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Metallic foams are highly porous materials which present complex structure of three-dimensional open cells. The effective transport
properties determination is essential for these widely used new materials. The aim of this work is to develop morphology analysis tools to study
the impact of foams structure on physical transport properties. The reconstruction of the solid-pore interface allows the visualization of the 3D
data and determination of specific surface and porosity. We present an original method to measure the geometrical tortuosity of a porous media
for the two phases. A centerline extraction method allows us to model the solid matrix as a network of linear connected segments. The thermal
conductivity of metallic foams is determined by solving energy equation over the solid phase skeleton. Results obtained on a set of nickel foams
covering a wide range of pore size are discussed. [doi:10.2320/matertrans.47.2195]
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1. Introduction

Metal foams are a relatively new class of materials with
low densities and attractive thermal, mechanical, electrical
and acoustic properties.1) Solid foams are widely quoted to
present a random topology, high open porosity, low relative
density and high thermal conductivity of the cell edges,
large accessible surface area per unit volume. Their uses and
applications have been widening quickly during the last few
years. All these characteristics make metal foam heat
exchangers efficient, compact and light weight. Moreover,
they also promote mixing and have excellent mechanical
properties. Metallic foams are nowadays, proposed as heat
transfer enhancer for use in numerous applications such as
compact heat exchangers, reformers, biphasic cooling
systems and spreaders.2,3) For example, metal foams have
been used as lightweight supporting structure in aerospace
applications.4) Different types of metal foams are used as a
buffer between a stiff structure and a fluctuating temperature
field. They are also used in geothermal operations and in
petroleum reservoirs.5) Ceramic foams are used in advanced
burners and heat pipes. Foams have been used in high-
power batteries for lightweight cordless electronics, and
catalytic field application such as fuel cells systems.6) The
control of the texture of porous materials used for the
optimization of compact and multipurpose heat exchangers
(boiler, vapo-reformer. . .) represents a significant techno-
logical stake.

In general, the lack of morphological tools able to
characterize the real microstructures of these foams limits
the knowledge of pertinent geometrical parameters able to
describe the structure of the foams. Thermo-physical and
fluid flow properties depend strongly on local morphology of
both pore and solid matrix. Local change in the structure
could govern the properties (e.g. constriction, strut cross
section, surface roughness. . .). Accurate evaluation of these
properties becomes critical for various uses. Models widely
used for low porosity media are more difficult to apply to
high porosity materials. Due to their novelty, peculiar

structure and varied manufacturing processes, metal foams
are still incompletely characterized. Indeed, the choice of
foam optimized for a given application requires correlating
the microscopic structure to the transport properties.

Most of the works dealing with foam transport properties
are based on arbitrary periodic structures which represent
with variable degree the real texture of the foam. Thus, model
remains yet only qualitative.7–9) Recent observation using
X-ray microtomography10,11) showed up the feasibility of the
3D reconstruction and basics measurements on X-ray
tomography and proves that this technique is suitable for
the investigation of the microstructure of foams. Never-
theless, very few works uses real geometry (usually obtained
from 3D X-ray tomography) to determine physical proper-
ties.12) Mechanical behavior response is found to be strongly
anisotropic.13) To analyze geometry of foams different
methods of visualization, segmentation and morphometry
are needed.

We develop specific tools, based on X-ray sample tomog-
raphy, to characterize both pore space and solid matrix as
these two phases may have different geometric character-
istics that impact on various properties (e.g. heat conductivity
is linked mainly to matrix structure, flow laws are governed
by pore shape). These tools allow segmentation and geo-
metrical measurements (e.g. specific area). Segmentation of
pores in individualized cells gives access to both porosimetry
and morphometry as well as cells orientations. A centerline
extraction method allows us to model the solid matrix as a
network of linear connected segments. As physical transport
phenomena are directly linked to the path line notion, we
calculate geodesics in the medium using a technique based on
numerical fast marching implementation. We then determine
geometrical tortuosity of each phase.

