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��	
� � �� That is Man.

—Yehudah Amichai (Israel)
Open Closed Open (1998)

Abstract. As a window into the subject, we recount some of the his-
tory (and geography) of two mature, challenging, partially open, partially
closed problems in the theory of rewriting (numbers 13 and 21 from the
original RTA List of Open Problems). One problem deals with (criteria
for left-linear) confluence and the other with termination (of one linear or
string rule), the two paradigmatic properties of interest for rewrite sys-
tems of any flavor. Both problems were formulated a relatively long time
ago, have seen considerable progress, but remain open. We also venture
to contemplate the future evolution and impact of these investigations.

1 Introduction

Twenty years later, and we’re still hitting on a keyboard.

—Michael Capellas, Chairman and CEO of Compaq (USA),
Twentieth Anniversary of the PC,

Tech Museum of Innovation (August 2001)

Rewriting – in the sense of systematically replacing symbolic terms – is as
old as algebra. Diophantus of Alexandria1 (Egypt) in his famous (ca. 3rd c. ce)
book, Arithmetica2, reduced determinate and indeterminate equations to a form
he knew how to solve. The use of rewriting nowadays in automated deductive
engines derives from this ancient nascence of symbolic computation.

The formal study of rewriting and its properties began in 1910 with a paper
by Axel Thue (Norway) [89]. Significantly, most early models of computation

1 After whom Diophantine equations are named.
2 It was in his copy of

this book that Pierre
de Fermat (France)
wrote this frustrat-
ingly famous marginal
note:

Cubem autem in duos cubos, aut quadratoquadratum in
duos quadratoquadratos, et generaliter nullam in
infinitum ultra quadratum potestatem in duos ejusdem
nominis fas est dividere: cujus rei demonstrationem
mirabilem sane detexi. Hanc marginis exiguitas non
caparet.

J. Giesl (Ed.): RTA 2005, LNCS 3467, pp. 376–393, 2005.
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were based on notions of rewriting strings or terms: Thue systems [90]; Andrei
Markov’s (Russia) normal algorithms [66]; and Alonzo Church’s (USA) lambda
calculus [10]. This all led to the continued study of rewriting in the context of
programming language semantics.

As a window into the history of rewriting, I have chosen two problems (num-
bers 13 and 21) from the original RTA List of Open Problems [19]. The first
relates to confluence and the second, to termination.

Confluence is perhaps better known as the (equivalent) “Church-Rosser prop-
erty,” after a 1936 paper by Church and Barkley Rosser (USA) [11]. Properties
of this property were studied shortly thereafter by Maxwell Newman (England)
[73], of “Newman’s Lemma” fame, and remain central in Combinatory Logic and
Lambda Calculus (the immediate ancestors of the study of rewriting). Thue’s pa-
per foreshadowed the use of these and other concepts in solving word problems;
see the review by Magnus Steinby (Finland) and Wolfgang Thomas (Germany)
[85]. Already in 1967, Saul Gorn (USA) [37] discussed the Church-Rosser prop-
erty for the use of definitions in symbolic computation.

Termination (“uniform termination” or “strong normalization”) is important
in automated deduction applications, to guarantee that simplification of formulæ
does not itself go on forever. Simplification is often essential for reasonable per-
formance of theorem provers. Formal proofs of termination are as old as Euclid’s
(Egypt) algorithm for greatest common divisor.

Gorn also did early work on proofs of termination of symbolic computation.
In the abstract to his 1973 paper [36], he wrote3:

This paper . . . explores such questions as (1) What different interpre-
tations can be given to the expression “the intent of the process”? (2)
Does the process, or should the process end? In either event, how do
we prove it? (3) If the process does end, how do we prove that it does
what was intended? This question may be meaningful even if the process
does not end. (4) Is there a whole class of processes that stand or fall
together? Can we adapt our proof of conclusiveness to cover the whole
class? (5) Do the processes of the class yield the same or different results,
and whichever it is, how do we prove it?

