhancement
may be used to indicate an attachment. To access a link, the cursor
changes from an arrow to a menu shape when it passes over text
with attachments, and when the user mouses down a popup menu
appears showing the available annotation and links. Attachments
are automatically cut and pasted exactly as are the associated
typographic enhancements. In terms of implementation, no
additional functionality is necessary to keep attachments
associated with particular text during editing. The additional data
structures are indexed by a field in the style data structures that is
otherwise treated as part of the typographic enhancements.

On the right of Figure 2, the layout component of the document is
split into three sub-components: those associated with the page
structure of display and printing; those associated with the
paragraph structure of the document; and those associated with
the pane structure, basically of embedded pictures in a
conventional document.

The page sub-component is again represented by pointer and
length structures delimiting strips of text in the text component.
The attached data structures define the normal page layout
enhancements of the text, such as margins, columns, headers and
footers. The page is the basic unit of display and printing.
However, since a single document is often reformatted with
different page layouts for different purposes, the page is not
treated as a logical unit, and there are no attached data structures.

The paragraph sub-component is also represented by pointer and
length structures delimiting strips of text in the text component.
The attached data structures define the normal paragraph layout
enhancements of the text, such as width, indentation, line spacing
and a paragraph border. They also support a unique identifier for a
paragraph allowing it to be used as a logical unit for version
derivation tracking. Documents themselves have unique
identifiers and maintain a list of previous versions back to the root
version of the document. Within documents, paragraphs have
unique identifiers and maintain a list of previous versions back to

the root version of each paragraph. This enables a document
version tree to be reconstructed from a set of available documents
and displayed graphically as a user interface for document access.
Within a document opened in the context of previous versions, it
enables a marker line to be displayed alongside a paragraph for
which an alternative version is available. Mousing into this line
changes the cursor to a menu symbol, and mousing down then
brings up a popup menu showing the alternative versions. This
part of the system conforms closely with our previous
developments of group editing support systems [21].

The pane sub-component is relatively independent of the text in
that it allocates rectangular areas of pages in which other material
will be placed. The text is laid out to run around or hop over these
areas but is not otherwise enhanced by them. The normal use of
these panes is to display graphic material, pictures embedded in
the document. The class library of the knowledge document
publication system generalizes the usage of these panes by taking
advantage of their relative independence of the text to make them
available to other applications as if they were a drawing pane in an
arbitrary window. This enables them to be used to support visual
activity ranging from bit map and line graphics to QuickTime or
laserdisc videos, through simulation and animation, to graphic
editors for visual languages representing programs, concept maps,
and formal knowledge structures. Mouse down clicks within a
pane are reported to the associated application rather than to the
document software, and hence user interaction can be supported in
a completely different environment.

While the document architecture is complex with many data
structures and attachments, users see only a single document file
exactly as they would with a normal word processor. The internal
data structures concerned with the text, typography and layout are
stored in the data fork of a Macintosh file, and the attachments are
stored as resources in the resource fork. In conventional use the
document file is completely self-contained. Some features involve
links to other files, such as hypertext links, QuickTime video files,
and other application files. These links are stored in resources
referencing the associated data using the Macintosh alias manager
so that the files can be found automatically even if they have been
moved between directories and disks, or are on another computer
on the network. The storage of these aliases as standard Macintosh
resources enables them to be checked by a utility that can list all
the files associated with a document, or can copy them to a disk, if
a user wishes to send a document to another user with the
assurance that any associated files are being sent also.

General
Document

Class

WSE
Document

Class

Hyper
Document

Class

main
pane

General
Pane
Class

WSE
Pane
Class

Hyper
Pane
Class

set up &
coercion
methods

main
pane

main
pane

sub
pane
list

Object
List

WSE
WSE

Assembler
Structures

picture
list

member

WSE
Picture
Record

picture
handle

Hyper
Record

main
pane

General
Pane
Class

file

General
File

Class

Object-Oriented
Encapsulation of
Word Solution

Engine

Specific
Application
Pane Class

Specific
Application
File Class

Arbitrary
Application

Conforming to
Class Library
Conventions

Figure 3 Making document panes available to other applications in the class library

Integration with Other Applications

The class library implementation of KWrite is designed to support
panes embedded in documents such that the document processor
making up pages and presenting them, and the application
interacting through them are maximally decoupled. This has been
very effective in enabling us to incorporate previously written
applications based on extensions to the THINK C class library
with virtually no modification. Figure 3 shows the relations
between the class library components that implement this
decoupled integration. Arrows directly between components
represent class inheritance, and labeled arrows indicate instance
variables or, in one case, methods.

