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Abstract: Interleaved converters use an increased number of power electronics switches; this may
subsequently affect their reliability. However, this is an opportunity to develop fault-tolerant strate-
gies to improve their reliability and to ensure continuity of service. This is why we herein propose,
for the first time, a mathematical function to simultaneously model the healthy and faulty conditions
of each switch, thus enabling a unique model of the system. This model is then used in an original
fault-tolerant strategy based upon the peak current control with slope compensation. This method not
only extends the stable range of the load variation but also ensures the stability in faulty conditions.
Finally, the simulation results validate its effectiveness and confirm the theoretical analysis.

Keywords: fault-tolerant strategy; monodromy matrix; open-circuit; eigenvalues; slope compensa-
tion; interleaved converters

1. Introduction

Interleaved converters are applied to various applications as solar energy [1–4], fuel
cell [5,6], power factor correction [7], automotive [8–10], and dc–dc switched-mode power
converters [11], including wind systems [12,13]. The converters reliability is a great concern
in such embedded applications. According to [14], the converters are sensitive to a failure
of their semiconductor devices, which are their most fragile components. The system
performance may be deteriorated by an open-circuit [5,15–20] or short-circuit [17] fault,
which can be diagnosed through the inductive current measurement. Therefore, the
converters with switch faults [4,21] are thoroughly studied.

Interleaving power converters allows to increase power density, voltage levels, and
to improve EMC performances. The main advantages of interleaved [5,16,20] dc–dc con-
verters are the reduction of current and voltage ripples and the improvement of the high
current control, compared to single-phase boost converters. Moreover, the passive compo-
nents (inductor and capacitor) volume and mass are reduced. A computer-aided design
methodology is introduced to design a power converter which determines the number of
phases to optimize cost, size, and weight of the converter [10]. References [10,13,22,23]
are limited to three, four, and five paralleled converters branches. Later, in 2004, Garcia
analyzed an interleaved dc–dc converter with 16 and 32 phases [9].

In general, a dc–dc converter is a dynamical system with differential equations having
discontinuous right-hand sides. The converter can exhibit unpredictable phenomena such
as bifurcations and chaotic operations caused by the passage switching between several
subsystems. The study of periodic orbit stability requires special techniques. The average
technique [24,25] is used to obtain the stability operation for the small switching period and
to eliminate the nonlinear effects that occur on slow time scales. It destroys all the details
about high clock frequency. Another widely used approach, which preserves the nonlinear
effects, is the iterated map of the converter model. Reference [25] applies this technique
and obtains a discrete observation at every clock’s instant state, namely the Poincaré map.
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This nonlinear map is obtained with a local linearization at a fixed point. However, in many
converters, such a map cannot be derived in a closed form because of the transcendental
form of the involved equations.

In later work, the authors [26,27] used the Filippov approach as an alternative method
to obtain the Jacobian of the Poincaré map. The Filippov method led to many papers in
several kinds of mechanical and electrical applications, including systems with velocity
reversals and viscoelastic supports [28,29], and buck, boost, and Cuk converters [26,27,30].
In the literature, this approach has also been applied to general piecewise dynamical
systems [31–33]. The Filippov method describes the stability of periodic orbits by the
monodromy matrix over a complete cycle [30,34]. This method treats each switching
instant separately; the overall analysis is simpler than the conventional Poincaré map. The
Filippov approach is much easier to obtain the eigenvalues of the monodromy matrix and
to predict the converter stability. The conventional Poincaré map Jacobian approach and
the Filippov method lead to the same results.

In the field of power electronics, the analysis of a single phase converter through
Filippov method is now well established. In 2017, Wu [35] proposed the Filippov approach
to investigate nonlinear phenomena of an interleaved boost converter. In this work, the
authors developed a new technique to control the nonlinearity in an interleaved boost
converter: the peak current control with slope compensation. Thus, with this control loop,
the input voltage parameter range can be extended so that the 1T-period operation of
the converter remains stable. A number of modifications of control strategies have been
proposed, some aimed at increasing the accuracy of the stability and the range of the
parameter variation. Earlier, another widely used supervising controller was introduced
to study the system operation change from unstable periodic orbits to a periodic orbits.
The Ott–Grebogi–Yorke approach [36] is a well-known chaos control method, for which
no analytical knowledge of the system dynamics is required. Recently, delayed feedback
control methods were developed by [37,38] to stabilize the unstable periodic orbits. In
the latter works, the authors develop other techniques such as as the filter-based non-
invasive method, predictive control, frequency-domain, and Filippov’s method with slope
compensation approaches to impose a stable periodic orbit.

The influence of slope parameter cannot be investigated theoretically in most state-
space-averaging-based methods: no relationship between the margin of stable operation
and the slope parameter can be determined. The addition of a small-amplitude sinusoid
to the ramp waveform is an alternative way to influence the saltation matrix, but it has
very little influence on the switching instant, and hence on the normal operation of the
converter. As the time derivative of the switching function contains a cosine term which
attains maximum value at the switching instant, this term is affected. This significantly
alters the saltation matrix and offers a handle in increasing the stability margin. In this
approach, the compensation ramp directly affects the saltation matrix by influencing the
time derivative of the switching function, and through that, the monodromy matrix. This
matrix includes comprehensive information on the converter’s parameters and the control
loop. This method is an alternative to other existing methods. It also offers a deeper insight
into the way the limit cycles lose their stability: it has the effect of pushing the eigenvalues
inside the unit circle. From this analysis, an advanced control algorithm is developed to
guarantee the satisfactory performance of the converter, avoiding nonlinear behaviors such
as fast- and slow-scale bifurcations.

Our goal herein is to study the stability of a three-phase interleaved boost converter in
healthy and open-circuit faulty conditions. This paper introduces a function which enables
to distinguish between a defective open-circuit and an healthy open-circuit operation. First
of all, the proposed function is universally applicable to any interleaved or single-phase
dc–dc converters. More interesting, a single monodromy matrix is defined to understand
and analyze the stability of the boost converters under different operating conditions,
via Filippov’s method. This matrix contains system information, including the converter
parameters, the coefficients of the feedback loop controller, and the functions. In this paper,
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the Neimark bifurcation occurs where the complex conjugate eigenvalues are outside
the unit circle equation, when the fixed point loses stability under healthy condition. To
investigate such an event, it is necessary to compute the Floquet multiplier of the 1T-period
orbit, which indicates the partial instability of the system with healthy conditions and a total
instability with open-circuit fault for several loads and constant input voltage. Therefore,
based on this premise, the same peak current control with slope compensation as above is
used to ensure a fault-tolerance operation under the load variation of interleaved dc–dc
converters and to increase the range of parameters (such as input voltage or load) over
which the converter remains stable. This method is an alternative to other existing methods.
It also offers a deeper insight into the way the limit cycles lose their stability: it has the effect
of pushing the eigenvalues inside the unit circle. Moreover, we compare our theoretical
results with the ones obtained by simulation.

