
Salable Computing: Pratie and ExperieneVolume 10, Number 3, pp. 325�336. http://www.spe.org ISSN 1895-1767© 2009 SCPEOPEN ENVIRONMENT FOR PROGRAMMING SMALL CONTROLLERS ACCORDINGTO IEC 61131-3 STANDARDDARIUSZ RZO�CA, JAN SADOLEWSKI, ANDRZEJ STEC, ZBIGNIEW �WIDER, BARTOSZ TRYBUS, ANDLESZEK TRYBUS∗Abstrat. A ontrol engineering environment alled CPDev for programming small ontrollers in ST, FBD and IL languagesof IEC 61131-3 standard is presented. The environment onsists of a ompiler, simulator and hardware on�gurer. It is open in thesense that: (1) ode generated by the ompiler an be exeuted by di�erent proessors, (2) low-level omponents of the ontrollerruntime program are developed by hardware designers, (3) ontrol programmers an de�ne libraries with funtions, funtion bloksand programs.Of the three IEC languages, ST Strutured Text is a basis for CPDev. FBD diagrams are translated to ST. IL ompiler usesthe same ode generator. The runtime program has the form of virtual mahine whih exeutes universal ode generated by theompiler. The mahine is an ANSI C program with some platform-dependent omponents. The mahines for AVR, ARM, MCS51and x86 proessors have been developed so far. Appliations inlude two ontrollers for small DCS systems and PC equipped withI/O boards. CPDev may be downloaded from http://pdev.prz-rzeszow.pl/demo.Key words: ontrol engineering tool, IEC 61131-3 standard, ST language ompiler, multi-platform virtual proessor1. Introdution. Remarkable number of small-and-medium-sale ompanies in Europe manufature tran-smitters, atuators, drives, PID and PLC ontrollers, and other ontrol-and-measurement equipment. Engi-neering tools for programming suh devies are often fairly simple and do not orrespond to IEC 61131-3standard [4℄, required by growing number of ustomers. The problem may be solved to some extent by devel-oping open engineering environments for programming small ontrol devies based on AVR, ARM, MCS51 orother miroontrollers aording to IEC languages (61131-3 will be dropped for brevity). Development of suhenvironment alled CPDev (Control Program Developer) was initiated by the authors at the end of 2006.The CPDev is open in the following sense:
• ode generated by the ompiler an be exeuted by di�erent proessors,
• low-level omponents of runtime program are provided by hardware designers,
• ontrol programmers reate their own libraries with reusable program units.The CPDev ompiler generates an intermediate, universal ode exeuted by runtime interpreter at the ontrollerside. Di�erent proessors require di�erent interpreters. This resembles somewhat the onept of Java virtualmahines [7℄ apable of exeuting programs on di�erent platforms. Hene the interpreters of the CPDev universalode are also alled virtual mahines.The same approah was adapted earlier in ISaGRAF pakage from ISC Triplex [5℄ (now in Rokwell). IS-aGRAF universal ode is alled TIC (Target Independent Code) and may be exeuted on platforms supportingWindows, Linux, VxWorks, QNX and RTX. Muh simpler CPDev does not impose suh requirements, how-ever. Another open environment alled Beremiz [11℄ ompiles IEC language ode into C/C++ program, to betranslated further into proessor ode. In this ase ommerial restritions on the use of C/C++ ompilers maymatter sometimes.This paper follows a few earlier publiations, e.g. [9, 10℄, whih reported on CPDev development. Theontent is organized as follows. For the reader not familiar with IEC standard, Se. 2 provides some informationon programming in high-level ST language. Components of CPDev, user interfae, standard funtions andlibraries with funtion bloks are desribed in Se. 3. Setion 4 haraterizes sanner, parser and ode generatorof ST ompiler, written in C# at Ms .NET platform. Some instrutions of the universal ode alled VMASM(Virtual Mahine Assembler) are also presented. Setion 5 desribes operation and struture of the virtualmahine. The mahine is written in industry standard C and onsists of universal and platform-dependentmodules. Platform-dependent modules are written by hardware designers. Setion 6 haraterizes developmentof user funtion bloks, both in ST and C languages. Bloks written in C beome omponents of the virtualmahine. Programming in graphial FBD and textual IL languages is desribed in Se. 7. FBD diagram istranslated to ST and then ompiled. Appliations of CPDev for programming a small ontrol-and-measurement

