
OPEN/C/ESAR: An Open Software Architecture 

for Verification, Simulation, and Testing 

Hubert  Garavel 

INRIA RhSne-Alpes and DYADE / VASY group 
655, avenue de l'Europe 

38330 Montbonnot St Martin 
France 

Tel: +(33) 4 76 61 52 24 Fax: +(33) 4 76 61 52 52 
E-ma~l: hubert, garavel@inria, fr 

Web: http://~, inrialpes, fr/vasy 

A b s t r a c t .  This paper presents the OPEN/CIESAR software architec- 
ture, which allows to integrate in a common framework different lan- 
guages/formalisms for the description of concurrent systems, as well as 
tools with various functionalities, such as random execution, interactive 
simulation, on-the-fly and exhaustive verification, test generation, etc.. 
These principles have been fully implemented, leading to an open, ex- 
tensible, and well-documented programming environment, which allows 
tools to be developed in a modular framework, independently from any 
paxticular description language. 

Introduct ion 

Research in the area of tools and algorithms for the construction and analysis 

of systems has been and remains particularly active. Despite this intense activ- 

ity, end-users involved in actual system design do not always receive as much 

computer-aided assistance as they could expect. Among the many tools devel- 

oped, only a few are robust enough to be applied to real-life problems. Moreover, 

in many cases, end-users cannot benefit from all these tools, because they are 

using a different language than the one supported by the tools. 

It seems therefore that  a significant part  of the effort spent in developing tools 

is wasted, and that  the global productivity of the research community in formal 

methods and verification could be increased through a better  coordination. 

A large part of these problems could probably be solved if the whole com- 

munity and industry adopted a unique language for the specification and design 

of protocols and concurrent systems. However, this is not the case: even the 

standardization efforts undertaken within Iso and ITU-T led to three different 

standards (ESTELLE, LOTOS, and SDL), in addition to the many other formalisms 

that  already exist: Ccs,  CsP, ~CRL, PROMELA, etc. It seems therefore clear that  

different specification languages will continue to exist (as it is already the case 



69 

for sequential programming languages); even if the Darwinian selection process 

exists, it is unlikely that one single language will emerge and remain. 

Taking as a fact the coexistence of multiple languages, this paper attempts 

to lower the corresponding economic cost. It describes a generic architecture al- 

lowing the development of tools (e.g., simulation, verification, test generation 

tools, etc.) that can be applied to programs written in different languages (e.g., 

LOTOS, SDL, etc.). These ideas have been entirely implemented in a tool envi- 

ronment named OPEN//C/~SAR, which has been used for realistic case-studies [4, 

7, 11, 19, 21, 22], some of them in an industrial context. 

The work on OPEN//C/t~SAR Was initiated in 1992 as a follow-up to the de- 

sign of the CSSAR compiler [12], a model-checking tool for translating LOTOS 

programs into Labelled Transition Systems (LTSs or graphs, for short), a seman- 

tic model on which verification can been performed using behavioural equiva- 

lences and//or temporal logic formulas. Because the only functionality provided 

by C~SAR was graph generation, and due to state explosion, its applicability was 

restricted to small-size systems. 

The initial goal of the OPEN//C~SAR project was to extend C~SAR with ad- 

ditional functionalities (including random execution, interactive simulation, and 
partial, on-the-fly verification) needed to deal with larger systems. It is worth 

noticing that this goal was a radical departure from previous approaches, con- 

sisting either in: 

- Providing an environment dedicated to a given language, by juxtaposition 
of separate tools, each tool providing a distinct functionality: graphical or 

syntax-driven editor, code generator, interactive simulator, debugger, on- 

the-fly property checker, test generator, etc. A certain degree of unification 

between these tools was often achieved by sharing a compiler front-end, us- 

ing a common format for abstract syntax trees, and exchanging information 

via defined interfaces (e.g., files). However, the semantical processing parts 

remained duplicated between the different tools, possibly limiting interoper- 

ability, as each tool could have its own restrictions (accepting only a particular 

subset of the source language) or give a different interpretation of the source 

language semantics. 

On the contrary, the OPEN//C/~SAR project targeted at the greatest pos- 

sible integration between the different functionalities by sharing, not only 

the compiler front-end, but also all semantic processings, the choice between 

simulation, verification, etc. being deferred as much as possible. 

- Adapting an existing code generator or simulator in order to perform verifica- 

tion. In most cases, this approach faced architectural or performance issues: 

experience proved that it was very difficult to turn a simulation tool into an 

efficient verification tool, unless the simulator had been intentionally designed 

for this purpose from the beginning. 

On the contrary, the OPEN//C/I~SAR project had to adapt the model-checking 

verification capabilities of C~SAR to simulation and code generation. Not so 

surprisingly, we found out that going this direction was much easier than 



70 

going the opposite way, exactly like turning a multi-user operating system 

into a single-user operating system is much easier than the opposite. 

After completion of its initial goals, the aims of the OPEN/C/ESAR project 

were reviewed and extended toward a new target: the architecture was modi- 

fied so that other languages/formalisms than LOTOS could be integrated into 

OPEN/C/ESAR. 
This paper describes the technical solutions and achievements of the 

OPEN/C~ESAR project. It is organized as follows: Section i presents the principles 

of the OPEN/C~ESAR architecture, which is based upon a functional decomposi- 

tion in three modules: the graph module, the library module, and the exploration 
module. These modules are described in Sections 2, 3, and 4 respectively. Fi- 

nally, the conclusion summarizes the benefits of the OPEN/C/ESAR approach and 

discusses its limitations, leaving room for future research. 