The main aspects of this paper are as follows: a function to model the healthy and
open-circuit conditions is introduced to model a three-phase interleaved boost converter
in Section 2. In Section 3, this mathematical model (under different operating modes) is
applied simultaneously to each switch, thus enabling a unique model of the system. Then,
in Section 4, the saltation matrices and the monodromy matrix are detailed, followed by the
identification of the duty cycle in Section 5, which allows the localization of the 1T-period
limit cycle to predict the converter stability. Section 6 presents a control strategy with the
slope compensation in order to increase the stability of the boost converter for several loads,
and a constant input voltage. We end with a conclusion in Section 7.

2. The Interleaved Boost Converter with Healthy and One Open-Circuit
Faulty Condition

In this paper, our study is focused on a three-phase interleaved boost converter, which
consists of three independent boost branches. Let us consider the circuit of Figure 1
presenting its topology. We assume that the circuit parameters of each branch are exactly
the same for the three levels connected in parallel with the current phase shifted by π/3,
as shown Figure 2 [35]. The parameters of the converter (the inductance, capacity, load
resistance, clock frequency, input value, ...) are chosen to obtain the desired voltage ratio.
The design of each branch satisfies the symmetry relation. Therefore, L1 = L2 = L3 = L
and kL1 = kL2 = kL3 = kL.

In addition, it is very important to have a control voltage loop [30] in order to keep
the output voltage constant. The control strategies of the interleaved boost converter are
voltage mode control and a peak current control. The circuit consists of inductances L1,
L2, and L3, diodes D1, D2, and D3, switches MOS1, MOS2, and MOS3, capacitance C, and
the load R. ki and kp represent the gains of the PI controller. The feedback consists of a
gain kc applied to the output voltage vc and a gain kL applied to the inductor currents iL1,
iL2, and iL3. The output voltage vc follows the reference signal Vre f equation, the required
output voltage. The converter itself is governed by five sets of linear differential equations
related to the capacitor voltage vc, the inductor currents iL1, iL2, and iL3, and the output of
the integrator in the feedback loop vi. All these variables are considered as state variables
of the system noted x1, x2, x3, x4, and x5.
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Figure 1. Interleaved boost converter with Vin = 14 V, Vre f = 2.4 V, L1 = L2 = L3 = L = 560 µH,
C = 300 µF, R = 1.5 Ω–2.5 Ω, T = 0.00001 s, ki = 50 , kc = 0.1, kp = 0.5, kL1 = kL2 = kL3 = kL = 0.1 .

Figure 2. Gate pulses of MOS1, MOS2, and MOS3, and the inductor currents iL1, iL2, and iL3 in
steady state.

The branches are driven by gate pulses: the controllable devices (MOS1, MOS2, MOS3)
are switched at the same frequency with a T/3 phase difference. Each branch has two
modes, when the switch is either ON or OFF. Typical failures are open-circuit or short-
circuit of MOSi (i = 1, 2, 3) or no RS latch trigger pulse output. We shall only consider the
MOS open-circuit fault equation during the ON mode.

In order to determine the mathematical model of the healthy and faulty conditions, a
binary function hi (i = 1, 2, 3) is defined as follows:

hi =

{
1 if the switching MOSi device is healthy
0 open-circuit fault of the MOSi device (i = 1, 2, 3).

(1)

Let us consider that an MOSi is turned ON (i = 1 or 2 or 3) and the others, MOSj and
MOSm (j 6= i 6= m), are turned OFF. If the MOSi is healthy, then diode Di is reverse-biased
and is OFF. Consequently, the input voltage (applied across the inductor Li) becomes
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uLi = Vin. The currents through capacitance C and load R are provided by the inductor
currents iLj and iLm: iC + iR = iLj + iLm (j 6= i 6= m). If an open-circuit fault of the MOSi
occurs when this one is turned ON, the voltage across Li is uLi = Vin − x1 (i = 1 or 2 or
3). In this case, the currents through capacitance C and load R are iC + iR = iLj + iLi + iLm
(j 6= i 6= m). Consequently, a mathematical model is able to represent both the healthy and
faulty conditions of the MOSi which can be defined by

Vin = uLi + hi · x1 i = 1 or 2 or 3; (2)

iC + iR = iLj + hi · iLi + iLm, j 6= i and m 6= j. (3)

3. Mathematical Model of the Boost Converter under Several Operating Modes

The mathematical model [35] of the interleaved boost converter depends on the state
of the switching devices MOS1, MOS2, and MOS3. However, the converter evolves in six
modes during a period, when the system is T-periodical.

3.1. Mode ON OFF ON [0 ≤ t ≤ dT − T/3]

This mode occurs when MOS1 is turned ON, MOS2 is in OFF-state, and MOS3 is
in ON-state. The current iL1 flows through MOS1 and increases linearly from its initial
value, as shown in Figure 2. The current iL3 through MOS3 also increases linearly and iL2,
the current of L2, flows through D2, C, and R. In case of open-circuit faults of MOS1 and
MOS3 too, the currents iL1 and iL3 are added to iL2. The capacitor and load currents are
described by

iC + iR = h1 · iL1 + iL2 + h3 · iL3,
dx1

dt
= − 1

RC
· x1 +

h1

C
· x2 +

1
C
· x3 +

h3

C
· x4. (4)

The voltages across L1, L2, L3 and the derivatives of iL1, iL2, iL3 can be expressed [26,27]
as follows:

Vin = uL1 + h1 · x1
dx2

dt
= −h1

L
· x1 +

Vin
L

,

Vin = uL2 + x1
dx3

dt
= − 1

L
· x1 +

Vin
L

, (5)

Vin = uL3 + h3 · x1
dx4

dt
= −h3

L
· x1 +

Vin
L

.

vi, the control voltage of the integrator and its derivative dx5
dt are given by the follow-

ing equations:

vi =
ki
s

(
Vre f − kc · x1

)
,

dx5

dt
= −kikc · x1 + ki ·Vre f . (6)

