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Summary. Estimation of abundance is important in both open and closed population capture–recapture analysis, but
unmodeled heterogeneity of capture probability leads to negative bias in abundance estimates. This article defines and develops
a suite of open population capture–recapture models using finite mixtures to model heterogeneity of capture and survival
probabilities. Model comparisons and parameter estimation use likelihood-based methods. A real example is analyzed, and
simulations are used to check the main features of the heterogeneous models, especially the quality of estimation of abundance,
survival, recruitment, and turnover. The two major advances in this article are the provision of realistic abundance estimates
that take account of heterogenetiy of capture, and an appraisal of the amount of overestimation of survival arising from
conditioning on the first capture when heterogeneity of survival is present.
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1. Introduction
Open population capture–recapture models are used for pop-
ulations with imperfect detection, to estimate important pa-
rameters such as population size, recruitment, and survival.
These parameters in turn give information on turnover and
population growth, with all parameters essential for under-
standing the dynamics of the population.

The Jolly–Seber (JS) model (Jolly, 1965; Seber 1965) pro-
vides these estimates for the simple sampling scheme, in which
single samples are taken with a large spacing over time.
Schwarz and Arnason (1996) used an entry parameter idea
from Crosbie and Manly (1985) to provide a fully likelihood-
based version of JS; we label this model JSSA.

Model JS assumes homogeneity of capture and survival
probabilities over the whole population. If heterogeneity is
present, this model gives misleadingly precise underestimates
of population size, a problem that is more marked with het-
erogeneity of capture than with heterogeneity of survival
(Carothers, 1973, 1979; Pollock et al., 1990). Earlier methods
of adjusting JS to allow for heterogeneity of capture were not
likelihood-based (see, e.g., Hwang and Chao, 1995; Pledger
and Efford, 1998). This article proposes likelihood-based mod-
els, which provide maximum likelihood estimates of the pa-
rameters, confidence intervals, likelihood ratio tests, Akaike’s
information criterion (AIC; Akaike, 1973) for model compar-
isons, and profile likelihood intervals where asymmetry of the
likelihood surface renders symmetric confidence intervals un-
realistic (Cormack, 1992).

Finite mixtures (nonparametric MLE) have been used to
model heterogeneity in closed populations with some success
at bias correction in population size (Norris and Pollock, 1995,
1996; Pledger, 2000, 2005). They have also been used for open
populations (Pledger, Pollock, and Norris, 2003), extending
the Cormack–Jolly–Seber model (CJS; Cormack, 1964; Jolly,
1965; Seber, 1965; Lebreton et al., 1992). However, abun-
dance is not estimated by CJS and is not discussed in Pledger
et al. (2003). Our new likelihood-based extension to JSSA
uses finite mixtures to (i) reduce bias in abundance estimates
by modeling heterogeneity of capture, and (ii) reduce bias in
survival estimates by modeling the uncaught animals as well
as those caught. These developments are needed for realistic
population modeling, where abundance and survival estimates
are important inputs, and biases in these estimates have sub-
stantial consequences. The models have identifiability within
the class of finite mixture models.

Section 2 gives the background data information and as-
sumptions, Section 3 specifies the models, and Section 4 gives
model comparison and estimation methods. A real example
is shown in Section 5 and appraisals by simulation are in
Section 6. Section 7 has discussion and conclusions.

2. Assumptions and Notation
The assumptions are those of Pledger et al. (2003), augmented
with Schwarz and Arnason’s (1996) superpopulation of N an-
imals, each of which is present and available for capture on
at least one sampling occasion. Proportions β0, β1, . . . βK −1 of

C© 2009, The International Biometric Society 883



884 Biometrics, September 2010

the N animals enter the population and are first available for
capture at times 1, 2, . . . K, respectively (

∑
βj = 1).

