
Hanwell et al. J Cheminform  (2017) 9:55 

DOI 10.1186/s13321-017-0241-z

RESEARCH ARTICLE

Open chemistry: RESTful web APIs, JSON, 
NWChem and the modern web application
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Abstract 

An end-to-end platform for chemical science research has been developed that integrates data from computational 

and experimental approaches through a modern web-based interface. The platform offers an interactive visualization 

and analytics environment that functions well on mobile, laptop and desktop devices. It offers pragmatic solutions 

to ensure that large and complex data sets are more accessible. Existing desktop applications/frameworks were 

extended to integrate with high-performance computing resources, and offer command-line tools to automate 

interaction—connecting distributed teams to this software platform on their own terms. The platform was developed 

openly, and all source code hosted on the GitHub platform with automated deployment possible using Ansible cou-

pled with standard Ubuntu-based machine images deployed to cloud machines. The platform is designed to enable 

teams to reap the benefits of the connected web—going beyond what conventional search and analytics platforms 

offer in this area. It also has the goal of offering federated instances, that can be customized to the sites/research per-

formed. Data gets stored using JSON, extending upon previous approaches using XML, building structures that sup-

port computational chemistry calculations. These structures were developed to make it easy to process data across 

different languages, and send data to a JavaScript-based web client.

Keywords: Chemistry, Web, Data, Semantic, NWChem, JSON

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background

�e in-silico determination of chemical and materi-

als properties is a vital capability that drives innovation 

across many market sectors. Its importance is reflected in 

the number of codes that can perform simulations over 

a broad range of levels of theory and length scales [1–5], 

and the enormous investments in experimental facilities 

that can also produce large data that is often difficult or 

impossible to reproduce. However, it is all too common 

for experimental and computational studies to take place 

independently, with large scale studies often involving 

heroic efforts developing one-off software projects dedi-

cated to the specific resource, such as the Protein Data 

Bank  [6] (over 100,000 experimental structures), Mate-

rials Project  [7] (over 33,000 simulated materials), and 

the Clean Energy Project [8] (over 2.3 million calculated 

structures).

Driven by the U.S. Materials Genome Initiative the 

development of new and novel materials has become a 

multidisciplinary research endeavor where complex sim-

ulation and experimental data get integrated, and analyt-

ics such as machine learning techniques are utilized to 

aid in scientific discovery. �is same multidisciplinary 

approach is becoming essential in chemical and bio-

logical research and development, in the design of new 

chemicals, biomolecules and drugs, or new energy effi-

cient chemical production processes.

�ere is a strong need to develop a collaborative scien-

tific research software platform that enables researchers 

to define concepts and hypotheses, add them, and ana-

lyze integrated sets of experimental and computational 

data to offer effective knowledge discovery more univer-

sally. �is must go well beyond a web portal to create an 

interactive platform integrating simulation, experimental 

data, and analytics, while leveraging semantic web tech-

nologies to support the federated storage of data across 
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geographically dispersed sites. �e use of language inde-

pendent programming interfaces that are consumed 

by web, desktop, and command-line clients will enable 

researchers to make much better use of their data. �e 

platform described aims to provide an open source ser-

vice that can satisfy this basic need, and also offer sim-

ple methods of extension to accommodate new areas of 

research.

�e web has evolved significantly in the last two decades, 

and new developments should be explored to assess what 

can be achieved in a platform that seeks to use the latest 

open source tools, technologies, standards, and approaches 

to deliver an end-to-end platform for chemical/materi-

als research. �e basic approach employed was to develop 

a server component written in the Python language that 

exposes RESTful (representational state transfer) endpoints 

to interact with the data on the server. �e Python code can 

use existing core functionality, Python modules, and wrapped 

libraries developed in other programming languages.

Ideally no HTML, images, etc would be generated 

on the server, the server acts as a data server primarily 

through RESTful endpoints that accept/return data, along 

with user authentication (required by some endpoints). It 

can trigger calculations, perform analyses, and batch jobs 

in order to make the data discoverable. �e server can 

then be consumed by a rich HTML5 web client, more tra-

ditional desktop clients, and from command-line clients 

or other servers to perform automated workflows.