The evolutions of the state variables in Mode ON OFF ON during [0 ≤ t ≤ dT − T/3]
can be described by the following matrix equations and the right-side state equations as:

A1 =



− 1
RC

h1
C

1
C

h3
C 0

− h1
L 0 0 0 0

− 1
L 0 0 0 0

− h3
L 0 0 0 0

−kikc 0 0 0 0


, B1 =



0 0

1
L 0

1
L 0

1
L 0

0 ki


. f1 =



− 1
RC x1 +

h1
C x2 +

1
C x3 +

h3
C x4

− h1
L · x1 +

1
L ·Vin

− 1
L · x1 +

1
L ·Vin

− h3
L · x1 +

1
L ·Vin

−kikc · x1 + ki ·Vin


(7)
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3.2. Mode ON OFF OFF [dT − T/3 ≤ t ≤ T/3]

This mode occurs when MOS3 is turned OFF and when iL3 decreases linearly from
the peak current according to the control strategy. MOS1 is in ON-state, so the current
iL1 through MOS1 continues to increase linearly. MOS2 is in OFF-state and iL2 decreases
linearly until the occurrence of the clock pulse at T/3. The capacitor and load currents are
described by

iC + iR = h1 · iL1 + iL2 + iL3,
dx1

dt
= − 1

RC
· x1 +

h1

C
· x2 +

1
C
· x3 +

1
C
· x4, (8)

The voltages across L1, L2, L3 and the derivatives of iL1, iL2, iL3 can be calculated
as follows:

Vin = uL1 + h1 · x1
dx2

dt
= −h1

L
· x1 +

Vin
L

,

Vin = uL2 + x1
dx3

dt
= − 1

L
· x1 +

Vin
L

, (9)

Vin = uL3 + x1
dx4

dt
= − 1

L
· x1 +

Vin
L

.

vi, the control voltage of the integrator, as well as dx5
dt , are given in Equation (6). The

evolution of the state variables during this interval can be described by the following
matrix equations and the right-side state equations:

A2 =



− 1
RC

h1
C

1
C

1
C 0

− h1
L 0 0 0 0

− 1
L 0 0 0 0

− 1
L 0 0 0 0

−kikc 0 0 0 0


, B2 = B1, f2 =



− 1
RC x1 +

h1
C x2 +

1
C x3 +

1
C x4

− h1
L · x1 +

1
L ·Vin

− 1
L · x1 +

1
L ·Vin

− 1
L · x1 +

1
L ·Vin

−kikc · x1 + ki ·Vin


. (10)

3.3. Mode ON ON OFF [T/3 ≤ t ≤ dT]

MOS2 is turned ON due to the impulse clock, MOS1 is in ON-state, and MOS3 is
in OFF-state. The current iL1 through MOS1 continues to increase linearly until the peak
current, according to the control strategy. In addition, iL2 increases linearly and iL3 also
continues to decrease. Similarly, the capacitor current and the voltages across L1, L2, L3 are
described by

iC + iR = h1 · iL1 + iL2 + iL3,
dx1

dt
= − 1

RC
· x1 +

h1

C
· x2 +

1
C
· x3 +

1
C
· x4, (11)

and

Vin = uL1 + h1 · x1
dx2

dt
= −h1

L
· x1 +

Vin
L

,

Vin = uL2 + x1
dx3

dt
= − 1

L
· x1 +

Vin
L

, (12)

Vin = uL3 + h3 · x1
dx4

dt
= −h3

L
· x1 +

Vin
L

.
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Equation (6) is still available to define the control voltage of the integrator vi and its
derivative. The evolution of the state variables in Mode ON OFF OFF during [T/3 ≤ t ≤ dT]
can be described as

A3 =



− 1
RC

h1
C

h2
C

1
C 0

− h1
L 0 0 0 0

− h2
L 0 0 0 0

− 1
L 0 0 0 0

−kikc 0 0 0 0


, B3 = B1, f3 =



− 1
RC x1 +

h1
C x2 +

h2
C x3 +

1
C x4

− h1
L · x1 +

1
L ·Vin

− h2
L · x1 +

1
L ·Vin

− 1
L · x1 +

1
L ·Vin

−kikc · x1 + ki ·Vin


. (13)

3.4. Mode OFF ON OFF [dT ≤ t ≤ 2T/3]

MOS1 is turned OFF, as MOS2 is in ON-state and MOS3 is in OFF-state. The current
iL1 through MOS1 decreases linearly from peak current, according to the control strategy.
The current iL2 continues to increase linearly, and the current iL3 continues to decrease
linearly. Similarly, the capacitor and load current are described by

iC + iR = iL1 + h2 · iL2 + iL3,
dx1

dt
= − 1

RC
· x1 +

1
C
· x2 +

h2·
C
· x3 +

1
C
· x4. (14)

The voltages across L1, L2, L3 and the derivatives of iL1, iL2, iL3 can be expressed
as follows:

Vin = uL1 + x1
dx2

dt
= − 1

L
· x1 +

Vin
L

,

Vin = uL2 + h2 · x1
dx3

dt
= −h2

L
· x1 +

Vin
L

, (15)

Vin = uL3 + x1
dx4

dt
= − 1

L
· x1 +

Vin
L

.

The control voltage vi obtained from the output of the integrator and its derivative
dx5
dt are as in Equation (6). During [dT ≤ t ≤ 2T/3] intervals, the matrix form of the state

equations are

A4 =



− 1
RC

1
C

h2
C

1
C 0

− 1
L 0 0 0 0

− h2
L 0 0 0 0

− 1
L 0 0 0 0

−kikc 0 0 0 0


, B4 = B1, f4 =



− 1
RC x1 +

1
C x2 +

h2
C x3 +

1
C x4

− 1
L · x1 +

1
L ·Vin

− h2
L · x1 +

1
L ·Vin

− 1
L · x1 +

1
L ·Vin

−kikc · x1 + ki ·Vin


. (16)

3.5. Mode OFF ON ON [2T/3 ≤ t ≤ dT + T/3]

MOS1 is in OFF-state, MOS2 is in ON-stat,e and MOS3 is turned to ON-state. The
current iL1 through MOS1 continues to decrease linearly. The current iL2 increases linearly
until the peak current, according to the control strategy. The current iL3 begins to increase
after the pulse clock at 2T/3 time. Similarly, the capacitor and load current are described by
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iC + iR = iL1 + h2 · iL2 + h3 · iL3,
dx1

dt
= − 1

RC
· x1 +

1
C
· x2 +

h2

C
· x3 +

h3

C
· x4. (17)

The voltages across L1, L2, L3 and the derivatives of iL1, iL2, iL3 can be calculated
as follows:

Vin = uL1 + x1
dx2

dt
= − 1

L
· x1 +

Vin
L

,

Vin = uL2 + h2 · x1
dx3

dt
= −h2

L
· x1 +

Vin
L

, (18)

Vin = uL3 + h3 · x1
dx4

dt
= −h3

L
· x1 +

Vin
L

.

