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1 Introduction

Integrability in D > 2 quantum field theories takes its roots in quantum chromodynamics

where it was first observed that in the BFKL limit the evolution kernel admits integra-

bility [1, 2]. Later on it was found in N = 4 Supersymmetric Yang-Mills Theory (SYM)

in [3] in a different regime, where the one-loop mixing matrix of a single trace of scalars

was identified with the Hamiltonian of a closed integrable SO(6) Heisenberg spin-chain in

the large-N limit (see [4–6] for recent reviews). Even though this observation was further

generalised to two loops and a number of tests was done at higher loop orders and also

non-perturbatively, there is still no direct proof of integrability of N = 4 SYM. Even if

there is very little doubt about the integrability of this theory, having a rigorous proof of it

would give us new tools and may also allow us to go beyond the spectrum in applications

of integrability to non-perturbative gauge theories.1

Recently, the so-called fishnet limit of N = 4 SYM attracted much attention [8]. In

its simplest version this is a limit where only two scalar fields remain coupled and have a

Yukawa-type interaction. This theory has much simpler Feynman diagrams in the planar

limit and thus provides perfect playground to test various non-perturbative techniques

including integrability. In [8–15] it was shown how the integrability emerges directly from

the Feynman graphs and the connection with the integrability structure of N = 4 SYM

such as Quantum Spectral Curve was established. This gives a number of clues of how the

integrability realises itself in more complicated theories such as N = 4 SYM. The main

drawback of the fishnet theory is that it is not a unitary CFT and it is not known whether

the conformal symmetry persists beyond the planar limit.

In this paper we consider a Wilson loop with local operator insertions in undeformed

N = 4 SYM and then take the so-called ladders limit. We will use the methods developed

for the fishnet theories [11, 15, 16] to develop an integrability based description of these

observables and obtain a solution for the spectrum. The solution takes the form of a Baxter

finite difference equation supplemented with a particular quantisation condition.

The setup that we will consider in this paper is the following: we have a cusped

Maldacena-Wilson line [17, 18] with internal cusp angle ϕ, as in figure 1. The scalar Φ1

couples to the left ray and Φ1 cos θ + Φ2 sin θ couples to the right ray, thus θ is the angle

between the two scalar fields in the R-space. J scalars Z = 1√
2

(Φ5 + iΦ6), orthogonal to

the ones that couple to the rays, are inserted at the cusp. Here Φi, i = 1, · · · , 6 are the six

scalars of N = 4 SYM theory. In addition, we can include in our description the excited

states, in analogy with [19–21], which corresponds to insertions of linear combinations of the

scalars coupled to the lines. This observable has a well defined anomalous dimension, which

was studied in [22–24] by means of TBA and then QSC methods. In this paper we will

start from scratch, carrying out a first principles derivation in the so-called ladders limit,

which we describe below. The only insight we borrow from the QSC approach is a simple

quantisation condition, which would require further efforts to derive from first principles.

Another motivation behind the work we present in this paper is due to the recent

study of structure constants by the separation of variables (SoV) method [16, 19, 25, 26],

where the explicit form of the Baxter equation was shown to be at the heart of the SoV

1For long operators the integrability based Hexagon approach [7] works very well in some regimes.
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Figure 1. The CFT wavefunction for J = 2 is a sum of the fishnet diagrams with any number

of bridges. This figure shows one such diagram with l = 4 bridges. The graph building operator

is highlighted.

approach. An alternative to the approach of this paper would be to derive the Baxter

equation from the QSC, which has a number of technical complications. Whereas at least

numerically QSC [27] would give us a full control over this observable for a very wide range

of parameters, extracting the closed system of equations in the ladders limit analytically

has proven to be quite a challenging task (which was performed for J = 0 case in [28]).