In this work a rich HTML5 web interface was developed 

that made use of the server’s API (application program-

ming interface) briefly discussed above. It consumes data 

from the server, uploading/editing data, and maintain-

ing local state in a one-page application reusing a popular 

open source HTML5 framework. �e application inte-

grated other open source frameworks for client side chart-

ing, and 3D rendering/visualization of molecular structure.

�e web application was developed using open source 

tools, a number of frameworks, and was “built” as a static 

bundle of HTML5 web assets that are downloaded by the 

web client. It dynamically constructs the page in response 

to user interaction, server data, and other client events 

to provide a rich, interactive experience. �is means 

that many interactions take place entirely on the client, 

requiring no interaction with or access to the server. �is 

offers interactive data visualization and analysis, even on 

relatively low bandwidth links, once initial data for a mol-

ecule or calculation has been downloaded.

�e field of chemical sciences needs access to open 

source chemical data services that make use of open data 

standards and formats. �e development of tools with 

programming language agnostic interfaces available over 

standard web protocols is described. Standardized data 

representations in the database layer were employed, 

with translation facilities using existing open source tools 

to existing file formats, along with integrated visualiza-

tion/analysis capabilities in the web browser.

�e project can be used directly, extended for related 

use cases, or built upon in future work to offer a more 

comprehensive semantically enriched platform for chem-

ical data. Most existing platforms use approaches that 

mix data with web page generation on the server, rather 

than embracing modern client-server approaches using 

the latest web standards and frameworks. �e source 

code is often not available, and the platforms are curated 

centrally—such as the PDB, Materials Project and Clean 

Energy Project mentioned earlier.

Methods

An open source prototype web platform was developed 

to demonstrate key capabilities in addressing the needs 

outlined in the introduction, and summarized in Fig.  1. 

�e application has a number of components devel-

oped in several languages following modern develop-

ment methodologies. It was intentionally developed 

using some of the latest technology innovations, which 

means that it requires a modern web browser that sup-

ports WebGL [9] in order to render 3D geometry, and it 

makes extensive use of HTML5  [10]. It is clear that not 

all devices/web browsers have full support for these tech-

nologies at this time, but that this support is already sub-

stantial and will grow in the coming years.

�e server-side components were written in Python [11], 

with wrapped C++ code  [12] providing access to a num-

ber of existing chemistry/materials libraries such as Avoga-

dro [13] and Open Babel  [14]. �e basis for the server-side 

project was the Girder project [15], which reuses a number 

of Python modules such as CherryPy [16] to provide a mini-

malist Python web framework, Swagger [17] to document the 

programming interfaces, MongoDB [18] to store data/meta-

data, and Virtuoso  [19] to store triples. �e chemistry spe-

cific functionality was developed as additional programming 

interfaces using the Girder project’s plugin mechanism to add 

additional endpoints extending upon existing functionality.

�e client-side components were developed in HTML5, 

using open source web frameworks/technologies such as 

AngularJS 1.6  [20] and Material Design  [21] to provide a 

single page web application. 3DMol.js [22] was used to ren-

der molecular geometry in 3D, D3  [23] to render charts, 

and responsive design elements to accommodate devices of 

various sizes/aspect rations. �e capabilities developed have 

been demonstrated on desktop browsers, mobile phones, 

and tablets on the major operating systems. �is includes 

Windows, macOS, Linux, iOS, and Android operating sys-

tems using browsers including Chrome, Firefox and Safari.

�e features developed for the web platform made it 

possible to expose functions originally developed for 
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command-line/desktop use, this led to the reuse of the 

Avogadro 2 libraries  [24] for the ingestion of chemical 

data. Extensions to the Avogadro 2 libraries, and several 

other components, were made to support the web plat-

form. �ese have been merged into the main develop-

ment branch, and were made available in the 1.90 release 

of the software. Capabilities, such as the visualization/

animation of vibrational data, and additional file formats 

supporting the NWChem package were added to the 

library. �e JSON readers/writers built upon the Json-

Cpp library [25], and the capabilities were exposed to the 

Python-based server using Boost.Python  [26] wrapped 

calls to the C++ API, and then mapped to web endpoints 

in the Python code developed for the server.

