
Hanwell et al. J Cheminform (2017) 9:55

DOI 10.1186/s13321-017-0241-z

RESEARCH ARTICLE

Open chemistry: RESTful web APIs, JSON,
NWChem and the modern web application
Marcus D. Hanwell1*† , Wibe A. de Jong2† and Christopher J. Harris1

Abstract

An end-to-end platform for chemical science research has been developed that integrates data from computational

and experimental approaches through a modern web-based interface. The platform offers an interactive visualization

and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions

to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were

extended to integrate with high-performance computing resources, and offer command-line tools to automate

interaction—connecting distributed teams to this software platform on their own terms. The platform was developed

openly, and all source code hosted on the GitHub platform with automated deployment possible using Ansible cou-

pled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable

teams to reap the benefits of the connected web—going beyond what conventional search and analytics platforms

offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research per-

formed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that sup-

port computational chemistry calculations. These structures were developed to make it easy to process data across

different languages, and send data to a JavaScript-based web client.

Keywords: Chemistry, Web, Data, Semantic, NWChem, JSON

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background

�e in-silico determination of chemical and materi-

als properties is a vital capability that drives innovation

across many market sectors. Its importance is reflected in

the number of codes that can perform simulations over

a broad range of levels of theory and length scales [1–5],

and the enormous investments in experimental facilities

that can also produce large data that is often difficult or

impossible to reproduce. However, it is all too common

for experimental and computational studies to take place

independently, with large scale studies often involving

heroic efforts developing one-off software projects dedi-

cated to the specific resource, such as the Protein Data

Bank [6] (over 100,000 experimental structures), Mate-

rials Project [7] (over 33,000 simulated materials), and

the Clean Energy Project [8] (over 2.3 million calculated

structures).

Driven by the U.S. Materials Genome Initiative the

development of new and novel materials has become a

multidisciplinary research endeavor where complex sim-

ulation and experimental data get integrated, and analyt-

ics such as machine learning techniques are utilized to

aid in scientific discovery. �is same multidisciplinary

approach is becoming essential in chemical and bio-

logical research and development, in the design of new

chemicals, biomolecules and drugs, or new energy effi-

cient chemical production processes.

�ere is a strong need to develop a collaborative scien-

tific research software platform that enables researchers

to define concepts and hypotheses, add them, and ana-

lyze integrated sets of experimental and computational

data to offer effective knowledge discovery more univer-

sally. �is must go well beyond a web portal to create an

interactive platform integrating simulation, experimental

data, and analytics, while leveraging semantic web tech-

nologies to support the federated storage of data across

Open Access

*Correspondence: marcus.hanwell@kitware.com
†Marcus D. Hanwell and Wibe A. de Jong contributed equally to this work
1 Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065, USA

Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5851-5272
http://orcid.org/0000-0002-7114-8315
http://orcid.org/0000-0002-1113-3728
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-017-0241-z&domain=pdf

Page 2 of 10Hanwell et al. J Cheminform (2017) 9:55

geographically dispersed sites. �e use of language inde-

pendent programming interfaces that are consumed

by web, desktop, and command-line clients will enable

researchers to make much better use of their data. �e

platform described aims to provide an open source ser-

vice that can satisfy this basic need, and also offer sim-

ple methods of extension to accommodate new areas of

research.

�e web has evolved significantly in the last two decades,

and new developments should be explored to assess what

can be achieved in a platform that seeks to use the latest

open source tools, technologies, standards, and approaches

to deliver an end-to-end platform for chemical/materi-

als research. �e basic approach employed was to develop

a server component written in the Python language that

exposes RESTful (representational state transfer) endpoints

to interact with the data on the server. �e Python code can

use existing core functionality, Python modules, and wrapped

libraries developed in other programming languages.

Ideally no HTML, images, etc would be generated

on the server, the server acts as a data server primarily

through RESTful endpoints that accept/return data, along

with user authentication (required by some endpoints). It

can trigger calculations, perform analyses, and batch jobs

in order to make the data discoverable. �e server can

then be consumed by a rich HTML5 web client, more tra-

ditional desktop clients, and from command-line clients

or other servers to perform automated workflows.

In this work a rich HTML5 web interface was developed

that made use of the server’s API (application program-

ming interface) briefly discussed above. It consumes data

from the server, uploading/editing data, and maintain-

ing local state in a one-page application reusing a popular

open source HTML5 framework. �e application inte-

grated other open source frameworks for client side chart-

ing, and 3D rendering/visualization of molecular structure.

�e web application was developed using open source

tools, a number of frameworks, and was “built” as a static

bundle of HTML5 web assets that are downloaded by the

web client. It dynamically constructs the page in response

to user interaction, server data, and other client events

to provide a rich, interactive experience. �is means

that many interactions take place entirely on the client,

requiring no interaction with or access to the server. �is

offers interactive data visualization and analysis, even on

relatively low bandwidth links, once initial data for a mol-

ecule or calculation has been downloaded.

�e field of chemical sciences needs access to open

source chemical data services that make use of open data

standards and formats. �e development of tools with

programming language agnostic interfaces available over

standard web protocols is described. Standardized data

representations in the database layer were employed,

with translation facilities using existing open source tools

to existing file formats, along with integrated visualiza-

tion/analysis capabilities in the web browser.