The RTA list open problems, whence the examples herein are drawn, was cre-
ated by Jan Willem Klop (The Netherlands), Jean-Pierre Jouannaud (France),
and myself (USA, at the time) on the occasion of the fourth Rewriting Tech-
niques and Applications conference, held in 1991 (in Italy) and chaired by the
3 Gorn is indirectly responsible for my interest in the subject of termination of rewrit-

ing: He discussed the issue with Bob Floyd (USA), who posed a question on the
subject on a 1967 qualifying exam in computer science at Carnegie-Mellon Univer-
sity. Zohar Manna (USA) solved the problem and went on to write a dissertation
on termination. Later, Zohar showed me a 1970 paper [65] of his with Steve Ness
(USA) on termination of rewriting, notes of his discussions with Steve and with Amir
Pnueli (Israel) on completeness of homomorphism-based methods, as well as the dis-
sertation of another CMU student, Renato Iturriaga (USA, at the time), thereby
sparking my unquenched interest.



378 Nachum Dershowitz

late Ron Book (USA)4. Its 44 problems were compiled thanks to the contri-
butions of many researchers who responded to messages on Pierre Lescanne’s
(France) rewriting mailing list5, and from various older lists. Updated lists sub-
sequently appeared in the proceedings of RTA ’93 (Canada) [20] – which added
33 more problems, RTA ’95 (Germany) [21] – 10 more, and RTA ’98 (Japan) [23].

Since October 1997, the list of open problems has been maintained as a web
service at

http://www.lsv.ens-cachan.fr/∼treinen/rtaloop

This effort is spearheaded by Ralf Treinen (France). Currently, the list comprises
103 problems6, at least 28 of which have – gratifyingly – been solved to date,
and many more have enjoyed significant progress.

2 Left-Linear Confluence

E[lementary Problem] #1541:
Find the maximum7 and minimum8 numbers of

“Friday the 13th’s” that can occur in a year.

—George Clark Bush (Canada)
The American Mathematical Monthly (1988)

The thirteenth problem in the original list of open problems is:

Problem #13: Give decidable (sufficient) criteria for left-linear
rewriting systems to be Church-Rosser.

This problem was suggested for inclusion by Jean-Jacques Lévy (France)9.
As already mentioned, the Church-Rosser property, ↔∗ ⊆ →∗ ∗← (conver-

gence implies joinability), had been thoroughly investigated in the context of
lambda calculi and combinatory logic, and shown equivalent to the diamond
confluence property ∗←→∗ ⊆ →∗ ∗← (meetability implies joinability) by Max
Newman (UK) in 1942 [73]10.

4 For a summary of Ron’s contributions to the theory of Thue systems, a.k.a. string
rewriting, see Bob McNaughton’s (USA) [63]. Book and Friedrich Otto (Germany)
co-authored a monograph on the subject [7].

5 Pierre has been caretaker of this mailing list since he founded it in 1988.
6 One more than Harvey Friedman’s (USA) list of hard problems in mathematical

logic in J. Symbolic Logic 40(2), pp. 113–129 (1975).
7 Three, as shown by Charles Heuer, AMM 70(7), p. 759. The editors of AMM mis-

takenly asserted that there can be four if any 12-month period counts as a “year.”
Their retraction appeared in AMM 98(7), p. 649.

8 One or none, depending on what is meant by a “year” (AMM, ibid.).
9 Jean-Jacques is well-known for his work on optimal strategies in the lambda calculus

and for his joint work with Gérard Huet (France) on sequentiality of rewriting [47]
– work that had remained in technical-report form for some 12 years.

10 I can’t help preferring →∗ over � for the reflexive-transitive closure.
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In 1973, Barry Rosen (USA) [81] provided a proof (albeit for the variable-free
case) that shows that when a term-rewriting system is orthogonal11, confluence
is guaranteed. In other words, when left-linear systems are also non-ambiguous
(no left-hand side unifies – after renaming apart – with another left-hand side,
or with any non-variable proper subterm of any left-hand side), the system is
confluent. This is for much the same reason as combinatory logic is Church-
Rosser, and is usually proved by recourse to an intermediate relation, such as
parallel rewriting→‖ (for “rewriters,” this means contracting redexes at disjoint,
“parallel” positions), or complete developments →⊥(in the sense of contracting
all residuals)12.

