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Abstract

We have performed a series of experiments which demonstrate the effect of open-ended coaxial 

diameter on the depth of penetration. We used a two layer configuration of a liquid and movable 

cylindrical piece of either Teflon or acrylic. The technique accurately demonstrates the depth in a 

sample for which a given probe diameter provides a reasonable measure of the bulk dielectric 

properties for a heterogeneous volume. In addition we have developed a technique for determining 

the effective depth for a given probe diameter size. Using a set of simulations mimicking four 50 Ω 

coaxial cable diameters, we demonstrate that the penetration depth in both water and saline has a 

clear dependence on probe diameter but is remarkably uniform over frequency and with respect to 

the intervening liquid permittivity. Two different 50 Ω commercial probes were similarly tested 

and confirm these observations. This result has significant implications to a range of dielectric 

measurements, most notably in the area of tissue property studies.
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 I. Introduction

Tissue dielectric properties have been studied for many decades for multiple possible uses 

[1]-[3]. Tissues with large proportions of polar molecules – primarily water, generally have 

high permittivity while non-polar compounds – such as adipose tissue – have low 

permittivity [2]. These properties are often remarkably instructive with respect to identifying 

unwanted pathologies such as breast cancer or for the identification of edema in post 

surgical care [4]-[10]. Research groups have been interested in exploiting tissue contrast 

between benign and malignant breast cancer for years with several systems recently 
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translating to actual clinical use [11,12]. At a basic level, this contrast is largely a water 

effect because the predominant adipose tissue has much lower dielectric properties than the 

higher water content tumors [4,5,13]. However, more sophisticated analyses have suggested 

that mechanisms such as bound water effects may also play a role over particular frequency 

ranges [14,15]. Expanding on the water theme, a new series of coaxial probes has been 

developed that can monitor cutaneous and fat water levels based on elevated dielectric 

property levels [16]. A modestly priced device is now commercially available and has been 

applied to a range of diagnostic indications such as lymphedema monitoring and wound 

healing [8,17-20]. Early work tended to focus on lower frequency studies because of test 

equipment limitations and the tissue preparation necessary [21]. Nelson [22] presented a 

thorough summary of measurement hardware and algorithms used over a broad frequency 

range including single and multi-frequency, time domain and transmission and reflection 

modes. In spite of these challenges, important insights were developed with respect to tissue 

property dispersions and the effects of various phenomena such as bound water [15].

For most measurement techniques, the basic rationale was to interrogate the tissue with 

microwave fields and deduce what the dielectric properties must have been to perturb the 

field measurements from when nothing was present to when the sample was in place [22]. 

One of the more important innovations in this field came with the advent of the open-ended 

coaxial dielectric probe [23,24]. In this instance, the field interrogation occurred at the end 

of an open-ended coaxial cable where changes in the reflected signal are uniquely tied to the 

tissue dielectric properties. Numerous algorithms have been developed for deducing the 

properties from measurements depending on the models and approximations used to 

represent the fields at the end of the coaxial line [25]-[28]. These range from simple methods 

using fringing capacitance at the probe tips to more sophisticated techniques that match the 

range of coaxial and free space propagation modes [26,29,30]. These have been widely used 

for testing a range of tissue types over very large frequency ranges [31]-[33].

One of the more challenging issues for the open-ended coaxial probe is the effective 

penetration depth in a heterogeneous sample. A report by Hagl et al. [34] demonstrated that 

for a 2.3 mm diameter dielectric probe, a homogeneous sample size needed to be 3 mm deep 

to ensure an accurate measurement. However, that result has been extrapolated to 

measurements for a range of homogeneous and heterogeneous tissue samples [35,36] 

without validation in a systematic study on a heterogeneous phantom. Examples exist where 

small probes have been used to measure in vivo breast tissue through the skin while applying 

the assumption that the skin was sufficiently thin as to only slightly perturb the breast tissue 

property measurement [37]. Not surprisingly, the measurements produced values consistent 

with that of skin. Practitioners of this technique are well aware of the importance of probe 

contact to the sample and the concomitant problems associated with measuring solids [29]. 

