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abstract

Nonperturbative terms in the free energy of Chern-Simons gauge theory play a key role
in its duality to the closed topological string. We show that these terms are reproduced by
performing a double scaling limit near the point where the perturbation expansion diverges.
This leads to a derivation of closed string theory from this large-N gauge theory along the lines
of noncritical string theories. We comment on the possible relevance of this observation to the
derivation of superpotentials of asymptotically free gauge theories and its relation to infrared
renormalons.



1 Introduction

Ever since ’t Hooft’s seminal work [1] it has been known that field theories in the large-N limit

become closed string theories, with 1
N

playing the role of string coupling constant. Recent

developments have revealed that the emergence of such closed string theories is a manifestation

of open-closed duality and several well understood examples of such dualities, e.g. the duality

of noncritical string theory in two spacetime dimension with matrix quantum mechanics [2] and

the duality of certain topological open string theories with topological closed string theories

[3]-[6]. The AdS/CFT correspondence [8] is also of this class, though we do not completely

understand the formulation of the bulk string theory in this case.

Such dualities have provided us important information about long standing problems in

gauge theories. Specifically, in asymptotically free gauge theories like those with N = 1 su-

persymmetry, nonperturbative contributions to the effective superpotential [9] have a direct

connection with the topological version of open-closed duality [10]. In this paper we initiate a

slightly different understanding of these nonperturbative terms based on a double scaling limit

[12] of the underlying large-N gauge theory.

In a typical large-N matrix model characterized by a coupling constant g, usual perturbation

theory has a finite radius of convergence at g = gc [13]. At this point the average number of

vertices in a typical Feynman diagram diverges so that the diagram becomes a continuous two

dimensional surface. If the singularity has the same location gc at every genus order in the 1
N

expansion we can define, by performing a double scaling limit, a continuum non critical closed

string theory. Generically the contribution to the free energy at genus g diverges as

Fg ∼ (g − gc)
χ(1+ 1

2m
) g ≥ 2 (1)

where χ = 2−2g is the Euler characteristic and the integer m depends on the particular matrix

model. This behavior allows a definition of nonperturbative string theory by passing to the

double scaling limit

N → ∞ g → gc

N(g − gc)
−(1+ 1

2m
) = µ = finite (2)

In this string theory genus g amplitudes depend on µ as µχ and various quantities are functions

of the single parameter µ rather than on N and g separately. The emergence of a single

parameter is in fact a hallmark of noncritical string theory. This simply means that in this

string theory, the constant part of the value of the dilaton is not independent of the values of

other backgrounds, as opposed to critical string theory where the dilaton is a modulus and can

have an arbitrary value. In the double scaling limit the coupling constant g is renormalized to

gR =
g − gc

a2
(3)
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and the bare string coupling constant 1
N

is renormalized to

gR
s =

a−(2+ 1

m
)

N
(4)

a has dimensions of length and plays the role of a cutoff on the random surface. The parameter

µ defined above is then the dimensionless ratio

g
−(2+ 1

m
)

R

gR
s

(5)

The emergence of closed string theories in the AdS/CFT correspondence or in topological

string theory appears to be quite different at first sight. For example in the AdS5/CFT4

correspondence, the open string theory in fact becomes a SU(N) gauge theory characterized

by a coupling constant gY M . The dual closed string theory also has two independent parameters

: the string coupling which is

gcrit
s = g2

Y M (6)

and the AdS scale in string units is,

R/ls ∼ (g2
Y MN)1/4, (7)

as appropriate for a critical string theory. Similarly in the simplest topological context, the

theory of matrices is a Chern-Simons gauge theory while the dual theory is a closed topological

string living on a target space characterized by a parameter t (the complexified area of the S2

resolution of the conifold in string units, whose imaginary part is the B-field on the S2) and a

string coupling gs where once again gs = g2
Y M and t = ig2

Y MN . In this latter case, the duality

is exactly known and nonperturbative terms of the Chern Simons free energy play an essential

role [3, 7].

One might wonder one can construct a closed string theory similar to noncritical strings

starting from Chern Simons theory, using double scaling limit at the radius of convergence of

the perturbative expansion In this paper we show that this is indeed true and that the double

scaled theory exactly corresponds to the c = 1 model (m = ∞) at self dual radius. The latter

is known to be equivalent to closed topological (B model) strings on a S3 deformation of the

conifold [14]. Furthermore we show that the free energy of the double scaled theory precisely

reproduces the nonperturbative terms of Chern Simons theory by using level rank duality.

