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Abstract: A battery management system (BMS) plays a crucial role to ensure the safety, efficiency,
and reliability of a rechargeable Li-ion battery pack. State of charge (SOC) estimation is an important
operation within a BMS. Estimated SOC is required in several BMS operations, such as remaining
power and mileage estimation, battery capacity estimation, charge termination, and cell balancing.
The open-circuit voltage (OCV) look-up-based SOC estimation approach is widely used in battery
management systems. For OCV lookup, the OCV–SOC characteristic is empirically measured
and parameterized a priori. The literature shows numerous OCV–SOC models and approaches to
characterize them and use them in SOC estimation. However, the selection of an OCV–SOC model
must consider several factors: (i) Modeling errors due to approximations, age/temperature effects,
and cell-to-cell variations; (ii) Likelihood and severity of errors when the OCV–SOC parameters are
rounded; (iii) Computing system requirements to store and process OCV parameters; and (iv) The
required computational complexity of real-time OCV lookup algorithms. This paper presents a review
of existing OCV–SOC models and proposes a systematic approach to select a suitable OCV–SOC for
implementation based on various constraints faced by a BMS designer in practical application.

Keywords: battery management systems; Li-ion battery; state-of-charge estimation; open-circuit
voltagemodels; Coulomb counting; battery model parameter estimation; curve fitting

1. Introduction

Li-ion batteries first entered the commercial market as portable batteries for consumer
electronics. Today, the use of battery-operated rechargeable systems is envisioned to be the
most promising alternative for hazardous emissions due to the use of fossil fuels [1]. More-
over, passenger electric vehicles will continue to see the dominant use of Li-ion batteries [2].
In recent times, it has become customary to constantly monitor and manage a battery using
a battery management system (BMS) [3] to ensures the safe, efficient, and reliable operation
of the battery. BMSs are usually made of the following three components: a battery fuel
gauge (BFG), an optimal charging algorithm (OCA), and cell balancing circuitry (CBC).
The BFG is the most important element of a BMS, and it estimates several important states
and parameters of the battery, including the state of charge (SOC). The CBC ensures safety
by preventing cell imbalance between batteries in a battery pack. The OCA allows faster
charging during usage without affecting the battery’s health. It is important to note that
accurate SOC estimation by the BFG is crucial for efficient BMS operation, as both CBC and
OCA depend on it. Furthermore, the effect of error in the SOC estimation can also lead
to compounded problems such as the reduced lifespan of batteries, over-charging/over-
discharging, inefficiency, safety, and reliability issues [4]. Thus, research on accurate SOC
estimation has intensified over the past decade, and several approaches have been studied
for application in BMS.

Open-circuit voltage (OCV) is the measure of the electromotive force of the battery.
The OCV of a battery is shown to possess a monotonically increasing relationship with the
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SOC of a battery. Thus, several approaches and models based on the OCV–SOC charac-
terization have been studied for SOC estimation. For this, an OCV–SOC characterization
is conducted in a laboratory setting using a scientific-grade battery cycler that is able to
maintain precise voltage and current values across the battery terminals. Figure 1a shows
an 8-channel battery cell cycler made by Arbin; this device allows the collection of battery
characterization data simultaneously from eight battery cells at the same time. Moreover,
the battery needs to be kept at a fixed temperature in an environmental chamber during
the OCV–SOC characterization. Figure 1b shows an environmental chamber made by
Cincinnati Subzero for battery research.

(a) Battery cycler (b) Environmental chamber

Figure 1. Scientific-grade equipment used to collect OCV characterization data.

The data collection for the OCV characterization is designed in a way that the effects
of the hysteresis and relaxation phenomenons of the battery can be nullified in the obtained
OCV model. Depending on the OCV modeling approach, the data collection may also vary.
In [5], a slow-rate data collection approach is demonstrated on various existing OCV–SOC
models for parameter estimation. In this approach, a fully charged battery is very slowly
discharged (typically at a C/30 rate) using a constant current until it becomes empty. Then,
it is charged back to full charge using the same amount of constant current. This entire
discharge–charge process takes 60 h. Constant current ensures that the capacitances of the
equivalent circuit model remain saturated; a very low magnitude of current assures that
the hysteresis effect can be approximated as an equivalent resistance. By measuring the
voltage and current values during this entire discharge/charge process, the OCV–SOC
parameters are obtained. It is preferred that these data are free of measurement noise and
bias. High-precision battery cyclers can maintain constant currents with very little variation
and can measure and store voltage and current with very little measurement noise.

Different OCV–SOC models exist in the literature to adequately represent the OCV
curve in the entire span of SOC (0–100%). Several reasons can be stated as to why many
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variations in the parametric expression for different models exist. Each model approximates
the OCV curve differently for the lower (≈0–30%) and higher (≈80–100%) ranges of SOC.
For example, the OCV–SOC relationship is quite approximately a straight line between
30% and 80% of the SOC. The straight-line model is the most simplistic approach to OCV–
SOC characterization, needing just two parameters; however, the accuracy of the model is
compromised at very low and very high SOC regions. In order to improve the accuracy
of representation, higher-order empirical models utilizing special functions, such as the
polynomial [6], trigonometric [7], logarithmic [8–11], and exponential functions [12,13],
are used. The estimated parameters using these special functions often need to be rep-
resented up to their nth decimal digit for the precise estimation of SOC (for example,
in combined+3 model [11], n needs to be as high as six to preserve the modeling accu-
racy). This directly translates to using a large number of bits to completely represent,
store, and process these parameters. However, many practical applications (see examples
form Texas Instruments [14] and Maxim Integrated [15]) only allow low-bit processing for
BFGs, requiring the traditional OCV–SOC parameters to be rounded. Rounding has been
shown to significantly alter the model representation, resulting in poor SOC estimation
accuracy [16]. To be able to represent the OCV–SOC curve in low-computing environments
precisely, tabular models can be used [16]. Finally, variations in battery chemistries are also
a driving factor for varied OCV–SOC representations.