Newman had also shown that termination plus local confluence yield the
(global) confluence property13. Huet, in his influential 1980 paper [44], referred
to the Church-Rosser property as “confluence,” and provided a beautiful proof
of this “Diamond Lemma,” based on Noetherian (well-founded) induction14.
Steve Kleene (USA) had given (according to Roger Hindley (UK) [41]) a simple
counterexample to confluence sans termination: • ← ◦ ←→ ◦ → •. But the
rewrite system for this graph has more than one rule with identical left side.

In the late 1960s, Don Knuth (USA), with a student, Peter Bendix (USA),
wrote a seminal paper [52] in which they showed that confluence of critical pairs
is sufficient (and necessary) for confluence of a terminating, but not necessarily
left-linear, system15. Using the notation s ←�→ t for the critical-pair relation
s = u[r]µ ← u[l]µ = gµ → dµ = t (for rules l → r and g → d and most general
unifier µ of l with a non-variable subterm of g in context u), this amounts to
←�→ ⊆ →∗ ∗← (joinability, or resolvability, of critical pairs)16. In his paper,

11 I take some pride in having coined this term to replace its predecessors, “regular”
and “non-ambiguous linear.”

12 My new notation for multi-steps at orthogonal positions.
13 Marc Bezem (Norway) and Jan Willem Klop collect four proofs of this fact in the

textbook [88] which they, and Roel de Vrijer (The Netherlands) edited: Newman’s,
Huet’s, one based on decreasing diagrams, and one Jan Willem and I used, based on
a multiset ordering of terms. For a discussion of its mechanization, see the column
by Bezem and Thierry Coquand (Sweden) [5]. Unaware of Newman’s lemma, several
others after him proved weaker versions.

14 This – the most general form of mathematical induction – is named after the great
twentieth century algebraist, Emily Noether (Germany and the USA).

15 Knuth is a great-great-grand-student of Thue. When I was a student, Knuth gave
me an offprint of this paper (dated 1969 – the conference at which it had been
presented took place in 1968), since I was working on termination methods and the
paper included what is now called the “Knuth-Bendix ordering.”

16 Rather than argue æsthetics, as to which way a critical pair ought to be oriented, in
those cases where it matters, we use this explicit notation. Critical pairs had been
presaged in a paper by Trevor Evans (USA) [24], which served as starting point
for Knuth’s investigations.17 Knuth also reinvented (syntactic) unification, as used
by Alan Robinson (USA) in his resolution proof procedure [80], for the purpose of
calculating critical pairs, since the goal is to obtain as generic a pair as necessary
to encompass all critical peaks between two rules. Bendix implemented Knuth’s
algorithm in Fortran.
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Huet also observed that Knuth’s proof of his Critical Pair Lemma does not
require termination; in other words, that a system is locally confluent if, and
only if, its critical pairs resolve.

Huet provided an unambiguous (critical-pair-free; hence, locally conflu-
ent) example of the necessity of left-linearity for (global) confluence of non-
terminating systems: f(x, x)→ a, c→ g(c), f(x, g(x))→ b. Klop gave a similar
one (with only one non-left-linear rule, but two non-terminating ones) in his foun-
dational study [51]: f(x, x) → a, c → g(c), g(x) → f(x, g(x)). Six years later,
my student, Sivakumar (USA, at the time) constructed the following (weakly)
normalizing (every term has a normal form) and unambiguous example of non-
confluence: f(x, x)→ g(x), f(x, g(x))→ b, h(c, y)→ f(h(y, c), h(y, y)).

So, confluence is decidable for (finite) terminating systems, by the Critical
Pair criterion. It is, however, undecidable for non-terminating systems, since the
uniform word problem is, in general, undecidable, even for string (semi-Thue)
rewrite systems (see below).

The question that now begged asking was how – notwithstanding the above –
one might establish the confluence of ambiguous (overlapping) non-terminating
systems. Indeed, functional programmers love to write interpreters and to use
streams, but still desire unique normal forms. Though they are usually content
with left-linear rule patterns, it is quite natural to code nondeterministically,
with ambiguous left sides18.

Accordingly, Huet proved that term-rewriting systems that are linear (that
is, both left- and right-linear) are confluent if, but not only if, the two sides
of every critical pair reduce in at most one step to a term reachable from the
other side. In symbols: ←�→ ⊆ (→= ∗←) ∩ (→∗ =←) implies confluence.
Huet also included a counterexample of Lévy’s, showing the necessity for right-
linearity. This criterion, however, is not very useful, since right-linearity is usually
an impractical constraint, except in the string-rewriting setting (see the next
section).