�e project can be used directly, extended for related

use cases, or built upon in future work to offer a more

comprehensive semantically enriched platform for chem-

ical data. Most existing platforms use approaches that

mix data with web page generation on the server, rather

than embracing modern client-server approaches using

the latest web standards and frameworks. �e source

code is often not available, and the platforms are curated

centrally—such as the PDB, Materials Project and Clean

Energy Project mentioned earlier.

Methods

An open source prototype web platform was developed

to demonstrate key capabilities in addressing the needs

outlined in the introduction, and summarized in Fig. 1.

�e application has a number of components devel-

oped in several languages following modern develop-

ment methodologies. It was intentionally developed

using some of the latest technology innovations, which

means that it requires a modern web browser that sup-

ports WebGL [9] in order to render 3D geometry, and it

makes extensive use of HTML5 [10]. It is clear that not

all devices/web browsers have full support for these tech-

nologies at this time, but that this support is already sub-

stantial and will grow in the coming years.

�e server-side components were written in Python [11],

with wrapped C++ code [12] providing access to a num-

ber of existing chemistry/materials libraries such as Avoga-

dro [13] and Open Babel [14]. �e basis for the server-side

project was the Girder project [15], which reuses a number

of Python modules such as CherryPy [16] to provide a mini-

malist Python web framework, Swagger [17] to document the

programming interfaces, MongoDB [18] to store data/meta-

data, and Virtuoso [19] to store triples. �e chemistry spe-

cific functionality was developed as additional programming

interfaces using the Girder project’s plugin mechanism to add

additional endpoints extending upon existing functionality.

�e client-side components were developed in HTML5,

using open source web frameworks/technologies such as

AngularJS 1.6 [20] and Material Design [21] to provide a

single page web application. 3DMol.js [22] was used to ren-

der molecular geometry in 3D, D3 [23] to render charts,

and responsive design elements to accommodate devices of

various sizes/aspect rations. �e capabilities developed have

been demonstrated on desktop browsers, mobile phones,

and tablets on the major operating systems. �is includes

Windows, macOS, Linux, iOS, and Android operating sys-

tems using browsers including Chrome, Firefox and Safari.

�e features developed for the web platform made it

possible to expose functions originally developed for

Page 3 of 10Hanwell et al. J Cheminform (2017) 9:55

command-line/desktop use, this led to the reuse of the

Avogadro 2 libraries [24] for the ingestion of chemical

data. Extensions to the Avogadro 2 libraries, and several

other components, were made to support the web plat-

form. �ese have been merged into the main develop-

ment branch, and were made available in the 1.90 release

of the software. Capabilities, such as the visualization/

animation of vibrational data, and additional file formats

supporting the NWChem package were added to the

library. �e JSON readers/writers built upon the Json-

Cpp library [25], and the capabilities were exposed to the

Python-based server using Boost.Python [26] wrapped

calls to the C++ API, and then mapped to web endpoints

in the Python code developed for the server.

�e computational chemistry code used as a generator

for the calculation results is the open source NWChem

software suite [1]. �e JSON-Fortran library [27] was

integrated into the NWChem source to enable the code

to write out a new JSON file in addition to the standard

output or log file. APIs and interfaces between the For-

tran-90 routines of the JSON-Fortran library and the

Fortran-77 NWChem source were written to facilitate

the transfer of the computational chemistry data into the

JSON format. �e full JSON enabled NWChem source

code is available on Github [28]. To enable the end-user

to convert existing log files to the JSON format a Python

3 library was created. �e library and examples are avail-

able in a separate Github repository [29].

New JSON data structures were developed to support

the end-to-end workflow from data generation, through

to ingestion, analysis, and visualization. Python scripts

were also developed to upload and add data files from the

command-line, enabling ingestion of existing data sets,

and new ones as they are generated.

Results

�e software components were developed to serve the

needs of data-centric chemistry research using open

source approaches that embrace the use of open APIs,

open data formats, and open components. �e approach

made extensive use of client-side rendering/interaction

wherever practical, and focused on a server-side compo-

nent that served data from web endpoints using the web-

native JSON format where possible. �e development

spanned a number of programming languages (Fortran,

C++, Python, and JavaScript) in order to offer structured

data that can be stored, queried, edited, and visualized.

MongoChemServer: server side platform

�e server code was developed using the Python 3 lan-

guage as a Girder plugin. �e Girder framework is an

open source project, and released under the Apache 2.0

license. It has three main components:

 • Data organization and dissemination

 • User management and authentication

 • Authorization management

It is developed as an extensible data management plat-

form, and it reuses a number of open source projects

including CherryPy—“a pythonic, object-oriented

web framework”. �e code in the mongochemserver

Public Client Backend

Server-side Framework

Computational

Resources

MongoDB

Triple Store

Large Data

Storage

Desktop

Clients

Semantic

Data

RESTful

 APIs

Rich Web

Client

Linked

Data

Scheduler

Data IO

Cloud

HPC

Fig. 1 Architecture of the chemical data platform. Overview of the high-level architecture used for the chemical data platform

Page 4 of 10Hanwell et al. J Cheminform (2017) 9:55

repository [30] extends the functionality provided in a

plugin that is loaded by the Girder process when it starts

up. �e plugin adds RESTful API, reuses core function-

ality and core plugins for more generic features such as

authentication, Gravatars, file upload/download, access

control, etc.