Different OCV–SOC models vary in their formulation, in the methods of estimation
of their parameters, and eventually in the resulting SOC estimation error. While accurate
SOC estimation is crucial, selecting a model solely based on the accuracy of estimation
may not be suitable in many applications. For example, in high-power restrictive medical
equipment, such as an implantable cardiac pacemaker, reducing computational complexity
is crucial [17], while the accuracy of SOC estimation is also important. In the case of
electric vehicles (EV), for example, drivers are found to experience range anxiety [18]. Here,
the accuracy of SOC estimation is crucial, and the computational requirement for SOC
estimation is not a concern. These examples illustrate that BMS designers need to take
multiple constraints before selecting an OCV–SOC model. There needs to be a systematic
approach to selecting a particular OCV–SOC model from the numerous models presented
in the literature for a specific application.

This paper presents a systematic approach to OCV–SOC model selection based on
multiple selection criteria. First, each model is individually evaluated in terms of the
different metrics considered—accuracy, numerical stability, computational complexity,
and system requirements. The computed metrics for each model are then ranked in
increasing order based on the definition of the metric. For example, the model with the
highest accuracy is ranked first under the “accuracy” category. However, for computational
complexity, the model with the lowest computational complexity is ranked first. Once
the individual metrics are ranked, an overall ranking system, based on the Borda count
voting system [19], is pursued to combine all the metrics. The Borda count voting system
ranks the candidate models in the order of the most preferred to the least based on all the
selection criteria. The objective of this work is to give the reader a systematic procedure for
selecting a model based on different criteria, depending on the application of their choice.
Finally, the proposed approach is demonstrated using the OCV–SOC characterization data
collected from a cylindrical battery cell.

In Section 2, the eligibility criteria for the literature review and the summary of OCV–
SOC characterization is provided. Section 3 lists possible OCV models that have been used
in the literature for OCV characterization. These models are classified under four categories:
linear models, nonlinear models, hybrid models, and tabular models. Section 4 details
approaches to estimate the parameters for the four types of models presented in Section 3.
Given all the possibilities for OCV modeling, which model is suitable for a particular BMS
design? Section 5 answers this question by introducing several model selecting metrics.
Finally, Section 6 provides an example of selecting a model under multiple constraints.
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2. Literature Review

The initial search involved the keyword ‘OCV model-based SOC estimation’, which
returned 41 articles on engineering village [20]. Among them, the articles meeting the
following inclusion criteria were chosen: (i) written in English, (ii) published in peer-
reviewed journals, and (iii) empirical, tabular, and/or fused models. In total, 26 articles
were selected based on the inclusion criteria. In addition, a few other articles were also
selected from the authors’ previous work on OCV–SOC characterization [5].

A summary of the existing OCV modeling approaches from the articles is provided
in Table 1. All the models listed in Table 1 vary in their formulation, in the methods of
estimation of such parameters, and eventually in the errors of estimation of SOC. In Sec-
tion 3, select empirical OCV–SOC modeling approaches from Table 1 are grouped into
four categories: linear, nonlinear, hybrid, and tabular. The mathematical equations and
parameterization of these approaches are also described in the next section.

Table 1. Literature review OCV modeling approaches.

Ref. Description Category

[12,21,22]

A double exponential model with a quadratic term with five parameters each to represent
the charging and discharging curves is proposed. It is shown that the proposed model is the
most precise among the models compared in terms of evaluation of the root mean square

error (RMSE) and R2 metrics.

nonlinear

[23] In addition to the polynomial terms, a fractional-order model is proposed to show OCV as a
fractional-order function of SOC. Linear

[6,24] A third-order polynomial combined with exponential terms with six parameters is
proposed to denote OCV as a function of SOC. nonlinear

[8,9,25,26] A hybrid empirical battery model combining Shepherd, Unnewehr universal, and Nernst
models is used to represent the OCV curve. Linear

[27] OCV is modeled as the sum of logarithmic, linear, and shifted exponential functions of the
SOC with six parameters. nonlinear

[28,29] An eighth-order polynomial model with nine parameters is used to demonstrate the
OCV–SOC relationship. Linear

[30] A complex OCV model with twelve parameters, comprised of linear and shifted
exponential terms is proposed. nonlinear

[31]

A fused OCV model is proposed, where the OCV curve is segmented to local sub-intervals
and then fused together. Appropriate models are used to fit the curve in the local regions.

The OCV sub-models are then fused into a fusional OCV model. A fourth-degree
polynomial and logarithmic and exponential functions are used in each of the local

sub-regions.

Hybrid nonlinear

[32]
In addition to the dependence of OCV on SOC, cell voltage recovery and hysteresis are

factored in the modeling of the OCV–SOC curve, increasing the total number of parameters
to be estimated.

nonlinear

[33–35] An OCV–SOC lookup table is built from the low-current OCV experimental data by linear
interpolation of the battery voltages at two consecutive charge and discharge cycles. Tabular

[36] An approach based on piecewise cubic Hermite interpolation is used to build the OCV
model. Hybrid

[37] An improved combined model for modeling the OCV–SOC relationship. Linear

[13,24,38,39] Exponential modeling with variations in OCV–SOC formulations. nonlinear

[7] Electrical model to determine the short-term battery behavior nonlinear

3. Empirical OCV–SOC Models

The open-circuit voltage of the battery has a monotonically increasing relationship
to the SOC. This relationship is the backbone of the state-of-charge estimation algorithms,
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i.e., by measuring the voltage across the battery terminals, its SOC can be estimated as long
as the OCV–SOC parameter is already available.

3.1. Linear Regression Models

A linear OCV model can be written as

V◦(s) =
L−1

∑
i=0

pi(s)ki = p(s)Tk (1)

where V◦(s) denotes the OCV, s ∈ [0, 1] denotes the SOC, and p(s)T = [p0(s), p1(s), . . . ,
pL−1(s)] is a row vector of linear/nonlinear functions of s, and k = [k0, k1, . . . , kL−1]

T is the
OCV parameter vector. The simplest form of the linear OCV model is the Unnewehr universal
model [26,40] which is simply a straight line:

V◦(s) = p(s)Tk = k0 + k1s (2)

which has p(s)T = [1 s] and k = [k0 k1]
T . Some linear models introduced in the literature

are listed below:

• Shepherd model [26,41]

V◦(s) = k0 +
k1

s
(3)

• Nernst model [8,9,26]

V◦(s) = k0 + k1 ln(s) + k2 ln(1− s) (4)

• Combined model [10]

V◦(s) = k0 +
k1

s
+ k2s + k3 ln(s)k4 ln(1− s) (5)

• Combined+3 model [11]

V◦(s) =k0 +
k1

s
+

k2

s2 +
k3

s3 +
k4

s4 + k6s + k6 ln(s) + k7 ln(1− s) (6)

• Polynomial model [6]

V◦(s) =k0 + k1s + . . . + kmsm + km+1s−1 + . . . + km+ns−n (7)

• Exponential model [27]

V◦(s) =k0 + k1es + . . . + kmesm
+ km+1e−s + . . . + km+ne−sn

(8)

The parameters of all the linear models from (2) to (8) can be estimated through the
linear least square estimation approach. Section 4 demonstrates an example of linear least
squares model parameter estimation in detail.