The ability to reproduce nonperturbative terms from the perturbative expansion using dou-

ble scaling tempts us to conjecture that a similar procedure could be valid for other theories

as well. In particular we point out that the structure of perturbation theory for Chern-Simons

is exactly that of the Borel transform of perturbation expansion of asymptotically free theo-

ries and the point beyond which the perturbation expansion diverges corresponds to the first
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infrared renormalon singularity. It has been recently argued in [15] that these renormalons are

key ingredients in the generation of mass gap in asymptotically free theories. This connection

may well lead to ways of computing nonperturbative terms in asymptotically free theories.

2 Chern-Simons Free energy and toplogical strings

Open topological string on T ∗S3 is exactly three dimensional Chern Simons theory [16]. In the

large-N expansion, the free energy has an expansion

F =
∞
∑

g=0

N2−2gFg(λ) (8)

where

λ = g2
Y MN =

2πN

k + N
(9)

is the ’t Hooft coupling and k is the level of the Kac-Moody algebra. The genus g term Fg has

a perturbative contribution F p
g and a non-perturbative contribution F np

g where [3]

F p
0 (λ) = 2

∞
∑

p=2

ζ(2p − 2)

2p(2p − 1)(2p − 2)
(

λ

2π
)2p−2

F p
1 (λ) =

∞
∑

p=1

B2
ζ(2p)

2p
(

λ

2π
)2p

F p
g (λ) = 2χg

∞
∑

p=1

ζ(2g − 2 + 2p)

(

2g − 3 + 2p
2p

)(

λ

2π

)2g+2p−2

g ≥ 2 (10)

and [7]

F np
0 (λ) =

1

2
N2(log (2πiλ) −

3

2
)

F np
1 (λ) = −

1

12
log N

F np
g (λ) = N2−2gχg g ≥ 2 (11)

where

χg =
B2g

2g(2g − 2)
(12)

and Bn denote the Bernoulli numbers. These nonperturbative terms arise from the volume of

the gauge group [7] which is nontrivial since the prefactor of the kinetic term is corrected by

quantum effects. They can be obtained in the large N limit using the asymptotic expansion of

the Gamma function. Apart from F np
0 these nonperturbative terms are in fact a function of N

alone.
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The expression for the total free energy is in fact exactly that of A-model topological closed

string theory on the S2 resolved conifold geometry. The string coupling constant gs is related

to the ’t Hooft coupling by

gs =
iλ

N
(13)

while the complexified Kahler paramter t of the S2 by

t = iλ (14)

Then the genus-g nonperturbative contribution becomes

F np
g (λ) = g2g−2

s

B2g

2g(2g − 2) t2g−2
g ≥ 2 (15)

and similarly for the genus zero and one terms. Thus the closed string theory is defined at fixed

gs and the nonperturbative terms are singular in the limit t → 0, a behavior which is essential

in the identification of the gauge theory with the string theory.

Notice that if we define the Chern Simons string coupling by λs = 2π
k+N

the last equation in

(11) becomes

λ2g−2
s

B2g

2g(2g − 2)λ2g−2
(16)

In order to go from this expresion to (15) we need to replace λ by t = iλ i.e a Wick rotation

in λ. The reason for performing this Wick rotation is just in order to get a positive definite

total free energy once we sum over all genus. In fact the Bernouilli numbers contain a factor

(−1)g−1 that makes the total free energy an alternating sum. A similar phenomena appears

in the Penner model [17] where a similar Wick rotation is necessary in order to stablish the

connection with the c = 1 model at the self dual radius [18].