At the top of Figure 3, the general Document and Pane classes are
the abstractions through which the standard class library
implements ‘documents’ as an aggregation of data files, windows
for interaction, and panes for data display within the windows.
Immediately below this the Document and Pane classes are
subclassed to provide a wrapper for DataPak’s Word Solution
Engine (WSE) which is a commercially available machine code
module providing typographic and page layout functionality [3].
These are subclassed again to support our hypermedia attachments
and external application integration.

WSE supports pictures embedded in documents through a record
structure containing a picture handle. It supports an attached
procedure called just before drawing the picture in case the
programmer wishes to enhance the picture, for example with a
box. When an author embeds a multimedia item in a document,
the HyperPane class replaces the picture handle in this record
structure with a pointer to a HyperRecord object that manages a
general File object referencing the data for the item and a general

Pane object located where the picture would be placed. The top
level Document sees this Pane as a normal subpane of its main
pane. WSE sees it as a picture location in its picture list. The
external application sees the appropriate subclass of the general
File and Pane objects as its normal data structures.

This implementation architecture makes it simple to offer access
to any application written in THINK C’s class library through
‘pictures’ embedded in a document rather than through standard
Macintosh windows. The main change we have had to make to
applications is to move their dialog components into floating
windows that appear when the user double clicks in a picture
pane. This avoids incorporating elements in the document that are
inappropriate in the printed form. Examples of such dialogs are
given in the following section. It is also possible to integrate
applications not written in the THINK class library by using an
interapplication communication protocol that passes to them
requests to update the embedded pane, and messages about user
interaction with it. It may be possible to integrate some
applications without modification by patching the Macintosh
window manager to support this protocol.

Word Processing and Page Layout Support

As shown in Figure 4, Word Solution Engine supports the full
range of features expected in a commercial word processing
program, and is fast and efficient in operation, so that users who
are familiar with existing programs feel no sense of loss of
functionality in using KWrite. Text is entered through the
keyboard, or cut and pasted, and the font size, face and style of
any part of it selected can be changed through menus and
command keys in the normal way.

Floating dialog
to set paragraph
borders, line
spacing, leaders

Ruler line for
normal word
processing
features,
margins,
indents, tabs

Pagination view:
page separator;
and
page outline

Text wrapping
picture

Text skippping
picture

Figure 4 Word processing and page layout features

At the top of Figure 4 is a ruler line allowing paragraph formatting
to be changed, tab positions to be entered, and so on. Pictures are
pasted into the text from the clipboard, or placed as files from the
menu. They can be dragged to any position and resized through
‘handles’ that appear when they are selected. Text may be set to
run around or hop over pictures, and the margins around pictures
between them and the text may be adjusted.

At the lower right in Figure 4 is a floating dialog that the user has
brought up through a menu in order to adjust paragraph and
picture margins, borders and so on. Such floating dialogs are a
major feature of the user interface to KWrite, supporting not only
the typography and page layout, but also hypertext linking, visual
language knowledge structures editing, and so on. They are
movable and non-modal, float in their own layer above document
windows, and are hidden if another application is active. They are
important in allowing the complex functionality of the publishing
system to be made accessible without overwhelming users.

Hypermedia and Multimedia Support

Using the facilities already described, the support of hypermedia
linkages to other documents and applications, and the support of
embedded multimedia material in the knowledge document
publishing system is very straightforward. Figure 5 illustrates both
capabilities in use through part of a tutorial document describing
them. Any form of typographic enhancement, such as the gray
underline, boxing and special symbol shown, may be used to
indicate the existence of a link. When the user mouses over such a

link the cursor changes to a menu symbol as shown at the center
left in Figure 5, and mousing down brings up a popup menu that
may be used to access the linked material.