3.2. nonlinear Regression Models

The nonlinear model is written in general form as

V◦(s) = f (s, k) (9)

where k denotes a vector of model parameters. Similar to before, the number of parameters,
i.e., the length of k, depends on the model. Some possible nonlinear models from the
literature are listed below:
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• Double exponential model [12].

V◦(s) = k0 + k1s + k2

(
1− e−k3s

)
+ k4

(
1− e−

k5
1−s

)
(10)

• Nonlinear exponential model-1 [13]

V◦(s) = k0 −
k1

s
+ k2e−k3(1−s) (11)

• Nonlinear exponential model-2 [24]

V◦(s) = k0e−k1s + k2 + k3s + k4s2 + k5s3 (12)

• Nonlinear exponential model-3 [38,39]

V◦(s) = a1e(b1s) + a2e(b2s) + cs2 (13)

• Rational approximant [42]

V◦(s) =

m
∑

i=0
kisi

1 +
n
∑

j=1
k j+msj

, m ≥ 0, n > 0 (14)

• Sum of sine model [7]

V◦(s) = a1sin(b1s + c1) + a2sin(b2s + c2) + a3sin(b3s + c3) (15)

3.3. Hybrid or Piecewise Linear Models

Hybrid modeling seeks to approximate the OCV–SOC curve as piecewise linear
functions. One section of the OCV curve, where SOC∈ [0 ζ], is modeled using one of the
linear functions presented in Section 3.1, and the other section of the OCV curve, where
SOC∈ [ζ 1], is modeled using another the linear function of Section 3.1. The advantage of
hybrid modeling is that it offers better accuracy and computational efficiency in favor of
more complex models. The formal representation of the two-piecewise linear OCV model
is as follows:

V◦(s) =

{
pi(s)

Tki if s≥ ζ

pj(s)
Tkj if s< ζ

(16)

where each of pi(s) and pj(s) denote one of the several linear OCV models in Section 3.1.
When pi(s) and pj(s) represent two straight lines, the minimum number of parameters
will be five: two parameters each for the straight lines and ζ. These five parameters can be
obtained using the hybrid optimization step briefed in Section 4.

3.4. Tabular Model

The OCV–SOC characterization approaches discussed so far required the estimation
of a parameter vector k. Depending on the model, the parameter k may require a high-
precision floating point system for storage in a BMS. The tabular model stores the OCV–SOC
pairs as a table. Table 2 shows an 11-point OCV–SOC table. The advantage of storing the
OCV–SOC characterization as a table is that it does not require a high-precision floating
point system to store the values. The accuracy of the OCV–SOC table is not likely to be
severely compromised by rounding these values (based on the available memory system).
Some battery fuel gauging (BFG) algorithms require the derivative of the OCV function to
recursively estimate SOC using filtering techniques. Hence, it is desired for an OCV–SOC
table to store the derivatives as well.
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Table 2. A Sample OCV–SOC table.

s V◦(s) dV◦(s)
ds

0.0 3.0519 44.4073
0.1 3.6594 0.6830
0.2 3.7167 0.8131
0.3 3.7611 0.4807
0.4 3.7915 0.4393
0.5 3.8275 0.6055
0.6 3.8772 0.8113
0.7 3.9401 0.9777
0.8 4.0128 1.0915
0.9 4.0923 1.1822
1.0 4.1797 1.3405

Table 2 was formed by uniformly sampling SOC. The approximation error can be
shown to be proportional to the curvature of the OCV–SOC curve. This implies a better
strategy is needed to sample the OCV–SOC values for storage as a table. Section 4.4 details
an improved approach to obtain samples for OCV–SOC tables.

4. OCV–SOC Model Parameter Estimation

In this section, the detailed approach to estimating the OCV–SOC parameters, from data
collection to parameter estimation, is presented. The data collection needs to be performed
using professional, high-precision battery cyclers that have very low measurement noise.
Figure 1a shows an Arbin battery cycler that can be programmed to execute the above data
collection procedure. It is also important to keep the temperature fixed, because the change
in temperature translates to changes in internal resistance. A professional environmental
chamber, similar to the one shown in Figure 1b, needs to be used to keep the temperature
fixed during the experiment.

The data for OCV characterization needs to be collected in a specific way such that the
parameter estimation will not be affected by the elements of the equivalent circuit model in
a battery.

The following procedure needs to be followed for the data collection of OCV–SOC char-
acterization:

1. Fully charge the battery at room temperature. In order to fully charge the battery,
the constant-current (CC) constant-voltage (CV) approach can be used. The CV
charging is terminated when the charging current ic falls below ic < C/N.

2. Bring the battery to a fixed temperature in which the OCV characterization is to
be performed.

3. Slow-discharge the battery with a discharging current of id = C/N rate until the
terminal voltage reaches v = OCVmin. Let us denote the total discharge time as Td.

4. Slow-charge the battery with a charging current of ic = C/N rate until the terminal
voltage reaches v = OCVmax. Let us denote the total discharge time as Tc.

Here, the term C/N is used to indicate the magnitude of the current. For example, let
us say the manufacturer rated capacity of the battery is C = 1.5 Ah. Then, the current at
C/30 rate is ic = id = 1.5/30 = 0.05 A.