∗Department of Computer and Control Engineering, Faulty of Eletrial and Computer Engineering, Rzeszow University ofTehnology, 35-959 Rzeszow, ul. W. Pola 2, Poland, ({drzona, js, aste, swiderzb, btrybus, ltrybus}�prz-rzeszow.pl).325

326 D. Rzo«a, J. Sadolewski, A. Ste, Z. �wider, B. Trybus, and L. Trybusdistributed system, ontrollers of ship ontrol-and-positioning system and a softontroller based on PC withI/O boards are presented in Se. 8.2. A few notes on IEC 61131-3. The IEC 61131-3 standard [4℄ de�nes �ve programming languages,LD, IL, FBD, ST and SFC, allowing the user to hoose the one suitable for partiular appliation. Instrutionlist IL and Strutured Text ST are text languages, whereas Ladder Diagram LD, Funtion Blok DiagramFBD and Sequential Funtion Chart SFC are graphial ones (SFC is not an independent language, sine itrequires omponents written in the other languages). Relatively simple languages LD and IL are used forsmall appliations. FBD, ST and SFC are appropriate for medium-sale and large appliations. John andTiegelkamp's book [6℄ is a good soure to learn IEC programming.ST is a high-level language originated from Pasal, espeially suitable for ompliated algorithms. Equivalentode for a program written in any of the other four languages an be developed in ST, but not vie versa. Henemost of engineering pakages use ST as a default language for programming user funtion bloks. Due to suhreasons, ST has been seleted as a base language for the CPDev environment.2.1. Data types. Data types, literals (onstants) and variables are ommon omponents of IEC languages.Names (identi�ers) are typial, although there is no distintion between apital and small haraters. Thestandard de�nes twenty elementary data types, several of whih are listed in Table 2.1 together with memorysizes and ranges (in CPDev). BOOL, INT, REAL and TIME are most ommon. FALSE, 13, -4.1415 and T#1m25sare examples of orresponding onstants. Table 2.1Several elementary IEC data typesType Size (range) Type Size (range)BOOL 1B (0, 1) LREAL 8B IEEE-754 formatBYTE 1B (0 . . . 255) TIME 4B (-T#24d20h31m23s648ms . . .WORD 2B (0 . . . 65535) T#24d20h31m23s647ms)INT 2B (−32768 . . . 32767) TIME_OF_DAY 4B (00:00:00.00 . . .REAL 4B IEEE-754 format 23:59:59.99)The standard de�nes three levels for aessing variables, LOCAL, GLOBAL and ACCESS. LOCALs are availablein the program, funtion blok or funtion. GLOBALs an be used in the whole projet, but programs, funtionbloks or funtions must delare them as EXTERNAL. ACCESS variables exhange data between di�erent systems.2.2. POU units. Programs, funtion bloks and funtions, alled jointly Program Organization Units(POUs), are omponents of IEC projets. Funtion bloks, designed for reuse in di�erent parts of program,are of ruial importane. A blok involves inputs, outputs and memory for data from previous exeutions.Therefore the bloks must be delared as instanes. The IEC de�nes small set of standard bloks, suh as�ip-�ops, edge detetors, timers and ounters. Three of them are shown in Fig. 2.1.
Fig. 2.1. Examples of standard funtion bloks: RS �ip-�op, R_TRIG rising edge detetor, TON on-delay timer2.3. Programming. Programs written in ST or other languages begin with delarations of variables andinstanes of funtion bloks plaed between VAR_EXTERNAL or VAR and END_VAR keywords. GLOBAL variables aredelared before programs or separately. The delarations are followed by list of statements. The statementsinvolve expressions whih, when evaluated, yield results in one of de�ned data types, i. e. elementary (Table 2.1)or derived, suh as alias, array or struture. The following operators are available (in desending priority):parenthesis, funtion evaluation, negation, power, arithmeti operators, Boolean operators.

Open environment for programming small ontrollers 327ST language provides �ve types of statements:
• assignment := (Pasal symbol),
• seletions IF, CASE,
• loops FOR, WHILE, REPEAT,
• early exits RETURN, EXIT,
• funtion and funtion blok invoations.Simple examples are presented in the following setions. Typial program looks like a sequene of funtion andfuntion blok invoations (alls).3. CPDev environment. The CPDev onsists of three programs exeuted by PC and one by the on-troller (Fig 3.1). The PC programs are as follows:
• CPDev ompiler of ST language,
• CPSim simulator,
• CPCon on�gurer of hardware resoures.The programs have dediated interfaes and exhange data through �les in appropriate formats. The CPDevompiler (the same name as the pakage) generates universal ode exeuted by virtual mahine (VM) run by theontroller. The VM operates as an interpreter. The universal ode is a list of instrutions of VM language alledVMASM assembler. VMASM is not related to any partiular proessor, but lose to typial assemblers. Theompiler employs ST syntax rules, list of VMASM instrutions and POUs from libraries. Besides the universalode the ompiler generates some information for debugging and simulation by CPSim.