Multimedia items embedded in the document are supported
equally simply using the independent sub-panes of the document
already described. Figure 5 also shows a QuickTime movie
embedded in a document such that the video and sound may be
played through the attached controller. When the document is
printed only the image shown will appear but this is usually a
valuable reminder of the contents of the full movie. Similarly the
typographic enhancements associated with hypermedia links are
printed as a reminder that there was associated material.

The protocols associated with the linkage structure and the
embedded panes are extremely flexible and open architecture
allowing for new facilities to be added, such as simulation and
data analysis, through relatively independent applications that
receive messages from the document including the availability of
a pane for their text or graphic output. Currently only applications
written in the THINK C class library can take full advantage of
this capability, but the support of such open systems integration
features by independently developed applications may be
expected to become increasingly common in the future. For
example, the scripting program Frontier [32] expects independent
applications to support an additional menu under its control, and
Microsoft’s Object Linking and Embedding protocols (OLE) [16]
are already being used by other vendors to integrate their
applications with applications such as Word.

Figure 5 Hypermedia and embedded multimedia support

Concept Map Support

Concept maps have a long history of use in education and
management as a means of representing and investigating
knowledge structures [12, 24]. KWrite provides tools for concept
map design supporting nodes of different shapes and colors, and
linkage from nodes to scriptable document actions, such as
playing QuickTime movies. One project using these features is a
continuation of some previous media studies undertaken with the
KSI by Dr Joan Vickers, Head of the Neuro Motor Control
Laboratory in the Faculty of Physical Education at the University
of Calgary. Vickers has developed an approach to sports coaching
based on knowledge structures for various sports expressed as

hierarchical concept maps. Knowledge structures for specific
sports have been developed by senior international coaches for
those sports and have been used as the basis for an extensive book
series on sports coaching [28].

Our original project took place in the mid-1980s as these
knowledge structures were being created and involved the
production of a number of laserdiscs incorporating video material
illustrating athletes of various levels of skill in actual situations
performing activities illustrating the knowledge structures. These
discs were accessed through programs graphically representing
the knowledge structures and managing the lesson sequences, drill
and practice in class situations [13, 14].

Figure 6 Hypermedia and embedded multimedia support

One outcome of these studies was a detailed comparison of
laserdiscs and books as media through which to present the
coaching material [29], and as the new multimedia document
technology became available it was obviously interesting to
investigate it as a third option in which the book and laserdisc
material could be combined. We have digitized some of the video
material and incorporated it together with text and active
knowledge structures in documents that emulate sections of the
existing books and laserdisc material. Figure 6 shows a screen
dump of a page being accessed. At the top is the relevant part of
the overall knowledge structure as a concept map. The popup
menu accessible at the right of each node activates the relevant
section of the QuickTime movie below the knowledge structure.

Many interesting questions are being raised by this project. For
example, in a sports coaching context are the quality limitations of
current QuickTime replay without special hardware support
significant? In particular, do the irregularities of timing defeat the
object of showing a movement sequence? In book form sequences
are shown as a composite photograph of successive body and limb
positions. One can achieve this effect by stepping through the
QuickTime sequence, and from this perspective the jerky
playback is not necessarily a major fault. However, only empirical
evaluation can determine the acceptability of the quality of the
currently available technology in this application.

The coaching material is of interest not only because of the
availability of comparisons with both paper and laserdisc material,
but also because its presentation is driven by the knowledge
structures presented as hierarchical concept maps. Such structures

are closely related to the conceptual structures for documents
proposed as a way of managing multimedia documents [22], and
their acquisition is also related to the elicitation of semantic
networks as a basis for structuring hypermedia documents [19].
Thus, the form of the coaching material detached from its content
is representative of some of the possibilities for new document
architectures that continue to support parallel publication in paper
and digital form yet have greater structure than conventional
books and papers. It will be interesting to see whether interest
arises in scholarly publications in which knowledge structures and
argument forms are more explicitly formulated in this way.

Knowledge Base Support

Another system that was developed to demonstrate integration
with other applications provides access to the knowledge base
facilities that comprise the knowledge support system, KSSn [6].
The knowledge support systems research has been part of a
program of development of knowledge acquisition methodologies
and tools with major emphasis on these being usable by end-users
such as knowledgeable experts [11, 27]. This has been achieved
primarily through the provision of simple, natural, attractive and
easily learnt graphic interfaces to text analysis, repertory grid,
inductive modeling, semantic network, and related tools [10]. The
independent embedded panes of the document publication system
now allow all of these interfaces to be offered as embedded
features of a document rather than as separate applications
operating through their own windows.