Application notes published by Keysight Technologies explicitly discourage use with solids 

because even the slightest air gaps can dramatically skew the desired measurements [38,39]. 

Both of these examples suggest that the volume closest to the probe surface is especially 

important with respect to a bulk measurement.

In a recent publication by Meaney et al. [40], the authors demonstrated in a controlled, two-

layered phantom experiment that the first 0.3 mm of the sample closest to the probe tip has a 
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disproportionally large influence on the tissue properties compared to the subsequent 2.7 

mm (for a total of a 3 mm deep sensing volume) for the 2.3 mm diameter probe used in the 

Lazebnik studies [35,36]. This result was for a single probe diameter and illustrated the fact 

that the sample zone influence was essentially constant over a broad frequency range.

Exact knowledge of the penetration depth can have significant ramifications in certain 

applications. For instance, Meaney et al. [41] have utilized a small diameter probe to acquire 

superficial measurements of teeth surfaces to distinguish between actual tooth enamel and 

restorative dental resins for use in electron paramagnetic resonance (EPR) radiation dose 

experiments. For this situation it was critical that the measurement be predominantly 

superficial and not include contributions from the underlying dentin and other tissue types. 

Karni et al. [42] reported clinical results using a 7 mm diameter probe to effectively sense 

the margins in breast cancer conservation surgeries to minimize re-excisions. The probe can 

sense to within 1 mm depth which is an acceptable distance for detecting tumor margins. 

This penetration depth is consistent with measurements discussed in this paper. Other reports 

have applied small probes for superficial measurements such as for skin hydration [43], and 

various thin packaging materials [44,45]. In related multi-layer studies, researchers explored 

ways to acquire multiple measurements in efforts to deconvolve the exact properties at 

different levels [46,47]. The former of these two developed their own technique for 

determining an effective penetration depth which is similar in some respects to that 

described in this paper. This effort was primarily geared towards differentiating the 

properties of skin and subcutaneous fat. It did indicate that the penetration depth was 

primarily a function of the probe diameter but the results were limited to simulations and 

only performed at a quite low frequency – 394 MHz. From a scientific perspective, our 

results are an important validation of this earlier report and emphasize where more recent 

instances did not considered these earlier analyses [35,36]. The latter study [47] developed a 

clever way to accurately determine the dielectric properties of a homogeneous material in 

cases where there was a thin intervening layer of unknown thickness. It is an important 

result in that it deals with the multi-layer property measurement problem, but provides only 

minimal insight into discerning an effective penetration depth.

In the present study, we utilize the same measurement configuration but with a range of 

different diameter open-ended coaxial probes to illustrate that the effective penetration depth 

of penetration is closely related to the probe diameter. We have developed a technique for 

systematically determining an effective penetration depth that explicitly attempts to identify 

a region below the probe surface where both the intervening liquid and solid sample have 

representative influence on the bulk tissue property measurements. The first results illustrate 

the electrical fields for two different layered medium cases to demonstrate how quickly the 

fringing fields fall off from the probe surface. The second results are a set of simulations for 

four different, commercially available, diameter coaxial cables performed at 2 and 4 GHz in 

both water and physiological saline, respectively, for correlation with the results presented in 

Meaney et al [40]. The next set are a combination of simulation and actual measurements 

performed at 300 MHz for a set of different diameter probes manufactured as a clinical 

product for assessing cutaneous edema [48] and the standard Slim Form Dielectric Probe 

manufactured by Keysight Technologies, Inc. (Santa Clara, CA). Given the broadband nature 

of this phenomenon, these results are representative of the behavior over a broader spectrum. 
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Finally, we present simulation data demonstrating that the penetration depths are virtually 

constant over frequency and with respect to the permittivities of the intervening liquids but 

are linearly dependent on probe diameter. The following sections describe the measurement 

procedure in detail, the associated results for the different diameter probes and the analysis 

for determining the effective penetration depth.