This approach will enable us to proceed to the morphology
analysis in correlation with the physical transport properties
obtained via numerical simulations or on experimental data
using the tomographied samples.14,15) We use a set of
Recemat Nickel-Chromium (NC) and reinforced Nickel-
Chromium (NCX) foam samples (Table 1). We discuss here
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the used methods and present several results illustrating the
main capabilities of our morphological tool (Table 2).

2. Polygonal Model

Starting from X-ray images, two options are usually
available for viewing the scalar volume datasets; direct
volume rendering16,17) and volume segmentation combined
with conventional surface rendering.18) The direct volume
rendering only supply images of the data whiles the volume
segmentation open access to measurements.

We use the classic ‘‘Marching cubes’’ algorithm for
extracting interface between the phases.19) This technique
creates a polygonal model that approximates the iso-surface
embedded in a scalar volume dataset for a particular iso-
value. The surface represents all the points within the volume
that have the same scalar value. The reconstruction of the
dividing surface between solid and pore allows the visual-
ization of the 3D data (Fig. 1).

The polygonal surface is created by examining each cube
of eight voxels and defining a set of triangles that
approximates the piece of the iso-surface within the space
bounded by the eight points. The efficiency of the algorithm
is due to the limited number of cases (256) for which a
surface cuts a cube. This allows their tabulation and reduces
greatly the calculations. Due to the variation of level
variations of X-Ray reconstructed images, an optimal
threshold (iso-density) based on the density histogram was
calculated for each images. These latter are then re-
normalized such as a unique level corresponds to a physical
density value in the entire volume. The reconstructed surface
is made of regular meshes without holes, nor unconnected
edges. We ensure that no duplicated surface or edge exists.
We then carry out the direct calculation of surfaces and
specific volumes of each phase of the foam. We also export
the surface meshes of the solid matrix (or poral space) as
toward research or commercial CFD codes to simulate the
heat and mass transfers in these mediums.

2.1 Results
Flow laws depend on open porosity. This latter is

determined by filling the hollow strut and measuring the
remaining porosity. Even the high resolution X-ray images
present holes between the macro pore and struts cavities.
These holes are either real or created when segmenting the
thin walls of struts. To measure both total and open porosity,
we apply a 3d closure morphological operation by dilating
and eroding the 3d binary images. Eventually, we measure
the respective volumes of both pore kinds. The limitation of
this technique is the tomography resolution compared to the
hollow strut wall thickness. Nevertheless, our results are in
good agreement with literature data, and we obtain signifi-
cant difference between open and total porosity, but it
is difficult to quantify uncertainties on these quantities
(Table 2). The main objective of this work is to characterize
the cells morphology and to extract the solid matrix skeleton.
Images resolution has been chosen according to these
constrains. In order to precisely quantify porosity a higher
resolution is needed since characteristic scale is strut wall
thickness.

The specific surface is calculated from the interfacial
meshes generated for each sample. The number of triangles
constituting the samples meshes is varying from 2 million for
the NC-1116 sample up to 5 million for the NC-3743 sample.
We found that specific surface varies like the inverse of the
mean pore diameter Dp; fitting our data lead to (Fig. 2):

Table 1 Samples Description.

Samples

(material-ppi range)

sample

diameter

(mm)

voxel

size

(mm)

image

size

nb

images

nb

Cells

NC-3743 16 7.46 2048 292 2305

NC-2733 16 7.46 2048 430 1187

NCX-1723 30 29.47 1326 348 1224

NC-1116 30 29.47 1326 291 604

Table 2 Geometrical characterization results.