Fig. 3.1. Components of CPDev environmentCon�guration of hardware resoures by means of CPCon involves memory, input/output and ommuniationinterfaes. User spei�ations de�ne memory types and sizes, numbers and types of I/Os and ommuniationhannels, validity �ags, et. Alloation of hardware resoures has the form of a map that assigns symboliaddresses from ST programs to physial ones. By using it, the ompiled ode an be assembled for a partiularplatform to reate �nal, universal exeutable ode. From CPDev viewpoint, hardware platforms di�er only inhardware alloation maps, whereas the ompiled ode is idential.The CPDev environment has been reently extended by graphi editor of FBD diagrams and ompiler ofIL language. FBD diagram is automatially onverted into ST ode and ompiled as above. Compilers of STand IL di�er in details only.3.1. User interfae. Main window of CPDev ST ompiler is shown in Fig. 3.2. The window onsists ofthree areas:
• tree of projet struture, on the left,
• program in ST language, enter,
• message list, bottom.Frames of the areas an be adjusted and the ontents srolled.Tree of the START_STOP projet shown in the �gure inludes POU unit with the program PRG_START_STOP,�ve global variables from START to PUMP, task TSK_START_STOP, and two standard funtion bloks TON andTOF from IEC_61131 library. The program is written aording to ST language rules. The �rst part involvesdelarations VAR_EXTERNAL of the use of global variables. Loal delarations of the instanes ON_DELAY andOFF_DELAY of the bloks TON, TOF are the seond part. Program body onsists of four statements. The �rst oneturns a MOTOR on if START is pressed, provided that STOP or ALARM are not. Next three statements turn a PUMPon and o� �ve seonds after the MOTOR (FBD diagram orresponding to this projet is shown in Fig 7.1).Global variables and the task are de�ned using separate windows (not shown). Aording to IEC standardthe variables an be assigned CONSTANT and RETAIN attributes, and logial addresses. Task an be exeutedone, ylially with a given period, or as soon as previous exeution is ompleted. There is no limit on thenumber of programs assigned to a task.Text of the projet represented by the tree is kept in an XML �le. Compilation is exeuted by allingProjet->Build from the main menu. Messages appear in the lower area of the interfae window. If there

328 D. Rzo«a, J. Sadolewski, A. Ste, Z. �wider, B. Trybus, and L. Trybus

Fig. 3.2. User interfae of ST ompiler (START_STOP projet)are no mistakes, the ompiled projet is stored in two �les. The �rst one ontains universal exeutable ode inbinary format for the virtual mahine. The seond one stores mnemoni ode, together with some informationfor simulator and hardware on�gurer (variable names, et.).3.2. Funtions and funtion bloks. The CPDev ompiler provides most of standard funtions de�nedin IEC. Five groups of them followed by examples are listed below:
• type onversions: INT_TO_REAL, TIME_TO_DINT, TRUNC,
• numerial funtions: ADD, SUB, MUL, DIV, SQRT, ABS, LN,
• Boolean and bit shift funtions: AND, OR, NOT, SHL, ROR,
• seletion and omparison funtions: SEL, MAX, LIMIT, MUX, GE, EQ, LT,
• funtions of time data types: ADD, SUB, MUL, DIV (IEC uses the same names as for numerial funtions).Seletor SEL, limiter LIMIT and multiplexer MUX from seletion and omparision group are partiularly useful.Variables of any numerial type, i. e. INT, DINT, REAL and LREAL are arguments in most of relevant funtions.Two libraries of funtion blok are available, namely:
• IEC_61131 standard library,

Open environment for programming small ontrollers 329
• Basi_bloks library with simple bloks supplementing the standard.The �rst one involves: (1) �ip-�ops and semaphore RS, SR, SEMA, (2) rising and falling edge detetors R_TRIG,F_TRIG, (3) up, down, up-down ounters CTU, CTD, CTUD, (4) pulse, on-delay, o�-delay timers TP, TON, TOF.Bloks typial for small multifuntion ontrollers are in the seond library, i. e. integrator, �lters, max/min overtime, memories, time measurement, et.4. ST language ompiler. The task of the ompiler is to onvert XML soure �le with the projet in STlanguage into a �le with universal ode in binary format. General diagram of the ompiler operation involvingsanner, parser and ode generator is shown in Fig. 4.1.