 II. Methods

 A. Simulations of the Dielectric Probes

CST Microwave Studio software (Framingham, MA) was used to measure the fields in the 

proximity of the dielectric probes used in these experiments. For these situations, the 

differences in the fields and how they were impacted by the presence of objects other than 

the homogeneous medium were examined. In particular, tests were performed for a large 

dielectric cylinder as it approached the probe surface. Simulations were examined for low 

frequencies (300 MHz) for the larger Delfin probes and higher frequencies (2 and 4 GHz) 

for the different RG-designated cables, respectively. Dimensions of the probes tested match 

those for two probes manufactured by Delfin Technologies (Figure 1a, Table I) and for four 

commercially available, 50 Ω probes fabricated from semi-rigid coaxial cables – radio guide 

designations UT-047-M17 (does not have an RG designation), RG-405 (essentially 

equivalent to the Keysight Technologies Slim Form Dielectric Probe), RG-402, and RG-401, 

respectively (Table II). The reflection coefficients were computed using methods developed 

by Hodgetts [49] and later validated experimentally by Gregory et al [50]. These S11 values 

are ultimately used to determine the perceived dielectric properties at the probe interface. 

The technique assumes a large surrounding cylinder which is sufficiently large to have 

minimal impact on the measurements. However, in the case of the largest probe (M25) tested 

at 300 MHz, because the losses of the liquid and that of the acrylic cylinder are quite low, it 

is difficult to completely dampen the minor standing waves and the associated errors 

increased to roughly 2 – 3%. For the purposes of illustrating the effects of the probe 

diameter on the penetration depth, this approach is adequate.

 B. Calculation of the Dielectric Properties from Actual S11 Values

For the actual measurements, the dielectric probes in this case were tested at 300 MHz. The 

technique for extracting the dielectric properties from the measurements utilized a 

variational approximation of the coaxial probe which is considered as an electrostatic circuit 

element whose capacitance is computed using a stationary functional. The fundamental 

TEM modes and evanescent wavemodes within the cable are used as basis functions while 

the fields outside the probe are represented with Hankel functions. The probes were 

calibrated using a common set of calibration standards including air, water:ethanol mixtures 

and water. S11 measurements of these known standards were taken with the Delfin probes 

and the corresponding measurement system along with an open-ended coaxial probe in 

conjunction with an HP8753B vector network analyzer (VNA). The Delfin probes were 

calibrated against the VNA measurements utilizing a standard curve fitting procedure. The 

overall approach and validation tests are described thoroughly in Alanen et al. [29]. The 

static approximations limit the model's use to frequencies below 500 MHz, but are more 

Meaney et al. Page 4

IEEE Trans Microw Theory Tech. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



than sufficient for these 300 MHz experiments. The method has been proven to be accurate 

and easy to implement.

In the case of the simulated results, the inversion technique to recover the complex 

permittivity from the S11 data utilized a gradient-descent method with first order 

differentiation developed by Grant et al. [30]. It has been validated with respect to probe 

dimensions over a range of dielectric properties and associated frequencies.

 C. Effective Penetration Depth Determination

Dielectric probe measurements are most useful when they provide relatively even weight to 

contributions to the bulk properties from different depths from the probe. This implies that 

for a two layer problem, the properties should vary almost linearly from that of one material 

to that of the other for the region within the effective penetration depth as the solid object is 

moved away from the probe. This is illustrated in the sample experiment using a 2.16 mm 

diameter probe (Keysight Technologies Slim Form Dielectric Probe) and plotting the 

perceived relative permittivity as a function of distance for a Teflon cylinder submerged in 

water (Figure 2). Note that Teflon was used only for this experiment while an acrylic 

cylinder was used for all remaining experiments. In this example the curve is virtually linear 

until a separation of 0.22 mm after which it tails off and asymptotically approaches the 

properties of water. We have defined the effective penetration depth as the distance when the 

perceived properties at that separation distance drop 20% below that of the ideal straight line 

extrapolated from the straightest section of the curve beginning at exact contact. In this case, 

we define the right position of the straight section for where the fit to a straight line for the 

section below it has a straight line correlation coefficient of 0.99. (As more data points at 

greater distances are included, the curve deviates progressively from a straight and the 

correlation coefficient decreases.) For this calculation, the straight line was represented as y 