1 A r c h i t e c t u r e  

The design of the OPEN/C/ESAR architecture takes its roots in the development 

of C~SAR [12], the first model-checking tool for full LOTOS. It was also made 

possible by the author's prior experience in designing the architecture of VESAR 

[1], a protocol engineering tool for the ESTELLE language, probably the first 

commercial tool to integrate simulation, on-the-fly analysis and model-checking 

capabilities. OPEN/C/~SAR also benefited from ideas implemented in other veri- 

fication tools, especially XESAR [13] and SPIN [14]. 

Although these tools support different source languages (LOTOS, ESTELLE, 

and PROMELA), they offer similar functionalities, among which verification by 

reachability analysis. The basic idea of the OPEN/C/ESAR architecture was to 

identify the common functionalities shared by these tools and to organize them 

into three distinct modules. The OPEN/C~SAR architecture improves previous 

tools by enforcing a clear separation between these modules using well-defined 

APIs (Application Programming Interfaces). The OPEN/C/ESAR architecture is 

depicted on Figure 1. 

The  graph  modu le  is responsible for encapsulating and hiding all language- 

dependent aspects. From the outside of this module, the source program can be 

seen only as an LTS, whatever the source language used. The graph module 

exports a representation for the states and the labels of the transition system, 

as well as primitives to handle states and labels. It also provides primitives to 

compute the transition relation (i.e., the initial state and the successors of a given 

state). These features are accessed through an API named "caesax_graph.h", 

which does not depend on any particular source program, nor any particular 

language. 

The mapping between a given source program and this interface is achieved 

using an OPEN/C~SAa-compliant compiler, which translates the source program 

into a C program implementing this interface. This C program is compiled sep- 

arately and linked with the other OPEN/C/ESAR modules. In this approach, the 



71 

I ! I source program source program 
(language LI) (language L~) 

graph module I .... ~'~ graph module 
(C code) (interface) 

I graph module I ................. " 
(object code) 

Explanation of symbols 
X ~ Y : input-output dependency 
X - -~ -  Y : X uses module Y 
X .... ' ~  Y : X implements interface Y 

_ J ::plorat. module I I L_ ] ' 
F ~I(C or C++ c o d e ) ~  

lexpl~ m~ I 
(object code) 

l executable program I 

results of the execution 

I 

libraries 
(interface) 

A 

libraries 
(object code) 

F ig .  1. OPEN/C/EsAR archi tecture  



72 

C language was chosen because efficient compilers for this language are available 

(C plays the role of a portable assembly language). 

A list of available OPEN/C/ESAR-compliant compilers is given in Section 2. 

The functioning principles and internal details of these compilers are not 

constrained by the OPEN/C/ESAR architecture, provided that implement the 

"caesar_graph. h" interface properly. 

The  l ibrary  modu le  consists in a set of libraries. Each library provides a 

coherent set of data structures and associated primitives for handling transition 

lists, storing visited states during graph traversals (e.g., stacks, tables, bitmap 

tables), computing hash functions, displaying diagnostics, etc. These libraries 

are independent from any source program and source language. The available 

libraries (written in C and pre-compiled) are presented in Section 3, but users 

can add new libraries to fit their specific needs. 

The  explora t ion  modu le  can be considered as the "main" program. It 

contains the core of the verification, simulation, or testing algorithm, and deter- 

mines how the LTS is to be explored. In most cases, the exploration module is 

independent from any source program and source language (however, dedicated 

exploration modules are possible, for instance, to verify a specific property). The 

exploration module uses the primitives exported by the graph and library mod- 

ules. It is usually written in C or C++.  It can be distributed either in source 

code form, or in object code form if its algorithms must be kept private. The 

available exploration modules are listed in Section 4. 

Figure 1 illustrates the compiling and linking steps needed to merge the differ- 

ent code fragments (user-written code, library code, and automatically generated 

code) into a single executable program. Of course, some programming conven- 

tions have to be enforced in order to avoid identifier clashes between the different 

modules. Also, shell-scripts are available for chaining all these steps in a simple, 

user-friendly way and avoiding unnecessary recompilations. 

2 T h e  g r a p h  m o d u l e  

As said above, the graph module encapsulates all language-dependent aspects 

and gives access to them through a language-independent interface. Therefore, 

the design of such an interface is subject to antagonistic constraints: 

- It should be general and abstract enough to accommodate a variety of source 

languages. This implies not to retain all the particular features of a given 

language, but to select characteristics shared by several languages. Therefore, 

the design of the interface relies on the existence of a common semantic model 

into which different source programs, written in different source languages, 

can be translated. 

- The interface should keep track of the relationship between the semantic 

model and the corresponding source program, so as to provide enough infor- 

mation for diagnosis: when an error is detected using simulation or verifica- 

tion, the user should be able to understand the reason of the error in terms 



73 

of the source program. This is not always easy to implement, especially if 

the compiler uses sophisticated translation algorithms, involving intermedi- 

ate forms and optimization techniques. 

- As verification algorithms have strong efficiency requirements, the interface 

should be close enough to existing compilers in order not to introduce unac- 

ceptable run-time overhead. 