The ladders limit which we study in this paper was first introduced for the case J = 0

in [29] and then used in [30]. This is obtained by taking the coupling g → 0 and θ → i∞,

in such a way that ĝ ≡ g
(

exp(−iθ/2)
2

)
1

J+1 is kept constant. For the case J = 0 it was

noticed in [29, 30] that only the ladder graphs contribute to the anomalous dimensions

and the correlation functions. In this paper we show that for the general J > 0 case the

diagrams which survive are those of the fishnet type with a boundary corresponding to the

two rays of the Wilson line (see figure 1). This drastic simplification in Feynman graphs

allows us to construct the resummation procedure involving a graph-building operator. Such

an operator was first constructed in the case of a Wilson-Maldacena loop with no scalar

insertions in [19] and for the fishnet theory in [11]. A new ingredient in the construction

is the boundary of the fishnet, which itself carries a 1D dynamics. We had to adapt the

boundary integrability methods for spin chains, developed by Sklyanin in [31]. In our case,

however, the boundary reflection matrix itself is a nontrivial operator in the physical space.2

2Similar situation can be found e.g. in [32].
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In this paper we first explore the integrability in the classical (strong coupling) limit

ĝ → ∞ and then quantise this system and develop the full quantum integrability. Like in

the case of the fishnet theory the integrability description comes from a chain of particles

living on AdS5 (with radius going to zero at strong coupling) also known as “fish-chain” [15,

33, 34]. This time, however, we have two particles with zero conformal weight at the ends

of the chain whose motion is additionally restricted to the Wilson lines. In the quantum

construction we identify explicitly the conserved charges of the system in the commuting

family of operators, and prove that the graph-building operator of the Feynman graph in the

perturbation theory is one of them. In this way we obtain a full quantum non-perturbative

description for the spectrum.

We also briefly discuss an interesting limit when the cusp becomes a straight line. In

this limit the insertion becomes an operator in 1D defect CFT, which has been intensively

studied in recent years [20, 21, 35–42]. Furthermore, in this limit, we can make a connection

with the bootstrap methods of [43, 44].

This paper is organised as follows. In section 2, we derive the graph building operator

starting from Feynman diagrams in the ladders limit. In section 3, we construct the

Lagrangian of the open fishchain and solve the equations of motion. In section 4 we show

that our model is classically integrable and construct the Lax and the boundary reflection

operators. Then in section 5 we show that integrability carries forward to the quantum case.

In section 6 we construct the Baxter equation for arbitrary number of scalar insertions of

Z at the cusp. In section 7 we present the numerical non-perturbative spectrum for various

insertions and geometric parameters. Finally we conclude in section 8.

2 Ladders limit and graph building operator

In this section we will describe the Feynman diagrams contributing to the expectation value

of the cusped Wilson line. We show that in the ladders limit it gets an iterative Dyson-

Schwinger structure, governed by a graph building operator. The graph building operator

is a hybrid between that obtained for J = 0 in [29, 30] for the cusp without insertion and

the one for the fishnet theory [8, 9]. In the rest of the paper we develop the integrability

based method to diagonalise this operator.

2.1 Graph building operator

The Maldacena-Wilson Loop with J insertions of scalar fields and cusp angle ϕ is given by:

W =
1

N
tr P exp

∫ ∞

0
dt 4πg

(

i A · x′(t) + Φ1|x′(t)|)

× Z(0)J × P exp

∫ ∞

0
ds 4πg

[−i A · x′(s) + (Φ1 cos θ + Φ2 sin θ)|x′(s)| ] , (2.1)

where x′(t) ≡ ∂x(t)
∂t and x′(s) ≡ ∂x(s)

∂s . The two scalars that couple to the individual Wil-

son rays form an angle θ between each other. The expectation value of this quantity is

– 3 –
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divergent in both the IR and the UV, with the divergence controlled by the dimension ∆:3