In any case, one cannot hope for a decidable necessary and sufficient critical-
pair criterion in the general non-terminating linear case.

It was always clear that trivial critical pairs (of what are called “weakly
orthogonal” systems: ←�→ ⊆ =) do no harm – vis-à-vis confluence, at least.
Huet also proved that, without regard to right-linearity, left-linear systems are
confluent if, but not only if,←�→ ⊆→‖, a property he dubbed “parallel closed.”
But his proof only works when the resolving parallel step applies to the reduct
of the lower diverging step (on the open side of the symbol �).

Several years subsequent, in 1988, Yoshihito Toyama (Japan) [92] relaxed
this condition to allow a resolution of the weak form→‖ ‖←, but only for critical
pairs generated from two rules overlapping at their roots, a situation that we will
capture with a symmetric symbol: ←��→. More precisely, Toyama’s sufficient
condition is: ←�→ ⊆ →‖ ∪ (

[→‖ ∗←] ∩ [→∗ ‖←] ∩ [←��→]
)
. In other words,

root overlay pairs need only satisfy the weaker requirement [→‖ ∗←] ∩ [→∗ ‖←].

18 Whether non-terminating systems are necessary in the more general framework of
logic programming is a question; compare my arguments in [16].
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These results and many others are usually based on strong versions of local
confluence, for which all one-step divergences can be resolved by some variant of
rewriting for which both terms resolve in at most one step19. But Huet’s work
left open various alternative conditions on critical pairs20:

Problem #13a: Is ←�→ ⊆ ‖← also enough for confluence?

Problem #13b: If yes, then maybe some critical pairs may re-
solve with a step in this direction (‖←), and others the other
way around (→‖)? In other words: Is←�→ ⊆↔‖ enough (where
the intent is the symmetric closure of →‖)?

Problem #13c: If not, then what about a stronger condition,
namely, ←�→ ⊆ =←?

Problem #13d: If yes, then one could ask whether ←�→ ⊆↔=

suffices?

A positive answer to any of these would provide a new criterion for confluence,
and would suggest a Knuth-Bendix–like completion procedure for potentially
non-confluent systems, adding equations to ensure that the condition is satisfied.
Of course, for non-right-linear systems, a resultant critical pair may be non-linear
on both sides, and, hence, unorientable. On the other hand, if these conditions
are insufficient, counterexamples will have to be (besides left-linear) non-right-
linear, non-terminating, and overlapping. To date, none of these conjectures has
succumbed to a counterexample.

In 1991, Rolf Socher-Ambrosius (Germany) [84] wrote a short report on Prob-
lem #13a, in which an arbitrary ordering of rules induces a multiset-ordering
condition on the rules used to resolve critical pairs.

In 1996, Bernhard Gramlich (Germany, at the time) [39] suggested expand-
ing the overlaps being considered to include “parallel critical pairs21.” Paral-
lel rewriting is a standard tool for proving confluence of orthogonal systems,
since it satisfies the diamond property ‖←→‖ ⊆ →‖ ‖←. The idea is to han-
dle critical overlaps of such parallel steps, by requiring ←�→ ⊆ (→‖ ∗←) ∩(→∗ ∪ (

[→∗ ‖←] ∩ [←��→]
))

for all ordinary critical pairs, plus ‖←�→ ⊆ →∗

∪ (
[→‖ ∗←] ∩ [→∗ ‖←] ∩ [←��→]

)
for all parallel pairs.

19 This is an opportunity to apologize for sowing confusion by defining “strong conflu-
ence” in [18] as the “subcommutative” property, namely, ←→ ⊆ →= =←, whereas
Huet used the term for his weaker condition ←→ ⊆ (→= ∗←) ∩ (→∗ =←).

20 Problem #13b was not posed explicitly in [19], but was included, for example, by
Bernhard Gramlich (Germany, at the time) in [39].