�e platform provides integration with MongoDB,

using that to store user credentials, access permissions,

metadata, and other elements exposed via its plugin sys-

tem. Among the most useful abstractions provided in the

context of this project are the authentication, access per-

mission, and file storage systems. Almost all of these con-

cepts must be exposed on both the server and in the web

client code to be used effectively.

�e existing OAuth2 plugin was used, and coupled

with Google’s OAuth2 implementation to offer single-

sign on. �is can be replaced with other authentication

schemes, or augmented with multiple options. For sim-

plicity this was the only option offered in the prototype

described, coupled with the use of encrypted SSL con-

nections to provide secure authenticated access. �is

choice enabled the deployment of a demonstration to

multiple locations, but was not always the most appro-

priate and will be augmented in future development

to include integration with site-wide systems where

appropriate.

�e access permissions can be applied at several levels

in the code. A RESTful API must be exposed as a resource

which resolves various paths, which refer to namespaces

within the API prefix and are documented using a system

called “Swagger”. �is enables developers to document

API as it is written, provides an HTML5 web client that

exposes this documentation, and offers the ability to test

API live on the web, shown in Fig. 2. �e API exposed

uses decorators to express whether a given piece of

API is public, or can only be accessed by authenticated

users. API that requires authentication can apply further

restrictions based on user privileges, and provide filtered

results containing only data the authenticated user has

the access privileges for.

File upload/download sounds quite simple on the surface,

but it involves a number of distinct components in order to

scale and integrate well in different environments. �e pro-

ject uses asset stores to abstract the storage backend, and

the backend can then be mapped to file systems, S3 stor-

age (as provided by Amazon EC2), and others. Large files

must also be uploaded/downloaded in “chunks”, something

offered as part of the standard file API and exposed in the

client application. File system storage proved sufficient for

the work described, but future deployments would benefit

from using large file stores, with extension to archive serv-

ers at supercomputing centers.

Fig. 2 Swagger documentation for RESTful API. An example of Swagger being used to test some of the RESTful API in the ‘molecules’ resource

Page 5 of 10Hanwell et al. J Cheminform (2017) 9:55

�e web APIs were extended with three main end-

points for the chemical data server. �e “molecules”

prefix provides functions to interact with molecular

data, and is linked to from the other objects created. A

molecular graph is unique, and other objects such as cal-

culations will refer to a molecule. �e simplest way to

use the molecules endpoint is to use a GET query on the

name, InChI, or InChI key of a molecule to see if it exists.

If the search results in a math then a JSON array will be

returned with objects containing the fields id, inchikey,

and name that can be used to retrieve each molecule. If

no match then an empty JSON array will be returned.

Retrieving molecule records can be achieved using the

molecules/id endpoint, using the URL “/api/v1/molecules

/564a2fdd5573c07ff61ce3db/xyz” would retrieve the mol-

ecule with the ID of “564a2fdd5573c07ff61ce3db” in the

XYZ format. Changing that to “/api/v1/molecules/564a2fd

d5573c07ff61ce3db/cml” would retrieve the same molecule

in the CML format, and ending it with ’cjson’ would return

the molecule in the Chemical JSON format described later.

�ere is a similar endpoint to query the database using

InChI keys. A “/molecules/conversions/{output_format}”

endpoint provides file format conversion services.

A “/molecules/search” endpoint offers a simple query

language that was exposed in the web interface, where

it is possible to search on molecular mass with numeric

comparisons, logical AND or OR queries together. It

contained a number of string based values that could

be searched on, such as InChI, InChI key, name, chemi-

cal formula, as well as numeric fields such as mass, atom

count, and heavy atom count. �is was implemented in

a Python file, and exposed in the endpoint, with inline

documentation available by clicking on the search icon.

�e other major endpoint developed was the “calcula-

tions” prefix, this provides access to quantum chemi-

cal calculations. �ey must have a parent molecule, and

are primarily accessed using the GET method, querying

on the “moleculeId”. If there are calculations present for

a given moleculeId, a JSON array will be returned with

objects containing the “_id” (the identifier for the calcula-

tion), with various properties such as the name of the code

performing the calculation, the theory, calculation types

contained, and a file identifier that refers to the original

output used to build the record. �e calculation identifier

can then be used to retrieve other elements of the calcula-

tion, such as the atomic coordinates as a JSON file, a cube

for a given molecular orbital, vibrational modes, etc.

All of these endpoints, along with the more generic ones

usch as file, folder, group, item, user, etc can be viewed

using the built in Swagger. One of the important results

is not the features described, but the simple mapping of

Python code to endpoints, with inline documentation, that

can be rapidly extended and deployed. Python offers an

excellent glue, providing easy access to native Python code,

C/C++ wrapped libraries, and even other web services.

MongoChemClient: rich HTML5 web client

�e Girder project has its own web interface, but this was

not used—a custom user interface was developed in the

mongochemclient repository [31]. �e interface devel-

oped in this repository is a modern HTML5 web inter-

face. �is means that all HTML5 assets can be served as

static files, and the page is built up dynamically on the

client-side using the web API to authenticate (if neces-

sary), retrieve data, upload new date, and visualize data.