Figure 7 Formal knowledge base in a visual language embedded in a document

Figure 7 shows a semantic network in a formal visual language for
KL-ONE-style term subsumption knowledge representation [7]
embedded in a document. It normally appears as if it were a line
graphic but it is in fact a fully active, editable knowledge structure
that can be used for inference as part of a knowledge base. Editing
controls are provided through floating dialogs and popup menus
similar to those already shown. When the user double clicks in the
pane a floating dialog appears as shown towards the bottom of

Figure 7. This enables existing visual objects to be edited and new
ones to be created. When the user mouses over the right edge of a
knowledge object the cursor changes to a menu symbol and
mousing down produces a popup menu as shown in the center of
Figure 7. This enables visual objects to be linked and aligned, and
gives access to other functionality such as object definitions,
usage elsewhere and hypertext links from objects if they exist.

The visual language allows knowledge structures with the full
functionality of those common in frame-based or object-oriented
expert system shells to be entered, and these knowledge structures
may be exported to such shells or run deductively in the
knowledge representation server, KRS [6], which is accessible
from the knowledge document publication system. Equally
importantly, the knowledge document itself acts as a knowledge
base to KRS and can be interrogated by problem-solving
programs external to the publication system. From this
perspective, the knowledge document is an annotated, structured,
humanly readable and editable knowledge base that should be
much easier to maintain than a conventional knowledge base. It is
enabling us to explore a possibility we posed some time ago, to
design “a MYCIN development within a ‘library and information
science’ ethos in which medical text books and journal articles are
seen as the paramount vehicles for knowledge” [5]. We can now
develop knowledge bases in which formal knowledge structures
‘shadow’ informal ones, and processes of annotation and
explanation are simply and naturally introduced.

The active knowledge document shown in Figure 7 is one
describing a solution to the room allocation problem derived from
an ESPRIT project [30]. Figure 8 shows a HyperCard stack being
used as a user interface to interrogate the knowledge document of
Figure 7 as part of a problem solving sequence in allocating rooms
based on conceptual frameworks, rules and facts embedded within
the document. The HyperCard stack sends messages to the
knowledge document publication system using the Macintosh
System 7 inter-application protocol and receives back the formal
knowledge base components in a form that can be run deductively
in KRS. Editing the knowledge structures in the document can
change the concepts, rules and facts, and thus change the solutions
developed for the problem.

Figure 8 Interrogating the knowledge base embedded in the
document from another application

The full example was published in a book of papers from the
British Computer Society Expert Systems Conference in
December 1992 with the abstract:

“This paper is written in a document production tool that
appears to a user as a word processor but also acts as an expert
system shell with frame and rule representations supporting
deductive inference. The electronic version of the document is
active, providing typographic text and page layout facilities,
versioning, hypermedia sound and movies, hypertext links, and
knowledge structures represented in a visual language. It can be
read as a hypermedia document and also interrogated as a

knowledge-based system for problem-solving. The paper
version of the document, which you are now reading, is
produced by printing the electronic version. It loses its active
functionality but continues to act as a record of the knowledge
in the document. The overall technology has been developed as
an alternative approach to the dissemination of knowledge
bases. It also provides a different interface to knowledge-based
systems that emulates document interfaces with which many
users are already familiar.” [9]

The electronic version of the paper was made available through
anonymous ftp and as a CD-ROM. Thus we demonstrated parallel
publication of the paper version as a camera-ready copy book
chapter, and the electronic version, identical in appearance, as a
full working demonstration of the problem solution. What is
particularly significant is that there were no hidden data structures.
The semantic networks in the paper were the complete knowledge
structures and operated directly in the inference engine to solve
the problem. Thus, the document was also the knowledge base.

Conclusions

An interactive multimedia document publication system has been
described which integrates a number of different representation
technologies to provide a medium offering a wide spectrum of
usage, from emulation of current paper publication, through
electronic document delivery, multimedia inclusion of video and
sound, structured hypermedia linkage, and formal knowledge
representation supporting simulation and computational inference.
The system is targeted on exploring new forms of scholarly
communication, and the knowledge document publication system
specifically supports collaborative document development, the
authentication of disseminated material, and the citation,
annotation and reuse of such material.