〈W 〉 ∼
(

RIR

ǫUV

)−∆

, (2.2)

where ∆ corresponds to the overall scaling dimension of W and is also known as the cusp

anomalous dimension in the J = 0 case. The cusp anomalous dimension was studied inten-

sively in perturbation theory and integrability [18, 22, 23, 29, 30, 45–61]. In this paper we

will study a more general observable which is the expectation value of W with J additional

insertions (under the trace) of complex scalar fields Z̄ = 1√
2
(Φ5 − iΦ6) at points yi which

lie outside of the contour, and also truncate the upper limit in Wilson lines at some finite

t and s. In analogy with [15] we call this object the CFT wavefunction ψ(t, s, yi). At first

sight this object is not gauge invariant, however in the ladders limit it is well defined. In

fact, it can be made gauge invariant by closing the Wilson loop by introducing additional

segments of non-supersymmetric Wilson lines running through the Z̄ insertions, which will

decouple in the ladders limit, as in figure 1. As we will see, the role of the effective coupling

in the ladders limit is played by

ĝ ≡ g

(

exp (−iθ/2)

2

)

1
J+1

, (2.3)

which we will assume finite while g → 0 and θ → i∞. In this limit we will get the following

simplifications:

• First of all, since we are taking the ’t Hooft coupling to zero, the gluons and fermions

decouple, and we are left with a theory of interacting scalar fields. Hence, we can

drop out the gauge field A from the definition (2.1).

• In a Feynman diagram expansion, only the contributions with the highest power of

cos θ will survive. For J = 0, the only diagrams at l-loop order correspond to ladder

diagrams, that is, diagrams that contain l scalar propagators beginning on one of the

Wilson lines and ending on the other [30].

• For J > 0, the scalars at the cusp Z can only contract with the external insertions

of Z̄. This means that only one type of vertex allowed, i.e. the one in figure 2.

This is analogous to what one finds in the simplest fishnet CFT. Consequently, only

“fishnet” diagrams contribute.

Using these simplifications, we can define the CFT wavefunction in the ladders limit as:

ψ(t, y1, . . . , yJ , s) ≡ 1

N

〈

tr
J
∏

j=1

Z̄(yj) × P exp

∫ t

0
dt′ (4πg) |x′(t′)|Φ1

× Z(0)J × P exp

∫ s

0
ds′ (4πg) |x′(s′)|Φ1 cos θ

〉

. (2.4)

3Strictly speaking for J > 0 it is only divergent for large enough coupling as at tree level we have ∆ = J .

For J = 0 it is divergent for any g > 0.
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Figure 2. We only need a subset of all Feynman diagrams. Above are the conventions for the

scalar propagators and the interaction vertex between Φ1 and Z = Φ5+iΦ6
√

2
. We use the standard

definition g =
√

λ

4π
with the ‘t Hooft coupling λ = g2

Y M
N .

The CFT wavefunction is obtained expanding the path-ordered exponentials

ψ(t, y1, . . . , yJ , s) =
∞
∑

l=0

ψl(t, y1, . . . , yJ , s)

=
∞
∑

l=0

tr

∫ t

0
dtl|x′(tl)|

∫ tl

0
dtl−1|x′(tl−1)| · · ·

∫ t2

0
dt1|x′(t1)|

∫ s

0
dsl|x′(sl)|

∫ sl

0
dsl−1|x′(sl−1)| · · ·

∫ s2

0
ds1|x′(s1)|Fl(yj , ti, si) .

(2.5)

Here, ψl(yj , ti, si) represents the contribution of the l-bridge fishnet Feynman graph, where

a bridge is defined as a series of J + 1 propagators connecting the left and right Wilson

rays, as can be seen in figure 1. Note that the sum goes in the number of bridges l. The

integrand in si, ti is given by:

Fl(yj , ti, si) =
1

N

(

1

8π2N

)l(J+1)+J(l+1)

(64π2N g2)l J(16π2 g2 cos θ)lN (l+1)(J+1)+1

∫





J
∏

i=1

l
∏

j=1

d4xi,j





(

J
∏

r=0

l
∏

k=1

1

(xr+1,k − xr,k)2

)(

J
∏

m=1

l
∏

n=0

1

(xm,n+1 − xm,n)2

)

.