There are C animal classes with membership unknown (a
latent effect); each animal comes independently from class
c with probability πc (

∑
πc = 1). An animal from class c, if

present at sample j, has probability pj c of capture in sample j,
and probability φjc of survival to the next sample (with φK c

assumed to be zero). There are D distinct animals seen, with
xij = 1 if animal i is caught in sample j, otherwise xij = 0.
Animal i’s capture history, CHi , is the row vector xi , with first
and last captures at ti , li respectively. The N − D uncaught
animals each have capture history CH0 = 0, a K-vector of
zeros. There are nh animals with capture history h.

3. The Models
Our models extend those of Pledger et al. (2003), using a
multinomial allocation of the N animals to their capture histo-
ries. Writing the parameters N, β, π, p, and φ as a parameter
vector θ, the likelihood for the “full model” is

L(θ | data) =
N !

(N − D)!Πh nh !
×

D∏
i=1

Li × LN −D
0 , (1)

where h indexes the different observed capture histories. The
individual likelihoods are found by summing over the classes
and all feasible birth and death times (b and d, respectively,
samples when first and last available for capture):

Li = P(CHi ) =
fi∑

b=1

K∑
d=�i

C∑
c=1

[
πc βb−1

(
d−1∏
j=b

φj c

)
(1 − φdc )

×

{
d∏

j=b

p
xi j

j c (1 − pj c )1−xi j

}]
,

(2)

(where the empty product
∏d−1

j=b
φj c = 1 if b = d). Similarly

for an uncaught animal,

L0 = P(CH0) =
K∑

b=1

K∑
d=b

C∑
c=1

[
πc βb−1

(
d−1∏
j=b

φj c

)
(1 − φdc )

×

{
d∏

j=b

(1 − pj c )

}]
.

(3)

We label the full model {β(t), φ(t × hC ), p(t × hC )}, to indi-
cate that β depends on time (sample), while φ and p both
allow interactively for time effects and heterogeneity (via a
finite mixture model with C classes).

For computational effectiveness and the provision of
more appropriate confidence intervals, we reparameterize the
model, expressing the parameters φjc and pj c on a logit scale,
and N on a log scale. Using τ for time and η for heterogeneity,

logit(pj c ) = log

(
pj c

1 − pj c

)
= μ + τj + ηc + (τη)j c (4)

with constraints
∑

τj = 0,
∑

ηc = 0, and each row and col-
umn of (τη)j c adding to 0. Similarly logit(φjc ) may be mod-
eled with main effects and interaction.

Models with interactive time or heterogeneity effects may
be more complicated than necessary, and have too many pa-

rameters for successful model fitting. A simpler model for
pj c with additive effects of time and class has logit(pj c ) =
μ + τj + ηc with constraints

∑
τj = 0 and

∑
ηc = 0. Simi-

larly survival could be modeled as additive on the logit scale.
Further simplifications have capture and/or survival probabil-
ities dependent only on time (e.g., logit(pj c ) = μ + τj ), only
on individual heterogeneity (logit(pj c ) = μ + ηc ), or constant
over time and animals (logit(pj c ) = μ), with similar simplified
versions of φjc .

We use the notation φ(t × h), φ(t + h), φ(t), φ(h), and φ(·)
for interactive, additive, time, heterogeneity, and constant ef-
fects, respectively, on survival, and a similar notation for these
effects on capture probability. Hence {β(t), φ(t × hC ), p(t +
hC )} denotes a model with C classes, time effects on the entry
parameters β, interactive effects on survival, and additive ef-
fects on capture probability. With some algebra, the likelihood
of model {β(t), φ(t), p(t)} reduces to that of JSSA (Schwarz
and Arnason, 1996). Any model with φ constant over time
(φ(h) or φ(·)), has φ adjusted to some standard time unit,
e.g., annual φ. If class c has constant annual survival φc and
the interval between samples j and j + 1 is tj years, φjc = φ

tj
c

is used in the likelihood formula.
In many of these models there is some parameter redun-

dancy. Details of numbers of redundant parameters and our
computational solutions are in Web Appendix 1. With enough
data, all models are feasible except the full model.