The voltage and current data in the discharge and charge process is logged at a
reasonable sampling rate. Considering that the discharge rate is very low, a sampling time
of ∆ = 60 seconds is sufficient for OCV modeling. When N is set to N = 30, i.e., when
the discharging and charging currents are set to ic = id = C/30 A, the number of samples
collected during discharging is kd = 30× 60 = 1800. It must be noted that the actual
number of kd may vary depending on the available capacity of the battery, regardless of the
labeled capacity.

Using the notations discussed so far, let us denote the voltage and current data
collected during the discharging step (step 3) as v(1), v(2), . . . , v(kd) and i(1), i(2), . . . , i(kd),
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respectively. Similarly, let us denote the voltage and current data collected during the
charging step (step 4) as v(kd + 1), v(kd + 2), . . . , v(kc) and i(kd + 1), i(kd + 2), . . . , i(kc),
respectively. Using the notations introduced so far, the discharging and charging time can
be written as

Td = ∆kd (17)

Tc = ∆(kc − kd) (18)

The charge/discharge capacities of the battery are defined as

Qc = icTc (19)

Qd = idTd (20)

where Qc and Qd denote the charge and discharge capacities, respectively.
The data for the demonstration was generated using the Samsung-30T INR21700

battery, shown in Figure 2. The features of the battery are summarized in Table 3. Figure 3
shows the voltage v(k) and current i(k) measurements during the discharging and charging
steps of the data collection [43]. The remainder of this section details how these data are
used to estimate the OCV parameters of a battery.

Figure 2. Samsung-30T INR21700 Li-ion battery

Table 3. Specifications of Li-ion battery.

Specification Unit

Nominal capacity 3000 mAh
Maximum continuous discharge current 35 A

Nominal voltage 3.6 V
Height 70 mm

Diameter 21 mm
Weight 70 g

Internal resistance 15 mΩ
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Figure 3. Measured voltage and current during charge and discharge at 25 °C [43].

First, let us define the SOC at a given time as

s(k) , s at time k (21)

where the notation ,, that reads “defined as”, is used to assign a new variable name with a
slightly different context, e.g., the value s at time k is defined as s(k) in (21). The true SOC
at time k can be recursively computed using the Coulomb counting equation:

s(k + 1) = s(k) +
∆ki(k)
3600Q

(22)

where ∆k = ∆ is the time difference between two measurements in seconds, i(k) is the
current (in Amperes) through the battery, and

Q =

{
Qd i(k) ≤ 0
Qc i(k) > 0

(23)

is the battery capacity in Ampere hour (Ah).

Remark 1. It is important to note that although Coulomb counting is the easiest approach to
calculate SOC at any given instant, it suffers from (i) initial SOC error, (ii) current measurement
errors, (iii) current integration error, (iv) timing oscillator error, and (v) uncertainty in battery
capacity [44].

So far, v(k) and i(k) denoted the voltage across the battery terminals and current
through the battery, respectively, during the experiment. Even in high-precision systems,
the measured quantities will incur some measurement noise. Let us denote the measured
voltage and current using the following

zv(k) =v(k) + nv(k) (24)

zi(k) =i(k) + ni(k) (25)
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where v(k) and i(k) denote the true voltage across the battery terminals and current through
the battery, nv(k) denotes the voltage measurement noise that is assumed to be zero-mean
white with standard deviation (s.d.) σv, and ni(k) denotes the current measurement noise
that is assumed to be zero-mean white with s.d. σi.

During the OCV experiment, i.e., when the battery is being slowly charged or dis-
charged, the terminal voltage can be written as

zv(k) = V◦(s(k)) + h(k) + i(k)Rint + nv(k) (26)

where h(k) is the hysteresis voltage. By substituting i(k) = zi(k)− ni(k) in (26), it can be
rewritten in terms of the measured current as follows

zv(k) = V◦(s(k)) + h(k) + zi(k)Rint + n(k) (27)

where the noise term n(k) can be shown to be zero-mean with σz = σ2
v + σ2

i R2
int as the s.d.

Since the OCV test is performed at a very low current, it can be assumed that the
hysteresis is proportional to the current only, i.e.,

h(k) ∝ i(k) (28)

Hence, (27) can be rewritten as

zv(k) = V◦(s(k)) + zi(k)Reff + n(k) (29)

where the effective resistance
Reff = Rint + Rh (30)

is the summation of the internal resistance Rint and the hysteresis equivalent resistance Rh.
The goal is to estimate the parameters that define the OCV V◦(s(k)) in (29). Depending

on how the OCV is defined in Section 3, the parameter estimation approach needs to be
different. For linear models summarized in Section 3.1, the linear least squares method
is explained in Section 4.1. For nonlinear models summarized in Section 3.2, the linear
least squares method is explained in Section 4.2. Parameter estimation of the hybrid linear
models of Section 3.3 is summarized in Section 4.3, and Section 4.4 summarizes approaches
to create OCV–SOC tables.

4.1. Linear Least Squares

The linear OCV–SOC model parameter estimation approach is described in this section
using one of the linear models, the combined+3 model (6), presented in Section 3.1. A
similar approach can be followed to estimate all other linear models.

Using vector notations, the observation model in (29) can be written as,

zv(k) =
[
p◦(s(k))T i(k)

]
︸ ︷︷ ︸

p(k)T

[
k◦
Reff

]
︸ ︷︷ ︸

k

+nv(k) (31)

where

k◦ = [k0 k1 k2 k3 k4 k5 k6 k7]
T (32)

and

p◦(s(k))T = [1
1

s(k)
1

s2(k)
1

s3(k)
1

s4(k)
s(k) ln(s(k)) ln(1− s(k))] (33)

By considering a batch of N voltage observations, (31) can be written as

v = Pk + n (34)

where
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v = [zv[1] zv[2] . . . zv[kd]]
T (35)

P = [p[1] p[2] . . . p[kd]]
T (36)

n = [n[1] n[2] . . . n[kd]]
T (37)

k = [k0 k1 k2 k3 k4 k5 k6 k7 Reff]
T (38)

The least squares estimate of the parameter vector is given by

k̂ =
(

PTP
)−1

PTv (39)

Now, for a given SOC, the corresponding OCV estimate V̂◦(s) is computed as

V̂◦(s) = p◦(s)Tk̂◦ (40)

where k̂◦ is formed by the first 8 elements of k̂. Given the voltage and current data,
v(1), v(2), . . . , v(kc) and i(1), i(2), . . . , i(kc), respectively, corresponding to the plot in Figure 3,
the following Matlab codes will generate the parameter vector k corresponding to the com-
bined+3 model and generate Figure 4.