�e computational chemistry code used as a generator 

for the calculation results is the open source NWChem 

software suite  [1]. �e JSON-Fortran library  [27] was 

integrated into the NWChem source to enable the code 

to write out a new JSON file in addition to the standard 

output or log file. APIs and interfaces between the For-

tran-90 routines of the JSON-Fortran library and the 

Fortran-77 NWChem source were written to facilitate 

the transfer of the computational chemistry data into the 

JSON format. �e full JSON enabled NWChem source 

code is available on Github [28]. To enable the end-user 

to convert existing log files to the JSON format a Python 

3 library was created. �e library and examples are avail-

able in a separate Github repository [29].

New JSON data structures were developed to support 

the end-to-end workflow from data generation, through 

to ingestion, analysis, and visualization. Python scripts 

were also developed to upload and add data files from the 

command-line, enabling ingestion of existing data sets, 

and new ones as they are generated.

Results

�e software components were developed to serve the 

needs of data-centric chemistry research using open 

source approaches that embrace the use of open APIs, 

open data formats, and open components. �e approach 

made extensive use of client-side rendering/interaction 

wherever practical, and focused on a server-side compo-

nent that served data from web endpoints using the web-

native JSON format where possible. �e development 

spanned a number of programming languages (Fortran, 

C++, Python, and JavaScript) in order to offer structured 

data that can be stored, queried, edited, and visualized.

MongoChemServer: server side platform

�e server code was developed using the Python 3 lan-

guage as a Girder plugin. �e Girder framework is an 

open source project, and released under the Apache 2.0 

license. It has three main components:

  • Data organization and dissemination

  • User management and authentication

  • Authorization management

It is developed as an extensible data management plat-

form, and it reuses a number of open source projects 

including CherryPy—“a pythonic, object-oriented 

web framework”. �e code in the mongochemserver 
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Fig. 1 Architecture of the chemical data platform. Overview of the high-level architecture used for the chemical data platform
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repository  [30] extends the functionality provided in a 

plugin that is loaded by the Girder process when it starts 

up. �e plugin adds RESTful API, reuses core function-

ality and core plugins for more generic features such as 

authentication, Gravatars, file upload/download, access 

control, etc.

�e platform provides integration with MongoDB, 

using that to store user credentials, access permissions, 

metadata, and other elements exposed via its plugin sys-

tem. Among the most useful abstractions provided in the 

context of this project are the authentication, access per-

mission, and file storage systems. Almost all of these con-

cepts must be exposed on both the server and in the web 

client code to be used effectively.

�e existing OAuth2 plugin was used, and coupled 

with Google’s OAuth2 implementation to offer single-

sign on. �is can be replaced with other authentication 

schemes, or augmented with multiple options. For sim-

plicity this was the only option offered in the prototype 

described, coupled with the use of encrypted SSL con-

nections to provide secure authenticated access. �is 

choice enabled the deployment of a demonstration to 

multiple locations, but was not always the most appro-

priate and will be augmented in future development 

to include integration with site-wide systems where 

appropriate.

�e access permissions can be applied at several levels 

in the code. A RESTful API must be exposed as a resource 

which resolves various paths, which refer to namespaces 

within the API prefix and are documented using a system 

called “Swagger”. �is enables developers to document 

API as it is written, provides an HTML5 web client that 

exposes this documentation, and offers the ability to test 

API live on the web, shown in Fig.  2. �e API exposed 

uses decorators to express whether a given piece of 

API is public, or can only be accessed by authenticated 

users. API that requires authentication can apply further 

restrictions based on user privileges, and provide filtered 

results containing only data the authenticated user has 

the access privileges for.