A number of technologies and projects were leveraged in

order to create a compelling, modern interface in a rela-

tively short space of time.

�e main framework used to manage interaction, react to

events, and coordinate the single dynamic page approach

was AngularJS. �is framework is divided into a number of

modules that provide various services/extensions, such as

easy access to APIs, animations, routing (where the URL is

updated to reflect the current ‘location’ (state) despite being

in a single-page web application), and overall look and feel

(Materials design in this instance). AngularJS was chosen

for the rich feature set, maturity, and encapsulation of com-

ponents along with its powerful web page layout frame-

work. An example of the single page application in action

is shown in Fig. 3, where a molecular structure can be seen

beside a plot of vibrational modes that can be animated in

the 3DMol.js based geometry viewer.

�e static HTML5 content that serves as the frontend,

and the dynamic programming interfaces offering access

to the data must be presented to the web client. �is is

where the NGINX web server [32] came in, offering an

SSL-enabled endpoint for encryption, serving the static

content in the web root, and proxying requests to the /

api/v1 prefix to the Python-based backend. �e Python-

based backend also had access to the MongoDB server

where all metadata, access controls, and links to files

were stored. �ere is also an asset store, where a simple

on-disk asset store was used.

�e software infrastructure involves a number of build/

deployment systems, and a deployment repository [33]

was necessary to coordinate the task of deploying every-

thing to the right location, with compatible software ver-

sions, and ensuring services are brought up/down in the

correct order. �e project employed an industry standard

open source tool called Ansible [34] to document how

the service was deployed on Amazon’s EC2 infrastruc-

ture, and this approach can be adopted to other envi-

ronments. Ansible automates the process of logging into

specified web hosts, setting up users, installing packages,

and placing everything in the correct place before start-

ing services such as the database and web services.

Page 6 of 10Hanwell et al. J Cheminform (2017) 9:55

JSON data formats

Over the years, various data formats have been developed

for computational chemistry to enable, among other

things, information exchange and visualization. More

recent work has focused on the development of ways to

express results (log files) from computational chemistry

in data formats that are suitable for knowledge discov-

ery on the semantic web. One example is the XML based

Chemical Markup Language (CML) [35].

Here, we chose to build a data format using JSON

because it is less cumbersome than XML, with simpler

parsers, and is a native format of the web. It is based on

many of the concepts developed in the CML format as

part of several ongoing collaborations under the broad

umbrella of the Blue Obelisk [36, 37]. Two JSON formats

were developed in parallel, one focused on providing

information essential for visualization platforms, and one

with the goal to provide semantically enriched informa-

tion from computational chemistry codes as an alterna-

tive to plain text log files. Comparison of the two JSON

formats provides insight into the disparate needs of the

use cases, and can serve as a guide for the development

of a community wide JSON data format.

�e Chemical JSON format within the Avogadro 2

project has been in development for a number of years,

with the focus on providing a simple means of data stor-

age and exchange of chemical data for visualization. �e

JSON format was developed based upon the require-

ments of storing data in BSON using MongoDB, com-

municating chemical data over JSON-RPC 2.0 between

desktop applications, and later using web services. It

was also motivated by the need for a format to support

an application being developed to edit and communicate

chemical structures. �e format was tested with small

molecules through to molecules with millions of atoms

using a philosophy of being machine readable, efficient,

and avoiding repetition. It was written to represent a sim-

ple mapping of the in memory data structures.

�is JSON format exposed the internal data model

used in Avogadro 2, and was used as the transport layer

to the 3DMol.js client-side rendering. It was extended to

expose vibrational modes, and a primitive container for

volumetric data already present in the 3DMol.js project.

�e current state of the Chemical JSON format is docu-

mented in a Github repository [38], and will continue to

evolve as it is extended to serve more use cases.

In parallel, the ChemLog JSON format was developed

with the goal of encapsulating the data from computational

chemistry software, such as the open source NWChem,

with semantic annotation. �e goals of the two formats

Fig. 3 HTML5 web client with molecular structure and vibrational modes. The web client displaying a molecular structure in 3DMol.js, and selection

of vibrational modes in a D3 chart

Page 7 of 10Hanwell et al. J Cheminform (2017) 9:55

were somewhat orthogonal. Chemical JSON expresses the

properties of a single molecule in machine readable arrays

that contain the essential data that might be visualized/dis-

played. In contrast, the ChemLog JSON format is focused

on storing all the essential input and output data with

semantic annotation from the computational chemistry

software simulation (here for NWChem) for the (possibly

multiple) simulation(s). �is is somewhat akin to the typi-

cal molecular file formats (XYZ, CML, SDF, etc) versus a

more structured quantum mechanical log file—a snapshot

of definite structure versus data discovery and recording.

�is new format focuses on satisfying the need to

replace a log file with structured output, offering output

of multiple calculations as a computational chemistry

code like NWChem is executed. �e JSON file generated

by the NWChem application builds upon previous work

done integrating CML into NWChem [39] (an XML-

based format), with some related efforts extending CML

for the semantic web using an intermediary format called

CSX [40]. It is designed around the notion of using objects

as the primary representation. As a starting point the CML

naming and conventions were adopted and extended with

new concepts. �e format was developed and designed to

be portable to multiple computational chemistry codes but

in this work firmly targeted the NWChem code.