21 Gramlich generously attributes this extension of the notion of critical pairs to what
underlies what are known as “critical pair criteria,” as in the works of Franz Winkler
and Bruno Buchberger (Austria) [93], Wolfgang Küchlin (USA, at the time) [54],
Deepak Kapur (USA), Dave Musser (USA), and P. Narendran (USA) [49], and my
student, Leo Bachmair (USA), and myself [1]. Around the same time, Dave Plaisted
(USA) and Andrea Sattler-Klein (Germany) [79] also employed parallel critical pairs,
but for other purposes.
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Actually, parallel critical pairs and a related result were already present in an
unpublished 1981 report in Japanese by Toyama [91]. There, the condition was
the weaker inclusion ←�→ ⊆ (→‖ ∗←) ∩ (→∗ ‖←) for ordinary critical pairs,
plus ‖←�→ ⊆ →∗ ‖← for all parallel overlaps – the latter, however, subject to
the extra requirement that all variables that appear in the contractum(s) of the
resolving parallel step were also within the critical parallel redexes.

The next step transpired almost immediately, when Vincent van Oostrom
– in discussions with Gramlich – realized that whatever can be said for par-
allel rewriting can also be said for developments22. Accordingly, he defined a
development-closed criterion, improving on Toyama’s 1988 weakening of Huet’s
1980 parallel-closed condition, by replacing →‖ with →⊥ [76]. Specifically, a
system is Church-Rosser if ←�→ ⊆ →⊥ ∪ (

[→⊥ ∗←] ∩ [→∗ ⊥←] ∩ [←��→]
)
.

In the special case where the only overlaps are at the root, the condition is
←��→⊆ (

[→⊥ ∗←] ∩ [→∗ ⊥←]
)
, which is satisfied when ←��→⊆ (→⊥⊥←).

This led Aart Middeldorp (Japan, at the time) to raise the following question:

Problem #13-1: What if the critical pair reduces by an incom-
plete development, that is, if ⊥←�→ ⊆ →∅, where →∅ signifies
that only some of the redexes of a complete development →⊥

are contracted?

van Oostrom thinks the critical-pair theorem still holds, despite the fact that
the invariant used in his proof for complete developments fails23.

Plus, we have yet another unanswered question:

Problem #13-2: Is ⊥←�→ ⊆ ⊥← enough for confluence?

One can go further, by considering overlaps between developments. This con-
dition, based on what I will call “orthogonal” critical pairs (but not define)24,
was presented by Satoshi Okui (Japan) at RTA ’98 [74]. The conditions are:
←�→ ⊆ (→∗ ⊥←)∩(→⊥ ∗←) for ordinary critical pairs, plus⊥←��→ ⊆→∗ ⊥←
for all orthogonal pairs. Independently, van Oostrom had obtained the same re-
sult – again, in the higher-order context. Whereas parallel reduction is a problem
in the higher-order case, complete developments work nicely for both first-order
and higher-order rewriting25. So, Okui and van Oostrom teamed up, and now
have an unpublished generalization to the higher-order case.
22 van Oostrom was motivated by attempts of Tobias Nipkow (Germany) and Richard

Mayr (Germany, at the time) to extend Huet’s condition to handle Nipkow’s “higher-
order pattern” rewrite systems. Some advantages of reasoning with orthogonal steps
in Church-Rosser arguments had been pointed out by Masako Takahashi (Japan)
in 1995 [87]. I heard Masako present her ideas at the Toyohashi Symposium on
Theoretical Computer Science in 1990.

23 van Oostrom: “I recall that in 1995 I came ‘close’ to solving it in the plane to Japan,
but then we arrived, and I’ve never worked on it since.”

24 Instead of “simultaneous” or “multi-step” critical pairs.
25 Vincent presented his ideas at a 1995 seminar in Munich (Germany), where he was

holding a postdoctoral position with Tobias Nipkow at the time. He applied it to
βηΩ-reduction – see Henk Barendregt’s (The Netherlands) book [3, p. 388] – with
eight orthogonal-critical pairs.
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Significant progress on Problem #13a was made by Michio Oyamaguchi
(Japan) and Yoshikatsu Ohta (Japan) in 1997 [77, 78]. Let →# stand for
→‖ ∪ Λ←, where Λ← signifies a root-step. They require ← �→ ⊆ # ←
∪ (

[→# ∗←] ∩ [→∗ #←] ∩ [←��→]
)
, but with an additional side condition on the

parallel steps. The proof involves a beautiful invariant in terms of “outside in”
sequences of →‖.