File upload/download sounds quite simple on the surface, 

but it involves a number of distinct components in order to 

scale and integrate well in different environments. �e pro-

ject uses asset stores to abstract the storage backend, and 

the backend can then be mapped to file systems, S3 stor-

age (as provided by Amazon EC2), and others. Large files 

must also be uploaded/downloaded in “chunks”, something 

offered as part of the standard file API and exposed in the 

client application. File system storage proved sufficient for 

the work described, but future deployments would benefit 

from using large file stores, with extension to archive serv-

ers at supercomputing centers.

Fig. 2 Swagger documentation for RESTful API. An example of Swagger being used to test some of the RESTful API in the ‘molecules’ resource
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�e web APIs were extended with three main end-

points for the chemical data server. �e “molecules” 

prefix provides functions to interact with molecular 

data, and is linked to from the other objects created. A 

molecular graph is unique, and other objects such as cal-

culations will refer to a molecule. �e simplest way to 

use the molecules endpoint is to use a GET query on the 

name, InChI, or InChI key of a molecule to see if it exists. 

If the search results in a math then a JSON array will be 

returned with objects containing the fields id, inchikey, 

and name that can be used to retrieve each molecule. If 

no match then an empty JSON array will be returned.

Retrieving molecule records can be achieved using the 

molecules/id endpoint, using the URL “/api/v1/molecules

/564a2fdd5573c07ff61ce3db/xyz” would retrieve the mol-

ecule with the ID of “564a2fdd5573c07ff61ce3db” in the 

XYZ format. Changing that to “/api/v1/molecules/564a2fd

d5573c07ff61ce3db/cml” would retrieve the same molecule 

in the CML format, and ending it with ’cjson’ would return 

the molecule in the Chemical JSON format described later. 

�ere is a similar endpoint to query the database using 

InChI keys. A “/molecules/conversions/{output_format}” 

endpoint provides file format conversion services.

A “/molecules/search” endpoint offers a simple query 

language that was exposed in the web interface, where 

it is possible to search on molecular mass with numeric 

comparisons, logical AND or OR queries together. It 

contained a number of string based values that could 

be searched on, such as InChI, InChI key, name, chemi-

cal formula, as well as numeric fields such as mass, atom 

count, and heavy atom count. �is was implemented in 

a Python file, and exposed in the endpoint, with inline 

documentation available by clicking on the search icon.

�e other major endpoint developed was the “calcula-

tions” prefix, this provides access to quantum chemi-

cal calculations. �ey must have a parent molecule, and 

are primarily accessed using the GET method, querying 

on the “moleculeId”. If there are calculations present for 

a given moleculeId, a JSON array will be returned with 

objects containing the “_id” (the identifier for the calcula-

tion), with various properties such as the name of the code 

performing the calculation, the theory, calculation types 

contained, and a file identifier that refers to the original 

output used to build the record. �e calculation identifier 

can then be used to retrieve other elements of the calcula-

tion, such as the atomic coordinates as a JSON file, a cube 

for a given molecular orbital, vibrational modes, etc.

All of these endpoints, along with the more generic ones 

usch as file, folder, group, item, user, etc can be viewed 

using the built in Swagger. One of the important results 

is not the features described, but the simple mapping of 

Python code to endpoints, with inline documentation, that 

can be rapidly extended and deployed. Python offers an 

excellent glue, providing easy access to native Python code, 

C/C++ wrapped libraries, and even other web services.

MongoChemClient: rich HTML5 web client

�e Girder project has its own web interface, but this was 

not used—a custom user interface was developed in the 

mongochemclient repository  [31]. �e interface devel-

oped in this repository is a modern HTML5 web inter-

face. �is means that all HTML5 assets can be served as 

static files, and the page is built up dynamically on the 

client-side using the web API to authenticate (if neces-

sary), retrieve data, upload new date, and visualize data. 

A number of technologies and projects were leveraged in 

order to create a compelling, modern interface in a rela-

tively short space of time.

�e main framework used to manage interaction, react to 

events, and coordinate the single dynamic page approach 

was AngularJS. �is framework is divided into a number of 

modules that provide various services/extensions, such as 

easy access to APIs, animations, routing (where the URL is 

updated to reflect the current ‘location’ (state) despite being 

in a single-page web application), and overall look and feel 

(Materials design in this instance). AngularJS was chosen 

for the rich feature set, maturity, and encapsulation of com-

ponents along with its powerful web page layout frame-

work. An example of the single page application in action 

is shown in Fig. 3, where a molecular structure can be seen 

beside a plot of vibrational modes that can be animated in 

the 3DMol.js based geometry viewer.