Equation (6) is still available to define the control voltage of integrator vi and its derivative
dx5
dt . The evolutions of the state variables in Mode OFF ON ON during [2T/3 ≤ t ≤ dT+T/3]

can be described by

A5 =



− 1
RC

1
C

h2
C

h3
C 0

− 1
L 0 0 0 0

− h2
L 0 0 0 0

− h3
L 0 0 0 0

−kikc 0 0 0 0


, B5 = B1, f5 =



− 1
RC x1 +

1
C x2 +

h2
C x3 +

h3
C x4

− 1
L · x1 +

1
L ·Vin

− h2
L · x1 +

1
L ·Vin

− h3
L · x1 +

1
L ·Vin

−kikc · x1 + ki ·Vin


. (19)

3.6. Mode OFF OFF ON [dT + T/3 ≤ t ≤ T]

For this last configuration, MOS1 is in OFF-state, MOS2 is turned OFF, and MOS3 is
in ON-state. The current iL1 through MOS1 continues to decrease linearly until the next
pulse clock arrives. The current iL2 begins to decrease linearly, and the current iL3 continues
to increase linearly. Similarly, the capacitor and load current are described by

iC + iR = iL1 + iL2 + h3 · iL3,
dx1

dt
= − 1

RC
· x1 +

1
C
· x2 +

1
C
· x3 +

h3

C
· x4. (20)

The voltages across L1, L2, L3 and the derivatives of iL1, iL2, iL3 are expressed as follows:

Vin = uL1 + x1
dx2

dt
= − 1

L
· x1 +

Vin
L

,

Vin = uL2 + x1
dx3

dt
= − 1

L
· x1 +

Vin
L

, (21)

Vin = uL3 + h3 · x1
dx4

dt
= −h3

L
· x1 +

Vin
L

.

vi, the control voltage of the integrator, and its derivative dx5
dt are given by Equation (6).

The evolution of the state variables in Mode OFF OFF ON during [dT + T/3 ≤ t ≤ T] are
described by the following matrix equations and the right-hand side state equations:
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A6 =



− 1
RC

1
C

1
C

h3
C 0

− 1
L 0 0 0 0

− 1
L 0 0 0 0

− h3
L 0 0 0 0

−kikc 0 0 0 0


, B6 = B1, f6 =



− 1
RC x1 +

1
C x2 +

1
C x3 +

h3
C x4

− 1
L · x1 +

1
L ·Vin

− 1
L · x1 +

1
L ·Vin

− h3
L · x1 +

1
L ·Vin

−kikc · x1 + ki ·Vin


. (22)

4. Saltation and Monodromy Matrices for the Interleaved Boost Converter

A linear time-invariant system is represented by the differential equation ẋ(t) = f (x),
with initial conditions. An interleaved boost converter is a the discontinuous dynamical
system composed of six smooth vector fields that are separated by discontinuity boundaries.
This nonlinear system, with a discontinuous right-hand side, is described by the following
differential equations:

ẋ = f (t, x(t)) =



f1(t, x(t)), x ∈ V1

f2(t, x(t)), x ∈ V2

f3(t, x(t)), x ∈ V3

f4(t, x(t)), x ∈ V4

f5(t, x(t)), x ∈ V5

f6(t, x(t)), x ∈ V6

(23)

where f1 of Equation (7), f2 of Equation (10), f3 of Equation (13), f4 of Equation (16), f5 of
Equation (19), and f6 of Equation (22) are six smooth functions, and x ∈ R5. For simplicity
reasons, let us consider a region of the state space R5 which splits into six subspaces [30,34]:
V1 and V2 are separated by surface Σ1, V3 and V4 are separated by surface Σ2, and V5 and
V6 are separated by surface Σ3, denoted by Figure 3, with:

V1 =
{

x ∈ R5 : sw1(x(t)) < 0
}

V2 =
{

x ∈ R5 : sw1(x(t)) > 0
}

Σ1 =
{

x ∈ R5 : sw1(t, x) = 0
}

,

V3 =
{

x ∈ R5 : sw2(x(t)) < 0
}

V4 =
{

x ∈ R5 : sw2(x(t)) > 0
}

Σ2 =
{

x ∈ R5 : sw2(t, x) = 0
}

, (24)

V5 =
{

x ∈ R5 : sw3(x(t)) < 0
}

V6 =
{

x ∈ R5 : sw3(x(t)) > 0
}

Σ3 =
{

x ∈ R5 : sw3(t, x) = 0
}

,

where sw1(x(t)), sw2(x(t)), and sw3(x(t)) are scalar switching functions. It is presupposed
that fi (i = 1, 6) is time continuous and discontinuous in xi (i = 1, 5), and crosses Σr (r = 1, 3)
transversally. Discontinuous systems exhibit jumps in the evolution of the fundamental
solution matrix. Filippov showed that the system of Equation (23) can be transformed into
a system continuous at the switching instant [29]. Therefore, the discontinuous problem
can be replaced by a continuous set-valued one as follows:

ẋ(t) = F(t, x(t)) =


fi(t, x(t)) if x ∈ Vi,
q fi(t, x(t)) + (1− q) fi+1(t, x(t)) if x ∈ Σr,
fi+1(t, x(t)) if x ∈ Vi+1.

(25)

where q ∈ [0, 1], i = 1, 5, and r = 1, 3. Now, on Σr (r = 1, 3), the discontinuity is replaced
with the segment, which means that on Σr (r = 1, 3), F consists of infinite number of points
as shown in Figure 4. x(ti) passing from the subsystem is described by the vector fi
(Equation, using the fundamental solution matrix just before the jump tΣ−) intersects the
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switching surface, and goes to the subsystem described by the vector fi+1 (Equation, using
the fundamental solution matrix just after the jump tΣ+).