The estimated OCV parameters are

k0 = −6.6266, k1 = 157.3029, k2 = −26.8590, (41)

k3 = 2.9721, k4 = −0.1440, k5 = −127.7601, (42)

k6 = 224.5953, k7 = −1.8463, k8 = 0.1984 (43)

and the estimated effective resistance is Reff = 0.14809 Ω.
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Figure 4. OCV model of a Li-ion battery.

4.2. Nonlinear Least Squares

For nonlinear models, we rewrite (34) in the following form

v = v◦(k◦) + iReff + w (44)
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where

k = [k◦ Reff]
T

v◦(k◦) = [V◦(s(1), k◦) . . . V◦(s(kc), k◦)]
T

i = [i(1) i(2) . . . , i(kc)]

(45)

and w is the noise vector.
The coefficients of the nonlinear regression-based models were computed using the

Matlab optimization toolbox function for nonlinear least squares lsqnonlin. The nonlinear
least squares problem solves the following problem

k̂ = arg min
k
‖v− v̂‖ (46)

4.3. Hybrid Estimation

Hybrid model parameters are estimated using constrained least squares estimation
techniques. The following constraints are used:

1. The derivative is always positive. This constraint ensures that the OCV is a monotoni-
cally increasing function in terms of SOC.

2. Both piecewise functions and their first and second derivatives are the same at the tran-
sition point ζ. This constraint ensures that the transition between one piecewise linear
function to another is seamless and without any sudden changes in characteristics.

Let us rewrite the linear observation model (34) as

v1 = P1(s)k1 + n1 s ∈ [0, ζ]

v2 = P2(s)k2 + n2 s ∈ [0, ζ]
(47)

The observation model (47) can be combined as follows

ṽ =

[
v1
v2

]
=

[
P1(s) 0

¯0
¯

P2(s)

][
k1
k2

]
+

[
n1
n2

]
ṽ = P̃(s)k̃ + ñ (48)

The model parameters of a hybrid, bi-linear OCV–SOC function are obtained through
the following optimization:

{k̂1, k̂2} = arg min
k̂1,k̂2

∥∥(P̃(s)k̃− ṽ
)∥∥ (49)

subject to

dPik̂1

ds
> 0

dPjk̂2

ds
> 0

Pi(s)k̂1

∣∣∣
s=ζ
− Pj(s)k̂2

∣∣∣
s=ζ

= 0

dPi(s)k̂1

ds

∣∣∣∣∣
s=ζ

− dPj(s)k̂2

ds

∣∣∣∣∣
s=ζ

= 0

d2Pi(s)k̂1

ds2

∣∣∣∣∣
s=ζ

− d2Pj(s)k̂2

ds2

∣∣∣∣∣
s=ζ

= 0

(50)

where ‖·‖ denotes the second norm.
The constrained least squares solution ‘lsqlin’ in the optimization toolbox of Matlab

can be used to solve the above optimization for a given value of ζ. The optimization can
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be repeated for a range of ζ values to find a better value for ζ that minimizes the cost
function (49).

4.4. Tabular Model Estimation

In order to understand the need to have a better approach than uniform sampling, let
us first define the approximation error. Consider a function f (x) that is defined in x ∈ [a, b].
The goal is to represent this function at n discrete points, i.e.,

g(x) =
n

∑
i=1

f (x)δ(x− xi) i = 1, . . . , n (51)

such that the sampling error is minimized. Let us define the sampling error as the following

e(xi) =
∆i
2
( f (xi) + f (xi+1))−

∫ xi+1

xi

f (x)dx i = 2, . . . , n (52)

where

∆i = xi+1 − xi (53)

The objective is to find a nonuniform sampling of the function such that the sum of
the squared sampling errors in (52) is minimized. That is, for a given n

X̂ = arg min
X

n

∑
i=1

e(xi)
2 (54)

where X = {x1, x2, ...xn}.
Figure 5 shows an example of a sampling error when ∆i = xi+1 − xi = ∆, i.e., uniform

sampling. It can be seen that the approximation error increases with the curvature (second
derivative) of the function.

x1 x2 x3 x4 x5 x6 x7

f(
x
)

Figure 5. It can be seen that the uniform sampling error increases with the magnitude of the curvature.
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The curvature of the function f (x) is formally defined as

C(x) =
d2 f (x)

dx2 (55)

Let us assume, without loss of generality, that the sign of curvature changes at k(≥ 1)
points and denote these k values as xi1 , xi2 , . . . , xik . That is, xi = {xi1 , xi2 , . . . , xik} satisfies

C(xij) =
d2 f (x)

dx2

∣∣∣∣
x=xij

= 0, j = 1, 2, . . . , k (56)

These k values of xi are denoted as the ‘inflection points’ or ‘critical points’ from now
on. The nature of the curve significantly changes at critical points. When the function
changes from convex to concave, the sign of the curvature changes from positive to negative
and vice versa; hence, one support point is assigned to each of the k critical points. Moreover,
one support point is assigned, each at the start and end of the interval [a, b], i.e., out of
the n available support points, k + 2 points—x1 = a, xn = b and the k values of xi—are
preassigned. These k + 2 points are denoted as the ‘preassigned points’ from now on. This
leaves us with n− k− 2 points to be assigned to k + 1 segments created by the k inflection
points. The selection of these samples consists of the following two steps:

(a) Find the number of support points to be allocated to each of the k + 1 sections created
by the k inflection points.

(b) Place the support points in each section.

The following notations are used to describe these approaches:

r =
⌊

n− k− 2
k + 1

⌋
(57)

m = mod
(

n− k− 2
k + 1

)
(58)

where b·c denotes the floor operation and mod(·) denotes the modulus operation. Here,
one can see that

n− k− 2 = r(k + 1) + m (59)

The absolute area of the curvature in each of the k + 1 sections is defined as

Aj =
∫ xij+1

xij

|C(x)|dx j = 0, 1, . . . , k (60)

where xi0 = a, xik+1
= b, and xi1 , xi2 , . . . , xik are defined according to (56).