(2.6)

Here we have defined xk,0 ≡ y0 ≡ (etk ,0,0,0
)

, xk,J+1 ≡ yJ+1 ≡ (esk cosϕ,esk sinϕ,0,0)

∀k= 1 . . . l, and xl+1,j ≡ yj , x0,j ≡ 0 ∀j = 1 . . . J . In the formula (2.6), the second factor in

the first line of the r.h.s. contains the contribution from the propagators, the third the one

from the vertices, the fourth comes from the expansion of the path-ordered exponentials,

while the fifth represents the contribution from the closed index loops of the planar diagram.

In the second line we first integrate over all positions of the vertices, the second term is a

collection of all vertical propagators, while the third contains that of the horizontal ones

(see figure 1 for the case of J = 2 and l= 4). Notice that at any loop order these graphs

have the same order in N , coherent with the fact that we are using a planar diagram

expansion. Instead of computing this integral we notice that we can define it recursively

in terms of the inverse of a graph building operator as we illustrate below. First, notice

that �yi
acts on scalar propagators as:

�yj

1

(yj − xj,l)2
= −4π2 δ(yj − xj,l) . (2.7)

– 5 –
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Moreover, acting with ∂t∂s on the contour of a Wilson line brings down the expansion of

the path ordered exponential by one step, at the cost of a factor |y′
0(t)||y′

J+1(s)|. Therefore

acting on ψ with a string of �yj
, followed by ∂t∂s, we get back ψ expanded to one less

bridge, up to a multiplicative factor:

∂t∂s

J
∏

j=1

�yj
ψl = (−1)J(4ĝ2)J+1 |y′

0||y′
J+1|

∏J
i=0(yi − yi+1)2

ψl−1 , (2.8)

where we use the definition of ĝ from (2.3). From this we can extract an operator annihi-

lating the CFT wavefunction:

(B̂−1 − 1)ψ = 0 , B̂−1 ≡ (−1)J

(4ĝ2)J+1

∏J
i=0(yi − yi+1)2

|y′
0||y′

J+1| ∂t∂s

J
∏

j=1

�yj
. (2.9)

We refer to B̂−1 as an inverted graph-building operator. The role of B̂−1 − 1 was realised

in [33] to be the analogue of the world-sheet Hamiltonian of a string theory.4 We will

explore this further in the next section.

The Wilson loop with insertion W is invariant under dilatations, which stretches the

space around the origin (which we take to be the position of the cusp). Thus we can use

the following dilatation operator, acting on the CFT wavefunction

D̂ = −i
(

∂t + ∂s +
J
∑

i=1

(yi · ∂yi
+ 1)

)

, (2.10)

to measure the dimension ∆ of the initial cusped Wilson line. More precisely, the eigenvalue

of D̂ is i∆. This operator commutes with B̂ as it is easy to see. Another operator which

commutes with B̂ is the generator of rotations in the orthogonal plane to the Wilson line:

Ŝ = i
J
∑

i=1

(

y3
i ∂y4

i
− y4

i ∂y3
i

)

. (2.11)

This operator measures the spin of W . For ZJ scalar insertions S = 0, but one can also

study more general insertions with derivatives in the orthogonal plane, corresponding to

S 6= 0, which are also described by our construction.

In analogy with the fishnet [34] one should diagonalise both Ŝ and D̂. After doing so,

the equation (B̂−1 − 1)ψ = 0 should restrict us to the discrete spectrum of eigenvalues of

the dilatation operator, which would give us all the anomalous dimensions of the operators

with given quantum numbers. Indeed we will find that there are infinitely many (but a

discrete set) of such ψ’s diagonalising all the 3 operators. In analogy with [19–21] we

expect each of them to correspond to a particular insertion of operators, which could

include derivatives and extra Φ1,Φ2 fields in addition to ZJ , whose number is fixed by the

R-charge. These type of insertions at the cusp will not modify the iterative structure of the

diagrams, instead just adding a finite number of propagators close to the cusp (cf. figure 3).