3.1 Incorporating Extra Information
It is usual to allow for losses on capture (Pradel, 1996; Schwarz
and Arnason, 1996), where some animals are known to die or
are removed at sample j. We see such “deaths” as just one of
four processes that are easily incorporated into our individual-
based models. These are natural or unnatural death (e.g.,
death on capture, or removal), and natural or unnatural ar-
rival (e.g., translocation from another population). No extra
parameters (e.g., probability of loss on capture) are needed,
as we simply modify Li (equation 2) for that animal.

Unnatural death, when a previously seen individual i is cap-
tured at sample �i , but dies due to capture or is removed, has
the term (1 − φdc ) in Li omitted, and d fixed at �i with no
summation over possible death times. In this way, the animal
contributes information to the likelihood up to and including
its final capture, but right-censoring prevents it from con-
tributing to the estimation of φ (which measures only natural
death or emigration).

Natural death, when a previously seen individual i has a
known natural death or emigration between samples j∗ and
j∗ + 1, has d fixed at j∗ (with no sum over possible death
times), but the term (1 − φdc ) is retained as the death or
departure was natural.

Unnatural arrival, with animal i injected into the popula-
tion at sample fi , has b set to fi (with no summation over
possible entry times), but βb−1 and pbc terms are not included
in Li . In this way, the unnatural part of its history does not
contribute to the parameter estimation (left-censoring), but
after its placement in the population it starts contributing
to survival and capture probability estimates. Note that by
excluding βb−1 we are not counting this animal in the super-
population N, which is seen as a “natural” superpopulation
for the study area. These extra animals must be added in to
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the abundance estimates later, especially if population mod-
els with density-dependent parameters are to be fitted subse-
quently, using the capture–recapture estimates.

Natural arrival, with individual i known to have entered the
population naturally between samples j∗ − 1 and j∗, has b set
to j∗, and βj ∗ retained.

3.2 Other Parameters
Some functions of the basic parameters N, βj , πc , and φjc

are of particular biological interest. The following formulae
come from expected values, and the derived parameters may
be estimated by plugging in the basic parameter estimates.

3.2.1 Current population size Nj . In the JS model Nj , the
population size at the time of sample j is a parameter of
major importance for population monitoring and density-
dependence modeling. The number in class c present at sam-
ple j is found from the difference equation

Nj+1,c = Njc φj c + πc N βj with N1,c = πc Nβ0 (5)

assuming class is independent of entry time. Then N̂j =∑C

c=1 N̂j c . The likelihood may be reparameterized with terms
Nj replacing N and βj . This is useful in population moni-
toring if a submodel with constraints on Nj is required, for
example to test if Nj is constant over time, or if it shows
a linear trend over all the samples or over the most re-
cent samples. Equation (5) is used to switch from param-
eters {N, βj , πc , φj c} to {Nj , πc , φj c}, and the reverse oper-
ation given {Nj , πc , φj c} is the recursion: (i) initialize with
B0 = N1 and for each c, N1c = πc N1, (ii) for j = 2, . . . K let
Bj−1 = Nj −

∑
c
Nj−1,c φj−1,c and then for each c let Njc =

Nj−1,c φj−1,c + πc Bj−1, (iii) let N =
∑K −1

j=0 Bj and βj = B j

N
.

3.2.2 Seniority γj c . Extending Pradel’s (1996) definition of
seniority to classes, the probability a class c animal alive at
j + 1 was also alive at j is γj+1,c = N j c φ j c

N j +1, c
, j = 1, . . . K − 1.

3.2.3 Turnover, Tj,j+1. If φ is homogeneous we measure
population turnover between samples j and j + 1 as a
weighted average of the proportion of Nj departing and the
proportion of Nj+1 arriving during the interval. Allowing for
C classes of animal, we define turnover as

Tj,j+1 =

C∑
c=1

Njc (1 − φjc ) +
C∑

c=1

Nj+1,c (1 − γj+1,c )

C∑
c=1

Njc +
C∑

c=1

Nj+1,c

.