�e static HTML5 content that serves as the frontend, 

and the dynamic programming interfaces offering access 

to the data must be presented to the web client. �is is 

where the NGINX web server  [32] came in, offering an 

SSL-enabled endpoint for encryption, serving the static 

content in the web root, and proxying requests to the /

api/v1 prefix to the Python-based backend. �e Python-

based backend also had access to the MongoDB server 

where all metadata, access controls, and links to files 

were stored. �ere is also an asset store, where a simple 

on-disk asset store was used.

�e software infrastructure involves a number of build/

deployment systems, and a deployment repository  [33] 

was necessary to coordinate the task of deploying every-

thing to the right location, with compatible software ver-

sions, and ensuring services are brought up/down in the 

correct order. �e project employed an industry standard 

open source tool called Ansible  [34] to document how 

the service was deployed on Amazon’s EC2 infrastruc-

ture, and this approach can be adopted to other envi-

ronments. Ansible automates the process of logging into 

specified web hosts, setting up users, installing packages, 

and placing everything in the correct place before start-

ing services such as the database and web services.
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JSON data formats

Over the years, various data formats have been developed 

for computational chemistry to enable, among other 

things, information exchange and visualization. More 

recent work has focused on the development of ways to 

express results (log files) from computational chemistry 

in data formats that are suitable for knowledge discov-

ery on the semantic web. One example is the XML based 

Chemical Markup Language (CML) [35].

Here, we chose to build a data format using JSON 

because it is less cumbersome than XML, with simpler 

parsers, and is a native format of the web. It is based on 

many of the concepts developed in the CML format as 

part of several ongoing collaborations under the broad 

umbrella of the Blue Obelisk [36, 37]. Two JSON formats 

were developed in parallel, one focused on providing 

information essential for visualization platforms, and one 

with the goal to provide semantically enriched informa-

tion from computational chemistry codes as an alterna-

tive to plain text log files. Comparison of the two JSON 

formats provides insight into the disparate needs of the 

use cases, and can serve as a guide for the development 

of a community wide JSON data format.

�e Chemical JSON format within the Avogadro 2 

project has been in development for a number of years, 

with the focus on providing a simple means of data stor-

age and exchange of chemical data for visualization. �e 

JSON format was developed based upon the require-

ments of storing data in BSON using MongoDB, com-

municating chemical data over JSON-RPC 2.0 between 

desktop applications, and later using web services. It 

was also motivated by the need for a format to support 

an application being developed to edit and communicate 

chemical structures. �e format was tested with small 

molecules through to molecules with millions of atoms 

using a philosophy of being machine readable, efficient, 

and avoiding repetition. It was written to represent a sim-

ple mapping of the in memory data structures.

�is JSON format exposed the internal data model 

used in Avogadro 2, and was used as the transport layer 

to the 3DMol.js client-side rendering. It was extended to 

expose vibrational modes, and a primitive container for 

volumetric data already present in the 3DMol.js project. 

�e current state of the Chemical JSON format is docu-

mented in a Github repository [38], and will continue to 

evolve as it is extended to serve more use cases.

In parallel, the ChemLog JSON format was developed 

with the goal of encapsulating the data from computational 

chemistry software, such as the open source NWChem, 

with semantic annotation. �e goals of the two formats 

Fig. 3 HTML5 web client with molecular structure and vibrational modes. The web client displaying a molecular structure in 3DMol.js, and selection 

of vibrational modes in a D3 chart
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were somewhat orthogonal. Chemical JSON expresses the 

properties of a single molecule in machine readable arrays 

that contain the essential data that might be visualized/dis-

played. In contrast, the ChemLog JSON format is focused 

on storing all the essential input and output data with 

semantic annotation from the computational chemistry 

software simulation (here for NWChem) for the (possibly 

multiple) simulation(s). �is is somewhat akin to the typi-

cal molecular file formats (XYZ, CML, SDF, etc) versus a 

more structured quantum mechanical log file—a snapshot 

of definite structure versus data discovery and recording.