3 A double scaling limit

We now examine whether a knowledge of the perturbative expansion can be used to define a

critical limit where a continuum string theory emerges. The perturbative expansions may be

summed to yield the expressions

F p
0 =

∞
∑

n=1

[
1

2
ν2

n log(νn/N) −
3

4
ν2

n + (n → −n)]

−N2
∞
∑

n=1

[log(
2π

λ
) +

4π2n2

λ2
(log(

2π

λ
) −

3

2
) (17)

F p
1 = −

1

2
B2

∞
∑

n=1

[log(
νn

N
) + (n → −n)] + B2

∑

n

log(
λ

2πN
) (18)

F p
g = χg(

λ

2π
)2g−2

∞
∑

n=1

[ν2−2g
n + (n → −n)]
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+2χg(
λ

2πN
)2g−2 ζ(2g − 2) (19)

where we have defined

νn =
2πN

λ
[
λ

2π
− n] (20)

The Chern-Simons theory coupling λ has a fundamental domain between 0 and 2π. It is clear

from the above expressions that the perturbation expansion has a finite radius of convergence

2π. In fact the susceptibility diverges at this point with a characteristic critical exponent.

Notice that the divergence of the perturbative series (10) is for positive value of the Chern

Simons coupling. The reason for this is that only amplitudes with an even number of holes are

non vanishing.

Therefore, following the usual procedure we will define a critical double scaling limit by

taking

λ → 2π ν1 = finite (21)

In this limit the nonanalytic terms in the free energy become

F dc
0 =

1

2
ν2

1 log(ν1 −
3

2
)

F dc
1 = −

1

12
log ν1

F dc
g = χgν

2−2g
1 (22)

where we have used B2 = 1
6
. The coefficients are exactly those of the nonperturbative contribu-

tions in (11) with N replaced by ν1. The string coupling is renormalized from its bare value λ
N

to the renormalized value gR
s given by

gR
s =

1

ν1
(23)

As is well known this nonanalytic piece is in turn identical to the free energy of the c = 1

matrix model at the self-dual radius provided we Wick rotate ν to µ = iν as discussed above 1.

The string theory which is obtained by performing a double scaling limit near λ = 2π is in

fact related to the string theory defined using the nonperturbative contribution by level rank

duality. This is given by the interchange

k ↔ N (24)

and maps λ = 0 to λ = 2π. Therefore one could read out the nonperturbative contributions

near λ = 0 from the double scaled expressions near λ = 2π. It is important to notice that

the perturbative expansion (10) is perfectly smooth and analytic at λ = 0, while the non

1The connection between the c = 1 model at the self dual radius and the singular conifold was done in [14]
where µ is the complex modulus.

5



analytic contributions (11) are non perturbative and are derived from the contribution to the

Chern Simons free energy of the volume of the gauge group. Only after including these non

perturbative pieces we recover the closed string picture with the Chern Simons t’Hooft coupling

λ related to the size t of the resolved conifold by t = iλ. In the double scaling approach,

however, we derive the closed string directly from perturbation theory. This is possible because

the Chern Simons perturbative expansion diverges at λ = 2π. The closed string model that we

obtain is the non critical c = 1 model at the self dual radius that is known to be equivalent

to topological strings on the deformed conifold [14]. The double scaled variable ν and the

deformation parameter µ of the deformed conifold are related by µ = iν. In other words,

double scaling limit leads to closed strings on the deformed conifold i.e the local mirror version

of the topological closed string obtained at λ = 0. By level rank duality of Chern Simons we

can relate both mirror topological closed string versions one corresponding to the large level

k limit with finite N and the one obtained by double scaling corresponding to large N and

finite k. We would like to stress that the moral of this exercise is to show that potentially we

can read the dual closed string version of a gauge theory directly from the divergence structure

of the perturbative expansion. In next section we will present some general comments in this

direction.

4 Structure of perturbation theory, strings and Nonper-

turbative Superpotentials

In the previous section we showed that a double scaling limit of the perturbative expansion of

Chern Simons theory reproduces the nonperturbative contribution to the free energy.

Nonperturbative superpotentials for N = 1 SU(N) super Yang Mills can be directly defined

using the nonperturbative piece of the Chern Simons free energy with the same gauge group.

In fact by compactifying on T ∗S3 type A open topological strings we get [19, 20] perturbative

contributions to the F-term superpotential of type

W p(S) = Nc

∑

F0,hhSh−1 = Nc
∂F p

0 (S)

∂S
(25)

where F0,h are open topological string amplitudes at genus zero and with h holes. Using now

the equivalence between open topological strings on T ∗S3 and Chern Simons on S3 one can

now define

W np(S) = Nc
∂F np

0 (S)

∂S
(26)

where F np
0 (S) is the genus zero non perturbative piece of the Chern Simons free energy for

λ = S, namely

F np
0 (S) =

1

2
S2(log S −

3

2
) (27)
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Notice that the non peturbative contribution to the superpotential is defined from F np
0 (λ) given

in (11) once we extract the corresponding power g−2
s of the string coupling constant. In other

words in this approach S is directly related to the Chern Simons coupling λ or in the closed

string version to the size t of the S2 resolved conifold.