Lastly, five years ago, Toshimasa Matsumoto (Japan) [69] devised a new
condition on the parallel resolution of ordinary critical pairs, based on Okui’s
work, but the extent of its applicability is unknown.

Perhaps critical pair criteria (see fn. 21), Nicolaas de Bruijn’s (The Nether-
lands) and van Oostrom’s decreasing diagrams [8, 75], and/or abstract semantic
notions of criticality, as in Claude Kirchner’s (France), Maria Paola Bonacina’s
(Italy), and my recent work [6, 22], can contribute to a fuller understanding of
this fundamental problem.

3 One-Rule Termination

If you leave it in existence and forget about it,
all your future rewrite commands

will be needlessly slow.

—GNU Emacs Calc 2.02 Manual

Another problem on the original list was:

Problem #21a: Is termination of one (left- and right-) linear
rule decidable?

This problem was contributed by Max Dauchet (France), who had recently (at
RTA ’89) shown that left-linearity alone is insufficient for decidability. This was
the culmination of a series of efforts to delineate the borders of decidability.

Richard Lipton (USA) and Lawrence Snyder (USA) had claimed in a footnote
to a 1997 paper [60] that three rules suffice for undecidability of termination. As
they had not responded to a request for a proof, Huet and Dallas Lankford (USA)
set out, in an unpublished report [45], to find one26. They used a string-rewriting
simulation of Turing machines, similar to that used by Ann Yasuhara (USA) in
her book on Recursion Theory [95]. Thus termination of string-rewriting systems
was provenly undecidable – for an unbounded number of rules.

In the summer of 1980, visiting Lévy and Huet at INRIA, I managed to
encode Turing machines in two rules, one of which was non-linear. Dauchet went
one giant step further, and found a way of showing undecidability for only one
non-linear rule [12, 13]. Pierre Lescanne (France) in 1994 [59] redid this more
naturally, by reducing the Post Correspondence Problem to this case. So the

26 Dallas Lankford was an early player in the field, along with Mike Ballantyne (USA).
Dallas was probably the first to realize, in 1975 [57], that a process like Knuth-
Bendix completion, which uses oriented equations, could replace paramodulation as
a means of handling equality within resolution theorem provers.
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question (still unanswered) was (and is) whether termination of one linear rule
is decidable.

In a recent paper [33], Alfons Geser (USA), Aart Middeldorp (Austria), Enno
Ohlebusch (Germany), and Hans Zantema (The Netherlands) leave the following
question unanswered:

Problem #21-1: Is termination decidable for one (not neces-
sarily linear) normalizing rule?

Geser (Germany, at the time) constructed a (overlapping) string rule that is
normalizing but neither leftmost terminating nor rightmost terminating, and
one that is rightmost terminating but non-terminating [27].

Most common term-rewriting termination proofs use simplification orderings,
making terms always bigger than their subterms27. Aart Middeldorp (Japan, at
the time) and Bernhard Gramlich (France, at the time) used Dauchet’s trick and
showed that it is also undecidable whether there exists a simplification ordering
that proves termination of a single term-rewriting rule [71] (correcting a claim
in [48]).

This negative answer suggested yet another problem:

Problem #87: Is it decidable whether a single term-rewriting
rule can be proved terminating by a monotonic ordering that
is total on ground terms?

Such orderings are important in deduction engines; see, for example, the work on
unfailing completion of my former student, Jieh Hsiang (USA, at the time), with
Michaël Rusinowitch (France) [43], and of Leo Bachmair (USA), Dave Plaisted
(USA), and myself [2]. Zantema, who posed this one-rule problem, already knew
that it is undecidable for more rules [96]. A negative solution to this question
was given two years later by Geser, Middeldorp, Ohlebusch, and Zantema [32].

Now, one might think that a one-rule system is nonterminating only if it is
looping in the sense of deriving a term from one of its subcontexts. But, it turns
out that there is a non-looping, non-terminating one-rule term system, as well
as such a two-rule string system [34]. This raises the following question:

Problem #95: Is there a one-rule string-rewriting system that
is non-terminating but also non-looping?