�is new format focuses on satisfying the need to 

replace a log file with structured output, offering output 

of multiple calculations as a computational chemistry 

code like NWChem is executed. �e JSON file generated 

by the NWChem application builds upon previous work 

done integrating CML into NWChem  [39] (an XML-

based format), with some related efforts extending CML 

for the semantic web using an intermediary format called 

CSX [40]. It is designed around the notion of using objects 

as the primary representation. As a starting point the CML 

naming and conventions were adopted and extended with 

new concepts. �e format was developed and designed to 

be portable to multiple computational chemistry codes but 

in this work firmly targeted the NWChem code.

�e relevant section representing the geometry/

structure of JSON files generated in the two formats, in 

this case for a water molecule, are compared to clearly 

show the difference in design philosophies, i.e. arrays 

vs objects, driven by the use case, i.e. visualization vs 

semantically enriched semantic. �e listing below shows 

a molecule block within the Chemical JSON format:

{
"chemical json" : 0 ,
"atoms " : {

"coords " : {
"3d" : [ 0 . 00 , 0 . 00 , 0 . 14 ,

−0.76 , 0 .00 , −0.46 ,
0 . 76 , 0 .00 , −0.46 ]

} ,
"elements " : {

"number " : [ 8 , 1 , 1 ]
}

} ,
"bonds " : {

"connections " : {
"index " : [ 0 , 1 , 0 , 2 ]

} ,
"order " : [ 1 , 1 ]

}
}

�e format focuses on using arrays to store informa-

tion about atoms, bonds, etc—such as the atomic num-

ber, bond order, etc. �e 3D coordinates are in an array, 

and each 3D position is offset by 3N where N is the index 

of the atom. �is offers compact, simple representations 

with efficient storage of atomic data. It does not provide a 

layout that is focused on human readability, and it is not 

intended to be used as a directly editable set of objects in 

Python/JavaScript without some code in front of it to aid in 

manipulation/keeping the representation consistent. �is 

representation is very easy to use in web platforms where 

asynchronous network calls can bring in progressively 

more data about the molecule, starting with just atoms, 

then bonds, then molecular orbital cubes, vibrations, etc.

�e listing below shows the same molecule block 

within the ChemLog JSON format:

{
"molecule " : {

"id" : "Molecule .1" ,
"atoms " : [

{
"id" : "Atom.1. Mol .1" ,
"elementLabel" : "o" ,
"elementSymbol" : "O" ,
"elementNumber" : 8 ,
"elementName " : "Oxygen " ,
"cartesianCoordinates " : {

"value" : [
0 . 0E+0,
0 . 0E+0,
0.2106360400000002E+0

] ,
"units" : "bohr"

}
} ,
{

"id" : "Atom.2. Mol .1" ,
"elementLabel" : "h" ,
"elementSymbol" : "H" ,
"elementNumber" : 1 ,
"elementName " : "Hydrogen " ,
"cartesianCoordinates " : {

"value" : [
−0.1841188380000002E+1,
0 . 0E+0,
−0.8425441600000008E+0

] ,
"units" : "bohr"

}
} ,
{

"id" : "Atom.3. Mol .1" ,
"elementLabel" : "h" ,
"elementSymbol" : "H" ,
"elementNumber" : 1 ,
"elementName " : "Hydrogen " ,
"cartesianCoordinates " : {

"value" : [
0 .1841188380000002E+1,
0 . 0E+0,
−0.8425441600000008E+0

] ,
"units" : "bohr"

}
}

]
}

}

In contrast to the Chemical JSON listing, all informa-

tion and properties of each atom in ChemLog JSON is 
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collected in a single object. A key aspect of this format 

is the explicit definition of units, a key aspect brought in 

for the CML specification. It is relatively simple to map 

between the two formats, and this is now possible in 

the Avogadro 2 libraries which feature readers for both 

formats.