Fig. 4.1. ST ompiler omponents4.1. Sanner, parser and ode generator. The sanner (lexial analyser) analyses harater streamfrom ST soure �le and deomposes it into lexial units, i. e. tokens. The tokens are lassi�ed into ategoriessuh as identi�ers, keywords, operators, onstants (a few ategories), delimiters, diretives, omments, whitespaes and invalid haraters. The tokens with ategories are olleted on a list passed to the parser.The parser operates aording to top-down sheme with syntax direted translation [3℄. By employingthe ST syntax the parser reognizes onseutive token onstrutions from the sanner list. White spaes andomments are dropped. When orret onstrution is reognized the parser replaes it by a set of mnemoniinstrutions of the VMASM assembler. To do so, the parser employs built in elementary data types (Table 2.1)and list of VMASM instrutions. Examples of these instrutions are presented in Table 4.1.Table 4.1Examples of VMASM assembler instrutionsInstrution Meaning Instrution MeaningMCD Constant initialization GE Greater or equalMEMCP Assignment SHL Bit shift to the leftADD Addition JMP Unonditional jumpSUB Subtration JZ Conditional jumpAND Logi produt MEMCP Memory opyNOT Negation RETURN Return from funtionNormally a single ST statement is translated into several VMASM instrutions. Some translations requireintrodution of auxiliary variables and labels. Derived data types and POUs from libraries (funtions, funtionbloks and programs) are also parsed. The mnemoni ode is written in a speial text format. The ode an beonsolidated with other mnemoni odes.In the third step the ode generator onverts the onsolidated mnemoni ode into universal exeutableode in binary format. Mnemonis of the VMASM instrutions, names of the variables and labels are replaedby orresponding number identi�ers. To do so, the generator employs a Library Con�guration File (LCF)with the identi�ers of the instrutions, numbers and types of the operands, and information how the operandsare aquired (operand identi�er may be an index to variable or a diret value). Eah implementation ofvirtual mahine is de�ned by spei� LCF on�guration �le. Besides binary �le with the exeutable odethe ompiler generates a text �le with mnemoni ode, some additional information for CPSim simulator andCPCon on�gurer (variable names, et.) and ompilation report (HTML).4.2. Parser and ode generator lasses. Essential omponents of the ompiler are designed as lassesin C# language [1, 2℄. Eah token of ST language is enapsulated into an objet of orresponding lass. Thelasses inherit from an abstrat STIdentifiator lass. During ompilation, identi�ers are olleted into lists.The lists employ prediates for �nding appropriate identi�ers, what eliminates the need for hash tables. Thereis a list of global identi�ers and loal lists whih store identi�ers of funtions, funtion bloks, programs, et.

330 D. Rzo«a, J. Sadolewski, A. Ste, Z. �wider, B. Trybus, and L. TrybusIdenti�ers in a list are heked for uniqueness. When idential names are found ompilation is stopped anderror reported. If loal identi�er hides a global one, the ompiler produes a warning.The parser generates text sequene of VMASM instrutions for the ode generator. Eah instrution isrepresented by a mnemoni followed by operand names. Code generator replaes mnemonis and variablenames with appropriate number identi�ers (indexes). While proessing an instrution, the generator extratssome information from libraries, e.g. operand size, type and passing method. The number identi�er anbe interpreted as a pointer to variable or as immediate value. Instrutions resulting from ompilation arerepresented by instanes of VMInstrution lass. The operand list VMOperand is also stored as a member ofthis lass. By using lists of operands typial problems with �xed-size operand tables are avoided.5. Multi-platform virtual mahine. Binary �le with the universal ode and hardware alloation mapfrom the CPCon on�gurer are downloaded into the ontroller, to be proessed by virtual mahine. Mainfeatures of the proessing are haraterized below.