Since 1992, the OPEN/C2ESAR graph module interface has undergone succes- 

sive revisions to match these constraints. The latest version (September 1996) 

can be seen as a good compromise between conflicting requirements. We briefly 

present the main design choices: 

- The interface is based upon interleaving semantics (which reduces concur- 

rency to sequential composition and non-deterministic choice). Its underlying 

semantic model is a combination of Labelled Transition Systems and Kripke 

structures, which was found to be appropriate for various languages and for- 

malisms. This model consists in a set of states (with an initial state) and a set 

of transitions between states. Depending on the source language considered, 

there can be additional information attached to each state (these attributes 

are called state vectors) and/or  to each transition (these attributes are called 

labels). 
- The interface follows the principles of abstract data  type specification. It 

exports two "opaque" types, the state type and the label type, whose internal 

representations are left undefined (i.e., up to the compiler) and which can be 

handled using a set of primitives. There are 13 functions dealing with states 

and 18 functions dealing with labels. 

- As regards states, OPEN/C/ESAR makes the assumption that,  for a given sys- 

tem, state vectors can be stored in a fixed-length byte string. This restriction 

is meant for handling states efficiently [12], for instance when storing them 

in tables. However, it can be relaxed as the state vector can contain pointers 

to dynamic data  structures (lists, FIFO queues, etc.) allocated in the heap. 

The functions exported by the interface allow to obtain the size and the 

alignment (in bytes) of a state, to create and delete a memory cell to store 

a state, to copy a state to another one, to compare two states, to compute a 

hash-value on a state, to print a state to a text file, to print the "differences" 

between two states, etc. 

By doing so, the interface provides a somehow "restricted" access to state 

vectors by converting them to character strings, which can be obtained when 

printing a state to a file or printing the differences between two states. This 

approach is justified by the fact that state vectors are highly language- and 

compiler-dependent (in particular, they often rely upon user-defined types in 

the source program, for which character strings provide the simplest portable 

interface). 

Notice that,  in the case where state vectors contain pointers or, more gen- 

erally, if their binary representation is not a normal form, some primitives 

(e.g., comparison and hashing) cannot be simply implemented as bitwise op- 



74 

erations between two memory cells. These problems are addressed in the 

OPEN/C/ESAR architecture. 

- Similarly, labels are assumed to be fixed-length byte strings (possibly con- 

taining pointers to the heap) and functions are available for obtaining the size 

and the alignment (in bytes) of a label, for creating and deleting a memory 

cell to store a label, for copying a label to another one, for comparing two 

labels, for computing a hash-value on a label, etc. 

State vector restrictions also apply to labels: although label contents depend 

on the source language, the source program and the compiler, they can be 

accessed using conversion to character strings. Additional functions are avail- 

able to decide whether a label is visible or not 1, in how many fields a label 

is subdivided, from which line of source program a label comes from, etc. 

- As regards the transition relation, which is the crucial point of the graph 

module, OPEN/C/ESAR makes minimal requirements intentionally, in order 

to give maximal freedom to compiler implementors. Compilers are only re- 

quired to generate C code for computing the initial state and for enumerating 

the successors of a given state. For the latter purpose, there are many possible 

approaches, many of which do not match efficiency or language-independence 

criteria. The OPEN/C/ESAR interface solves this problem elegantly, by intro- 

ducing the concept of callback mechanism. 
When generating the graph module, an OPEN/C~ShR-compliant compiler 

has to produce a successor enumeration ]unction ~,  which iterates over all 

the successors of a given state $1. For each transition S1 L, $2, where L is 

a label and $2 a successor state, the successor enumeration function ~" will 

make a function call of the form F(S1, L, $2), where function F is passed 
as a parameter to ~r and is referred to as the callback ]unction. Function 

F can perform any action, e.g., printing the transition $1 ~ $2 to a file, 

storing $2 in a state table, etc. It can be either defined by the user in the 

exploration module, or imported from the library module, which provides 

several predefined callback functions of general interest. The enumeration 

of transitions going out of state Sl is sequential: no direct access to the 

ith successor is required. The order in which function 5 r enumerates the 

successors is left to the compiler. Function F can do side-effects, but it should 

not invoke function ~" recursively (therefore, the iteration mechanism needs 

not be reentrant). On top of this primitive (but general and efficient) callback 

mechanism, more elaborated facilities can be developed (see the EDGE library 

in Section 3). 

At the time being, there exist 5 different implementations of OPEN/C/~SAR- 
compliant compilers, which we briefly review: 

1. After designing the OPEN/C~SAR architecture, the author adapted the 

C,~SAR compiler [12] accordingly. The core of C~SAR's compiling algorithms 

(based upon the translation of LOTOS to an intermediate extended Petri net 

1 i.e., the concept of r-transitions in process algebras 



75 

model) was kept unchanged; only the back-end of CSSAR was modified for 

compliance with the "caesar.graph.h" interface. In this implementation, 

each state is a pair (M, C) where M is a marking of the Petri net, and C is a 
context mapping state variables to their values; each transition is generated 

by the firing of a corresponding transition in the Petri net; each label con- 
sists of a gate name followed by a list of exchanged values. The algebraic data 

types contained in the source LOTOS program can be either translated in C 

code by the C/ESAR.ADT compiler or implemented manually by the user; in 

both cases, data structures dynamically allocated in the heap are supported. 
2. In 1994, Renaud Rulliot and the author connected the BCG format for the 

representation of Labelled Transition Systems [10] to the OPEN/CSSAR 

environment. The resulting BCG_OPEN tool enabled the application of all 

OPEN/C~SAR tools (see Section 4) to graphs entirely generated and repre- 

sented in the BcG format. In this implementation (700 lines of C code), each 

OPEN/CSSAR state (resp. label, transition) is directly mapped to the corre- 

sponding BCG state (resp. label, transition). The development of BeG_OPEN 

led to a modification of the "caesar_graph.h" in order to remove some 

LoTOS-specific aspects. 
3. In 1995, Marius Bozga, Jean-Claude Fernandez and Laurent Mounier (VER- 