Remark 2. xi0 = a and xik+1
= b are not the critical points.

Next, an approach is described to fulfill steps (a) and (b).
(a) Number of support points:

1. Each section receives r support points.
2. The remaining m support points are allocated as follows:

If m ≤ 3, the m support points are assigned to section j such that

Aj > Ai ∀i = {0, 1, . . . , k}, i 6= j (61)

Else/If m > 3 and m is even, m/2 support points are assigned to each of section j1
and section j2 such that
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Aj1 , Aj2 > Ai ∀i = {0, 1, . . . , k}, i 6= j1, i 6= j2 (62)

Else/If m > 3 and m is odd, dm/2e support points are assigned to section j1 such that

Aj1 > Ai ∀i = {0, 1, . . . , k}, i 6= j1 (63)

bm/2c support points are assigned to section j2 such that

Aj2 > Ai ∀i = {0, 1, . . . , k}, i 6= j1, i 6= j2 (64)

(b) Placement of support points: Once the number of points in each section is allocated,
the points in each section are then placed equidistantly within that section. Let us assume
that section j, which is bounded by xij and xij+1 , was assigned L support points. The
location of these L support points can be written as

xl = xij + d ∗ l, l = 1, 2, . . . , L (65)

where

d =
xij+1 − xij

L + 1
(66)

where the distance in each section is determined by the difference between the preassigned
points of that section divided by the total number of points plus one of that section.

5. Model Selection Metrics

The OCV–SOC modeling approaches described in Section 3 are designed to minimize
the mean square error. In this section, several other error metrics are introduced to assess the
performance of an OCV–SOC model. A good model is expected to perform well across all
error metrics introduced in this section. It is also important that an OCV model consists of
as few parameters as possible. Several information theoretic metrics are introduced in this
section to collectively evaluate models based on their error performance and the number of
parameters that they require. In addition to this, there are other practical selection criteria
for an OCV–SOC model: computational complexity, memory requirement, and numerical
stability. This section provides brief discussions of these models’ selection criteria.

5.1. OCV Prediction Error

The following four error metrics can be used to evaluate OCV models.

1. Best-fit.

BF(%) =

(
1− ‖v̂− v‖
‖v− v̄‖

)
× 100 (67)

2. R2 fit.

R2(%) =

(
1− ‖v̂− v‖2

‖v− v̄)‖2

)
× 100 (68)

3. Max-error.

ME = max
i
{|vi − v̂i|} (69)

4. Root mean square error (RMSE).

RMSE =
‖v− v̂‖√

N −M
or
√

MSE (70)
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where N is the number of data points, M is the number of parameters, v̂ is the predicted
value of v using the estimated parameters, for example, for linear models

v̂ = Pk̂ (71)

and

v̄ =
1
N

N

∑
i=1

v̂(i) (72)

The best-fit and R2 fit metrics lie between 0 and 1; the higher the value, the better
the model. For max-error and RMSE, the lower the value, the better the model. Table 4
contains the values for the four model prediction metrics computed for all models reviewed
in Section 3.

Table 4. OCV Prediction errors.

Model BF R2 ME RMSE

(2) 80.7150 96.2809 0.6156 0.0533
(3) 69.0215 90.4033 0.2972 0.0856
(4) 84.3122 97.5389 0.5181 0.0433
(5) 90.3010 99.0593 0.3453 0.0268
(6) 96.1031 99.8481 0.1026 0.0108
(7) 92.6999 99.4671 0.2532 0.0202
(8) 94.2150 99.6653 0.4106 0.0160
(10) 94.4633 99.6934 0.1188 0.0153
(11) 85.9646 98.0301 0.4624 0.0388
(12) 83.9417 97.4213 0.5144 0.0444
(13) 83.6839 97.3379 0.5246 0.0451
(14) 95.8975 99.8317 0.1191 0.0113
(15) 82.4227 96.9104 0.5648 0.0486
(65) 97.1593 99.9193 0.0640 0.0078

5.2. Model Evaluation Metrics

Model evaluation metrics consider the trade-off between the number of model param-
eters and the number of data points. The following four metrics are important ones.

1. Akaike’s Information Criterion-1 If the models are fitted using least squares, then [45]
suggests the following analog of AIC:

AIC = N ln
(

S2

N

)
+ 2(M + 1) (73)

where

S2 =
N

∑
i=1

e2
i (74)

with

e = v− v̂ (75)

In the above, S2 is the sum of the squares of errors (SSE), ei is the ith element of the
residual vector e, and M is the number of parameters in the OCV model. The better the
model, the lower the AIC.

2. Akaike’s Information Criterion-2 The second version of AIC, given below, is useful
when when N >> M
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AIC2 = ln
[
L f

(
1 +

2p
N

)]
(76)

where the loss function is defined as

L f =
eTe
N

(77)

3. Akaike’s final prediction error

FPE = L f

[
1 + M

N

1− M
N

]
(78)

4. Bayesian Information Criterion The derivation of BIC assumes equal priors on each
model and noninformative priors on the parameters, given each model. The goal of
the BIC is to find the best (i.e., highest posterior probability) model for prediction.

BIC = 2(LN) + (M + 1) ln N (79)

The negative log-likelihood given the pdf of the residuals (assuming normal or Gaus-
sian) conditioned on the parameters k and the s.d. of residuals σ is given by

LN = − ln{L(k; e)} =
N

∑
i=1

{(
e2

i
2σ2

)
+ 0.5 ln

(
2πσ2

)}
(80)

where LN is the negative log-likelihood, L is the likelihood, k is the parameter vector
which minimizes LN , and σ is the s.d. of the residuals e.

5. Minimum description length

MDL = L f

[
1 +

M ln N
N

]
(81)

Table 5 summarizes the five model evaluation metrics computed for all models re-
viewed in Section 3.

Table 5. Model evaluation metrics.