a) Operation of VM b) Memory organizationFig. 5.1. Virtual Mahine5.1. Operation yle. Virtual mahine is an automaton operating aording to Fig. 5.1a. As indiatedbefore, the mahine is spei� for a partiular proessor and works as an interpreter. The task onsists ofprograms exeuted onseutively. The binary ode involves number identi�ers of the instrutions and addressesof operands. The mahine, similarly as a real proessor, maintains program ounter with the address of in-strution to be exeuted, and base address of the data area with operands (spei�ed for eah POU). Giventhe instrution address, the mahine fethes the identi�er, deodes it, fethes the operands, and exeutes theinstrution. Stak emulation and update of the base addresses permit multiple, onurrent alls of funtionsand funtion bloks. The mahine monitors time yle of the task and sets alarm �ag if timeout appears. Italso triggers input/output proedures responsible for external variables.Alloation of software to memory segments is shown in Fig. 5.1b. The instrutions and their operands arein the ode segment (read only). Data segment ontains global, loal and auxiliary variables, some of themwith onstant values. The data segment an be aessed diretly or indiretly by speial virtual registers. Themahine's internal memory keeps ode of the interpreter, staks and registers. There is no way of aessinginternal memory from the program level. The mahine is able to exeute multiple instanes of programs.As shown in Fig. 5.2, the virtual mahine onsists of a few universal and platform-dependent modules tosimplify implementation. The universal modules remain unhanged (if one neglets ompilation of the soureode for a given proessor). The platform-dependent modules interfae the mahine to partiular hardware,exeuting VM requests to low-level proedures. For instane, the module Time&Clok is assoiated with hard-ware, as it employs time interrupts to handle TIME data. DATE_AND_TIME data require real-time lok (RTC) onboard. I/O funtions provide interfae to analog and binary inputs and outputs, and to ommuniation �eldbusor network. The multitasking module is optional (not implemented yet), sine it employs mehanisms of thehost operating system.

Open environment for programming small ontrollers 331
Fig. 5.2. Universal and platform-dependent VM software modulesThe universal part of the virtual mahine has been written in ANSI C, so it an be diretly applied todi�erent proessors. As indiated in Se. 4.1, the number of data types and the way in whih the mahineinstrutions are exeuted are de�ned by the LCF on�guration �le. For example, one an limit the numberof elementary data types or de�ne a subset of VMASM instrution to be used. A set of general spei�ationshas been developed in CPDev for handling proessor omponents (interrupt system, RTC) and external in-terfaes (I/O, ommuniations). The spei�ations are in the form of prototypes of orresponding proedures(names, types of inputs and returned outputs). The prototypes do not depend on proessor and hardwaresolutions.The �le with the prototypes is ompiled together with the universal modules of the virtual mahine. Theontents (bodies) of the spei�ation proedures an be prepared by hardware designers and, as a binary �le,onsolidated with the ompiled universal modules. This gives the omplete ode of the virtual mahine for givenplatform. Till now, the mahines for AVR, ARM, MCS-51 and PC platforms have been developed.We stress that the ontents of low-level proedures dependent on hardware solutions may be written bydesigners themselves. This makes the CPDev pakage open in the hardware sense.6. User de�ned funtion bloks. The CPDev environment allows the user to de�ne funtion bloksboth at PC side and at ontroller side, i. e. as omponents of virtual mahine. The PC side bloks are writtenin ST, whereas the VM side ones are in C. However, the C bloks are still invoked in the main ST programompiled and downloaded from PC. So, as far as invoations are onerned, there is no di�erene between STand C bloks.6.1. ST bloks. User libraries are reated in CPDev as typial projets whih may inlude all kindsof POU units of IEC standard, i. e. programs, funtions and funtion bloks. Delarations VAR_INPUT andVAR_OUTPUT determine input/output struture of funtions and funtion bloks. There is no di�erene betweenprogramming of a projet diretly for ontroller implementation and programming a library. However, thelibrary projet is semi-ompiled to VMASM mnemonis and not to binary form. So the last omponent of STompiler, ode generator (Fig. 4.1), is not needed. The �le with mnemonis beomes user-de�ned library andis exported to Libraries folder.Example of user funtion blok FB_PULSE is shown in Fig. 6.1. The blok generates single pulse at theoutput Q after time T, sine rising edge has appeared at the input IN. The program of the blok may implementFBD diagram of Fig. 6.1b, with standard bloks R_TRIG, RS and TON from CPDev IEC_61131 library (Fig. 2.1).Corresponding ST ode is shown in Fig. 6.1, with FB_PULSE belonging to the projet PROJ_MY_BLOCK (top ofFig. 6.1). XML �le with PROJ_MY_BLOCKS soure ode should be saved for future extensions and modi�ations.Semi-ompilation of the projet yields a �le with VMASM mnemonis, alled, for instane, My_Library. This�le must be exported to Libraries. If FB_PULSE is needed in a new projet, both My_Library and IEC_61131must be imported (the latter to support the former).6.2. C-language bloks. Suh bloks are needed at hardware level to handle I/O and ommuniationhannels. Inputs and outputs are delared in ST, but the blok body is implemented in C, at virtual mahineside (delarations are also repeated). Diretive (*$HARDWARE_BODY_CALL...*) informs CPDev ompiler thatthe blok is a omponent of VM.Table 6.1 presents initial parts of the ode of GPS_GGA blok whih provides serial ommuniation with a GPSdevie aording to NMEA protool (GGA is a ommand in NMEA). Identi�er ID:0003 in the (*$HARDWARE...)diretive means that GPS_GGA is the third of C language bloks at VM side. Align:4 tells the ompiler to loatethe variables at addresses divided by 4.