A loop would be a string derivation of the form s →+ usv. Bob McNaughton
(USA) [62] has conjectured that no such rule exists.

This all brings us around to a perhaps less ambitious, but long-standing open
problem for the much simpler case of string rewriting:

Problem #21b: Is termination of one string rule decidable?

This had been mentioned in my survey with Jean-Pierre Jouannuad (France)
[18], and was included in the second edition of our open problem list, in 1993.
27 What I called “simplification orderings” in [14] are (in the fixed-arity case) the

“divisibility orders” of Graham Higman (UK) [40].
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Length-decreasing rules (however many) are obviously terminating. In
1991, Anne-Cécile Caron (France) had shown that termination is undecidable
for multi-rule non-length-increasing string systems [9]. But a single length-
preserving rule is only nonterminating when both sides are identical. In the
latter case, one may still enquire about the length of derivations, the subject of
a 1985 paper by Yves Métivier (France) [70], and of yet another problem in our
original list:

Problem #20b: What is the best bound on the length of
a derivation for a one-rule length-preserving string-rewriting
(semi-Thue) system? Is it quadratic in the size of the initial
term, as conjectured in [70], or of order nk (for rules of length
k and input of length n) as proved there?

Métivier had provided a lower bound of n2/4, easily reached by the derivation
from bn/2an/2 for the rule ba→ ab. His conjecture that this was also the upper
bound for a binary alphabet was proved a few years later by Alain Bertrand
(France) [4]. In that paper, Bertrand floated a new combinatorial conjecture
relating to the positions of the letters in the input word28.

String systems are confluent when no suffix of a left side is also a prefix, since
that makes them orthogonal. For right-linear systems, in general, and string sys-
tems, in particular, termination of all forward closures (a subset of derivations in
which only created redexes are contracted) is valid evidence of termination [15],
an idea that grew out of an unpublished preliminary note [58] by Lankford and
Dave Musser (USA). Moreover, when there are no left-side overlaps, the specific
string-rewriting strategy (leftmost, rightmost, etc.) does not affect termination,
and (weak) normalization implies termination [17, 38].

As an example of a difficult, though non-overlapping, length-increasing rule,
Zantema suggested bbaa → aaabbb, a problem that itself engendered a spate
of interesting work by my student, Charles Hoot (USA) [17], Elias Tahhan [86]
(France, at the time), Geser [25], and others. A complete classification of termi-
nation for a rule of the form biaj → akb� was presented by Geser and Zantema
at RTA ’95 (see [97]), which, in turn, was subsumed by the later work of Géraud
Sénizergues (France) [82] and of Yuji Kobayashi, Masashi Katsura, and Kayoko
Shikishima-Tsuji (all from Japan) [53], for biaj → r, where r ∈ {a, b}∗.

Geser picked up the gauntlet, obtaining partial results for single string-rewrite
rules, culminating in his dissertation [29]. Rules with only one overlap had al-
ready been solved by Winfried Kurth (Germany) in his thesis [55], who also
proved decidability of existence of loops of lengths 1–3 for one-rule string sys-
tems, and showed decidability for lone rules with right sides no more than six
letters long [56]. Building on ideas of McNaughton [61, 62], Geser showed decid-
ability for up to nine letters [26]29. More recently, Geser [30] proved that termi-
28 From inception and until recently, our on-line list stated: “Rumor has it that the

conjecture has been shown true.”
29 Geser: “My termination sieve had a bug that I only detected after finishing my

habilitation thesis in 2002. As a consequence of this bug, eight additional rules
remain that cannot be solved by the methods in this paper.”
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nation is decidable for one-rule systems that have precisely one overlap between
a prefix of the left and a suffix of the right and vice-versa. For fewer overlaps, this
was already known. In [83], Shikishima-Tsuji, Katsura, and Kobayashi reduced
the termination problem for a confluent overlapping rule to the non-overlapping
case.

A grid rule is one in which some letter appears equally often on both sides
(or diminishes). Grid rules cover all systems amenable to a total simplification
ordering. Geser showed that termination is equivalent to the non-existence of
loops of length one or two, which is decidable [28].