Other definitions of turnover are possible (see e.g., Boulinier
et al., 1998). We note that our definition is equivalent to (1 -
Sörensen’s index between samples j and j + 1), with one repre-
senting a complete turnover of individuals and zero indicating
no turnover. (Sörensen’s index of association is used in com-
munity analysis to compare two samples for presence/absence
of species.) Because of insufficient opportunities for earlier or
later captures, the turnover estimates between the first two
samples and between the last two samples have positive bias.

3.2.4 Structure of current population. The current popu-
lation Nj may be partitioned into four types of animal, by
cross-classifying them as seniors (present at the last sample)
or new arrivals, and as stayers (present at the next sam-
ple) or those about to depart. We label senior stayers as

residents, senior nonstayers as retirees, new stayers as set-
tlers, and new nonstayers as transients (a group including
short-lived animals as well as animals on the move). Within
class c, for j = 2, . . . K − 1, the four estimates are given
by: (i) Residents: +N+

j c = γj c Njc φj c , (ii) Settlers: −N+
j c =

(1 − γj c ) Njc φj c , (iii) Retirees: +N−
j c = γj c Njc (1 − φjc ), and

(iv) Transients: −N−
j c = (1 − γj c ) Njc (1 − φjc ). Summation

over the classes gives the overall estimated numbers in the
four groups, +N+

j , −N+
j , +N−

j , and −N−
j . A large proportion

of residents indicates slow turnover in relation to the time
intervals between samples.

3.2.5 Covariates. Covariates in time may be incorporated
into this scheme. For example, a time effect in the probabil-
ity of capture due to weather or varying search effort could
be accounted for by modeling logitpj c = μ + ηc + γxj where
xj is a relevant weather covariate, or represents search ef-
fort, at sample j, and the parameter γ is a logistic regression
coefficient. Similarly survival may be modeled with time- or
sample-dependent covariates.

We cannot model individual covariates, as these are not
available for the uncaught animals.

3.2.6 Multiple Populations. The animals may come from
two or more spatially, taxonomically, or sexually separate pop-
ulations, which are groups with known membership (Lebreton
et al., 1992; Schwarz and Arnason, 1996). Joint likelihoods
over the groups are products of the individual likelihoods for
each population, and groups may be compared, for example
to see if two groups have similar survival patterns or trends
in Nj over time.

4. Statistical Analysis
4.1 Exploratory Analysis
A range of plausible models is fitted, and compared using
AIC (Akaike, 1973; Burnham and Anderson, 2002) or BIC.
Mixture models do not satisfy regularity conditions normally
required for AIC comparisons, but Burnham and Anderson
found that if a mixture model fits with parameter estimates
interior to the parameter space, it may be included in AIC
comparisons.

4.2 Confirmatory Analysis
If a single appropriate model (the “complete model”) has al-
ready been chosen, the likelihood may be used to estimate
parameters and their standard errors, and to test for possible
simplifications by likelihood ratio tests.

For interval estimates, we recommend either profile likeli-
hood intervals (Cormack, 1992) or confidence intervals back-
transformed from symmetric asymptotic intervals for log(N),
logit(β), logit(φ), or logit(p). Where the Hessian of the opti-
mization does not provide reasonable estimates of standard
errors, bootstrap intervals may be used.

Likelihood-ratio tests (LRTs) can test for equality or cer-
tain patterns in the parameters. If the reduced model (as-
suming the null hypothesis) has fewer mixture classes than
the complete model, it is a nonstandard LRT, and a boot-
strap test (Norris and Pollock, 1996) or the methods in Self
and Liang (1987) are used. Examples of LRTs follow. (i) A
closure test, H0: β0 = 1 and all φjc = 1. Acceptance of H0

shows there is no evidence of births and deaths occurring. (ii)
Comparing a complete model with φ(t × h) with a reduced
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Table 1
Possum data, K = 9 samples, D = 270 animals seen. Relative
AIC values for 24 feasible models. Note the dichotomy of AIC

values between models with and without heterogeneity of
capture.