A central hypothesis in the research reported in this paper is that
the scholarly utilization of new technologies for formal
representation of knowledge in operational form will be most
rapid and effective if it can be offered as a natural evolution of
existing publication media. Hence the publication system provides
a rich word processing and page makeup environment with all the
facilities normally expected, and adds multimedia, hypermedia
and computational facilities incrementally and naturally, with
careful attention to the usability of the human-computer
interaction involved.

The product from the system is an active document in which
knowledge is represented in a variety of ways, some targeted on
human interaction, some targeted on computational analysis,
simulation and inference, and such that the document can be
printed as a conventional paper or book losing the dynamic
aspects of the material but retaining the visual representation. The
implementation of the system has an open architecture allowing
document functionality to be enhanced by links with other
applications. The system is robust and easy to use, and compares
favorably with existing word processing and page makeup
systems. Only time and experience with diverse user communities
will show which of the new features are important to the creative
and communication processes of scholarship.

In conclusion, all the technologies necessary for the development
of new forms of electronic publication are now available, and it is
not difficult to provide support for multimedia documents
incorporating hypermedia links, formal knowledge structures, and
access to a variety of applications. We now have to use our
creative imaginations to take advantage of these systems to
enhance the creation and dissemination of knowledge.

Acknowledgments

Financial assistance for this work has been made available by the
Natural Sciences and Engineering Research Council of Canada.
The research reported here would not have been possible without
access to the word processing software developed by Gary
Crandall of DataPak. We are grateful to Joan Vickers for the use
of her research material on knowledge structures in coaching.

References
[1] E.A. Bier and A. Goodisman, “Documents as user

interfaces,” in EP90: Proceedings of the International
Conference on Electronic Publishing, Document
Manipulation & Typography, R. Furuta, Editor.
Cambridge University Press: Cambridge, UK. p. 249-262,
1990.

[2] V. Bush, “As we may think,” Atlantic Monthly, vol. 176,
pp. 101-108, 1945.

[3] G. Crandall, Word Solution Engine Programmer’s
Manual, Vancouver, Washington: DataPak. 1990.

[4] D.L. Drucker and M.D. Murie, QuickTime Handbook,
Carmel, Indiana: Hayden. 1992.

[5] B.R. Gaines, “Knowledge support systems,” Knowledge-
Based Systems, vol. 3, no. 3 pp. 192-203, 1990.

[6] B.R. Gaines, “Empirical investigations of knowledge
representation servers: Design issues and applications
experience with KRS,” ACM SIGART Bulletin, vol. 2, no.
3 pp. 45-56, 1991.

[7] B.R. Gaines, “An interactive visual language for term
subsumption visual languages,” in IJCAI’91: Proceedings
of the Twelfth International Joint Conference on Artificial
Intelligence. Morgan Kaufmann: San Mateo, California. p.
817-823, 1991.

[8] B.R. Gaines, “An agenda for digital journals: the socio-
technical infrastructure of knowledge dissemination,”
Journal of Organizational Computing, vol. 3, no. 2 pp. to
appear, 1993.

[9] B.R. Gaines and M.L.G. Shaw, “Documents as expert
systems,” in Research and Development in Expert Systems
IX. Proceedings of British Computer Society Expert
Systems Conference, M.A. Bramer and R.W. Milne,
Editor. Cambridge University Press: Cambridge, UK. p.
331-349, 1992.

[10] B.R. Gaines and M.L.G. Shaw, “Integrated knowledge
acquisition architectures,” Journal for Intelligent
Information Systems, vol. 1, no. 1 pp. 9-34, 1992.

[11] B.R. Gaines and M.L.G. Shaw, “Eliciting knowledge and
transferring it effectively to a knowledge-based systems,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 5, no. 1 pp. 4-14, 1993.

[12] B.R. Gaines and M.L.G. Shaw, “Supporting the creativity
cycle through visual languages,” in AAAI Spring
Symposium: AI and Creativity. AAAI: Menlo Park,
California. p. 155-162, 1993.