IMAG, France) developed the ExP.OPEN compiler, which allows to use 
OPEN/CIESAR for the compositional verification of networks of communicat- 

ing automata. The input language accepted by ExP.OPEN consists in a set 
of automata (entirely generated) connected together using the parallel com- 
position and hiding operators of LOTOS. In their implementation (3,000 lines 

of C code, including a LEX scanner and a YACC parser), each OPEN/C$SAR 

state is a tuple of the individual states of the automata, and transitions are 
obtained by applying the LOTOS semantics rules for parallel composition and 

hiding. 
4. In 1997, Khalid Laksiouax and Amax Bouali (INRIA Sophia-Antipolis, 

France) developed the Fc2OPEN compiler to connect the FC2 toolset [3] 

to OPEN/CSSAR. Fc2OPEN takes as input Fc2 models, which axe either 

automata or networks of communicating automata connected together by 

means of so-called synchronization vectors. In their implementation (3,000 

lines of C++  code), each OPEN/CSSAR state is either an automaton state 
or a tuple of local states, and transitions are determined according to the 

semantics of synchronization vectors. 
5. In 1997, Alain Kerbrat, Carlos Rodriguez, and Yves Lejeune (VER- 

IMAG/VERILOG, France) connected VERILOG'S OBJECTGEODE tool [2] for 

SDL to the C,~SAR/ALDEBARAN toolbox. One aspect of this connection was 

the developement of a gateway between OBJECTGEODE and OPEN/C/ESAR 
[17]. 

3 T h e  l i b r a r y  m o d u l e  

OPEN/C/ESAR provides a library of useful, generic facilities. We give an overview 

of them: 



76 

- The EDGE library is built on top of the graph module. It extends the callback 

mechanism described in Section 2 with higher-level functionalities: 

�9 The callback mechanism enumerates sequentially the successors of a given 

state $1, but does not store them in memory. Moreover, as the callback 

mechanism is not supposed to be reentrant,  it does not allow depth-first 

traversals algorithms to be programmed recursively. The EDGE library 

solves this problem by building transition lists, which can be used for 

programming depth-first traversals. Transition lists are linked lists of tu- 

ples (S1,L, S2,MI, where L is a label, $2 a successor state and M a 

byte-string in which users can put any information they want. All fields 

$1, L, $2, and M are optional and can be omitted if not relevant to the 

exploration algorithm under consideration. 

�9 The order in which the callback mechanism enumerates the successors is 

left unspecified, but the EDGE library can sort transition lists according 

to various criteria (e.g., lexicographic order over the L fields). This can 

be useful, for instance, in an interactive simulator, for displaying to the 

user an aiphabetically-sorted list of transitions. 

�9 The EDGE library also exports many primitives to create, delete, copy, 

print, and reverse transition lists; to compute the length and access di- 

rectly the ith element of transition lists; to access the different tuple fields 

$1, L, $2, and M of a given element. It also provides iterators over transi- 

tion lists and automatically truncates the transition lists if the available 

memory is unsufficient to store all successors of a given state. 

- The HASH library provides various predefined hash-functions which can be 

applied to states and labels considered as byte strings. These functions 

are needed for accessing hash-tables and for Holzmann's algorithm [14]. 

OPEN/CAeSAR users can add their own hash-functions: see for instance [6], 

where OPEN/C~ESAR is used for a comparative analysis of various hashing 

techniques. 

- The STACK_I library is built on top of the EDGE library and provides prim- 

itives for managing one or several stacks 2. Depth-first search algorithms rely 

on stacks to store the execution path taken from the initial state. These stacks 

are not merely stacks of states: it is also necessary to store the transitions 

between states for characterizing an execution path entirely. Also, depth-first 

search algorithms require to store the list of states remaining to be explored 

at each stack depth. Therefore, each element in a stack consists of three 

fields: a state field S, a label field containing the label of the last transition 

performed before reaching state S (or a null pointer if S is the initial state), 

and an edge field containing the list of transitions going out of state S that  

have not been explored yet. For a given stack, the label and edge fields are 

2 The number 'T '  occurring at the end of the name STACK_I denotes the fact that this 
library is a particular implementation of the stack, and that alternative implementa- 
tion could be offered in future versions of OPEN/C~SAR; this is also the case for the 

other data structures presented below. 



77 

optional: if none of them are present, the stack behaves as a simple stack of 

states. 

The STACK_I library provides a set of classical primitives for dealing with 

stacks. These primitives allow to create, delete, copy, and print stacks; to 

erase the contents of a stack; to check whether a stack is empty; to compute 

the depth of a stack; to access the fields of the element on top of a stack; to 

push or pop an element on top of a stack; etc. 

There are also specific primitives for depth-first search. They allow to deal 

with the list of successors of the state on top of the stack and, more specifically 

to create or delete this list; to check whether it is empty; to compute its length; 

to remove its first element; to extract  its first element and to push it on top 

of the stack; etc. 

The STACK_I library provides additional features suitable for on-the-fly veri- 

fication. For instance, when creating a stack, one can specify a maximal depth 

not to be exceeded, as well as the action to be taken if this maximal depth 

is reached or when the stack overflows because of a memory shortage (e.g., 

stopping the exploration, backtracking to the previous state, etc.). 

- The TABLEd library for managing one or several state tables, i.e., tables for 

storing the states of a program which are visited during a graph traversal. 