φ model p(·) p(t) p(h2) p(t + h2) p(t × h2)

φ(·) 39.0 34.9 13.1 4.1 8.2
φ(t) 29.4 37.6 0.0 2.6 9.1
φ(h2) 43.0 30.2 15.0 5.7 7.7
φ(t + h2) 33.4 41.6 1.6 4.2 10.5
φ(t × h2) 47.4 55.6 9.0 16.5 NA

model φ(t + h) to decide if the classes have varying or similar
patterns of survival over time. (iii) A test comparing p(t + h)
with p(t) shows if, after allowing for time effects, there is het-
erogeneity of capture. This is a nonstandard LRT.

4.3 Computing
We used full likelihood maximization from the optim com-
mand in R (R Development Core Team, 2007). The evaluation
of the likelihood was speeded up by writing this function in
C++ and calling it from R. We used the default convergence
criteria in optim, and always obtained convergence. Because of
possible multimodalities in mixture model likelihood surfaces,
we tried a range of starting points for each optimization.

5. Real Example
Murray Efford provided data from live trapping of the Aus-
tralian brushtail possum (Trichosurus vulpecula Kerr) on a
study grid in the Orongorongo Valley, near Wellington, New
Zealand. There were 270 animals from K = 9 samples taken
in February 1980–1988, and enough different capture histo-
ries were observed for the models to be identifiable (see Web
Appendix 1).

Viewing the data as an “exploratory study,” 24 feasible
models (using two classes) were fitted. A check of models with
three classes in the finite mixture showed no improvement, so
only two-class models are shown. The relative AIC (AIC −
minimum AIC) results are in Table 1.

Selection of the model {φ(t), p(h2)} accords well with other
knowledge of this population. There is spatially induced het-
erogeneity of capture, as the traps are always set in the same
location on a grid, and possums with a home range includ-
ing a trap are more likely to be captured. Note that two
other models had AIC quite close to the chosen model; model
{φ(t + h2), p(h2)} with relative AIC only 1.6 suggests possible
heterogeneity in φ, while model {φ(t), p(t + h2)} with relative
AIC 2.6 suggests possible time effects in p.

From the p(t) column of Table 1, we note that an artificial
restriction of p to time effects only causes selection of φ(h2).
The φ and p parameter estimates are correlated, so if het-
erogeneity is disallowed in p it appears in φ, which may be
misleading. It is better to see the full picture, using all 24
feasible models.

Table 1 shows a clear dichotomy, with low relative AIC
(< 17) for models with heterogeneity in p, and high rela-
tive AIC (> 29) for homogeneous-p models. The influence of
heterogeneity of p on population size estimates is shown in

Figure 1, where confidence intervals for N are consistently
higher and wider for models involving heterogeneity of p.

Figure 1 shows that for estimating N, the exact choice
of model is not important, provided heterogeneity of p
is included—both point estimates and confidence intervals
match well over the best 14 models. (This feature carries
over to the Nj estimates, not shown here.) If p is assumed
to be homogeneous, there is an apparent 15–20% underesti-
mation of N and Nj , matching results in Pledger and Efford
(1998), where simulation and inverse prediction were used to
correct bias in N using different data from the same possum
population.

Alternatively, we may view the data set as a “confirmatory
study.” Previous knowledge of this population (Efford, 1998;
Pledger and Efford, 1998) suggests that {β(t), φ(t), p(t + h2)}
would be an appropriate model. (This was the third choice
in the exploratory analysis, with AIC only 2.6 above that of
the “best” model.) The chosen model gives N̂ = 365, with a
95% confidence interval (331,419). Three hypothesis tests are
of interest.

(i) Are arrivals constant over time (apart from the initial
β0 which has an accumulation of previous arrivals over
a few years)? H0: β1 = β2 = · · · = βK −1 is rejected at
a 5% significance level (LRT, χ2 = 16.6555 on 6 d.f.,
p = 0.0106).