332 D. Rzo«a, J. Sadolewski, A. Ste, Z. �wider, B. Trybus, and L. Trybus
a) Time diagram

) ST odeb) FBD realization Fig. 6.1. Funtion blok FB_PULSETable 6.1Delaration of C language blok for GPS interfaingST delaration C delaration in VMFUNCTION_BLOCK GPS_GGA typedef strut(*$HARDWARE_BODY_CALL __delspe(align(4))ID:0003; Align:4 *) tagIO_GPS_GGAVAR_INPUT {PORT : BYTE; END_VAR /*inputs*/ VM_BYTE Port;VAR_OUTPUT /*outputs*/UTC : TIME_OF_DAY; VM_TIME_OF_DAY Ut;LAT : LREAL; VM_LREAL Lat;LON : LREAL; VM_LREAL Lon;ALT : LREAL; VM_LREAL Alt;QUALITY : BYTE; END_VAR VM_BYTE Quality;END_FUNCTION_BLOCK } IO_GPS_GGA, *PIO_GPS_GGA;Struture of the bodyswith(ID) {...ase 0x0003: {PIO_GPS_GGA arg = (PIO_GPS_GGA)GET_PARAM_POINTER();...}...}The blok's PORT input spei�es ommuniation hannel. The outputs determine UTC time, LATitude,LONgitude and ALTitude of atual position, together with QUALITY of GPS reading. We stress that besides thedelarations there is no body in ST omponent of the blok.Struture tagIO_GPS_GGA de�ned at VM side repeats ST delarations with alignment, spei�es type nameand pointer type. Exeutions of C bloks are implemented by swith(ID) statement with bodies entered atsuessive ases. So the body of GPS_GGA is entered at ase 0x0003. Funtion GET_PARAM_POINTER() returnspointer to the struture determined for the bloks instane in delaration VAR ... END_VAR in the main STprogram. The pointer is of general type void*, so must be onverted to the type PIO_GPS_GGA. The resulting

Open environment for programming small ontrollers 333pointer is saved in arg variable, su�ient for further proessing. Other C language bloks are implemented inthe same way. Given suh template, hardware designers an prepare C bloks themselves.7. FBD and IL ompiler. The CPDev environment has been extended reently with simple graphieditor of FBD diagrams and ompiler of IL textual language, mainly for teahing purposes. ST ompilerremains basi platform of the environment.7.1. Programming in FBD. The graphi editor, alled Blokers (Fig. 7.1), provides basi editing fun-tions, i. e. inserting bloks into diagram, onneting inputs and outputs of the bloks, seleting and removingobjets, zooming, et. The bloks are hosen from CPDev libraries. Global input/output variables and onstantvalues are also plaed in the diagram. Built-in syntax heker veri�es orretness. Resulting FBD diagram issaved in XML text �le whose struture follows reommendations of PLCopen [13℄. The XML �le is then on-verted into ST language by means of FBD2CPDev translator. Connetions between the bloks and instanesof the bloks are represented by automatially reated loal variables of orresponding types. Convention ofvariable names is based on types of bloks in the diagram and on exeution order.

Fig. 7.1. FBD diagram of the START_STOP systemFigure 7.1 shows FBD diagram of the START_STOP system drawn using the Blokers editor. Numbers in theupper left orners of the bloks indiate exeution order. Notie that in ase of the funtion bloks TON, TOFthe numbers may be used to distinguish instanes. The variables plaed in narrow retangles on the left andright are interpreted as global. Equivalent ST ode generated by FBD2CPDev translator is shown in Table 7.1(ompare Fig. 3.2). Table 7.1ST program onverted from FBDPROGRAM START_STOP TON10 : TON;VAR_EXTERNAL TOF11 : TOF;START : BOOL; END_VARSTOP : BOOL;ALARM : BOOL; var_AND6_0 := AND(var_OR7_0,var_NOT9_0,var_NOT8_0);MOTOR : BOOL; var_OR7_0 := OR(var_AND6_0,START);PUMP : BOOL; var_NOT8_0 := NOT(ALARM);END_VAR var_NOT9_0 := NOT(STOP);TON10(IN := var_AND6_0, PT := t#5s);VAR TOF11(IN := TON10.Q, PT := t#5s);var_OR7_0 : BOOL; MOTOR := var_AND6_0;var_NOT9_0 : BOOL; PUMP := TOF11.Q;var_NOT8_0 : BOOL;var_AND6_0 : BOOL; END_PROGRAM