[13] B.R. Gaines and J.N. Vickers, “Design considerations for
hypermedia systems,” Microcomputers for Information
Management, vol. 5, no. 1 pp. 1-27, 1988.

[14] B.R. Gaines and J.N. Vickers, “Hypermedia design,” in
Proceedings of RIAO’88 Conference on User-Oriented
Content-Based Text and Image Handling. MIT:
Cambridge, Massachusetts. p. 14-23, 1988.

[15] L. Gould and W. Finzer, “A study of TRIP: A computer
system for animating time-rate-distance problems,” in

Computers in Education, R. Lewis and D. Tagg, Editor.
North-Holland: Dordrecht. p. 359-366, 1981.

[16] M. Heller, “Future documents,” Byte, vol. 16, no. 5 pp.
126-135, 1991.

[17] W. Herzner and E. Hocevar, “CDAM - Compound
Document Access and Management. An object-oriented
approach,” in Multimedia Systems, Interaction and
Applications, L. Kjelldahl, Editor. Springer: Berlin. p. 17-
36, 1992.

[18] B. Hurter and A. Stone, “Kodak Photo CD System,”
Photographic, vol. (September), pp. 15-24, 1992.

[19] D.H. Jonassen, “Semantic net elicitation: tools for
structuring hypertext,” in Hypertext: State of the Art, R.
McAleese and C. Green, Editor. Intellect: Oxford, UK. p.
142-152, 1990.

[20] A. Kay and A. Goldberg, “Personal dynamic media,”
Computer, vol. 10, no. 3 pp. 31-41, 1977.

[21] N. Malcolm and B.R. Gaines, “A minimalist approach to
the development of a word processor supporting group
writing activities,” in COCS’91: Proceedings of
Conference on Organizational Computing Systems. ACM
Press: p. 147-152, 1991.

[22] C. Meghini, F. Rabitti, and C. Thanos, “Conceptual
modeling of multimedia documents,” IEEE Computer, vol.
24, no. 10 pp. 23-30, 1991.

[23] N. Meyrowitz, “Intermedia: The architecture and
construction of an object-oriented bypermedia system and
applications framework,” in OOPSLA’86 Conference
Proceedings, N. Meyrowitz, Editor. ACM: New York. p.
186-201, 1986.

[24] J.D. Novak and D.B. Gowin, Learning How To Learn,
New York: Cambridge University Press. 1984.

[25] J. Pasquier-Boltuck, E. Grossman, and G. Collaud,
“Prototyping an interactive electronic book system using
an object-oriented approach,” in ECOOP’88 European
Conference on Object-Oriented Programming
Proceedings, S. Gjessing and K. Nygaard, Editor.
Springer: Berlin. p. 177-190, 1988.

[26] J. Savoy, “The electronic book Ebook3,” International
Journal Man-Machine Studies, vol. 30, pp. 505-523,
1989.

[27] M.L.G. Shaw and B.R. Gaines, “KITTEN: Knowledge
initiation and transfer tools for experts and novices,”
International Journal of Man-Machine Studies, vol. 27,
no. 3 pp. 251-280, 1987.

[28] J.N. Vickers, Instructional Design for Teaching Physical
Activities: A Knowledge Structures Approach, Champaign,
Illinois: Human Kinetics. 1990.

[29] J.N. Vickers and B.R. Gaines, “A comparison of books
and hypermedia for knowledge-based sports coaching,”
Microcomputers for Information Management, vol. 5, no.
1 pp. 29-44, 1988.

[30] A. Voß, W. Karbach, U. Drouven, D. Lorek, and R.
Schuckey, “Operationalization of a synthetic problem,” in
ESPRIT Basic Research Project P3178 REFLECT Task
I.2.1 Report. GMD: Bonn, Germany. 1990.

[31] S.A. Weyer, Searching for Information in a Dynamic
Book, Palo Alto, California: Xerox PARC. 1982.

[32] D. Winer, UserLand Frontier User Guide, Palo Alto,
California: UserLand Software. 1992.

[33] N. Yankelovich, N. Meyrowitz, and A. van Dam,
“Reading and writing the electronic book,” Computer, vol.
18, no. 10 pp. 15-30, 1985.