�e relevant section representing the geometry/

structure of JSON files generated in the two formats, in

this case for a water molecule, are compared to clearly

show the difference in design philosophies, i.e. arrays

vs objects, driven by the use case, i.e. visualization vs

semantically enriched semantic. �e listing below shows

a molecule block within the Chemical JSON format:

{
"chemical json" : 0 ,
"atoms " : {

"coords " : {
"3d" : [0 . 00 , 0 . 00 , 0 . 14 ,

−0.76 , 0 .00 , −0.46 ,
0 . 76 , 0 .00 , −0.46]

} ,
"elements " : {

"number " : [8 , 1 , 1]
}

} ,
"bonds " : {

"connections " : {
"index " : [0 , 1 , 0 , 2]

} ,
"order " : [1 , 1]

}
}

�e format focuses on using arrays to store informa-

tion about atoms, bonds, etc—such as the atomic num-

ber, bond order, etc. �e 3D coordinates are in an array,

and each 3D position is offset by 3N where N is the index

of the atom. �is offers compact, simple representations

with efficient storage of atomic data. It does not provide a

layout that is focused on human readability, and it is not

intended to be used as a directly editable set of objects in

Python/JavaScript without some code in front of it to aid in

manipulation/keeping the representation consistent. �is

representation is very easy to use in web platforms where

asynchronous network calls can bring in progressively

more data about the molecule, starting with just atoms,

then bonds, then molecular orbital cubes, vibrations, etc.

�e listing below shows the same molecule block

within the ChemLog JSON format:

{
"molecule " : {

"id" : "Molecule .1" ,
"atoms " : [

{
"id" : "Atom.1. Mol .1" ,
"elementLabel" : "o" ,
"elementSymbol" : "O" ,
"elementNumber" : 8 ,
"elementName " : "Oxygen " ,
"cartesianCoordinates " : {

"value" : [
0 . 0E+0,
0 . 0E+0,
0.2106360400000002E+0

] ,
"units" : "bohr"

}
} ,
{

"id" : "Atom.2. Mol .1" ,
"elementLabel" : "h" ,
"elementSymbol" : "H" ,
"elementNumber" : 1 ,
"elementName " : "Hydrogen " ,
"cartesianCoordinates " : {

"value" : [
−0.1841188380000002E+1,
0 . 0E+0,
−0.8425441600000008E+0

] ,
"units" : "bohr"

}
} ,
{

"id" : "Atom.3. Mol .1" ,
"elementLabel" : "h" ,
"elementSymbol" : "H" ,
"elementNumber" : 1 ,
"elementName " : "Hydrogen " ,
"cartesianCoordinates " : {

"value" : [
0 .1841188380000002E+1,
0 . 0E+0,
−0.8425441600000008E+0

] ,
"units" : "bohr"

}
}

]
}

}

In contrast to the Chemical JSON listing, all informa-

tion and properties of each atom in ChemLog JSON is

Page 8 of 10Hanwell et al. J Cheminform (2017) 9:55

collected in a single object. A key aspect of this format

is the explicit definition of units, a key aspect brought in

for the CML specification. It is relatively simple to map

between the two formats, and this is now possible in

the Avogadro 2 libraries which feature readers for both

formats.

In developing the ChemLog JSON format, some addi-

tional referencing features were introduced that are not

natural to JSON. �e listing below shows an excerpt of a

JSON data file containing the calculation setup and some

of the properties that can be calculated with quantum

chemistry software:

{
"calculationType" : "molecularProperties " ,
"molecularFormula" : "H2O " ,
"id" : "calculation .4" ,
"calculationSetup" : {

" outputVectors" : "./ prop_h2o_run.movecs " ,
" molecularSpinMultiplicity " : 1 ,
"molecule " : "Molecule .2" ,
"charge " : 0 ,
" waveFunctionType" : "RHF " ,
" numberOfElectrons" : 10 ,
"basisSet " : "BasisSet .1" ,
" waveFunctionTheory" : "Hartree -Fock" ,
" inputVectors" : "./ prop_h2o_run.movecs " ,
"id" : " calculationSetup.4"

} ,
"calculationResults" : {

" molecularProperties" : [
{

"Molecule " : "Molecule .2" ,
"dipoleMoment" : {

"totalMoment " : {
"units " : "atomic units" ,
"value " : 0 .8052087008

} ,
} ,
"quadrupoleMoment" : {

" diamagneticSusceptibility " : {
"units " : "atomic units" ,
"value " : 18.596483

} ,
"momentXZ " : {

"units " : "atomic units" ,
"value " : 0 . 0

}
}

} ,
{

"atom" : "Atom.1. Mol .2" ,
"diamagneticShielding " : {

"units" : "atomic units " ,
"value" : 23.457292

}
}

]
}

}

Input structures in computational chemistry codes are

set up to allow a sequence of calculations to be executed

in one single run. To store this sequence, the ChemLog

JSON format has adopted the CML approach of stor-

ing each calculation in a “calculations” array. �e listing

above shows an excerpt of the fourth calculation in this

series. Often, data from previous calculation steps in

the sequence is reused in the quantum chemistry code.

To avoid duplicating information, “id” tags were used to

provide a pointer to the first mention of the JSON object.