Therefore, all these states should be governed by the same equation (2.8).

4It’s important to notice that the graph-building operator is diagonalisable and its spectrum contains

only operators with non-trivial anomalous dimension. All operators which form Jordan blocks, like those

studied in [62], seem to be absent from its spectrum.

– 6 –
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Figure 3. An example of an “excited state” for J = 2. Here, propagators from the extra insertion

of Φ1 at the cusp contract with the Wilson line without crossing any other propagators of Φ1 (shown

in red), as such diagrams would be subleading in the ladders limit.

In the next sections we will explore how the integrability arises explicitly in this system.

In particular, we will show first in the classical (strong coupling) limit and then in general

that the operators B̂, D̂ and Ŝ are part of a bigger commuting family of operators.

3 Classical open fishchain

In this section, following [33], we interpret the inverse of the graph-building operator as

a Hamiltonian of a quantum system of particles. Then we take the quasi-classical strong

coupling limit of the system, deriving the classical fishchain with specific open boundary

conditions. We analyse in detail the classical system and find some of the solutions of the

equations of motion.

3.1 Strong coupling limit

The starting point for the strong coupling ĝ → ∞ analysis is equation (2.8). By re-

writing (2.9) in terms of the conjugate momenta:

pi = −i∂yi
, πt = −i∂t, πs = −i∂s, (3.1)

we obtain the Hamiltonian Ĥ, governing a system with 4J+2 degrees of freedom, given by:

Ĥ = πt πs

J
∏

i=1

p2
i + (4ĝ2)J+1 |y′

0(t)||y′

J+1(s)|
∏J

i=0(yi − yi+1)2
. (3.2)

In this section we will be treating this Hamiltonian as the one of a classical system. In

analogy with [33] we will see that the classical limit corresponds to the strong coupling

ĝ → ∞ limit of the original quantum system (2.9). We will now demonstrate the classical

integrability of this system and then describe its quantisation in section 5.

We remark that yi, i = 1 . . . J are 4D vectors with four bulk degrees of freedom for

each one, while y0 and yJ+1 are 4D vectors having one boundary degree of freedom each.

– 7 –
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Therefore, without loss of generality, we parametrise the latter as:

y0(t) =
(

et, 0, 0, 0
)

, yJ+1(s) = (es cosϕ, es sinϕ, 0, 0) . (3.3)

We will find it beneficial to embed the system in 6D space, which will allow to make

the conformal symmetry of the system manifest, but will also result in a local action with

nearest neighbour interaction.

In the rest of this section we will deduce the classical equations of motion of this

system, using the Lagrangian formalism. First, by performing a Legendre transformation

on (3.2), we find the Lagrangian to be:

L = 2
−2J

2J+1 (2J + 1)

(

ṫ ṡ
J
∏

i=1

ẏ2
i

)

1
2J+1

− (4ĝ2)J+1 |y′

0(t)||y′

J+1(s)|
∏J

i=0(yi − yi+1)2
, (3.4)

where ḟ ≡ d
dτ f , with τ being a “world-sheet” time variable (conjugate to the Hamilto-

nian (3.2)). The action S =
∫

Ldτ is not invariant under time reparametrisation symme-

try τ → f(τ), which is needed to ensure Ĥψ = 0. In order to enforce this symmetry we

introduce an auxiliary field γ transforming as γ → γ

ḟ
when τ → f(τ) which gives

L = 2
−2J

2J+1 (2J + 1)

(

1

γ
ṫ ṡ

J
∏

i=1

ẏ2
i

)

1
2J+1

− γ (4ĝ2)J+1 |y′

0(t)||y′

J+1(s)|
∏J

i=0(yi − yi+1)2
. (3.5)