In developing the ChemLog JSON format, some addi-

tional referencing features were introduced that are not 

natural to JSON. �e listing below shows an excerpt of a 

JSON data file containing the calculation setup and some 

of the properties that can be calculated with quantum 

chemistry software:

{
"calculationType" : "molecularProperties " ,
"molecularFormula" : "H2O " ,
"id" : "calculation .4" ,
"calculationSetup" : {

" outputVectors" : "./ prop_h2o_run.movecs " ,
" molecularSpinMultiplicity " : 1 ,
"molecule " : "Molecule .2" ,
"charge " : 0 ,
" waveFunctionType" : "RHF " ,
" numberOfElectrons" : 10 ,
"basisSet " : "BasisSet .1" ,
" waveFunctionTheory" : "Hartree -Fock" ,
" inputVectors" : "./ prop_h2o_run.movecs " ,
"id" : " calculationSetup.4"

} ,
"calculationResults" : {

" molecularProperties" : [
{

"Molecule " : "Molecule .2" ,
"dipoleMoment" : {

"totalMoment " : {
"units " : "atomic units" ,
"value " : 0 .8052087008

} ,
} ,
"quadrupoleMoment" : {

" diamagneticSusceptibility " : {
"units " : "atomic units" ,
"value " : 18.596483

} ,
"momentXZ " : {

"units " : "atomic units" ,
"value " : 0 . 0

}
}

} ,
{

"atom" : "Atom.1. Mol .2" ,
"diamagneticShielding " : {

"units" : "atomic units " ,
"value" : 23.457292

}
}

]
}

}

Input structures in computational chemistry codes are 

set up to allow a sequence of calculations to be executed 

in one single run. To store this sequence, the ChemLog 

JSON format has adopted the CML approach of stor-

ing each calculation in a “calculations” array. �e listing 

above shows an excerpt of the fourth calculation in this 

series. Often, data from previous calculation steps in 

the sequence is reused in the quantum chemistry code. 

To avoid duplicating information, “id” tags were used to 

provide a pointer to the first mention of the JSON object. 

An example of this in the listing above are the key “mol-

ecule” to “Molecule.2”, which is defined as the id-tag in 

the molecule block in the previous listing. Another exam-

ple is the “basisSet” keyword in the “calculationSetup” 

block. Even the “calculationSetup” could be the same 

for multiple calculations, and could be pointed to in this 

fashion. �e same approach is used to identify the atom 

within the molecule to which the calculated atomic prop-

erties belong. Here the “atom” keyword points to atom 

“Atom.1.Mol.2” in the earlier ChemLog JSON listing 

for the molecular geometry. Essentially, this referencing 

approach mimics the ability to link different sets of data. 

�e referencing feature is missing in the current JSON 

specification but native to XML. �e JSON pointer has 

been proposed in RFC 6091 [41] and a draft RFC is being 

developed for the JSON reference [42]. While JSON ref-

erence would provide the necessary flexibility, either 

could readily be adopted in the format in the near future.

Examples of complete ChemLog JSON files generated 

by the NWChem quantum chemistry code can be found 

on the Github repository [29].

�e JSON file can be submitted to the web platform 

developed, and relevant metadata will be extracted. �e 

format is capable of encapsulating jobs that have multiple 

steps, and it has been demonstrated with vibrational and 

electronic structure data. �e format breaks most ele-

ments of the output into distinct objects, and it has been 

designed to be more semantically expressive than the 

Chemical JSON format developed as part of the Avoga-

dro 2 project. Future work will draw upon new develop-

ments in JSON-LD [40, 43] that aims to bring linked data 

and meaning to JSON using the same approaches used in 

semantic data structures.

�e two formats were used as part of this project, with 

several extensions made to the Chemical JSON format 

in order to support data needed by the project. �ey are 

both supported by the Avogadro 2 libraries, and exposed 

in the Python-wrapped API used on the server side. �e 

Chemical JSON format is designed in a pragmatic fash-

ion, making extensive use of arrays, along with key-value 

pairs for simple properties. �e format closely matches 

in-memory structures, it is optimized for storage in 

BSON (the binary form of JSON used internally by Mon-

goDB), is easy to visualize and store as a single document 

in MongoDB. �e new ChemLog JSON format devel-

oped tends to represent everything as an object, can store 
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multiple configurations/states of a molecule, and uses 

links to reuse objects that have not changed. �is makes 

it more complex to parse, but more expressive, and it 

more closely reflects what is currently stored in log files.