An example of this in the listing above are the key “mol-

ecule” to “Molecule.2”, which is defined as the id-tag in

the molecule block in the previous listing. Another exam-

ple is the “basisSet” keyword in the “calculationSetup”

block. Even the “calculationSetup” could be the same

for multiple calculations, and could be pointed to in this

fashion. �e same approach is used to identify the atom

within the molecule to which the calculated atomic prop-

erties belong. Here the “atom” keyword points to atom

“Atom.1.Mol.2” in the earlier ChemLog JSON listing

for the molecular geometry. Essentially, this referencing

approach mimics the ability to link different sets of data.

�e referencing feature is missing in the current JSON

specification but native to XML. �e JSON pointer has

been proposed in RFC 6091 [41] and a draft RFC is being

developed for the JSON reference [42]. While JSON ref-

erence would provide the necessary flexibility, either

could readily be adopted in the format in the near future.

Examples of complete ChemLog JSON files generated

by the NWChem quantum chemistry code can be found

on the Github repository [29].

�e JSON file can be submitted to the web platform

developed, and relevant metadata will be extracted. �e

format is capable of encapsulating jobs that have multiple

steps, and it has been demonstrated with vibrational and

electronic structure data. �e format breaks most ele-

ments of the output into distinct objects, and it has been

designed to be more semantically expressive than the

Chemical JSON format developed as part of the Avoga-

dro 2 project. Future work will draw upon new develop-

ments in JSON-LD [40, 43] that aims to bring linked data

and meaning to JSON using the same approaches used in

semantic data structures.

�e two formats were used as part of this project, with

several extensions made to the Chemical JSON format

in order to support data needed by the project. �ey are

both supported by the Avogadro 2 libraries, and exposed

in the Python-wrapped API used on the server side. �e

Chemical JSON format is designed in a pragmatic fash-

ion, making extensive use of arrays, along with key-value

pairs for simple properties. �e format closely matches

in-memory structures, it is optimized for storage in

BSON (the binary form of JSON used internally by Mon-

goDB), is easy to visualize and store as a single document

in MongoDB. �e new ChemLog JSON format devel-

oped tends to represent everything as an object, can store

Page 9 of 10Hanwell et al. J Cheminform (2017) 9:55

multiple configurations/states of a molecule, and uses

links to reuse objects that have not changed. �is makes

it more complex to parse, but more expressive, and it

more closely reflects what is currently stored in log files.

As stated before, extensions were needed in the inter-

nal models used in the Avogadro 2 projects, the 3Dmol.

js project, and in the model employed in the web frame-

work. Ultimately, any given visualization can only show

a single state, and the web and desktop frameworks both

generally assume a file only has a single state with mini-

mal links back to the input file. �is concept will need to

be extended in order to visualize and analyze data from

more complex multi-step files, and some of this develop-

ment was started in the work described.

Discussion

Research in chemistry is becoming more data intensive,

and as a result it is vital that we act to create platforms

that can be easily deployed, used, and shared with a focus

on data. �is requires standard formats that support a

multitude of facets of chemical data that leverage indus-

try standard technologies such as XML, JSON, and the

semantic web.

As we move closer to a landscape where the web is

an essential part of any workflow we must embrace

web-native formats, generally using JSON and similar

containers, to enable the free exchange, analysis and visu-

alization of data. �is can be further augmented through

the use of JSON-LD, and is something the authors would

like to do in order to offer semantic meaning and enable

the simple transformation of JSON-LD documents to

triples.

�e use of triples open up the semantic, linked web

that is becoming increasingly important as this widens

access to the data. As we move forward, and data-centric

computing proliferates embracing the standards of the

semantic web will make it easier to find and use the data

generated, and it will also make the meaning of specific

keys clear to machines, i.e. the definition of a 3D coordi-

nate, and the units it is expressed in, of the “energy” of a

quantum calculation—what quantity is being expressed,

on what molecule, and in what units. �is requires nor-

malized data, but goes well beyond it to express data less

ambiguously and more formally.

Once these components are available the open source

code referenced here, and available as a demonstration

capability, show what can be built around it. �e REST-

ful APIs, databases, and HTML5 frontends can be readily

coupled with command line and powerful desktop appli-

cations to offer a compelling ecosystem of data-centric

applications that serve the chemical research enterprise.

�e definition of suitable schema, codification of that

into JSON-LD, and community agreement still represent

significant barriers to wider adoption. �e development

of permissively licensed open source code, which can be

readily inspected, reused, and modified is one approach

to improving the situation. Coupled with the use of com-

munity platforms such as GitHub for collaborative devel-

opment, and workshops gathering interested experts,

these approaches can be iterated upon and standardized.

Conclusions

A “full-stack” open source web application was devel-

oped, making heavy use of Python and open source com-

munity tools on the backend, and HTML5/JavaScript on

the frontend. Years of experience in using, converting,

and developing data formats was drawn upon to create

some new formats for the output of structured data from

the NWChem code, ingestion into databases, and the

subsequent visualization/analysis of data. �is was dem-

onstrated in a new web client, and added to the Avogadro

2 desktop application. �e primary data types were 3D

chemical structure, electronic structure, and vibrational

modes on the web and desktop.