Each element in a given table is a byte string, subdivided into two fields, the 

"base" field and the "mark" field. The sizes of these fields is specified when 

the table is created and it is the same for all the elements in the table. More 

often than not, base fields contain states of the graph being explored (these 

states are those produced by the graph module). However, the base fields can 

be used to store other data. The contents of mark fields (possibly empty) are 

determined by the user. During graph traversals, mark fields are generally 

used to store additional attributes attached to states (i.e., base fields). To 

allow fast access, each table is equipped with an auxiliary hash table that  

allows to retrieve an element having a given base field. 

The primitives offered by the TABLE_I library allow to create and delete 

tables; to erase their contents and to print it under various formats; to access 

the base and mark fields of an element given its index; to put or get an 

element; to search an element given its base field, optionally inserting it in 

the table if not already present; to determine if a table is empty or full; etc. 

- The BITMAP library provides primitives for managing one or several bitmap 

tables (i.e., large bit arrays) such as those used in Holzmann's bit-space al- 

gorithm [14]. In addition to the basic test-and-set primitives, it provides con- 

venient features, such as automatical dimensioning of the table size to the 

greatest prime number less than the requested size, dump of the bitmap table 

to a text file under various formats, usage statistics recording and display, 

etc. 

- The DIAGNOSTIC_I is built on top of the STACK_I library and provides prim- 

itives for dealing with diagnostic sequences (e.g., execution sequences leading 

to deadlock states). It allows to specify which diagnostic sequences will be 

displayed to the user and to control the exploration algorithm according to 



78 

various strategies (for instance, to find the shortest possible diagnostic se- 

quence). 

4 T h e  e x p l o r a t i o n  m o d u l e  

On top of the graph and library modules, the exploration module plays the role of 

the main program: it determines how and why the graph will be explored. There 

are many different possibilities for exploring a graph G. In an attempt to establish 

a taxonomy, we list below the essential parameters ("degrees of freedom") that 

can be tuned by the exploration module: 

Defini t ion of  s ta tes  and  t ransi t ions:  it is often the definition exported 

by the graph module; however, in some cases, this definition has to be modi- 

fied. For instance, when evaluating temporal logic or #-calculus formulas on G, 

or when checking behavioural equivalences (e.g., bisimulation equivalences, pre- 

orders, trace inclusion, etc.) between G and some other graph, one often uses 

"product states" of the form (S, S~), where S is a state of G and S ~ a state of 

another graph (or observer, or Biichi automaton, or linear trace, etc.) noted G~; 

the transition relation must also be extended to reflect concurrency and synchro- 

nization constraints between G and G ~. 
Selection of  successor states:  when at a given state S of G, the exploration 

program must decide how many successors of S (if any), and which, should be 

visited. There are several possible answers: none of them (i.e., backtracking if 

some boolean condition is false or if the available memory is exhausted); one of 

them (e.g., chosen randomly in the case of random execution, or by prompting the 

user in the case of interactive simulation); all of them (in the case of reachability 
analysis); some of them, according to various heuristics related to the level of 

coverage expected. If several successors of S are selected, the order in which they 

should be enumerated must also be specified. 

Storage policy: the exploration program must also decide how many states, 

and which, should be stored in memory. There are many choices: only the current 

state (e.g., in random execution), only the states on the path leading from the ini- 

tial state to the current state (e.g., in interactive simulation allowing unbounded 

backtracking facilities), all the states (e.g., when constructing the entire graph to 

perform model-checking at a later stage), all the states up to a maximal number, 

etc. 
There are even more sophisticated strategies [16] allowing to discard states 

stored in memory when some upper limit on the number of states is reached, 

or when no more memory is available, with again a choice between various re- 

placement policies inspired from garbage collecting (e.g., discarding first the most 

recent states, the oldest ones, etc.). 

Instead of storing states under the exact representation exported by the graph 

module, it is also possible to store only a "condensed" form of them by using some 

compression function mapping states to a smaller bit string (typical examples of 

such functions are hash-functions and cryptographic message digest functions). 

The classical approach is known as "bitstate hashing" [14], but more elaborate 



79 

variants exist [15]. Of 'Course, as the compression function is not injective, the 

exploration algorithm must take into account the fact that two different states 

may have the same condensed form. Again, the choice of the compression function 

is left open. 
Traversal  a lgor i thm:  the exploration module has also to decide which type 

of algorithm should be used (depth-first search, breadth-first search, etc.), as well 

as many other parameters (for instance, having a maximal exploration depth). 

Many exploration modules have been developed within the OPEN/C/ESAR 

framework3; most of them are distributed within the CADP toolbox. We review 

them briefly: 

- DECLARATOR is a debugging tool that exercises all the primitives exported 

by the "caesar_graph. h" interface. This tool is used to check and validate 

OPEN/C~SAR-compliant compilers. 

-- EXECUTOR is a random execution tool, which produces a random trace start- 

ing from the initial state. Various options are available, e.g., to control the 

seed of the random number generator, to report non.deterministic choices, to 

display or not invisible transitions, to have an upper limit on the number of 

transitions fired, etc. 
- -  S I M U L A T O R  is an interactive simulator allowing step-by-step execution (with 

backtracking) controlled from a command-line interface. XSIMULATOR is a 

graphical, Tci/TK-based extension of SIMULATOR developed by Mark Jor- 

gensen, Jean-Michel Frume and the author. 
- -  G E N E R A T O R  performs reachability analysis to generate exhaustively the 

LTS (represented in the BCG format) corresponding to a source program. 

REDUCTOR is similar to GENERATOR, but performs on-the-fly reduction mod- 

ulo the T*a equivalence (which preserves all safety properties). 