= m1x + b1 where m1 is the slope and b1 is the y-intercept. Because the actual curve is 

comprised of discrete points, it is unlikely that any point would fall exactly 20% below the 

straight line. To overcome this problem, a linear interpolation process is applied using the 

two points on the curve closest to the 20% reduction from the straight line location. The 

equation for these two points can be constructed for that line segment represented by, y = 

m2x + b2, where m2 is the slope and b2 is the y-intercept, respectively. Combining these two 

equations and using the 20% permittivity reduction definition, the penetration depth is 

defined as

(1)

In this case the slope of the line was 249 relative permittivity units/mm with an R2 value of 

0.993. The point at which the perceived value drops 20% below the fitted curve value occurs 

at a separation of 0.33 mm (interpolated from the nearest data points). The associated 

perceived relative permittivity values for the actual curve and fitted straight line were 60.6 

and 75.9, respectively. It should be noted that for this test the acrylic cylinder was replaced 

with a Teflon one. The overall curve is offset slightly to the right because the Teflon is 
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slightly compressible allowing for the probe to partially press into the block at the first 

measurement location. Therefore, the first actual offset location was roughly 0.05 mm to the 

right of the true zero. In this situation, the penetration depth must be adjusted lower to 0.28 

mm to account for this.

 D. Description of Physical Experiment

A two layer problem was used to test the penetration depth concept. Figure 3 shows the set 

up with an open-ended coaxial probe mounted inside a water filled tank with the probe 

facing upwards. The opposite end of the coaxial line was connected to a HP8753B network 

analyzer (Hewlett Packard, Santa Clara, CA) to record the return loss measurements. A 

movable acrylic piston was positioned above the probe and formed the second portion of the 

two-layered structure. Because the acrylic piston was relatively thick (10 mm), the second 

region was considered to have an infinite extent. The capacitance of the probe as a function 

of the first layer thickness was calculated from the reflection coefficient measured with the 

network analyzer. All measurements were performed at 300 MHz and the acrylic dielectric 

constant was 3.0. The tests were performed for the two Delfin Technologies probes. The 

liquids were allowed to equilibrate overnight to room temperature which was 23.0°C and our 

measurements indicate that the temperature variation was within ± 0.1°C over a two hour 

measurement period.

 III. Results

 A. Simulations

 1) Probe Electric Fields in Layered Dielectric Media—Figures 4a and b show 

close-up axial magnitude contour plots of the fields at 900 MHz within the coax and the area 

outside of the probe for the RG401 coaxial cable with the former medium being entirely 

water and the latter comprised of water for the closest layer and an acrylic layer starting 

1mm from the probe surface.

For the homogeneous case, the magnitude contour pattern basically declines monotonically 

extending away from the open-ended coax and the high strength fields appear tightly packed 

in around the probe tip with field strength ranging from roughly −12 dB to −25 dB across 

the probe face. At a distance of 1mm from the probe face, the field strengths range roughly 

between –18 dB and −35 dB. For the heterogeneous case, there appears to be an example of 

a standing wave between the acrylic and the coax and offset closer to the acrylic. The 

circular contours are disrupted and essentially start their more normal pattern to the left of 

the water:acrylic interface. In both cases there is a concentration of the fields around the 

edge of the center conductor at the probe edge. In addition, the magnitude profiles across the 

probe faces only differ slightly in values and shape illustrating the feature that field values at 

the probe interface are only marginally different for the situation when an object is within 

the penetration depth and when one is not.

 2) 2 & 4 GHz, 50 Ω Coaxial Probe Studies—Figures 5a-d show the 2 and 4 GHz 

simulation plots of the perceived relative permittivity as a function of separation distance for 

the four different coaxial probe sizes. For the shorter distances of each plot there is a straight 
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line extending from the value of 3 when the probe is touching the acrylic to roughly a value 

of 55-60 where it rolls off and asymptotically approaches the relative permittivity values of 

water which are 78.8 and 75.8 at 2 and 4 GHz, respectively. The penetration depths were 

calculated using the same technique described in Section II.D. Table III shows the 

penetration depths for the four probes at 2 and 4 GHz. In addition, Table III also presents the 

values when physiological saline (0.9%) is used instead of water. The relative permittivity 

values for 0.9% saline are 78.1 and 75.2 for 2.0 and 4.0 GHz, respectively. The penetration 

depths demonstrate a clear dependence with probe diameter with maximum differences of 

7.1 and 6.8% between the water and saline cases at 2 and 4 GHz, respectively. In general the 

values are consistent as a function of frequency, but as the probe gets larger, especially for 

the RG-401 cable, the depths for the higher frequency do gradually increase compared to 

that for the 2 GHz case.