Samples

Porosity Specific surface
Aperture

diameter
Equivalent ellipsoids Elongation

Average

tortuosity

open

(%)

total

(%)

Sp

(m2/m3)

Dp

(mm)

pores

(mm)

solid

(mm)

a

(mm)

b

(mm)

c

(mm)
2a/(b+c) b/c solid pores

NC3743 87.8 88.2 5442 572 428� 52 52� 6:4 307� 33 260� 26 214� 21 1:29� 0:11 1:21� 0:1 1.195 1.0057

NC2733 92.2 93.0 3861 831 617� 39 39� 5:3 453� 41 379� 30 312� 27 1:32� 0:12 1:22� 0:11 1.208 1.0036

NCX172313 87.3 87.8 1658 1841 1354� 192 192� 25:8 1052� 142 817� 92 668� 92 1:42� 0:17 1:23� 0:14 1.178 1.0055

NC111610 89.1 89.7 1296 2452 1792� 201 201� 28:9 1333� 133 1109� 89 937� 104 1:31� 0:13 1:19� 0:11 1.179 1.003

Fig. 1 3D rendering: Solid matrix and segmented pores (Sample NC

27-33).
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Sp ¼
3:14

Dp

ð1Þ

This indicates that the tested foams are homothetic.

3. Tortuosity

The tortuosity of a porous medium was for the first time
defined by Carman20) and given, in a particular direction, like
the square of the ratio of the average effective distance
traversed by the fluid at the Euclidean distance between 2
sections. As we segmented the phases it is interesting to define
a geometrical tortuosity for each phase (solid matrix, pores).
This tortuosity is defined in Ref. 21), for a couple of points
contained in the same phase and connected according to:

�gðp1; p2Þ ¼
Lminðp1; p2Þ
kp1 � p2k

� �2
ð2Þ

with Lminðp1; p2Þ, the length of the shortest path in the phase
joining p1 to p2.

This tortuosity, defined for a couple of points, is not
suitable to correlate transport properties to morphology.
Indeed, it is the average tortuosity between two surfaces in a
direction that govern transport phenomena. We propose a
numerical technique to calculate an averaged geometrical
tortuosity between two parallel planes in a given direction
that fit this empirical definition and thus will be comparable
to experimental results.

3.1 Fast marching method
The level set method is a numerical technique for tracking

moving interfaces. The related fast marching methods
(FMM) which are used for tracking monotonically advancing
fronts,22,23) are computationally attractive. FMM are mainly
used for the construction of geodesic on surfaces, or
calculation of optimal ways circumventing obstacles.24) The
key advantages of these methods are that they rely on a fixed
grid (adapted to discrete 3D images), and handle topological
changes in the interface naturally.

A moving interface �ðtÞ can be formulated as the zero level
curve of a scalar-valued function �: R3xR ! R, where

�ðtÞ ¼ fx 2 <3 : �ðx; tÞ ¼ 0g ð3Þ

� is the crossing time map, a function that gives the time
when a moving front crosses the point x. The crossing time is
unique if the front is monotonically advancing. Thus, ��1ð0Þ
is the initial position of the front and, at any later time t,
the front is given by ��1ðtÞ. The crossing time map is
constructed by solving an equation of the form

k~rr�ðxÞk ¼
1

FðxÞ
ð4Þ

where FðxÞ is the front velocity at the point x.
If FðxÞ ¼ Cte, then the solution �ðxÞ ¼ ’ðxÞ gives the

distance from x to the zero contour ��1ð0Þ ¼ ’�1ð0Þ. The
FMM solves this equation by systematically advancing the
front by marching outwards from the boundary data. For N
nodes, the method has a total operation count of O(N log N).
Marching algorithm makes use of an upwind finite dif-
ferences scheme to compute the value u at a given point xi; j of
the grid. We use this method to compute efficiently the
distance map, and the minimal path between any pair of point
in a given phase. That allows us to determine:

– the geometrical tortuosities of each phases
– An accurate morphological criterion to segment the

pore.
To calculate the distance map of every point in the media
from the bound we fix the initial position of the front ��1ð0Þ
to the frontier points �ð0Þ ¼ fxjx 2 ��g.