Figure 3. One cycle of orbit evolution of state variables x(t).

Figure 4. (a) Graph of the function f (x); (b) F(x) at t0 goes over the instant tΣ with a smooth jump
up to the instant T.

The transition at each switching moment is described by saltation matrices which can
be represented as follows:

Sii+1 = I5 +
( fi+1 − fi)nT

nT
i fi +

∂swr
∂t

(26)

where fi and fi+1, i = 1, 5 are the right-hand sides of the state equations, before and after
switching, where n is a normal vector to the switching surface and n = ∇swr(x(t)).

As mentioned above, we are interested in the stability of the dynamical system, Equa-
tion (23), where the system regains a T-periodic orbit. One method to check the stability of
periodic motions is to calculate, over one complete cycle [0, T), the state transition matrix
(monodromy matrix Φcycle1 of Figure 5) of the system and then to determine its eigenvalues.
If they are inside of the unit circle, then the periodic motion is stable. For an interleaved
boost converter, the state evolves through six subsystems: ON and OFF states of the MOS1,
MOS2, and MOS3. As we are interested in the stability of the periodic orbit exhibited by
the converters, we need to calculate the state transition matrix over a whole clock cycle.
The monodromy matrix must be broken into six state transition matrices of the regions
before and after the switching, and five for the transition across the switching surfaces.
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Figure 5. Diagram of the transition matrices and the saltation matrices in healthy switching case
h1 = h2 = h3 = 1.

This matrix Φcycle1 is composed of the fundamental solution matrices where the vector
field is smooth and of the saltation matrices where the vector field crosses a switching
boundary Σr:

Φcycle1(T, 0) = S61 ·Φ6

(
T, dT +

T
3

)
· S56 ·Φ5

(
dT +

T
3

,
2T
3

)
· S45 · Φ4

(
2T
3

, dT
)
·

·S34 · Φ3

(
dT,

T
3

)
· S23 ·Φ2

(
T
3

, dT − T
3

)
· S12 ·Φ1

(
dT − T

3
, 0
)

(27)

and

Φcycle1(T, 0) = eA6( 2T
3 −dT) · S56 · eA5(dT− T

3 ) · eA4( 2T
3 −dT) · cdotS34 · eA3(dT− T

3 ) · eA2( 2T
3 −dT) · S12 · eA1(dT− T

3 ). (28)

Φ6, Φ5, Φ4, Φ3, Φ2, and Φ1 are fundamental solution matrices depending on A6, A5, A4,
A3, A2 and A1. S12, S23, S34, S45, S56, and S61 are the saltation matrices calculated at the
instants dT− T/3, T/3, dT, 2T/3, T/3+ dT, and T. The saltation matrices S23, S45, and S61
are related to the switching from OFF to ON modes. These matrices turn out to identical
matrices I5, because swr (r = 1, 3) are discontinuous at the instants (T/3, 2T/3, and T), and
in consequence ∂swr/∂t = infinite.

From the circuit topology (Figure 1), the switching functions are

sw1(x, t) = kL · x4(t)− x5(t) + kp ·
(

kc · x1(t)−Vre f

)
,

sw2(x, t) = kL · x2(t)− x5(t) + kp ·
(

kc · x1(t)−Vre f

)
,

sw3(x, t) = kL · x3(t)− x5(t) + kp ·
(

kc · x1(t)−Vre f

)
,

(29)

and their time derivation
∂sw1

∂t
=

∂sw2

∂t
=

∂sw3

∂t
= 0. (30)

The normal vectors at the point x are given by
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∂sw1

∂x
= n1 =



∂sw1
∂x1

∂sw1
∂x2

∂sw1
∂x3

∂sw1
∂x4

∂sw1
∂x5


=


kpkc

0
0
kL
−1

, (31)

∂sw2

∂x
= n2 =



∂sw2
∂x1

∂sw2
∂x2

∂sw2
∂x3

∂sw2
∂x4

∂sw2
∂x5

 =


kpkc
kL
0
0
−1

 (32)

and

∂sw3

∂x
= n3 =



∂sw3
∂x1

∂sw3
∂x2

∂sw3
∂x3

∂sw3
∂x4

∂sw3
∂x5


=


kpkc

0
kL
0
−1

. (33)

By substitution of Equations (7), (10), (30), and (31) into Equation (26), the saltation
matrix S12 at the moment t = dT − T

3 can be obtained in the following form:

S12 =


1 + (1−h3)·x4kpkc

den12·C 0 0 (1−h3)·x4kL
den12·C − (1−h3)·x4

den12·C
0 1 0 0 0
0 0 1 0 0

− (1−h3)·x1kpkc
den12·L 0 0 1− (1−h3)·x1kL

den12·L
(1−h3)·x1

den12·L
0 0 0 0 1

, (34)

where

den12 =

(
kikc −

kpkc

RC
− kLh3

L

)
· x1 + kpkc

h1

C
· x2 +

kpkc

C
· x3 + kpkc

h3

C
· x4 +

kL
L
·Vin − ki ·Vre f . (35)

With Equations (13), (16), (30), (32), and (26), at t = dT, the saltation matrix S34 is
given by

S34 =


1 + (1−h1)·x2kpkc

den34·C
(1−h1)·x2kL

den34·C 0 0 − (1−h1)·x2
den34·C

− (1−h1)·x1kpkc
den34·L 1− (1−h1)·x1kL

den34·L 0 0 (1−h1)·x1
den34·L

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

, (36)

where

den34 =

(
kikc −

kpkc

RC
− kLh1

L

)
· x1 + kpkc

h1

C
· x2 + kpkc

h2

C
· x3 +

kpkc

C
· x4 +

kL
L
·Vin − ki ·Vre f . (37)

Using Equations (19), (22), (30), (33), and (26), the saltation matrix S56 at the instant
t = dT + T

3 becomes
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S56 =


1 + (1−h2)·x3kpkc

den56·C 0 (1−h2)·x3kL
den56·C 0 − (1−h2)·x3

den56·C
0 1 0 0 0

− (1−h2)·x1kpkc
den56·L 0 1− (1−h2)·x1kL

den56·L 0 (1−h2)·x1
den56·L

0 0 0 1 0
0 0 0 0 1

, (38)

where

den56 =

(
kikc −

kpkc

RC
− kLh2

L

)
· x1 +

kpkc

C
· x2 + kpkc

h2

C
· x3 + kpkc

h3

C
· x4 +

kL
L
·Vin − ki ·Vre f . (39)