As stated before, extensions were needed in the inter-

nal models used in the Avogadro 2 projects, the 3Dmol.

js project, and in the model employed in the web frame-

work. Ultimately, any given visualization can only show 

a single state, and the web and desktop frameworks both 

generally assume a file only has a single state with mini-

mal links back to the input file. �is concept will need to 

be extended in order to visualize and analyze data from 

more complex multi-step files, and some of this develop-

ment was started in the work described.

Discussion

Research in chemistry is becoming more data intensive, 

and as a result it is vital that we act to create platforms 

that can be easily deployed, used, and shared with a focus 

on data. �is requires standard formats that support a 

multitude of facets of chemical data that leverage indus-

try standard technologies such as XML, JSON, and the 

semantic web.

As we move closer to a landscape where the web is 

an essential part of any workflow we must embrace 

web-native formats, generally using JSON and similar 

containers, to enable the free exchange, analysis and visu-

alization of data. �is can be further augmented through 

the use of JSON-LD, and is something the authors would 

like to do in order to offer semantic meaning and enable 

the simple transformation of JSON-LD documents to 

triples.

�e use of triples open up the semantic, linked web 

that is becoming increasingly important as this widens 

access to the data. As we move forward, and data-centric 

computing proliferates embracing the standards of the 

semantic web will make it easier to find and use the data 

generated, and it will also make the meaning of specific 

keys clear to machines, i.e. the definition of a 3D coordi-

nate, and the units it is expressed in, of the “energy” of a 

quantum calculation—what quantity is being expressed, 

on what molecule, and in what units. �is requires nor-

malized data, but goes well beyond it to express data less 

ambiguously and more formally.

Once these components are available the open source 

code referenced here, and available as a demonstration 

capability, show what can be built around it. �e REST-

ful APIs, databases, and HTML5 frontends can be readily 

coupled with command line and powerful desktop appli-

cations to offer a compelling ecosystem of data-centric 

applications that serve the chemical research enterprise.

�e definition of suitable schema, codification of that 

into JSON-LD, and community agreement still represent 

significant barriers to wider adoption. �e development 

of permissively licensed open source code, which can be 

readily inspected, reused, and modified is one approach 

to improving the situation. Coupled with the use of com-

munity platforms such as GitHub for collaborative devel-

opment, and workshops gathering interested experts, 

these approaches can be iterated upon and standardized.

Conclusions

A “full-stack” open source web application was devel-

oped, making heavy use of Python and open source com-

munity tools on the backend, and HTML5/JavaScript on 

the frontend. Years of experience in using, converting, 

and developing data formats was drawn upon to create 

some new formats for the output of structured data from 

the NWChem code, ingestion into databases, and the 

subsequent visualization/analysis of data. �is was dem-

onstrated in a new web client, and added to the Avogadro 

2 desktop application. �e primary data types were 3D 

chemical structure, electronic structure, and vibrational 

modes on the web and desktop.

If the field of chemical sciences is to progress towards 

knowledge discovery on the semantic web, it is important 

to move away from disparate formats and basic data log 

files. �e ingestion and normalization of data still repre-

sents a serious challenge to reaping the benefits power-

ful data-centric platforms promise. �e Avogadro project 

provides translation to and from standard chemical data 

formats, these can be read by Open Babel and translated 

to all supported formats. �e authors were made aware of 

a new effort by the European Materials Modeling Coun-

cil (EMMC) on enhancing interoperability in materials 

modeling codes. As this paper was written, the authors 

and researchers at the Molecular Sciences Software Insti-

tute (MolSSI) started a working group committed to the 

development of a unified community (web, visualization, 

workflow, computational chemistry codes, and others) 

supported JSON data format.
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