In the previous section we have derived the non perturbative piece of Chern Simons free

energy by performing a double scaling limit around the critical coupling defining the radius of

convergence of the perturbative expansion. The result

F np
0 =

1

2
ν2(log ν −

3

2
) (28)

Exactly as before we can read the non perturbative superpotential for S where now S is related

with the double scaled variable ν or in the closed string version with the complex modulus of

the deformed conifold. This exactly correspond to the mirror type IIB derivation of the N = 1

superpotential [10]2.

After our previous analysis it is natural to ask ourselves if we can use a double scaling limit

to define non perturbative physics for asymptotically free theories. Using t’Hooft’s double line

notation the free energy of a generic SU(N) gauge theory has the form

F =
∑

g

g2g−2
s Fg(s) (29)

where s is the t’Hooft coupling defined in the large N limit and gs = 1
N

. Generically Fg(s) is

divergent even for arbitrarily small s. However it is known that in the large-N limit, the Borel

transform of Fg(s), denoted by F B
g (λ) has a finite radius of convergence for λ = λc where λc is

fixed by the location of the first infrared renormalon singularity. Using the Borel transform we

can define

F B(λ) =
∑

g

g2g−2
s F B

g (λ) (30)

of the full free energy.

We can now try to perform a double scaling limit µ = (λ − λc)
γN for some γ that will

depend on the concrete theory, and to define a nonperturbative F B
np(µ) in the manner explained

in the previous sections. Of course this strategy will only work if the critical value fixing the

convergency radius λc is the same at any genus order in the 1/N expansion. We can argue

that the part of the perturbative expansion dominated by infrared renormalon singularities

2As it is standard in double scaling limit for the c = 1 model we have ν = λR

gR
s

where λR = λ−λc

a2 and gR
s = 1

a2N

for a a worldsheet string scale with units of length and where λR is defined in the limit a = 0 and λ = λc and gR
s

is defined in the double limit N = ∞ and a = 0. In terms of λR and gR
s we can write F

np
0

= g−2

s λ2

R(log(λR

gR
s

)− 3

2
)

and to extract the nonperturbative piece of N = 1 super Yang Mills from λ2

R(log(λR

gR
s

) − 3

2
) using λR = S. The

main difference with the previous formal construction is that now both λR and gR
s have dimensions. This on

the other hand is quite natural since S is also dimensionfull.
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satisfy this criteria.In fact in contrast to instanton singularities the infrared renormalon is quite

universal and does not depend on the number of diagrams contributing to feynman diagram

with some topology at a given order in the perturbation expansion.

The variable λ appearing in the Borel transform can be naturally interpreted as the con-

jugated variable to the gauge theory coupling i.e as a glueball operator and the double scaled

non perturbative Borel transform F B
np(µ) as a candidate for the effective infrared low energy

physics.

Our observation in the Chern Simons exercise can be rephrased by saying that the Chern

Simons free energy is capturating the contribution of infrared renormalons to the Borel trans-

form of the N = 1 super Yang Mills free energy. In fact for large number n of holes the genus

zero contribution to the free energy of Chern Simons goes like

N2

λ2

∑

n

(n − 3)!

n!
(

λ

2π
)n (31)

If we now consider (31) as a Borel transform of some perturbative formal series F (s) in s we

get

F (s) = N2
∑

n

(n − 3)!

n(n − 1)
(

s

2π
)n−1 (32)

If now we formally think of s as the gauge theory t’Hooft coupling the expansion 32 behaves at

large n typically as an infrared renormalon contribution. Recall that for a generic perturbative

expansion
∑

n ans
n in t’Hooft coupling s the infrared renormalon corresponds to an ∼ bnn!

for some coefficient b fixed by the beta function. Notice that the divergence in the perturba-

tive expansion of the Chern Simons free energy can be interpreted as a manifestation of the

renormalon of F (s) defined in (32). For N = 1 super Yang Mills we find the first renormalon

singularity at λc = 8π2 while for the Chern Simons analog we get λc = 2π.
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