5. Identification of Duty Cycles of the Period-1T Limit Cycle

The duty cycle d is calculated in order to locate the limit cycle for several values of the
load R. When the switch occurs on the surface Σ1, the state vector at t = dT− T

3 is given by

x(dT − T/3) = eA1·(dT−T/3) · x(0) +
∫ dT−T/3

0
eA1·(dT−T/3−τ) · B1u dτ = Φ1 · x(0) + Integ1. (40)

The state vector at the clock pulse t = T/3 is as follows:

x(T/3) = eA2·(2T/3−dT) · x(dT − T/3) +
∫ T/3

dT−T/3
eA2·(T/3−τ) · B2u dτ = Φ2 · x(dT − T/3) + Integ2. (41)

At switching surface Σ2 for t = dT, the state vector can be expressed as

x(dT) = eA3·(dT−T/3) · x(T/3) +
∫ dT

T/3
eA3·(dT−τ) · B3u dτ = Φ3 · x(T/3) + Integ3. (42)

For the second clock pulse t = 2T/3, the state vector is

x(2T/3) = eA4·(2T/3−dT) · x(dT) +
∫ 2T/3

dT
eA4·(2T/3−τ) · B4u dτ = Φ4 · x(dT) + Integ4. (43)

The state vector at the switching surface Σ3 is given by

x(dT + T/3) = eA5·(dT−T/3) · x(2T/3) +
∫ dT+T/3

2T/3
eA5·(dT+T/3−τ) · B5u dτ = Φ5 · x(2T/3) + Integ5. (44)

At the end of the cycle (t = T), the state evolves as

x(T) = eA6·(2T/3−dT) · x(dT + T/3) +
∫ T

dT+T/3
eA6·(T−τ) · B6u dτ = Φ6 · x(dT + T/3) + Integ6. (45)

Substituting the state variables x(dT − T/3) (Equation (41)) by Equation (40), x(T/3)
(Equation (42)) by Equation (41), x(dT), (Equation (43)) by Equation (42), x(2T/3)
(Equation (44)) by Equation (43), x(dT + T/3) (Equation (45)) by Equation (44) leads to the
initial state vector x(0), as follows:

x(0) = (I5 −Φ6Φ5Φ4Φ3Φ2Φ1)
−1 · (Φ6Φ5Φ4Φ3Φ2 · Integ1 + Φ6Φ5Φ4Φ3 · Integ2 +

+Φ6Φ5Φ4 · Integ3 + Φ6Φ5 · Integ4 + Φ6 · Integ5 + Integ6). (46)

With Equation (29), the three switching conditions at different time moments (inside
the interval [0, T)) are identified as

sw1(x, dt− T/3) = kL · x4(dT − T/3)− x5(dT − T/3) + kpkc · x1(dT − T/3)− kp ·Vre f = 0, (47)

sw2(x, dT) = kL · x2(dT)− x5(dT) + kpkc · x1(dT)− kp ·Vre f = 0 (48)
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and

sw3(x, dT + T/3) = kL · x3(dT + T/3)− x5(dT + T/3) + kpkc · x1(dT + T/3)− kp ·Vre f = 0. (49)

From Equations (40) and (47), Equations (40)–(42) and (48), Equations (40)–(44) and (49)
are deduced as follows:[

kpkc 0 0 kL −1
]
·Φ1 · x(0) + Integ1 − kp ·Vre f = 0, (50)

[
kpkc kL 0 0 −1

]
· (Φ3Φ2Φ1 · x(0) + Φ3Φ2 · Integ1 + Φ3 · Integ2 + Integ3)− kp ·Vre f = 0 (51)

and [
kpkc 0 kL 0 −1

]
· (Φ5Φ4Φ3Φ2Φ1 · x(0) + Φ5Φ4Φ3Φ2 · Integ1 +

+ Φ5Φ4Φ3 · Integ2 + Φ5Φ4 · Integ3 + Φ5 · Integ4 + Integ5)− kp ·Vre f = 0. (52)

Each integral Inti and Φi (i = 1, 6) only depend on the d duty cycle, as well as the
initial state vector x(0). After substituting x(0) into Equations (50),(51), or (52), these
equations can be solved numerically with the Newton–Raphson method to obtain the value
of d for the periodic orbit. Afterwards, the eigenvalues of the monodromy matrix (28) can
be calculated.

6. Simulation Results
6.1. System Simulation under Healthy Conditions

The healthy conditions are considered when the MOS1, MOS2, and MOS3 are fault-
free, Equation, h1 = h2 = h3 = 1. The stability can be deduced by the evaluation of the
eigenvalues of the monodromy matrix Φcycle1 of Equation (28) as the load R changes from
1.5 Ω to 2.5 Ω. This matrix has one complex conjugate pair and three real eigenvalues, illus-
trated in Figure 6. Table 1 shows some values of the Floquet multipliers of the monodromy
matrix Φcycle1 of Equation (28) under healthy conditions. One of the real values is close to
unity. We observe in Figure 6 and Table 1 that the eigenvalues 4 and 5, for R = 1.5 Ω, are a
pair of complex conjugated eigenvalues outside the unit circle, implying that the system is
unstable. When R increases from 1.5 Ω to 2.5 Ω, the eigenvalues 4 and 5 move outside of
the unit circle and finally cross the unit circle towards each other. Crossing the unit circle,
the system undergoes a bifurcation phenomenon, leading to the Neimark bifurcation. The
inductor current iL1 = x2 is plotted in the left and the right panels of Figure 7. Indeed, it
can be observed that x2 oscillates at the switching frequency 1/T = 100 kHz for R = 2.5 Ω.
Decreasing R to 1.7 Ω, the chaotic behavior can also be observed.

Figure 6. Locus of the eigenvalues of the monodromy matrix with R variations under healthy
conditions h1 = h2 = h3 = 1.
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Table 1. Eigenvalues of the monodromy matrix as R is varied in healthy switching case
h1 = h2 = h3 = 1.

R (Ω) Real Eigenvalue 1 Real Eigenvalue 2 Real Eigenvalue 3 Complex Eigenvalues 45

1.5 −0.97455 0.44760 0.99957 0.68191± i · 1.24128
1.6 −0.93415 0.56232 0.99955 0.34386± i · 1.14218
1.7 −0.9002 0.6547 0.99954 0.11025± i · 1.04805
2 −0.82493 0.79446 0.99949 −0.24993± i · 0.82523

2.2 −0.78907 0.83561 0.99947 −0.36023± i · 0.71525
2.5 −0.74851 0.87052 0.99944 −0.44962± i · 0.59171
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Figure 7. Time-domain waveforms for different values of R (left panel R = 2.5 Ω, right panel
R = 1.7 Ω).