- -  TERMINATOR is a deadlock detection tool implementing Holzmann's "bit- 

state" (or "supertreme") algorithm [14], with various improvements regarding 

the generation of diagnostic sequences. 
- EXHIBITOR searches on-the-fly for execution sequences starting from the ini- 

tial state and whose labels match a given "pattern". The language used to 

describe patterns combines boolean operators and (a subset of)"regular ex- 

pressions with an extension to characterize deadlock states. EXHIBITOR im- 

plements a depth-first search algorithm and a breadth-first search algorithm, 

the latter being able to find the shortest sequence(s) matching a given pat- 

tern. 
- EVALUATOR [9] is an on-the-fly model-checking tool for branching-time #- 

calculus developed by Marius Bozga, Jean-Claude Fernandez and Laurent 

Mounier. It implements two different model-checking algorithms: a global 

one and a local one. 
- ALBATOR is a tool developed by Laurent Mounier and Laurent Aublet- 

Cuvelier to check on-the-fly whether two LTSS are equivalent modulo strong 

bisimulation. 

a All these tools have been developed by the author, unless specified otherwise by 
bibliographic reference or explicit mention of the author(s) 



80 

- PROJECTOR [18] is a too1 for compositional verification. For each process of 

the source program, PROJECTOR allows to generate the corresponding LTS 

in a constrained manner, by taking into account an interface, i.e., an LTS 
expressing (a superset of) the set of execution sequences permitted for this 

process by its environment. 

- TGV [7] is a test generation tool based on verification technology. Given a 

source program and an automaton formalizing the behavioural part of a test 

purpose, TGV produces the behaviour description and constraints definitions 

of a test case in the standard TTCN format. 

C o n c l u d i n g  r e m a r k s  a n d  f u t u r e  w o r k  

In this paper, we have presented the motivations and achievements of a long-term 

project, which spanned over the last five years. 

We have defined the principles of the OPEN/C.~SAR architecture, a software 

framework for developing tools that integrate simulation, verification and test 

generation functionalities in an coherent way. The main principles underlying 

this architecture are: 
Modula r i ty :  a clear separation is established between the language- 

dependent part (definition of states and labels, and computation of the tran- 

sition relation) and language-independent parts (exploration algorithms them- 

selves). This separation is achieved using the OPEN/C/t~SAR API, whose design 

has been continuously reviewed and improved during the past years. Technically, 

this interface realizes a good tradeoff between various (conflicting) requirements: 

expressiveness, language independence, efficiency, portability, genericity, etc. 

Reusabi l i ty :  in addition to the modularity principle, the OPEN/C~SAR also 

promotes reusability, by providing a library of predefined utilities (thus avoiding 

to users the tedious process of implementing and debugging data structures such 

as stacks, state tables, etc.). These libraries are accessible using well-defined inter- 

faces and follow established software engineering methodologies (namely abstract 

data types and object-orientation). 
Or thogonal i ty :  within the OPEN/C/ESAR framework, any verification or 

testing algorithm can be applied to any source language. Thus, in the special- 

ized area of protocol engineering, OPEN/C~SAR achieves goals similar to those 

of UNCOL [23], the universal intermediate language, a most inspiring paradigm, 

discussed but never implemented. This orthogonality property is especially of 

interest when designing user interfaces: in particular, the EUCALYPTUS graphical 

user-interface [10] takes advantage of it to present the available operation for 

each type of source program in a uniform, regular manner. 

Openness:  as the exploration module can be written in a general-purpose 

programming language (e.g., C or C++) and relies upon the link edition mech- 

anism offered by the operating system, the user is free to write any possible al- 

gorithm. This approach strongly contrasts with more limited solutions in which 

the user is only given access to a few parameters for controlling the simulation 

and teachability analysis, but not to a full-fledged programming interface [1, 2]. 



81 

As time passed, the OPEN/C~SAR approach proved to be superior, so that in- 

dustrial tools recently switched to the OPEN/C/ESAR principles by developing a 
similar API, including a direct connection to OPEN/C/ESAR [17]. 

Extens ibi l l ty :  the OPEN/CSSAR environment can be extended in three 
ways: by adding new connections to source languages, by adding new exploration 
algorithms, and by adding new libraries to fit specific needs. 

The idea of integrating various techniques within a single tool is becoming 

increasingly popular. Prior to OPEN/CJESAR, there have been many attempts at 

turning a simulation tool into a verification or test generation tool. In particular, 

the SPIN tool [14] allowed to combine simulation and model-checking several 
years before the first version of OPEN/C/ESAR; however, as SPIN is designed for 
a single language, PROMELA, its internal architecture remains rather monolithic. 

Also, some of the OPEN/CSSAR principles were already present when the author 

designed the internal architecture of VESAR [1], but not in such a systematic way. 

It was the intrinsic merits of OPEN/CSSAR to formulate the principle of 
a radical separation between three modules (graph, exploration and libraries), 

to design and specify the corresponding APIs, and to prove the feasibility of 

these ideas by providing a complete implementation (the first version of the 

OPEN/C/ESAR environment was distributed in April 1992 as a part of version R 

of CADP). 