If the field of chemical sciences is to progress towards

knowledge discovery on the semantic web, it is important

to move away from disparate formats and basic data log

files. �e ingestion and normalization of data still repre-

sents a serious challenge to reaping the benefits power-

ful data-centric platforms promise. �e Avogadro project

provides translation to and from standard chemical data

formats, these can be read by Open Babel and translated

to all supported formats. �e authors were made aware of

a new effort by the European Materials Modeling Coun-

cil (EMMC) on enhancing interoperability in materials

modeling codes. As this paper was written, the authors

and researchers at the Molecular Sciences Software Insti-

tute (MolSSI) started a working group committed to the

development of a unified community (web, visualization,

workflow, computational chemistry codes, and others)

supported JSON data format.

Abbreviations

3D: three dimensional; API: application programming interface; CSS: cascading

style sheets; CML: Chemical Markup Language; HTML: Hypertext Markup Lan-

guage; HPC: high-performance computing; JSON: JavaScript object notation;

LBNL: Lawrence Berkeley National Laboratory; REST: representational state

transfer; SSL: Secure sockets layer; XML: Extensible Markup Language.

Authors’ contributions

MDH and CJH developed the client and server code, new file format support

in Avogadro 2, and the Chemical JSON file format. WDJ developed the Comp-

Chem JSON data format, the JSON writer in the NWChem application and the

Python NWChem output converter, and generated the simulation data used

in testing. MDH and WDJ wrote the manuscript. All authors read and approved

the final manuscript.

Author details
1 Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065, USA. 2 LBNL, One

Cyclotron Road, Berkeley, CA 94720, USA.

Page 10 of 10Hanwell et al. J Cheminform (2017) 9:55

Acknowledgements

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

All code and data discussed in this manuscript is available under open licenses

on GitHub. The following repositories contain all the data and materials:

Chemical data RESTful server [15, 30]

Web frontend single-page application [31]

Chemical JSON specification and examples [38]

NWChem with JSON output [28]

Conversion tool from NWChem log files to JSON [29].

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Funding

This material is based upon work supported by the U.S. Department of Energy,

Office of Science, Office of Basic Energy Sciences, Small Business Innovation

Research (SBIR) program under Award Number DE-SC0013250.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

Received: 26 May 2017 Accepted: 23 October 2017

References

 1. Valiev M, Bylaska E, Govind N, Kowalski K, Straatsma T, van Dam H, Wang

D, Nieplocha J, Apra E, Windus T, de Jong W (2010) NWChem: a com-

prehensive and scalable open-source solution for large scale molecular

simulations. Comput Phys Commun 181:1477

 2. Kong J, White CA, Krylov AI, Sherrill D, Adamson RD, Furlani TR, Lee MS,

Lee AM, Gwaltney SR, Adams TR, Ochsenfeld C, Gilbert ATB, Kedziora GS,

Rassolov VA, Maurice DR, Nair N, Shao Y, Besley NA, Maslen PE, Dombroski

JP, Daschel H, Zhang W, Korambath PP, Baker J, Byrd EFC, Van Voorhis T,

Oumi M, Hirata S, Hsu C-P, Ishikawa N, Florian J, Warshel A, Johnson BG,

Gill PMW, Head-Gordon M, Pople JA (2000) Q-chem 2.0: a high-perfor-

mance ab initio electronic structure program package. J Comput Chem

21(16):1532–1548

 3. Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J (2014) cp2k: atomistic

simulations of condensed matter systems. Wiley Interdiscip Rev Comput

Mol Sci 4(1):15–25

 4. Gonze X, Amadon B, Anglade P-M, Beuken J-M, Bottin F, Boulanger P,

Bruneval F, Caliste D, Caracas R, Côt;é M, Deutsch T, Genovese L, Ghosez

P, Giantomassi M, Goedecker S, Hamann DR, Hermet P, Jollet F, Jomard G,

Leroux S, Mancini M, Mazevet S, Oliveira MJT, Onida G, Pouillon Y, Rangel

T, Rignanese G-M, Sangalli D, Shaltaf R, Torrent M, Verstraete MJ, Zerah

G, Zwanziger JW (2009) Abinit: first-principles approach to material and

nanosystem properties. Comput Phys Commun 180(12):2582–2615 (40

YEARS OF CPC: A celebratory issue focused on quality software for high

performance, grid and novel computing architectures)

 5. List of Quantum Chemistry and Solid-state Phys-

ics Software. https://en.wikipedia.org/wiki/

List_of_quantum_chemistry_and_solid-state_physics_software

 6. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shin-

dyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res

28:235–242

 7. Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, Cholia S, Gunter

D, Skinner D, Ceder G, Persson Ka (2013) The materials project: a materials

genome approach to accelerating materials innovation. APL Mater

1(1):011002

 8. Hachmann J, Olivares-Amaya R, Atahan-Evrenk S, Amador-Bedolla C,

Sánchez-Carrera RS, Gold-Parker A, Vogt L, Brockway AM, Aspuru-Guzik

A (2011) The Harvard Clean Energy Project: large-scale computational

screening and design of organic photovoltaics on the World Community

Grid. J Phys Chem Lett 2(17):2241–2251

 9. WebGL. https://www.khronos.org/webgl/

 10. HTML5. https://www.w3.org/TR/html5/

 11. Python. https://www.python.org/

 12. C++. https://isocpp.org/

 13. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison

GR (2012) Avogadro: an advanced semantic chemical editor, visualization,

and analysis platform. J Cheminform 4:17

 14. O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison

G (2011) Open babel: an open chemical toolbox. J Cheminform 3:33.