3.2 Minimal path extraction
Using the �ðxÞ map over one phase we calculate geodesic

joining a given point p0 to any point p, a 4th order Runge-
Kutta method is used to seek the parametric curve CðtÞ which
is the solution of the retropropagation equation:

dCðtÞ
dt

¼ � ~rr�ðx; tÞ with Cð0Þ ¼ p ð5Þ

Using a constant front propagation velocity for the FMM
calculation, we obtain the true geodesic path. While a front
velocity proportional to the distance of the other phase leads
to create an ‘‘averaged’’ path similar to the Carman definition
(Fig. 3).

3.3 Results
For each phase, we measure the geometrical tortuosity

between two parallel planes situated at the two extremity of
the sample. This evaluation is made for two orthogonal

Fig. 2 Specific surface versus pore size.

Fig. 3 Geodesic distance map and minimal between 2 points in the pore.

Left constant velocity propagation, right distance to solid driven velocity.
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direction named horizontal and vertical. These latter are
arbitrary and correspond to the initial image orientation. We
don’t report results on the third direction as there is not
enough pores in the thickness of the sample to valuable
results. Figure 4 shows the distribution of these tortuosities
for each phase and direction. The tortuosity distribution of
poral space is very narrow and centered on a low values that
indicates a very open texture of pores. On the other hand, the
tortuosity distribution of the solid phase is rather large, with
an average value of 1.2 very different from the pore tortuosity
value. Moreover, the results show clearly that solid tortuosity
depends on direction and the solid structure is slightly
anisotropic as the effective thermal conductivity (§4.4.2).

Figure 5 shows influence of pore size on tortuosities
(average on the two directions). We do not systematically
compare tortuosity on each direction because vertical and
horizontal directions are arbitrary. Both pore and solid
tortuosity values seem to decrease slightly with pore diameter
Dp. more work is needed to clarify this point. Tortuosity
values are probably correlated to cells shape and orientation.
A systematic study is undergoing to evaluate angular
variation of tortuosity and to determine principal sample
orientation.

4. Segmentation of Pore and Solid Phase

4.1 Aperture diameter
One way to characterize the pore size is to determine the

aperture diameters map. The local aperture diameter OuvðPÞ
is defined at any point P of an object as the diameter of the

largest ball included in the object and containing the point
P, as proposed by Ref. 25).

OuvðPÞ ¼ max djB C;
d

2

� �
� O;P 2 B C;

d

2

� �� �
ð6Þ

The aperture map is then defined as a 3D image of local
aperture diameter. This map is constructed by affecting
OuvðPÞ to each voxel P as shown on Fig. 6. The histogram
of this map gives access to the pore size distribution (Fig. 7).
Nevertheless, this technique is limited to the evaluation of
pore size. No direct information on cells shape could be
deduced from these data alone. The pore aperture diameter
Da is the mean diameter of the maximal included sphere
distribution.

4.2 Cells segmentation
3D segmentation of the cells is necessary to characterize

completely the cells shape (Fig. 1). As the cells are fully open
cells it is very difficult to extract them through classical
morphological operations such as erosion/dilation processes.
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Fig. 6 Aperture map in a cross section

(sample NC 27-33).
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Fig. 7 Pore aperture size diameter distribution (sample NC 27-33).

2198 J. Vicente, F. Topin and J.-V. Daurelle



We use the watershed transform of the marker distance
function26) in order to individualize and to close the open-
celled pores in 3D. This segmentation allows to directly
measuring cells morphological parameter (volume, equiva-
lent sphere diameter, surface, aspect ratio. . .).