Dieter Hofbauer (Germany) and Johannes Waldmann (Germany) showed
recently that string systems admitting a termination proof by the set exten-
sion (like the multiset extension, but for sets) of a symbol precedence preserve
regular languages [42]. A string system is said to be match-bounded if only a
finite section of a system annotated with symbol numbers can be used in any
(labelled) derivation. Geser, Hofbauer, and Waldmann showed, in a series of pa-
pers, that match-bounded string systems are terminating; match-boundedness
of right sides of forward closures is a stronger termination criterion; and inverse
match-bounded string systems have a termination problems; see [31]. Decidabil-
ity of match-boundedness is open.

Single-threaded derivations, where each pair of successive rewrites overlap,
were introduced by Wojciech Moczyd�lowski (Poland; now in the USA) in his
Masters thesis. He showed that one-rule string systems that are cannot con-
sume all of a contractum from the right, nor from both sides, have a decidable
termination problem. The second condition entails that the systems are either
terminating or single-threaded, whence they can be simulated by a two-stack
pushdown automaton; the first implies that one stack’s size is bounded; hence,
the problem is decidable. See his joint paper with Geser [72] in these proceedings.

In sum, the jury is still out on Problem #21b, one string-rule termination.
Plaisted conjectured its decidability long ago; Kurth believes it is in general un-
decidable; McNaughton conjectures that at least the confluent case is decidable.

Turning again to the Church-Rosser property: The critical-pair test of Knuth
and Bendix gave us a decision procedure for confluence of terminating systems,
which, for non-terminating systems, remains undecidable. Confluence for one
string rule is decidable, by the work of Celia Wrathall (USA) [94], but undecid-
able, even for just twelve string rules, as per Yuri Matiyasevich30 (Russia) [67]
(see [88, p. 151]), a bound that has been pared down to five by Matiyasevich
and Sénizergues [68]31. Accordingly, the 1993 list also included the following
question:

Problem #21c: Is confluence of one linear rule decidable?

There are a number of cases for which decidability has been shown regardless
of the number of linear rules. Most recently: Guillem Godoy (Spain), Ashish

30 Of “Hilbert’s Tenth Problem (Diophantine equations) is undecidable” fame.
31 Derivability (accessibility) is undecidable for three string rules [68]. It is, however,

decidable for one; see Bob McNaughton’s (USA) [64].
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Tiwari (USA), and Rakesh Verma (USA) have shown decidability when variables
do not appear deeper than immediately below the outer function symbol [35].

To conclude, the questions raised in this section are interesting and important
for demarcating the boundaries of decidability of termination and confluence.
Their resolution, however, especially in the string case, seems combinatorial in
nature, though some automata-based and residual-theory techniques are now
entering the picture. The methods have ramifications for other decidability and
complexity questions relating to semigroups and monoids (see, for example, the
work of Katsura and Kobayashi with Friedrich Otto (Germany) [50]), topics of
increasing interest in this bio-informatical era.
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parallel critical pairs” (Nov. 1995).

92. Yoshihito Toyama. Commutativity of term rewriting systems. In K. Fuchi and
L. Kott, editors, Programming of Future Generation Computers II, pages 393–407.
North-Holland, 1988.

93. Franz Winkler and Bruno Buchberger. A criterion for eliminating unnecessary
reductions in the Knuth-Bendix algorithm. In Proceedings of the Colloquium on
Algebra, Combinatorics and Logic in Computer Science, Györ, Hungary, September
1983.

94. Celia Wrathall. Confluence of one-rule Thue systems. In Proceedings of the First In-
ternational Workshop on Word Equations and Related Topics (Tubingen), volume
572 of Lecture Notes in Computer Science, pages 237–246, Berlin, 1990. Springer-
Verlag.



Open. Closed. Open. 393

95. Ann Yasuhara. Recursive Function Theory and Logic. Academic Press, 1971.
96. Hans Zantema. Total termination of term rewriting is undecidable. Journal of

Symbolic Computation, 20(1):43–60, 1995.
97. Hans Zantema and Alfons Geser. A complete characterization of termination of

0p1q → 1r0s. Applicable Algebra in Engineering, Communication, and Computing,
11(1):1–25, 2000.


	Open. Closed. Open.
	1 Introduction
	2 Left-Linear Confluence
	3 One-Rule Termination
	References