(ii) Is annual survival constant over time? H0: φ1 = φ2 =
· · · = φK −1 is rejected at a 5% level (LRT, χ2 = 13.5259
on 6 d.f., p = 0.0354).

(iii) Is capture probability constant over time? Comparison
with the model {β(t), φ(t), p(h2)} gives an acceptance
(LRT, χ2 = 9.4469 on 6 d.f., p = 0.1500).

The Nj estimates and their partitions are shown in the bar
plot of Figure 2. The large proportion of residents (dark shad-
ing) is typical of a population with little turnover (high sur-
vival and low recruitment). The percentage turnover is shown
between the bars, including the overestimates at the start and
end.

Arrival βj and survival φj estimates ±1SE. are shown in
Figure 3. The lower survival φ5, which occurred during an un-
usually wet winter, appears to have been followed by increased
recruitment. This is consistent with the known high densities,
with occupancy of a limited number of home ranges, suggest-
ing a population near the carrying capacity of the land.

6. Simulation and Appraisal
Simulation studies provided appraisals of our models and
methods. Full details of these studies are in Web Appendix 2;
a summary of our findings is presented here. Each simulation
run generated capture histories for 100 populations of size
N = 400, usually using parameters near to those estimated for
the possum population. Unseen animals were removed from
the generated capture matrix before analysis. Estimation of
N was appraised using medians rather than means, as occa-
sional unrealistically high N estimates can occur. This phe-
nomenon, which has also been observed in closed population
analyses (Norris and Pollock, 1996; Dorazio and Royle, 2003;
Morgan and Ridout, 2008), occurs due to vagaries of the data
from some generated populations. We used MAD = median
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Figure 1. Possum data: 95% confidence intervals for superpopulation N versus relative AIC for the 24 feasible models. The
intervals are back-transformed from asymptotic intervals for log(N). The 14 models with low AIC and high N̂ are precisely
those with heterogeneity in p. There were 270 animals seen.
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Figure 2. Barplot of N̂j over time for the possum data. The bars are partitioned into estimated numbers of (i) +N+
j =

residents = animals present before and after year j (dark shading), (ii) −N+
j = settlers = new animals who will stay to next

year (medium-dark), (iii) +N−
j = retirees = senior animals about to die or depart (medium-light), and (iv) −N−

j = transients =
newly arrived animals about to die or depart (light shading). The first and last bars are not shaded, as only partial partitioning
is possible. The percent turnover is shown between the bars. The first and last turnovers are overestimated, due to insufficient
opportunities for capture at the beginning and end.

absolute deviation (of the set of 100 estimates from the input
value).

6.1 Simulation Study for Exploratory Analysis
The first study evaluated exploratory analyses, checking the
AIC model selection and point estimates of the superpopu-
lation N from fitting the 24 feasible models (Section 3). Two
types of generating models were tested, a two-group mixture
and a beta (infinite) mixture, each with K = 5 or 10 samples.

Similar results were obtained for both types of generating
model. With only K = 5 samples, there was no single clear
choice of best model, although in 84% of populations a model
with heterogeneous p was selected. All models with hetero-
geneity in p had MAD(N̂ ) between 6 and 17, while all mod-
els with homogeneity of p had MAD(N̂ ) between 47 and 56.
The sharp distinction between the two types of models con-
firms the importance of allowing for heterogeneity of p when
estimating abundance. An excessively high value of N̂ (N̂ >
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Figure 3. Possum data: estimated parameters for between-sample arrival (βj , solid lines) and survival (φj , dashed lines) ±
1 standard error. Arrival before sample 1 is higher, having an accumulation of several years’ animals, and the final survival
estimate between samples 8 and 9 is the usual underestimate. Arrival following sample 8 is omitted due to near nonidentifia-
bility. The heights of the curves are not comparable as the proportions do not have the same denominators, but the patterns
may be compared. Lower survival between samples 5 and 6 appears to be followed by increased recruitment in the next two
time intervals.