 3) Summary of Probe Diameter, Frequency and Medium Permittivity Effect 

on Penetration Depth—Simulations were performed using the RG-402 coaxial probe to 

compute the penetration depths as a function of frequency using water as the intervening 

liquid. Figure 6 shows the penetration depth plotted as a function of frequency over the 0.5 – 

10.0 GHz span.

The values are virtually flat at 0.489 mm with only a slight suggestion of an increasing trend 

at the higher frequencies. The fit of the data to a second order polynomial yields:

(2)

where × is the frequency in GHz. The correlation coefficient for the fit was 0.999.

Simulations were also performed using the RG-402 coaxial probe to compute the 

penetration depths for the case where the intervening liquids covered a broad range of 

permittivities. In this case we performed the simulations with an intervening liquid having 

relative permittivities ranging from 10 to 80 in intervals of 10 with a constant conductivity of 

1.0 S/m (Table IV).

Figure 7 shows the progression in penetration depth with respect to liquid permittivity values 

at 2 GHz.

The depth is relatively flat as a function of permittivity while rising slightly at the lower 

values similar to an exponential curve. When fitted to an exponential equation, the result 

was:

(3)

where × is the liquid permittivity. The correlation coefficient for the fit was 0.95.

Finally, in examining the influence of probe diameter on penetration depth, the extremes are 

bounded by the smallest reasonable probe diameter on the low end and the point at which 
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the coaxial line will no longer support a single TEM wave when the diameter becomes 

electrically large. This imposes a practical limit as to the number of actual probe diameters 

that can be tested at a given frequency. To explore the consistency of these measurements 

over a broad diameter range, the penetration depths for the simulated probe measurements at 

2 GHz in water from Section III.B are plotted with the two depths for the Delfin probes in 

water at 300 MHz in Section III.C (Figure 8).

It is clear that there is a linear influence of penetration depth with probe diameter with a 

correlation coefficient of 0.998. In this case the relationship is:

(4)

where × is the probe insulator outer diameter (mm).

 B. Measurements

Figure 1a shows the two Delfin Technologies probes used in this experiment – S15 and M25. 

Each probe has been independently tested with a series of liquid dielectric property 

measurements to provide accurate property values [29]. Figures 9a and b show plots of the 

perceived permittivity curves at 300 MHz as a function of the water layer thickness. All 

cases demonstrate similar characteristic curves which are virtually straight for the smaller 

separation distances and gradually fall off and asymptotically approach the actual values of 

water properties at larger separation distances.

Similarly to the example presented in the previous section, Table V shows the perceived 

penetration depths of each probe for both the measured and simulated cases. The penetration 

depths demonstrate a clear probe diameter dependence and show consistency between 

measurement and simulations.

It should be noted that for the purposes of the Delfin Technologies literature [48], a different 

definition was used for defining the penetration depth. For that case, they determined the 

separation distance at which the perceived permittivity values reached 75% of the actual 

water properties – in this case 60 at 300 MHz. The values for the S15 and M25 models were 

1.59 and 2.43 mm, respectively, corresponding to only 14 and 11% lower values than those 

computed with this technique.

 IV. Conclusions

Dielectric probes of different diameters can be used for a number of applications involving 

different penetration depths. We have developed a robust method of determining the 

effective penetration depth which allows for meaningful measurements in heterogeneous 

material mixtures. These results demonstrate that the penetration depth is clearly a function 

of probe diameter. While there is some influence to the property measurements from the 

second layer beyond the prescribed depth developed in this analysis, the influence is 

minimal. When requiring accurate measurements of homogeneous samples, the 

measurement sample thicknesses should be extended beyond the penetration depths 
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described here. There is only a mild variation with respect to both frequency and intervening 

liquid permittivity. This analysis confirms the challenges involved with measuring solid 

materials because even small amounts of air at the probe interface can have 

disproportionally large influences on the measurements. It also indicates that for the process 

of deconvolving the dielectric properties at different depths, the most likely method will 

inevitably involve applying probes of different diameters.