Markers, defined as the local extrema of the pores distance
map, are identified. Because of shape irregularities of struts
and cells, as well as presence of constrictions, more than one
minimum exist in each cell, while the method needs one
unique marker. The key point of this technique is to eliminate
irrelevant markers until obtaining the one corresponding to
the ‘‘center’’ of the cell. A first class of ‘‘false’’ markers is
easily eliminated using topographic conditions. For example,
false markers belonging to the centerline of oblong objects,
or markers located near solid voxels, are easily eliminated
using a threshold distance between solid or other markers. On
the other hand, markers belonging to cells throat are not so
easily eliminated as they mark a real geometric structure that
have a characteristic size close cells size. We develop an
elimination method based on analysis of the markers
neighborhood. We study the distribution of minimal distance
to solid of points located on a sphere (radius r) centered on
the marker. These distributions are different according to the
marker types. In the case of throat markers, the distribution is
wide and its maximal value is close to the marker distance
dM . On the other hand, in the case of cell markers, the
distribution is narrow and maximal value is around dM � r.
The watershed transforms permits to associate each cell
voxels to a unique marker. Incomplete cells at the sample
boundary are eliminated.

A large initial volume containing from 600 up to 2300 cells
depending on the sample is analyzed in order to obtain
statistically representative results (Table 1). Figure 1 shows
a 3D rendering of a foam sample and several segmented cells,
and Fig. 8 shows a 2D cross section of a segmented sample.

The volume of each cell is simply determined by counting

the cell voxels. For example, the average cell volume of
sample NC-2733 is 0.3mm3. We define Dp as the diameter of
the equivalent volume sphere; the mean value being equal to
831 mm (Fig. 9).

The aperture diameterDa is systematically smaller than the
equivalent volume sphere diameter Dp (Table 2); thus cells
are not spherical. Indeed, the foaming process of the
polyurethane foam template is affected by gravity, which
favors cell elongation in the vertical direction. During the
nickel foam manufacturing process, several forces can also
modify the cell shape.

4.3 Cells shape and orientations
The 3D inertia matrix of the equivalent ellipsoid is

determined for each individualized cell. The 3 principal axes
of the ellipsoid are denoted respectively by a, b and c with
c < b < a. The referential O; x; y; z, is determined by the
tomography. The plane Oxy is the image plane, whereas the z
direction is the thickness of the sample.

An example of distribution of axis length values is
presented on Fig. 10. These three distributions are mono-
modal and rather narrow. The average value of the three
parameter a, b, and c are respectively 453� 40:9, 379� 30:6
and 312� 26:7 mm for NC-2733. The three principal axis
values are clearly separated even if the three distributions
overlap a little. As expected, the three dimensions of the

Fig. 8 Cross section of segmented cells

(sample NC 27-33).
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Fig. 9 Segmented cells volume distribution (sample NC 27-33).
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equivalent ellipsoid are different; the cells are elongated
along their principal axis. We can note that the average
standard deviation is about 8.5% for the three axes. All the
analyzed foams show similar distributions. The mean
principal axis values triplet is used as cell descriptor. One
can note that the volume of the mean ellipsoid, defined with
the three means length of the axes a, b and c, is equal to
0.225mm3. The difference with the mean cell volume is due
to the fact that the equivalent ellipsoid is by construction the
maximal included ellipsoid. The elongations calculated from
mean principal axis length are presented in Table 2. These
results show clearly that the cells are more elongated along
the a-direction. This indicates that the cell deformations due
to manufacturing process are produced by independent
phenomena of different intensity.

Directions associated with each axis (a, b, and c) are
determined using the eigenvectors associated to eigenvalues
of the cell 3D inertia matrix. Figures 11, 12 present res-
pectively the polar orientation distribution (elevation ’ and
azimuth �) of these axes. We represent the elevation of the
a-axis cells into the 0–90� quadrant. The other elevations
(b- and c-axes) are plotted into the 90–180� quadrant.

The smallest cell axes (c) are almost horizontal, located
into the plane O; x; y, and the distribution is narrow (Fig. 11).
A more detailed analysis shows up that the bi-modal shape of
a- and b-axes distribution comes from two separate classes of
cells. The biggest cells a-axes are rather vertical (near 15�)
and the smallest cells a-axes are rather horizontal (75�). We
observe a similar effect on the b-axis distribution. The weak
difference between b and cmean orientation values shows up
that the plane O; b; c is not completely parallel to the sample
image plane ðO; x; yÞ as b- and c-axes are, by construction,
orthogonal to a-axis.