3D) occurred only once in 2400 model fits. With K = 10 sam-
ples, models with heterogeneous p were always selected, and
there were no longer any excessively high N estimates (max-
imum N̂ = 502). All heterogeneous p models had MAD(N̂ )
between 14 and 18, while all homogeneous p models had
MAD(N̂ ) between 34 and 45. Over both few and many sam-
pling occasions, we see a clear split of MAD(N̂ ) between ho-
mogeneous and heterogeneous models for p. This is similar
to results from closed population models, which may be seen
as a special case of our models under the restrictions β0 = 1
and all φ = 1. If abundance estimates are of interest, there is
a strong case for checking if models with heterogeneous p are
selected. Several heterogeneous models may provide similarly
good estimates of N, with a flow-on effect to the estimates of
Nj , population size at sample j (studied in more detail in the
next simulations).

6.2 Simulation Studies for Confirmatory Analysis
Several simulation studies explored confirmatory analyses.
Each had 100 populations, with superpopulation N = 400 and
K = 10 samples. Appraisals used MAD, median relative bias
(MRBias, %), and the coverage of nominal 95% confidence
intervals (back-transformed from asymptotic symmetric in-
terval for logN or logitφ).

6.3 Influence of Heterogeneous p or φ on Abundance and
Survival Estimates

Data generation with heterogeneity of capture confirmed un-
derestimation of N with homogeneous models. The JS model
had 64% coverage and MRBias −19.4%, while the heteroge-
neous model had 95% coverage, and MRBias −5.9%. Both
models gave similar point estimates of survival, indicating lit-

tle effect of capture heterogeneity on φ. However, coverage
of 89% from the JS model was improved to 93% with the
heterogeneous model, which had larger standard errors. Data
generated with heterogeneous φ showed little difference in N̂j

when analyzed by JS or the correct model.

6.4 Influence of Assuming Two Classes for p When There Are
Four Classes

Data were generated from four classes with capture proba-
bilities 0.1, 0.2, 0.3, and 0.7, respectively, and analyzed by
a two-class model. Coverages were 0.955 for abundance and
also 0.955 for survival, with MRbias −2.64% and 0.22% re-
spectively. It appears that with this much heterogeneity in p,
two classes can adequately replace the four classes.

6.5 Influence of Assuming a Finite Mixture for p When the
Mixture Is Infinite

The generating model had a beta distribution for capture
probabilities, but data were analyzed using a two-class mix-
ture. Coverages were 0.915 for abundance and 0.935 for sur-
vival, with MRBias −3.84% and 0.25% respectively. In this re-
gion of the parameter space, two classes appear to adequately
model the beta distribution inputs.

6.5 Influence of Unmodeled Uncaught Animals
Populations were simulated with heterogeneity of survival,
with 200 animals on constant φ = 0.9, and 200 on φ = 0.55.
Analysis by the correct model had MAD(ˆ̄φ) = 0.02 and
MRbias(ˆ̄φ) = 0.16%. However, analysis by the correct model,
but conditioning on first capture and excluding uncaught an-
imals (as in Pledger et al., 2003), had MAD(ˆ̄φ) = 0.05 and
MRbias(ˆ̄φ) = 5.73%. This overestimation of φ is a result of
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ignoring the uncaught animals, which are likely to be short-
lived.

7. Discussion
The major innovation in this article is the combination of
modeling the entry parameters (Crosbie and Manly, 1985;
Schwarz and Arnason, 1996) with using finite mixtures for
heterogeneity (Pledger et al., 2003), in order to reduce bias
in abundance estimates. Real data and simulations confirmed
the value of these models. A substantial extra advantage of
this individual-based modeling is the easy incorporation of
any available extra information about births and deaths.