This is now time-reparametrisation invariant. We then eliminate the auxiliary field setting

it to its extremum (by a suitable time reparametrisation). We have to remember that y0

(and yJ+1) is not itself a canonical coordinate, but depends on the world-sheet time through

t(τ) (and s(τ) respectively). Thus we can use ẏ0 = y′
0ṫ and similarly ẏJ+1 = y′

J+1ṡ. After

that we get:

L = (2J + 2)(2i)
1

J+1 ĝ

[

|ẏ0||ẏJ+1|∏J
i=1 ẋ

2
i

∏J
i=0 |yi − yi+1|2

]
1

2(J+1)

. (3.6)

We now embed the system in 6D Minkowksi spacetime, using lightcone coordinates in the

Poincare’ slice:

yµ
i =

Xµ
i

X+
i

, X2
i = 0, X+

i = X0
i +X−1

i . (3.7)

Hence we get:

L = (2J + 2)(2i)
1

J+1 ĝ

[

|Ẋ0||ẊJ+1|∏J
i=1 Ẋ

2
i

∏J
i=0(−2Xi.Xi+1)

]
1

2(J+1)

. (3.8)

Furthermore, we can disentangle this action to bring it to a Polyakov-like form, by intro-

ducing auxiliary fields αi, getting:

L = ξ

(

α0
|Ẋ0||ẊJ+1|

2
+

J
∑

i=1

(

αi
Ẋ2

i

2
+ ηiX

2
i

)

+ (J + 1)
J
∏

k=0

(−αkXk.Xk+1)− 1
J+1

)

, (3.9)

– 8 –
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where

ξ ≡ (2i)
1

J+1 ĝ . (3.10)

In (3.9) we also introduced the light-cone constraint X2
i = 0 via the Lagrange multiplier

ηi. In order to get back the Nambu-Goto-like form (3.8), we have to extremise the fields

αi and plug these values back into (3.9). It is possible to do this due to the new re-scaling

symmetry of Xi. More precisely, the Lagrangian (3.9) has J + 3 gauge symmetries: time-

dependent rescaling Xi → gi(τ)Xi, αi → αig
−1/2
i (τ), ηi → ηig

−1/2
i (τ), i = 0 . . . J + 1 and

time reparametrisation τ → f(τ), under which fields transform as Xi → Xi

ḟ
, αi → ḟαi,

ηi → ηi

ḟ
. Instead of setting αi’s to their extreme values we can use the symmetries to

impose αi = 1, ∀i = 0, . . . , J . This would lead to the following constraints (the same way

as one gets Virasoro constraints):

Ẋ2
k = L , (3.11)

where

L ≡ 2
J
∏

i=0

(−Xi ·Xi+1)− 1
J+1 , (3.12)

with k = 1, . . . , J in the first equation. Furthermore, from the equation of motion for α0 we

get |Ẋ0||ẊJ+1| = L: this still leaves us with the freedom to rescale X0 → h(τ)X0 and si-

multaneously XJ+1 → 1
h(τ) XJ+1, which we can fix by imposing additionally |Ẋ0| = |ẊJ+1|.

Hence, we can just extend the range of k in (3.11) to k = 0, . . . , J + 1. Finally, to fix the

remaining time-reparametrisation gauge freedom we can set:

L = 1 , (3.13)

which is a convenient gauge to work with. We have imposed J + 3 conditions, so all gauge

degrees of freedom are fixed. The gauge fixed Lagrangian is then:

L = ξ

(

|Ẋ0||ẊJ+1|
2

+
J
∑

i=1

Ẋ2
i

2
+ (J + 1)

J
∏

k=0

(−Xk.Xk+1)− 1
J+1

)

. (3.14)