334 D. Rzo«a, J. Sadolewski, A. Ste, Z. �wider, B. Trybus, and L. TrybusIt is seen that:
• onnetions between the bloks are represented by loal variables var_OR7_0 to var_AND6_0; name ofa variable indiates soure blok of that variable,
• two instanes TON10, TOF11 are reated, with names involving the blok type and exeution order.Outputs of the instanes, i. e. TON10.Q and TOF11.Q, are denoted in the standard way (ompare Fig. 3.2).7.2. Programming in IL. Sine delaration parts of programs written in ST and IL are the same, andoutome of eah ompilation is a �le with VMASM ode, the ompiler of IL language has been developed byextending the original ST ompiler. The ST ompiler generates the VMASM ode from expression trees builtof tokens aquired from ST ode. By analysing a sequene of IL instrutions one an reate similar trees andemploy them in suesive stages of ompilation, in the same way as while ompiling ST. This gives more e�ientVMASM ode than diret translation of IL instrutions into VMASM, sine VMASM, unlike IL, does not relyon the notion of aumulator. Aumulator is not needed in expression trees, typial for high-level languages.Table 7.2IL program for START_STOP projetPROGRAM PRG_START_STOP LD STARTVAR_EXTERNAL OR MOTORSTART : BOOL; ANDN STOPSTOP : BOOL; ANDN ALARMALARM : BOOL; ST MOTORMOTOR : BOOL;PUMP : BOOL; CAL ON_DELAY(IN:=MOTOR, PT:=t#5s)END_VAR CAL OFF_DELAY(IN:=ON_DELAY.Q, PT:=t#5s)VAR LD OFF_DELAY.QON_DELAY : TON; ST PUMPOFF_DELAY: TOF;END_VAR END_PROGRAMThe PRG_START_STOP program of Fig 3.2 is rewritten in IL in Table 7.2. The instrution LD START loadsCR register (Current Result; aumulator in IEC) with the value of START. Next the CR is ORed with MOTOR, withthe result in CR. The following ANDN negates STOP, ANDs it with CR, always with the result in CR. Similarly foranother ANDN. ST MOTOR saves CR in the variable MOTOR. CAL instrutions invoke funtion bloks.8. CPDev appliations. The CPDev pakage is urrently applied for programming new SMC ontrollerfrom LUMEL, Zielona Góra, Poland. SMC operates as a entral unit in small DCS systems involving dis-tributed I/O modules, intelligent transmitters, PID ontrollers, et. [12℄. Development of another appliation inforthoming version of MINI-GUARD Ship Control & Positioning System from Praxis Automation Tehnology,Leiden, The Netherlands, is in progress [8℄. For lab and teahing appliations PC-based softontrollers an beused.8.1. SMC ontroller. The SMC shown in Fig. 8.1a is based on Atmel AVR 8-bit miroontroller.Platform-dependent modules of virtual mahine, i. e. interrupts, RTC and ommuniation interfaes, havebeen written by LUMEL engineers, and sent to the authors in binary format. Consolidation of universal andLUMEL modules has resulted in a VM-SMC mahine whih, as SMC �rmware, exeutes ST program ompiledand downloaded from PC. The ontroller is equipped with two serial ports, one (master) for distributed I/Os and�eld devies, another (slave) for host PC or HMI panel. Modbus RTU protool is applied (up to 230.4 kbaud).Third Complex_bloks library to implement self-tuning PID ontrol loops is provided.8.2. MINI-GUARD ontrollers. The MINI-GUARD system onsists of seven types of ontrollers(Fig. 8.1b) involving NXP ARM7 16/32-bit miroontrollers. The ontrollers have appliation dediated fae-plates. Virtual mahine for Atmel ARM7 has been sent to Praxis A.T., to be adapted for the NXP ARM7. Thesoftware to handle C language bloks desribed in Se 6.2 has been developed espeially for MINI-GUARD. Theontrollers ommuniate over Ethernet, external devies are onneted via universal serial interfae or OPC.8.3. Softontrollers with NI and InTeCo boards. A PC equipped with I/O board and exeutinga ontrol program is alled softontroller. Two suh boards an be used so far, namely NI-DAQ USB 6008from National Instruments and RT-DAC/USB from InTeCo, Craow, Poland (Fig. 8.1,d). A ommon interfae