Model AIC (e3) AIC2 FPE (e−3) BIC (e3) MDL (e−3)

(2) −2.1841 −5.8644 2.8403 −11.2449 2.8545
(3) −1.8310 −4.9165 7.3290 −7.7138 7.3656
(4) −2.3377 −6.2773 1.8805 −12.7746 1.8931
(5) −2.6955 −7.2390 0.7196 −16.3406 0.7268
(6) −3.3743 −9.0627 0.1163 −23.1092 0.1181
(7) −2.9070 −7.8073 0.4079 −18.4492 0.4126
(8) −3.0803 −8.2725 0.2561 −20.1822 0.2591
(10) −3.1130 −8.3602 0.2346 −20.5090 0.2374
(11) −2.4204 −6.4999 1.5060 −13.5956 1.5186
(12) −2.3197 −6.2306 1.9736 −12.5761 1.9966
(13) −2.3080 −6.1987 2.0364 −12.4657 2.0567
(14) −3.3353 −8.9599 0.1292 −22.7015 0.1317
(15) −2.2518 −6.0498 2.3684 −11.8781 2.4077
(65) −3.6108 −9.7014 0.0617 −25.4266 0.0633

5.3. Computational Complexity

The OCV–SOC model, once created, is used by the BMS to estimate the SOC of the
battery. That is, given the OCV, the BMS needs to use the OCV–SOC model parameters
to compute the SOC. For most of the higher-order models, SOC estimation becomes a
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root-finding problem. For the Unnewehr linear model (2), SOC estimation becomes a
closed-form equation, i.e.,

ŝ =
zv − k0

k1
(82)

where zv is a measure of the open-circuit voltage (V◦(s)) obtained by the BMS. Similarly,
for tabular models, SOC estimation becomes a linear interpolation problem.

Table 6 compares all the models presented in this paper in terms of their required
computational complexity to find SOC for a given OCV. It is assumed that in all nonlinear
root-finding cases, the bisection method is employed to find the SOC for a given OCV. It is
also assumed that the bisection method uses 10 iterations in all cases. It is also assumed
that all special functions are approximated for five terms using the Taylor series. The com-
putational complexity shown in Table 6 refers to the number of additions (or subtractions)
and multiplications (or divisions) needed to compute the SOC for a given OCV.

Table 6. Computational complexity.

Model Complexity

(2) 1
(3) 1
(4) 110
(5) 130
(6) 160
(7) 60
(8) 260

(10) 120
(11) 70
(12) 90
(13) 110
(14) 1
(15) 150
(65) 16

5.4. Numerical Stability

Several OCV–SOC models employ functions such as es, ln(s), sin(s), and cos(s). The
accurate implementation of these functions may require extra computing requirements that
may not be affordable in some systems. Approximate implementations may result in errors.
For example, the approximate implementation of ln(x) using Taylor series approximation
can be written as

ln(1− x) = −x− x2

2!
− x3

3!
− x4

4!
− x5

5!
− . . . (83)

An improved version of the above approximation of natural logarithm through Padé
approximation is:

ln(1− x) ≈ 0.01812x5 − 0.30555x4 − 1.30555x3 − 2x2 + x
0.00396x5 − 0.11904x4 + 0.83333x3 − 2.22222x2 + 2.5x− 1

(84)

≈ ((((137x− 2310)x + 9870)x− 15120)x + 7560)x
((((30x− 900)x− 6300)x− 16800)x + 18900)x− 7560

(85)

which can be implemented efficiently using Horner’s method as follows:

ln(1− x) ≈ ((((137x− 2310)x + 9870)x− 15120)x + 7560)x
((((30x− 900)x− 6300)x− 16800)x + 18900)x− 7560

(86)
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Figure 6 compares three different implementations of ln(x): the first one is computed
using high-precision computers (Matlab), the second one is computed using (5th-order)
Taylor series approximation (83), and the third one is computed using the Padé approxima-
tion (86).
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Figure 6. Approximate implementation of the natural logarithm.

Figure 6 highlights the importance of numerical stability in the OCV–SOC models.
The following two metrics are used to quantify the distortion of an OCV curve in relation
to the original, high-precision form.

KLD =
n

∑
i=0

OCV0(si) log
(

OCV0(si)

OCV1(si)

)
(87)

CosD = 1−

 ∑n
i=0 OCV0(si)OCV1(si)√

∑n
i=0 OCV2

0(si)
√

∑n
j=0 OCV2

1(si)

 (88)

where KLD denotes the Kullback–Leiber divergence, CosD denotes the cosine distance,
OCV0(si) denotes the OCV value computed by averaging the collected data for a given
(discretized) SOC value si, and OCV1(si) denotes the OCV value computed by the model
for the same SOC value si. The KLD and CosD metrics are computed for n + 1 different
SOC values s0 = 0, s1 = 1/n, s2 = 2/n, . . . , sn = 1 spanning the entire SOC range [0, 1].
Table 7 summarizes the stability metrics computed for all the models presented in Section 3.
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Table 7. Numerical Stability Metrics.

Model KLD (e−4) CosD (e−4)

(2) 1.2328 1.0668
(3) 2.4222 2.3736
(4) 0.7993 0.6909
(5) 0.2592 0.2267
(6) 0.0283 0.0283
(7) 0.1367 0.1252
(8) 0.0705 0.0683

(10) 0.0691 0.0709
(11) 0.6226 0.5446
(12) 0.8277 0.7234
(13) 0.8577 0.7485
(14) 0.0253 0.0267
(15) 1.0064 0.8674
(65) 0.0639 0.0572

5.5. System Requirement

Once an OCV model is selected, its parameters need to be stored by the BMS for
SOC estimation. In the case of a combined model (5), the parameters k0, . . . , k4 need to be
stored. These parameters need to be selected in a way that the computational requirement is
minimal. For example, consider the following values for the combined model parameters:

k0 = −3.265420, k1 = −1.090500, k2 = 11.109784,

k3 = 2.972069, k4 = −6.158655
(89)

The parameters in (89) have six decimal points. The minimum system requirement to
process SOC estimation using these parameters can be approximately stated as follows: 4
bits for the whole number, 20 bits for fractional part, and 1 bit for sign, resulting in a total
of 25 bits. In order to fit the above parameters to smaller systems, the parameters in (89)
need to be rounded. Let us round the parameters to three decimal points:

k0 = −3.265, k1 = −1.090, k2 = 11.110,

k3 = 2.972, k4 = −6.159
(90)

The system requirement to process these new sets of parameters in (90) is as follows: 4
bits for the whole number, 10 bits for fractional part, and 1 bit for sign, resulting in a total
of 15 bits.