6.2. System Simulation under One Open-Circuit Faulty Condition

Let us consider that an open-circuit fault occurs in any MOS, e.g., in MOS3 (h3 = 0).
The following can be extended to the two others, MOS1 or MOS2, considering the symmetry
in the interleaved boost converter. The analysis is similar wherever the fault is located.
A high current flows through the components immediately after the fault occurrence. A
too-slow circuit protection could cause a failure: the currents iL1, iL2, iL3 and the ripple of
the output voltage vc are affected. The current iL3 drops down to zero: this is why this state
variable is outside of system analysis. Therefore, from now on, there are four state variables,
x1, x2, x3, and x4: the capacitor voltage vc, the inductor currents iL1, iL2, and the output
of the integrator vi. As a consequence, the subtraction of the current iL3 (or using h3 = 0)
from the equations above, decreases the state vector from five to four elements. Inside the
period T, there are four operation modes: ON OFF, ON ON, OFF ON, and OFF OFF, for
the system under one open-circuit faulty condition. The evolution of the state variables
in different mode during [0, T) can be described by four matrices AP, AQ, AR, AS (4 x 4
dimension) by subtracting the fourth column and line of the Matrices (7) or (10), (13), (16)
or (19), (22). The matrices AP, AQ, AR, and AS can be defined as

AP =



− 1
RC

h1
C

1
C 0

− h1
L 0 0 0

− 1
L 0 0 0

−kikc 0 0 0


, AQ =



− 1
RC

h1
C

h2
C 0

− h1
L 0 0 0

− h2
L 0 0 0

−kikc 0 0 0


, (53)

and



Energies 2022, 15, 352 16 of 23

AR =



− 1
RC

1
C

h2
C 0

− 1
L 0 0 0

− h2
L 0 0 0

−kikc 0 0 0


, AS =



− 1
RC

1
C

1
C 0

− 1
L 0 0 0

− h3
L 0 0 0

−kikc 0 0 0


. (54)

In accordance with the diagram in Figure 8, the monotromy matrix

Φcycle2 = SSP ·ΦS

(
T,

T
3
+ dT

)
· SRS ·ΦR

(
T
3
+ dT,

T
3

)
· SQR ·ΦQ

(
T
3

, dT
)
· SPQ ·ΦP(dT, 0), (55)

has four exponential transition matrices and four saltation matrices. The transition matrices
ΦP, ΦQ, ΦR, and ΦS depend on the matrices AP, AQ, AR, and AS. The saltation matrices
have the following form:

SPQ =


1− (1−h2)·x3kpkc

denPQ ·C − (1−h2)·x3kL
denPQ ·C 0 (1−h2)·x3

denPQ ·C
0 1 0 0

(1−h2)·x1kpkc
denPQ ·L − (1−h2)·x1kL

denPQ ·L 1 − (1−h2)·x1
denPQ ·L

0 0 0 1

, (56)

with

denPQ =

(
kikc −

kpkc

RC
− kLh1

L

)
· x1 + kpkc

h1

C
· x2 +

kpkc

C
· x3 +

kL
L
·Vin − ki ·Vre f . (57)

and

SRS =


1 + (1−h2)·x3kpkc

denRS ·C 0 (1−h2)·x3kL
denRS ·C − (1−h2)·x3

denRS ·C
0 1 0 0

− (1−h2)·x1kpkc
denRS ·L 0 1− (1−h2)·x1kL

denRS ·L
(1−h2)·x1
denRS ·L

0 0 0 1

, (58)

with

denRS =

(
kikc −

kpkc

RC
− kLh2

L

)
· x1 +

kpkc

C
· x2 + kpkc

h2

C
· x3 +

kL
L
·Vin − ki ·Vre f . (59)

where SSP = SQR = I4.
Once these matrices are found, the four eigenvalues of the monodromy matrix

Φcycle2 (55) are determined (Figure 9), where the right panel is an extension of the left
panel. Special attention is paid to the movement of the Floquet multipliers. Three eigenval-
ues remain inside of the unit circle and one is outside: they are given in Table 2 for some
values of R. It can be observed that the fourth eigenvalue of the monodromy matrix Φcycle2
of Equation (55) is always superior to one, indicating a sudden loss of stability for any
value of R inside the interval [1.5 Ω, 2.5 Ω].
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Figure 8. Diagram of the transition matrices and the saltation matrices in faulty switching case h3 = 0,
h1 = h2 = 1.

Figure 9. Locus of the eigenvalues of the monodromy matrix in faulty switching case h3 = 0,
h1 = h2 = 1, when R varies.
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Figure 10. Time−domain waveforms for different values of R (left panel R = 1.5 Ω, right panel
R = 1.7 Ω) and in faulty switching case h1 = h2 = 1, h3 = 0.
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Figure 11. Time−domain waveform for R = 2 Ω in faulty switching case h1 = h2 = 1, h3 = 0.

Table 2. Eigenvalues of the monodromy matrix in faulty switching case h3 = 0, h1 = h2 = 1, as R varies.

R (Ω) Real Eigenvalue 1 Real Eigenvalue 2 Real Eigenvalue 3 Real Eigenvalues 4

1.5 0.862122 0.99999 0.999705 1.02199
1.6 0.056013 0.96466 0.999701 1.02531
1.7 0.079817 0.96455 0.999694 1.02867
2 0.166681 0.96329 0.999678 1.03943

2.2 0.234999 0.96187 0.999669 1.04763
2.5 0.349913 0.95898 0.999657 1.06275

When R increases from 1.5 Ω to 2.5 Ω, the eigenvalues 4 are always outside of the unit
circle: the system is unstable. Indeed, it can be observed that the inductor current iL1 = x2
(plotted in the left panel of Figure 10 for R = 1.5 Ω) presents a no-periodicity undergoing to
a chaotic behavior. It is essential to study the occurrence of chaos due to the variation of
the system parameters. When a bifurcation occurs, an abrupt change in the steady-state
behavior of the system also occurs. The very irregular form of iL1 is due to the intrinsic
nonlinear dynamics driven by the on and off durations of the switch MOS which vary
during a period of the clock. When R increases to 1.7 Ω, the behavior remains chaotic, as
shown in the right panel of Figure 10. Figure 11 finally represents the inductor current iL1
for R to 2.2 Ω. This periodic waveform is also called period – 2T, because the pattern of a
large peak followed by a small peak is repeated approximately once every two clock cycles.