Finally, by noticing that 2|Ẋ0||ẊJ+1| = Ẋ2
0 + Ẋ2

J+1 − (|Ẋ0| − |ẊJ+1|)2 we can replace

|Ẋ0||ẊJ+1| → Ẋ2
0

2 +
Ẋ2

J+1

2 in (3.14), modulo terms quadratic in constraints. Similarly,

defining y = 2
∏J

i=0(−Xi · Xi+1)− 1
J+1 ≃ 1 on constraints, we have y = elog y = 1 + log y +

O(log2 y), which allows us to replace the potential term by
∑J

k=0
1
2 log

−Xk.Xk+1

2e . Therefore

we get the gauge fixed Lagrangian:

L = ξ

(

Ẋ2
0

4
+

J
∑

i=1

Ẋ2
i

2
+
Ẋ2

J+1

4
−

J
∑

i=0

1

2
log

−Xi.Xi+1

2e

)

, (3.15)

with constraints given by:

J
∏

i=0

−Xi.Xi+1

2
= 1 , (3.16)

X2
i = 0 , Ẋ2

i = 1 , i = 0, . . . , J + 1 . (3.17)

– 9 –



J
H
E
P
0
7
(
2
0
2
1
)
1
2
7

Note that on the constraints we also have L ≃ ξ(J + 1). In this form the Lagrangian is

explicitly local and the interaction is only between the nearest neighbours. It may appear

a bit strange that the boundary particles have mass 1/2 w.r.t. to the particles in the bulk,

however we will see in the next section that in this way the equations of motion are more

uniform. The reason is that the bulk particles have to be split in two and reflected, unlike

those at the boundaries. In (3.14) the 6D variables Xi, i = 1, . . . , J are independent

canonical coordinates, constrained by (3.11) and (3.13). At the same time the boundary

particles X0 and XJ+1 are encoded in terms of one variable each t(τ) and s(τ), due to (3.3).

Explicitly:

Xi(τ) = ri(τ) (coshwi(τ),− sinhwi(τ), cosφi, sinφi, 0, 0) i = 0, J + 1, (3.18)

where φ0 = 0, φJ+1 = ϕ, w0(τ) = t(τ) and wJ+1(τ) = s(τ). On the constraint Ẋ2
i = 1 we

also have ri(t) = 1
ẇi(τ) . Apart from this, the Lagrangian (3.14) is very similar to the one

found in the classical limit of the fishnet graphs in [33]. It can be interpreted as the one

of a discretised string with string-bits having a nearest neighbour interaction. However,

due to the difference in the boundary DOFs it still remains to see whether the system is

classically integrable, as it was in the original case [33].

3.2 Equations of motion

We now compute the Euler-Lagrange equations starting from (3.15). The J equations for

bulk variables are interpreted as equations of motions for J bulk particles, while the equa-

tions for X0 and XJ+1 are interpreted as equations of motion for two particles constrained

on the two Wilson lines. Since the Lagrangian (3.15) has nearest neighbour interactions,

only the first and last bulk particles in the spin chain will feel the presence of the particles

on the Wilson lines. For example, for the bulk particle j we have [33]:

Ẍj = 2ηjXj − 1

2

(

Xj+1

Xj+1.Xj
+

Xj−1

Xj .Xj−1

)

, j = 1, . . . , J (3.19)

For the particles on the Wilson lines, we only have one physical degree of freedom for each,

t(τ) and s(τ). The relative equations of motion are given by:

ẗ

ṫ2
=
X1.∂t(τ)X0

X1.X0
,

s̈

ṡ2
=
XJ .∂s(τ)XJ+1

XJ .XJ+1
. (3.20)

These two equations can be written in the form (3.19) by introducing the reflected particles

X−1 and XJ+2 as the reflection of the particles X1 and XJ w.r.t. the ray parametrised by t

and s respectively. More precisely we introduce the reflection matrix and rotation matrices:

CM
N =























1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1























MN

, GM
N =























1 0 0 0 0 0

0 1 0 0 0 0

0 0 cosϕ − sinϕ 0 0

0 0 sinϕ cosϕ 0 0

0 0 0 0 1 0

0 0 0 0 0 1























MN

. (3.21)
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Figure 4. Schematic representation of our method of images construction.