Another major result from the new models is the evaluation
of bias in survival estimates induced (in the presence of het-
erogeneity of survival) by models that condition on the first
capture, and do not model the uncaught animals. Much sin-
gle state and multistate modeling in capture–recapture uses
this conditioning (CJS; Lebreton et al., 1992). Even if het-
erogeneity of survival is included in the model (as in Pledger
et al., 2003), there is still overestimation of survival. If there
is heterogeneity of survival, short-lived animals have lower
probability of at least one capture, and models that ignore
the uncaught animals will still overestimate survival. There
are likely to be flow-on effects for other calculations, e.g., es-
timated lifespan of animals. The implications could be far
reaching, suggesting that some effort should be made to check
the amount of underestimation in the conditional models. (We
note that this problem does not occur with another type of
conditional modeling, found in Sanathanan, 1972; Huggins,
1989; and Fewster and Jupp, 2009. These models do allow for
uncaught animals.)

We need not assume the animal classes actually exist, and
if they do exist our estimates may not accurately reflect the
true proportions and the within-class capture and survival
probabilities (Lindsay, 1995). It has been found with closed
population models that the exact details of the mixtures are
often irrelevant when using mixtures to correct for bias in
N̂ ; only with extreme heterogeneity does the nature of the
mixture become important (Pledger, 2000, 2005). The mix-
tures are merely a device to incorporate heterogeneity into the
model in order to reduce bias in the population abundance es-
timates, and to make profile likelihood interval coverage more
accurate. A measure of heterogeneity is provided by mixture
modeling (Dorazio and Royle, 2003; Pledger, 2005), and an
exploration of its properties (e.g., stability, variability) would
be a useful development.

Unidentifiability is an issue with both closed and open pop-
ulation models (Link, 2003), and a model for the heterogeneity
is needed (Holzmann, Munk, and Zucchini, 2006; Holzmann
and Munk, 2008; Mao, 2008). As detailed in Web Appendix 1,
there is identifiability of the superpopulation N, and hence the
abundance estimates over time, provided (i) a small number
of redundant parameters are allowed for in the model fitting,
and (ii) there is enough information in the data set.

In closed population capture–recapture, finite mixture
models and models based on the beta distribution have
been compared (Dorazio and Royle, 2003; Pledger, 2005) and
combined (Morgan and Ridout, 2008). With moderate het-
erogeneity, finite mixtures and the (infinite) beta mixture
often provide similar abundance estimates, both offering a

considerable improvement over models assuming homogene-
ity. With more extreme heterogeneity there may be discrep-
ancies among heterogeneous models, with each approach hav-
ing some scenarios in which it is better for bias reduction
(Pledger, 2005). The number of parameters is of more im-
portance than whether a finite or infinite mixture is used
(Lindsay, 1995; Pledger, 2005). The beta distribution has two
parameters and can approximate the mean and variance of
the distribution of p, while a two-class mixture, with three pa-
rameters, can reflect skewness as well as mean and variance.
Further simulations (unpublished) showed that the more par-
simonious beta distribution is preferred if the skewness in the
generating distribution happened to match that of the beta
distribution, while an unmatched skewness tends to favor a
two-class finite mixture. Skewness has been found to be im-
portant in heterogeneous extensions to the JS model (Pledger
and Efford, 1998). Our simulations in Section 6 showed that
analysis using finite mixtures still gave substantial reduction
of bias in abundance estimates, even when the generating
model used a beta distribution. We recognize that in some
regions of the parameter space nonidentifiability can occur,
and suggest the practical approach of simulating using pa-
rameters estimated from the real data set of interest (as we
did), and trying a range of models to check if the results are
comparable.

A Bayesian approach is possible for the problem of
heterogeneity-induced bias in abundance estimation for open
populations. Another approach could use random effects for
the time variation; this would reduce the number of pa-
rameters, although likelihood evaluation would become more
difficult.

8. Supplementary Materials
Web Appendices referenced in Sections 3, 5, 6, and 7 are avail-
able under the Paper Information link at the Biometrics web-
site http://www.biometrics.tibs.org.
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