We present data for a relatively low frequency and multiple higher frequencies which 

showed that the penetration depth for a single diameter probe did not vary appreciably over 

the extended range from 0.5 to 10 GHz. This data confirms that penetration depth varies 

with probe diameter but is essentially constant with frequency and intervening material 

permittivity. While there are an infinite number of possible heterogeneous property 

distributions, the multi-layer configuration is quite common and representative with respect 

to challenges encountered using the open-ended coaxial probes. Further investigation is 

certainly warranted to assess the effects of material heterogeneities extending out radially 

from the main axis of the coaxial probe.
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Fig. 1. 

Photographs of (a) the two probes used in this experiment, and (b) the complete 

measurement system.
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Fig. 2. 

Example of calculation used to determine the penetration depth. Data is from measurements 

for a 2.16 mm diameter Slim Form Dielectric Probe (Keysight Technologies) submerged in 

water with a Teflon cylinder for the second layer.
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Fig. 3. 

Measurement system used to test the two-layered problem showing the water tank, dielectric 

probe and dielectric cylinder: (a) photograph, and (b) schematic diagram.
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Fig. 4. 

2D contour plots of the axial plane electric field magnitudes from a coaxial probe: (a) probe 

in water, and (b) for the probe in water with an acrylic layer positioned 1 mm from the 

surface.
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Fig. 5. 

Plots of the 2 and 4 GHz perceived relative permittivity values from simulations for the two 

layered problem as a function of separation distance for the four coaxial cables: (a) UT-047-

M17, (b) RG-405, (c) RG-402, and (d) RG-401.
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Fig. 6. 

Plot of the penetration depth as a function of frequency from simulations for the RG-402 

coaxial probe.
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Fig. 7. 

Plot of the penetration depth as a function of the relative permittivity of the intervening 

liquid for the RG-402 coaxial probe.
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Fig. 8. 

Penetration depths for a water sample as a function of probe diameter. Data for the RG 

designated probes at 2 GHz and Delfin probes at 300 MHz are plotted.
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Fig. 9. 

Plots of the 300 MHz perceived relative permittivity values for the two layered problem as a 

function of separation distance: (a) S15, and (b) M25.
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TABLE I

Diameters of the two Delfin Technologies probes (Figure 1)

Probe Center Conductor Diam. (mm) Insulator Outer Diam. (mm) Outer Coax Diam. (mm)

S15 3.0 10.0 18.0

M25 5.0 15.0 21.0
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TABLE II

Diameters of the four 50 Ω probes simulated in these experiments

Probe Center Conductor Diam. (mm) Insulator Outer Diam. (mm) Outer Coax Diam. (mm)

UT-047-M17 0.32 0.94 1.19

RG405 0.57 1.68 2.18

RG402 1.02 2.99 3.58

RG401 1.83 5.44 6.35
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TABLE III

Penetration depths (mm) for the UT-047-M17, RG-405, RG-402, and RG-401 coaxial probes for 2 and 4GHz 

when tested in water and 0.9% saline.

Probe Water Saline

2 GHz 4 GHz 2 GHz 4 GHz

UT-047-M17 0.157 0.162 0.158 0.158

RG-405 0.286 0.286 0.283 0.283

RG-402 0.486 0.494 0.483 0.487

RG-401 0.874 0.896 0.866 0.894
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TABLE IV

List of permittivity and conductivity values at 2 GHz for different intervening liquids.

Sample Permittivity Conductivity (S/m)

1 10 1.0

2 20 1.0

3 30 1.0

4 40 1.0

5 50 1.0

6 60 1.0

7 70 1.0

8 80 1.0
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TABLE V

Measured and simulated penetration depths for two 50 Ω Delfin Technologies probes at 300 MHz.

Model Measured Depth of Penetration (mm) Simulated Depth of Penetration (mm)

S15 1.84 1.77

M25 2.74 2.45
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