Figure 12 present the azimuth distribution (orientation of
the principal axes into the plane O; x; y). As the sample is a
cylinder, the position of the axes O; x and O; y are arbitrary
and correspond to the original orientation of the tomogra-
phied images. The azimuth distributions show clearly that the
three different axes of the cells are oriented along three mean

values respectively 125�, 115�, and 200� for the a-, b- and
c-axis. Cells are ordered such as axes azimuths stay roughly
constant. On the other hand, elevations are more variable, this
is probably due to the manufacturing process.

4.4 Solid network
The extraction and the automatic recognition of the

structuring elements constitute the base of the geometrical
description. Indeed, the identification and the three-dimen-
sional localization of nodes (branching detection), branches
and the connectivity table allow us to access the geometrical
characteristics. We focus especially the determination of the
connectivity of the solid matrix and of the poral space. The
network reconstruction open access to statistic treatment of:
Segment length, orientation, as well as highlighting prefer-
entially directed planes.

The detection of the junctions of the solid matrix enables
us to cut out it in structuring elements (segment, nodes) from
which we build an idealized network of linear segments.
4.4.1 Distance ordered homotopic thinning

Skeletons are compact representations that allow mathe-
matical analysis of objects. It must be homotopic, thin and
medial in relation to the object it represents. The obtained
skeleton is connected, topologically equivalent to the object,
centered and thin. We are interested in discrete methods,
generally fast and easy to use.

We choose the Distance Ordered Homotopic Thinning27)

(DOHT), which uses a homotopic thinning, this means an
iterative deletion of simple points but in the increasing
distance map order leading to a centered skeleton.

The skeleton is computed by iteratively peeling off the
boundary of the object, layer-by-layer. A point is said simple
if its deletion preserves the object topology.28) If all simple
points are removed iteratively the result object is topolog-
ically equivalent to the original one, but far simple. A
connected component without hole or cavity will be shrunk to
a single point. In order to better preserve rotation invariance,
we add to this method a directional strategy as proposed
by Ref. 27). For each distance, we systematically consider
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border points, in the following order: east, bottom, west,
south then top of the object. We eliminate all the false
branches induced by struts irregularities. Such branches are
short and connected to a single point.

Oversegmentation often occurs at struts intersection.
Morphological operations are then used to remove these
small bad struts. This operation take into account different
scale of analysis to cleanup these regions. On the cleaned
skeleton (Fig. 13) we measure the struts length distribution
(Fig. 14). This idealized network is used to determine
effective thermal conductivity.
4.4.2 Effective thermal conductivity

Reference 29) provided detailed experimental character-
ization and numerical modeling of the heat and mass
transport properties of highly porous media for solar
receivers and porous burners. Several researchers focused
on determining the effective thermal conductivity. Refer-
ence 30) experimentally determined the effective thermal
conductivities of foams made out of aluminum and silicon
alloys. Reference 31) presented a semi-empirical model for
the combined conduction and convection heat transfer in a
thin porous wall. Reference 32) provided experimental
measurements and modelling of the thermal and hydraulic

aspects of cellular metals subject to transverse airflow.
Reference 33) numerically investigated the anisotropy in
permeability and effective thermal conductivity on the
performance of an aluminum heat sink.