https://doi.org/10.1186/1758-2946-3-33

 15. Girder. https://github.com/girder/girder

 16. CherryPy. http://cherrypy.org/

 17. Swagger. https://swagger.io/

 18. MongoDB. https://www.mongodb.com/

 19. Virtuoso. https://github.com/openlink/virtuoso-opensource

 20. AngularJS. https://angularjs.org/

 21. Material Design. https://material.io/

 22. Rego N, Koes D (2015) 3dmol.js: molecular visualization with webgl.

Bioinformatics 31(8):1322

 23. Bostock M, Ogievetsky V, Heer J (2011) D3: data-driven documents. IEEE

Trans Vis Comput Graph (Proc. InfoVis)

 24. Avogadro Libraries. https://github.com/openchemistry/avogadrolibs

 25. JsonCpp. https://github.com/open-source-parsers/jsoncpp

 26. Boost.Python. http://boostorg.github.io/python

 27. JSON-Fortran Version 2.0.0. https://github.com/jacobwilliams/

json-fortran/wiki

 28. NWChem-ChemLog-JSON Writer Github Repository. https://github.com/

wadejong/NWChem-Json

 29. Python ChemLog JSON Github Repository. https://github.com/

wadejong/NWChemOutputToJson

 30. mongochemserver. https://github.com/openchemistry/

mongochemserver

 31. mongochemclient. https://github.com/openchemistry/

mongochemclient

 32. NGINX. https://www.nginx.com/

 33. mongochemdeploy. https://github.com/openchemistry/

mongochemdeploy

 34. Ansible. https://www.ansible.com/

 35. Murray-Rust P, Rzepa HS (2002) Markup languages—how to structure

chemistry related documents. Chem Int 4(24):9–13

 36. Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck

C, Wegner J, Willighagen EL (2006) The blue obelisk—interoperability in

chemical informatics. J Chem Inf Model 46(3):991

 37. O’Boyle NM, Guha R, Willighagen EL, Adams SE, Alvarsson J, Bradley J-C,

Filippov IV, Hanson RM, Hanwell MD, Hutchison GR et al (2011) Open

data, open source and open standards in chemistry: the Blue Obelisk five

years on. J Cheminform 3:37

 38. Chemical JSON Github Repository. https://github.com/OpenChemistry/

chemicaljson/blob/master/chemicaljson.md

 39. de Jong WA, Walker AM, Hanwell MD (2013) From data to analysis: linking

NWChem and Avogadro with the syntax and semantics of Chemical

Markup Language. J Cheminform 5:25

 40. Wang B, Dobosh PA, Chalk S, Sopek M, Ostlund NS (2017) Computational

chemistry data management platform based on the semantic web. J

Phys Chem A 121(1):298–307

 41. RFC 6091 for JSON Pointer. https://tools.ietf.org/html/rfc6901

 42. Draft RFC for JSON Reference. https://tools.ietf.org/html/

draft-pbryan-zyp-json-ref-03

 43. JSON-LD. http://json-ld.org/

https://en.wikipedia.org/wiki/List%5fof%5fquantum%5fchemistry%5fand%5fsolid-state%5fphysics%5fsoftware
https://en.wikipedia.org/wiki/List%5fof%5fquantum%5fchemistry%5fand%5fsolid-state%5fphysics%5fsoftware
https://www.khronos.org/webgl/
https://www.w3.org/TR/html5/
https://www.python.org/
https://isocpp.org/
https://doi.org/10.1186/1758-2946-3-33
https://github.com/girder/girder
http://cherrypy.org/
https://swagger.io/
https://www.mongodb.com/
https://github.com/openlink/virtuoso-opensource
https://angularjs.org/
https://material.io/
https://github.com/openchemistry/avogadrolibs
https://github.com/open-source-parsers/jsoncpp
http://boostorg.github.io/python
https://github.com/jacobwilliams/json-fortran/wiki
https://github.com/jacobwilliams/json-fortran/wiki
https://github.com/wadejong/NWChem-Json
https://github.com/wadejong/NWChem-Json
https://github.com/wadejong/NWChemOutputToJson
https://github.com/wadejong/NWChemOutputToJson
https://github.com/openchemistry/mongochemserver
https://github.com/openchemistry/mongochemserver
https://github.com/openchemistry/mongochemclient
https://github.com/openchemistry/mongochemclient
https://www.nginx.com/
https://github.com/openchemistry/mongochemdeploy
https://github.com/openchemistry/mongochemdeploy
https://www.ansible.com/
https://github.com/OpenChemistry/chemicaljson/blob/master/chemicaljson.md
https://github.com/OpenChemistry/chemicaljson/blob/master/chemicaljson.md
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03
https://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03
http://json-ld.org/

	Open chemistry: RESTful web APIs, JSON, NWChem and the modern web application
	Abstract
	Background
	Methods
	Results
	MongoChemServer: server side platform
	MongoChemClient: rich HTML5 web client
	JSON data formats

	Discussion
	Conclusions
	Authors’ contributions
	References