As regards the development of verification tools applicable to different source 

languages, we can also mention the Process Algebra Compiler (PAc) [5], a com- 
piler generation tool for process algebras specified by their BNF syntax and their 

Sos semantics. The main difference between PAC and OPEN/C~SAR relies in the 

fact that PAC provides an implementation for a well-defined class of languages, 
whereas OPEN/C~ESAR leaves implementation matters to OPEN/C2ESAR compli- 

ant compilers. As OPEN/CtESAR only assumes the existence of states, labels, and 

transitions, it raises less constraints on the source language, the way it is defined, 

and the way it is executed: thus, OPEN/C/ESAR can accomodate a wider class of 
languages (i.e., value-passing process algebras, imperative languages, etc.). Nev- 

ertheless, both approaches are not mutually exclusive and could interoperate, as 
the PAC approach could be used to generate OPEN/C.~t~SAR compliant compilers 

automatically. 

We believe that the OPEN/C/ESAR environment should be of interest to sev- 

eral categories of people: 

L a n g u a g e / c o m p i l e r  designers ,  who connect their compilers to the 

OPEN/C/ESAR API can immediately reuse for their language all the existing 

OPEN/C~ESAR tools available for simulation, verification, and testing. The con- 

nection task consists in providing an implementation for the primitives defined 

in the graph module, which should be straightforward, as all language-dependent 

features have been gradually lifted out from OPEN/C/ESAR'S API. At the time 

being~ five different formalisms are already connected to OPEN/C/ESAI:t: two stan- 

dardized high-level languages (LOTOS and SDL), two formalisms for describing 

networks of communicating finite-state machines (ExP and Fc2),  and a formal- 
ism for representing LTSs (BCG). Our experience indicates that such a connec- 



82 

tion can be established in 4-6 weeks by a computer-science student without prior 
knowledge in verification theory. 

A lgo r i t hm designers~ who propose new algorithms for verification and test- 

ing will find in OPEN/CIESAR a rapid prototyping platform for experiment- 

ing their ideas. At present, many tools have already been developed within 

OPEN/CIESAR, which cover many aspects of protocol engineering (random ex- 

ecution, interactive simulation, reachability analysis, on-the-fly verification of 

bisimulation and #-calculus, test generation, etc.) and demonstrate the appli- 

cability of OPEN/C/ESAR for a wide spectrum of problems. OPEN/C/ESAR allows 

to bridge the gap between theoretical research and practical applications by pro- 

viding a "programming kit" to implement concisely, quickly, and efficiently new 

algorithms, under a form close to the way these algorithms are specified on pa- 

per. It is worth noticing that these algorithms can be written in a fully language- 

independent way, without the need to develop a compiler from scratch (nor to 

adapt the code of an existing compiler, if available); yet, they can still be applied 

to real-life examples, by simply using one of the existing OPEN/CSSAa-compliant 

compilers. In this respect, OPEN/C/ESAR could play the role of a common frame- 

work for comparing and assessing the performances of different algorithms. 

P ro toco l  designers~ who are concerned by applicative aspects (but are not 

interested in developing new languages, compilers, or algorithms) can benefit from 

a complete set of robust tools, covering almost all aspects of protocol engineering. 

These tools can easily be accessed from a graphical-user interface [10] and have 
been field-tested on several real-life applications [4, 11, 19, 21, 22]. 

Naturally, the design choices of OPEN/C/ESAR induce several limitations and 

drawbacks. Although these limitations are not considered to be crippling by 

OPEN/C/ESAR users (especially, industrial users), they leave room for further 

research and improvements. We briefly discuss the main ones: 

- As a counterpart for modularity and reusability, there is a price to pay in 

terms of performance. For instance, when constructing the state graph of 

a LOTOS description, the OPEN/C~ESAR GENERATOR too1 is slightly less 

efficient than the dedicated C~SAa tool. However, this overhead is felt ac- 

ceptable. 

- To achieve language independence, OPEN/CIESAR operates at the level of a 

Labelled Transition System model. This creates a gap between the source 

level program (usually written in a language involving some form of concur- 

rency) and the model of this program, as it is made available by the graph 

module. There are already some "hook" primitives to keep track of the cor- 

respondence between the model and the source program, but they could be 

enhanced in several ways. For instance, the interface could give more in- 

formation about the concurrent processes that exist at the source program 

level, e.g., by indicating in which state a given process is, which processes 

participate in a given transition, etc. This kind of information is needed by 

verification algorithms using partial orders and symmetries. Also, it would 

be desirable to have a more accurate access to the values contained in states 

and labels (at present, state contents and label contents are represented as 



83 

character strings). This would be useful for debugging purpose (for instance, 

to inspect the value of a variable). However, such facilities are often language- 

dependant,  and require to keep track of the types and functions defined in 

the source program. A proper treatment of user-defined types and functions a 

would definitely make OPEN/C/ESAR a much more complex system. 

- At present, the interface of the graph module allows on-the-fly exploration 

for a single source program only. This interface could be extended to handle 

several graphs simultaneously. However, we have not found yet a practical 

situation where such an enhancement would be needed. Even algorithms for 

computing bisimulations on-the-fly between two graphs [8] assume that  one 

graph is small enough for being generated exhaustively, so that  only one 

graph remains to be explored on-the-fly. 

- When computing the transition relation, OPEN/C/ESAR only gives access to 

the successors of a given state, but not to the predecessors. Although this is 

a limitation for some verification algorithms (e.g., [20]), it is justified, as the 

computation of state predecessors for high-level languages is undecidable in 

the general case (because of user-defined data  types, user-defined functions 

over these data  types, assignment to variables and boolean conditions). 

-- OPEN/C/ESAR'S graph module interface deals with states one by one. This 

interface remains to be extended in order to deal with symbolic methods (e.g., 

methods based upon binary decision diagrams or polyhedra) that  deal with 

sets of states, for which they often provide a more efficient representation 

than lists of isolated states. 