Several authors have implemented prediction models of
effective thermal conductivity of foams in purely conductive
regime. These models are based on the knowledge of
thermophysical properties of the material constituting the
metallic matrix, of the fluid within and generally of a
structure parameter of the foam (for example ratio between
the average sizes of struts and nodes).7,34,35) All these
methods did not take into account the real morphology of
the foam but assume an idealized periodic pattern. Besides,
measurement were achieved with both stationary35) and
transient methods.36)

Effective thermal conductivity Keff
i on each direction x; y; z

is determined. A cube is cut into the sample RLS and nodes
constituted by intersection of each cube face and segments
are identified. We impose different temperature on two
opposite faces. We calculate the total heat flux �i across the
network using the nodal temperature deduced from simple
one-dimensional conduction transfer on each segment. On
each node p of the network, energy balance is given by

X
j2Nodes
connected to p

�pj ¼
X

j2Nodes
connected to p

�
ksolid

lpj
SpjðTj � TpÞ ¼ 0 ð7Þ

Where �i j, li j and Si j are resp. the heat flux and the length and
the cross section of the segment. ksolid is the solid thermal
conductivity, and Ti, T j are the nodal temperatures.

Eventually, the flux �i is identified with macroscopic
conductive heat flux across a homogeneous medium placed
in the same conditions and K

eff
i ¼ �ie

�T
.

Note that we supposed here, that the fluid phase doesn’t
contribute significantly to the effective conductivity and that
radiative transfer between solid surfaces is negligible. The
segment section is taken as its mean value deduced from total
solid volume and length of the network.

Table 3 shows an example of quantitative results in
non dimensional form as well as for the case of an Inconel
type solid of thermal conductivity 30Wm�1 K�1 which is a
typical value for the material constituting our foam sample.
The results show a slightly anisotropy of the foam. It is very
difficult to evaluate the accuracy of our approach, because we
cannot quantify the error of the foam structural schematiza-
tion and its effect on final conductivity values. Nevertheless,
a good agreement with experimental values is obtained.

5. Conclusions

We developed a morphological analysis tool that gives
access to quantification of the main structural parameters of
metallic foams.

The reconstruction of the dividing surface between solid
and pore (made of regular mesh) allows the visualization of
the 3D data and the calculation of the specific surface. We
also export the surface meshes of the solid matrix (or poral
space) toward research or commercial CFD codes to simulate
the heat and mass transfers in these mediums. Basic size

Fig. 13 Idealized solid network (sample NC 27-33).
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Fig. 14 Struts length distribution. (Sample NC 27-33).
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characterization of pores and struts is obtained using aperture
map distribution. Segmentation of pores in individualized
cells gives access to detailed morphometry and orientations.

An efficient centerline extraction method gives the
skeleton of the solid phase. Identification of nodes, segments,
and connectivity of the idealized network modelling the solid
matrix has been carried out. Morphology of the solid matrix
is thus characterized (struts length, orientations. . .).

The conductive heat transfers are computed on solid
matrix skeleton to determine directional effective conductiv-
ities.

Specific experiments are carried out to identify thermal
conductivity. Separately, structure morphology measure-
ments are performed for the real medium. The anisotropy
of the conductivity is observed and relationship between
microstructure and properties is under analysis.

An original method based on numerical fast marching
implementation has been developed to independently meas-
ure the geometrical tortuosity of the two phases (solid and
pore). Tortuosity of poral space is very low compared to solid
matrix value. A slight anisotropy of solid tortuosity is
observed. The measurements carried out on our set of
samples shows no clear influence of the pore size on the
tortuosity.

Independent measurements show up that both poral space
and solid matrix presents angular dependencies. A systematic
study of transport properties dependence on parameters such
as tortuosity and porosity as well as cells orientation
distribution is undergoing using other samples of different
textures.
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Table 3 Effective thermal conductivity. Sample NC-1723.

Total network length (m) 7.685

Box volume (m3) 3.32E-06

Strut section (m2) 3.71E-08

Strut equivalent diameter (mm) 217.5

kx/ksol (%) 1.99

ky/ksol (%) 2.33

kz/ksol (%) 2.79

kx (ksol ¼ 30) (Wm�1 K�1) 0.60

ky (ksol ¼ 30) (Wm�1 K�1) 0.70

kz (ksol ¼ 30) (Wm�1 K�1) 0.84

2202 J. Vicente, F. Topin and J.-V. Daurelle