6.3. Development of a Fault-Tolerant Strategy with the Slope Compensation

The same voltage and inner current controller are employed for the closed loops
control of the converter. Based on [26,27,35], it is possible to increase the stability with the
movement of the eigenvalues from the outside to the inside of the unit circle, by changing
the monodromy matrix Φcycle2 (55). The eigenvalues are outside of the unit circle in open-
circuit faulty condition, which indicates instability. The monodromy Φcycle2 matrix depends
on ΦP, ΦQ, ΦR, and on ΦS, and the saltation matrices SPQ and SRS. The exponential of
matrices ΦP, ΦQ, ΦR, and ΦS depend on the state matrices AP, AQ, AR, and AS; they
cannot be modified because they are dependent on the design of the converter [26,27]. To
guarantee the stability of 1T-periodic orbit, we propose to modify the saltation matrices SPQ
and SRS and, consequently, the switching functions. These switching functions affect the
saltation matrices SPQ and SRS by their time derivatives. Changing the switching function
by addition of a slope compensation, the time derivative of the saltation matrices can be
influenced, in agreement with the observations reported in earlier studies [26,27]. The
vector norm of the saltation matrices SPQ and SRS is independent of state values, because
the control feedback is based on the change of the ramp time signal limits.
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A fault-tolerant strategy with slope compensation is employed to avoid the instability
illustrated in Figure 12. This strategy is applied to improve degraded mode operation
and to allow continuity of functionality of the interleaved boost converter. The slope
compensation requires few additional components (Figure 12) and has the following form:

Vslope = VL + a · t
T

, (60)

where a = VU −VL. Inside the interval [0,T) at t = dT and t = dT + T/3, two switching
conditions exist and have the following forms:

kpkc · x1(dT)− kp ·Vre f − x4(dT)− kL · x2(dT) + VL + a · d = 0, (61)

and

kpkc · x1(dT + T/3)− kp ·Vre f − x4(dT + T/3)− kL · x3(dT + T/3) +
(

VL + a · d +
a
3

)
· e

T
3 = 0. (62)

Figure 12. Interleaved boost converter with Vin = 14 V, Vre f = 2.4 V, L1 = L2 = L3 = L = 560 µH, C =
300 µF, R = 1.5 Ω–2.5 Ω, T = 0.00001 s, ki = 50 , kc = 0.1, kp = 0.5, kL1 = kL2 = kL3 = kL = 0.1.

The elements of the saltation matrices SPQ and SRS have the following denominators:

denPQ =

(
kikc −

kpkc

RC
− kLh1

L

)
· x1 + kpkc

h1

C
· x2 +

kpkc

C
· x3 +

kL
L
·Vin − ki ·Vre f +

a
T

. (63)

denRS =

(
kikc −

kpkc

RC
− kLh2

L

)
· x1 +

kpkc

C
· x2 + kpkc

h2

C
· x3 +

kL
L
·Vin − ki ·Vre f +

a
T
· e

T
3 . (64)

where a/T and (a/T) · eT/3 represent the time derivation of the surfaces.
Figure 13 shows the eigenvalues for several values of the load resistance R, indicating

the stability of the interleaved boost converter. All the eigenvalues are inside the unit circle,
as can be seen in Table 3 for certain values of R.
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The inductor current x2 = iL1 response with slope compensation for R = 1.5 Ω and
R = 2.5 Ω is shown in Figure 14, respectively in Figure 15. It is clear that x2 current,
after a time transient (left panel of Figure 14, respectively left panel of Figure 15), settles
down to the stable T-period limit cycle (right panel of Figure 14, respevtively right panel of
Figure 15). A fault-tolerant strategy based on the slope compensation increases the stability
of the interleaved boost converter under an open-circuit faulty condition within the whole
range of the load R = 1.5–2.5 Ω. As its 1T-period orbit is stable, the eigenvalues of the
monodromy matrix are all inside the unit circle.

Figure 13. Locus of the eigenvalues of the monodromy matrix varying R in faulty switching condition
h1 = h2 = 1, h3 = 0, and with a slope compensation.

Table 3. Eigenvalues of the monodromy matrix in faulty switching case h1 = h2 = 1, h3 = 0 and with
a slope compensation.

R (Ω) Real Eigenvalue 1 Real Eigenvalue 2 Complex Eigenvalues 34

1.5 0.984378 0.99999963 0.98864833± i · 0.02452323
1.6 0.984235 0.99999962 0.98932429± i · 0.02483646
1.7 0.984234 0.99999961 0.98992429± i · 0.02509463
2 0.984229 0.99999959 0.99136832± i · 0.02564743

2.2 0.984227 0.99999958 0.99211371± i · 0.02589673
2.5 0.984225 0.99999957 0.99300967± i · 0.02616516
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Figure 14. Time−domain waveforms for R = 1.5 Ω in faulty switching case h1 = h2 = 1, h3 = 0, and
with a slope compensation.
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Figure 15. Time−domain waveforms for R = 2.5 Ω in faulty switching case h1 = h2 = 1, h3 = 0, and
with a slope compensation.

7. Conclusions

Interleaved converters use an increasing number of power electronics switches; this is
an opportunity to develop fault-tolerant strategies. We herein introduced a novel mathemat-
ical function enabling to simultaneously model both states (Equation, healthy and faulty
conditions) of an MOS switch, leading to a unique model of the system. It is noticeable that
the proposed function is universally applicable to any interleaved or single-phase dc–dc
converter. Then, we focused on the converter stability under healthy or faulty conditions
with the monodromy matrix and its Floquet multipliers. They indicate a partial stability of
the system with healthy conditions (for an interval of the load values) due to a Neimark
bifurcation, and a total instability in open-circuit faulty conditions. Then, we introduced a
fault-tolerant strategy based upon the peak current control with slope compensation: not
only does it extend the stable range of the load variation, but it also ensures stability in
faulty conditions, on the same extended interval. Finally, the simulation results validate
the effectiveness of our method and confirm the theoretical analysis with emphasis on
the open-circuit fault-tolerance capability. In addition, the suggested fault strategy can be
extended to other power stages used in different applications.
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