- Finally, it is planned to extend the graph module interface with a notion 

of quantitative time. This is needed for applying OPEN/CIESAR to timed 

languages (e.g., the forthcoming Iso standard Extended-LoTOS) that  rely 

upon timed Labelled Transition Systems. 

OPEN/C~ESAR can be obtained free of charge as a component of the CADP 

toolset. See the CADP Web page (h t t p : / /mew.  i n r i a l p e s ,  f r / v a s y / c a d p ,  html) 

for further information. 

R e f e r e n c e s  

1. B. Algayres, V. Coelho, L. Doldi, H. Garavel, Y. Lejeune, and C. Rodriguez. 
VESAR: A Pragmatic Approach to Formal Specification and Verification. Com- 

puter Networks and ISDN Systems, 25(7):779-790, February 1993. 
2. B. Algayres, Y. Lejeune, and F. Hugonnet. GOAL: Observing SDL behaviors with 

GEODE. In Proc. 7th SDL Forum (Oslo, Norway), September 1995. 
3. A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The Fc2Tools set: a Toolset 

for the Verification of Concurrent Systems. In Proc. CAV '96, LNCS 1102, 1996. 
4. G. Chehaibar, H. Garavel, L. Mounier, N. Tawbi, and F. Zulian. Specification and 

Verification of the PowerScale Bus Arbitration Protocol: An Industrial Experiment 
with LOTOS. In Proc. FORTE/PSTV'Y6. Chapman & Hall, 1996. Full version 
available as INRIA Research Report RR-2958. 

4 Such an approach has already been investigated in the context of the BCG format. 



84 

5. R. Cleaveland, E. Madelaine, and S. Sims. A Front-End Generator for Verification 

Tools. In Proc. TACAS'95 Tools and Algorithms for the Construction and Analy- 
sis of Systems (Aarhus, Denmark), May 1995. Also available as INRIA Research 
Report RR-2612. 

6. B. Cousin and J. Helary. Performance Improvement of State Space Exploration by 

Regular and Differential Hashing Functions. In Proe. CAV'94, LNCS 818, 1994. 

7. J-C1. Fernandez, C1. Jard, Th. J~ron, L. Nedelka, and C. Viho. An Experiment 

in Automatic Generation of Test Suites for Protocols with Verification Technology. 

Science of Computer Programming, 29(1-2):123-146, July 1997. 

8. J-C1. Fernandez and L. Mounier. "On the Fly" Verification of Behavioural Equiv- 

alences and Preorders. In Proe. CAV'91, July 1991. 

9. J-C1. Fernandez and L. Mounier. A Local Checking Algorithm for Boolean Equation 

Systems. Rapport SPECTRE 95-07, VERIMAG, Grenoble, March 1995. 

10. H. Garavel. An Overview of the Eucalyptus Toolbox. In Proe. COST 247 Int. 

Workshop on Applied Formal Methods in System Design (Maribor, Slovenia), 1996. 

11. H. Garavel and L. Mounier. Specification and Verification of various Distributed 

Leader Election Algorithms for Unidirectional Ring Networks. Science of Computer 
Programming, 29(1-2):171-197, July 1997. 

12. H. Garavel and J. Sifakis. Compilation and Verification of LOTOS Specifications. 

In Proc. PSTV '90 (Ottawa, Canada). North-Holland, 1990. 

13. S. Graf, J-L. Richier, C. Rodrlguez, and J. Voiron. What are the Limits of Model 

Checking Methods for the Verification of Real Life Protocols? In Proe. 1st Workshop 
on Automatic Verification Methods for Finite State Systems, LNCS 407, 1989. 

14. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, 1991. 

15. G. J. Holzmann. State Compression in SPIN: Recursive Indexing and Compression 

Training Runs. In Proe. 3rd SPIN Workshop (Twente Univ., The Netherlands), 

1997. 

16. C1. Jard and Th. J&on. Bounded-Memory Algorithms for Verification On-the-Fly. 

In Proc. CAV '91, LNCS 575, July 1991. 

17. A. Kerbrat, C. Rodriguez, and Y. Lejeune. Interconnecting the ObjectGEODE and 

C/ESAR/ALDEBARAN Toolsets. In Proc. 8th SDL Forum, 1997. 

18. J-P. Krimm and L. Mounier. Compositional State Space Generation from Lotos 

Programs. In Proc. TACAS'97, LNCS 1217, 1997. 

19. R. Mateescu. Formal Description and Analysis of a Bounded Retransmission Pro- 

tocol. In Proe. COST 247 Int. Workshop on Applied Formal Methods in System 
Design (Maribor, Slovenia), 1996. Also available as INRIA Research Report RR- 

2965. 
20. R. Paige and R. E. Tarjan. Three Partition Refinement Algorithms. SIAM Journal 

of Computing, 16(6):973-989, December 1987. 

21. Ch. Pecheur. Specification and Verification of the CO4 Distributed Knowledge 

System Using LOTOS. In Proc. 12th IEEE Int. Conf. on Automated Software 
Engineering ASE-97, 1997. Extended version available as INRIA Research Re- 

port RR-3259. 

22. M. Sighireanu and R. Mateescu. Validation of the Link Layer Protocol of the IEEE- 

1394 Serial Bus ("FireWire"): an Experiment with E-LOTOS. In Proc. 2nd COST 

247 Int. Workshop on Applied Formal Methods in System Design (Zagreb, Croatia), 
1997. Full version available as INRIA Research Report RR-3172. 

23. T. B. Steel. A First Version of UNCOL. In Proe. Western Joint Computer Conf., 

pages 371-378, May 1961. 