Open environment for programming small ontrollers 335

a) SMC ontroller b) Alarm Panel of MINI-GUARD

) NI-DAQ I/O board d) RT-DAC I/O boardFig. 8.1. Appliations of CPDev pakageCPDev.CPCom.ICommDev has been developed, with provision for other types. Softontroller is on�gured in twosteps. First a board is seleted from menu and I/O hannels de�ned. Then global variables of the projet arelinked to the hannels. Binary hannels beome BOOLs and analog one REALs. Softontrollers an be onnetedinto DCS system by means of Modbus TCP protool.9. Conlusions and future work. CPDev environment for programming small ontrollers in ST, FBDand IL languages of IEC 61131-3 standard has been presented. The environment is onsidered open beauseompiled ode an be exeuted by di�erent proessors, low-level software omponents are provided by hardwaredesigners, and ontrol programmers an reate their own libraries with reusable program units. The ompilerprodues universal exeutable ode proessed by runtime virtual mahine operating as interpreter. The mahineis an ANSI C program omposed of universal and platform-dependent modules. The mahines for AVR, ARM,MCS51 (ore) and x86 proessors have been developed so far. User funtion bloks an be programmed in STand C. The ST bloks are kept in CPDev libraries, whereas C bloks beome omponents of virtual mahine.FBD diagram is translated to ST and then ompiled. CPDev has been used for programming ontrollers in twosmall DCS systems and for PC-based softontroller with I/O boards.Future work on CPDev will be motivated primarily by needs of the users. Next version will inludestrutured data types and global arrays, at least two-dimensional (loal arrays are available now). Current

336 D. Rzo«a, J. Sadolewski, A. Ste, Z. �wider, B. Trybus, and L. Trybussimple FBD editor should be upgraded to more professional level. Depending on ST statements the ompiledode is longer or shorter, as in the expression x1 AND x2 vs. funtion AND(x1, x2). Templates indiating moree�ient solutions are important for the users. Virtual mahine for FPGA platform with simple multitaskingmehanism is urrently under development. REFERENCES[1℄ A. Appel, J. Palsberg, Modern ompiler implementation in Java, Cambridge University Press, Seond edition, (2002).[2℄ C# Language Speifiation, http://msdn2.mirosoft.om/en-us/vsharp/aa336809.aspx, (2007).[3℄ K. Cooper, L. Torzon, Engineering a Compiler, Morgan Kaufmann, San Franiso, (2003).[4℄ IEC 61131-3 standard: Programmable Controllers�Part 3, Programming Languages, IEC, (2003).[5℄ ISaGRAF User's Guide, ICS Triplex In., (2005).[6℄ K. H. John, M. Tiegelkamp, IEC 61131-3: Programming Industrial Automation Systems Berlin�Heidelberg, Springer-Verlag, (2001).[7℄ T. Lindholm, F. Yellim, Java Virtual Mahine Spei�ation - Seond Edition, Java Software, Sun Mirosystems In,(2004).[8℄ Mini-Guard Ship System, Praxis Automation Tehnology B. V., http://www.praxis-automation.om, (2009).[9℄ D. Rzo«a, J. Sadolewski, A. Ste, Z. �wider, B. Trybus, L. Trybus, Mini-DCS System Programming in IEC 61131-3Strutured Text, Journal of Automation, Mobile Robotis & Intelligent Systems, Vol. 2, No 3, (2008).[10℄ D. Rzo«a, J. Sadolewski, A. Ste, Z. �wider, B. Trybus, L. Trybus, Programming ontrollers in Strutured Textlanguage of IEC 61131-3 standard, Journal of Applied Computer Siene, Vol. 16, No 1, (2008).[11℄ E. Tisserant, L. Bessard, M. de Sousa, An Open Soure IEC 61131-3 Integrated Development Environment, 5th Int.Conf. Industrial Informatis, Pisataway, NJ, USA, (2007).[12℄ SMC, Lumel S.A., http://www.lumel.om.pl/en, (2009).[13℄ XML Formats for IEC 61131-3 ver. 1.01 O�ial Release, http://www.plopen.org, (2007).Edited by: Janusz ZalewskiReeived: September 30, 2009Aepted: Otober 19, 2009