Rounding the OCV parameters may result in SOC estimation errors. Figure 7 shows
the effect of rounding in two different linear models. The rounding error is computed
relative to the model that had parameters computed using Matlab in a 64-bit system.
Figure 8 shows the effect of rounding for a 16-point tabular approximation. It can be
noticed from Figures 7 and 8 that the system requirement to achieve a certain level of
maximum SOC error (e.g., 1% max. SOC error) varies from one model to another.

Table 8 summarizes the system requirement for each model presented in Section 3 in
terms of the system requirement to maintain the maximum SOC error below 1%.
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Figure 7. The effect of rounding in two different linear models; (a) the Unnewehr and (b) the Shepherd
model is shown.
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Figure 8. The effect of rounding in the tabular model is shown.

Table 8. System requirements for OCV parameters.

Model Parameters Bits

(2) k0 = 3.03, k1 = 1.40 12

(3) k0 = 4.308, k1 = −0.236 15

(4) k0 = 3.982, k1 = 0.476, k2 = −0.163 15

(5) k0 = −3.265, k1 = −1.091, k2 = 11.109, k4 = −6.158 18

(6)
k0 = −6.62666, k1 = 157.30292, k2 = −26.85899, k3 = 2.97206,

k4 = −0.14404, k5 = −127.76012, k6 = 224.59534,
k7 = −1.84633

28

(7) k0 = −9.8, k1 = 27.4, k2 = −24.9, k3 = 9, k4 = −258.7 15

(8) k0 = 3.3522, k1 = −0.8747, k2 = 4.1821, k3 = −3.1107,
k4 = −0.0017, k5 = −2.7797e− 15 19

(10) k0 = −228496.9, k1 = 1.3, k2 = 492748.6, k3 = 77.6,
k4 = −264248.5, k5 = 15 22

(11) k0 = 3.833, k1 = 0.14, k2 = 0.866, k3 = 2.822 15

(12) k0 = 1.024, k1 = −0.355, k2 = 1.46, k3 = 4.611, k4 = −6.898,
k5 = 4.016 15

(13) a1 = 1.308, a2 = 1.307, b1 = 1.503, b2 = 1.505, c = −7.140 15

(14)

k0 = −47088.413, k1 = 838478.954, k2 = 7077351.741,
k3 = 33622853.695, k4 = −77439664.427, k5 = 68415176.728,

k6 = 3058.908, k7 = −379949.127, k8 = 4021098.125,
k9 = −12820987.612, k10 = 13436120.396

38

(15) a1 = 3.3, a2 = 3.3, a3 = 1.76, b1 = 1.14, b2 = 1.14, b3 = 2.72,
c1 = 0.14, c2 = 0.14, c3 = 2.11 12

(65) rounded to 3 decimal points 8
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6. Selection of OCV–SOC Model

The selection of the OCV–SOC model in practical situations is based on requirements
that are specific to the application. For example, if high SOC estimation accuracy is required,
then models with the lowest error metrics (Section 5.1) will be selected. This would imply
that the computational and memory requirements are high. Most practical situations
demand more than one constraint in model selection. The Borda count is an intuitive
method for combining different selection criteria for a compromised selection. The Borda
count was originally a voting method in which each voter gives a complete ranking of all
possible alternatives. Table 9 ranks the OCV models presented in this paper based on all
the selection criteria discussed in Section 5.

Table 9. Model selection metrics rankings.

Model BF R2 ME RMSE AIC AIC2 FPE BIC MDL KL CosD C SR Rank

(65) 1 1 1 1 1 1 1 1 1 4 4 4 1 1
(14) 3 3 4 3 3 3 3 3 3 3 1 1 14 2
(6) 2 2 2 2 2 2 2 2 2 13 2 2 13 3
(10) 4 4 3 4 4 4 4 4 4 10 3 3 12 4
(7) 5 5 5 5 6 6 6 6 6 5 5 5 6 5
(5) 6 6 7 6 7 7 7 7 7 11 6 6 10 6
(11) 8 8 9 8 8 8 8 8 8 6 7 7 7 7
(8) 7 7 8 7 5 5 5 5 5 14 14 14 11 8
(4) 9 9 11 9 9 9 9 9 9 8 8 8 5 9
(12) 10 10 10 10 10 10 10 10 10 7 9 9 8 10
(13) 11 11 12 11 11 11 11 11 11 9 10 10 9 11
(15) 12 12 13 12 12 12 12 12 12 12 11 11 3 12
(2) 13 13 14 13 13 13 13 13 13 1 13 13 2 13
(3) 14 14 6 14 14 14 14 14 14 2 12 12 4 14

7. Conclusions

This paper presents an objective review of models used for OCV–SOC characterization
in rechargeable batteries. Available OCV–SOC models are categorized into linear, nonlinear,
hybrid, and tabular ones. Model parameter estimation strategies are discussed for each
case. A comparative analysis of battery OCV–SOC models is presented in terms of various
performance indicators. All models were ranked based on selection metrics, such as
OCV prediction accuracy, model evaluation metrics, computational complexity, numerical
stability, and system requirement. The proposed systematic approach for OCV–SOC model
selection is demonstrated using data collected form a commercially available cylindrical
Li-ion battery cell.

A BMS designer can use the proposed approach to select a particular OCV–SOC
model for implementation. For instance, in miniature electronics, where memory and
computational resources are scarce, one may choose to redo Table 9 based only on the
system requirement and computational complexity metrics. The model selection approach
can also be modified to give more priority for certain constraints. The proposed approach
is general enough to incorporate newer OCV–SOC models and other types model selection
metrics. Although the proposed approach is demonstrated using data collected from a
Li-ion battery, it can also be applied for model selection in other types of rechargeable
batteries.

The proposed approach in this paper is demonstrated using data collected form a
particular battery. One should keep in mind that the ranking of models presented in this
paper is entirely based on this data; the model order may differ for another battery. It
must also be kept in mind that the accuracy of an OCV–SOC model depends on how the
OCV–SOC characterization data was obtained. There will be slight cell-to-cell variations,
and their effect is neither considered nor quantified in this paper. Future works must
consider expanding the approach presented in this paper to incorporate an approach to
consider cell-to-cell variances.
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