Then we define the images of the particles 1 and J by the reflection about the ray

parametrised by t and s respectively as X−1 = C.X1 and XJ+2 = G.C.G−1.XJ = G2.C.XJ .

With these definitions the equations (3.20) coincide with (3.19) for j = 0 and j = J + 1

correspondingly.

Thus, we conclude that at the level of the classical equations of motion the open version

of the fishchain we consider here is identical to the double-size closed fishchain of [33], with

length 2J+2 and quasi-periodic boundary condition twisted by a 2ϕ rotation (see figure 4).

However, there are some important differences in the Poisson structure and consequently

the quantisation is different.

3.3 Conserved charges

The presence of boundaries in the open fishchain breaks the SO(1, 5) symmetry that its

closed counterpart enjoyed to the subgroup SO(2) × SO(1, 1). Nevertheless it is useful

to define

qMN
j ≡ ẊM

j XN
j − ẊN

j X
N
j = 2Ẋ

[M
j X

N ]
j , (3.22)

for j = 0, . . . J + 1, which are the local SO(1, 5) generators for j = 1, . . . , J . We also define

the total charge

QMN = ξ

(

qMN
0

2
+

J
∑

i=0

qMN
j +

qMN
J+1

2

)

. (3.23)

As the SO(1, 5) symmetry is broken, only the components of QMN corresponding to the un-

broken symmetry subgroup will remain conserved in time. Thus we only have two Noether
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charges, corresponding to the SO(2) angular momentum and to the scaling dimension:

S = Q3,4 , D = Q−1,0 = i∆ . (3.24)

3.4 Example of solution of the classical equations of motion

Now we proceed to the numerical solution of the system (3.19). To do so, we introduce the

following parametrisation for the bulk particles, which is similar to the one used for the

boundary particles (3.18):

Xa(τ) =
1

√

ẇ2
a(τ) + φ̇2

a(τ)

(

coshwa(τ), − sinhwa(τ), cosφa(τ), sinφa(τ), 0, 0
)

, (3.25)

where a = 1, . . . , J . This resolves the X2 = 0 and Ẋ2 = 1 constraints. For the ansatz (3.25)

the particles are all in the same plane. The boundary particles are constrained to move on

the Wilson rays, so their angular position is fixed

φ0(τ) = 0 , (3.26)

φJ+1(τ) = ϕ . (3.27)

We can imagine the simplest solution would be when these particles move along straight

lines. For that we need to compensate the interaction with neighbours, which could other-

wise bend the trajectory, so we require

φk(τ) =
k

J + 1
ϕ . (3.28)

To simplify our ansatz further we can assume that wk(τ) = W (τ). Plugging this ansatz

into the EOMs (3.19) we obtain

wk(τ) = β τ . (3.29)

Finally, constraint (3.16) gives





sin
(

ϕ
2J+2

)

β





2J+2

= 1 , (3.30)

which has 2J + 2 different solutions

β = e2πi n
2J+2 sin

(

ϕ

2 J + 2

)

, n = 1 . . . 2J + 2 . (3.31)

To get an interpretation of this, we also compute the anomalous dimension, using (3.24)

∆ = −(J + 1) i

β
ξ . (3.32)

We see that the ambiguous factor can be absorbed into ξ. In fact, the initial graph building

operator only depends on ξ2J+2, thus this type of ambiguity is expected. In fact this is the

same as in the case of the closed fishchain [33], where the solutions were found to multiply
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(a) J = 2 — Notice that the boundary particles run

away to infinity in a finite amount of time, while

the particles in the bulk have only moved a finite

amount.

(b) J = 3 — Notice that one of the bulk particles

proceeds to make a complete loop.

Figure 5. Plot of the motion of particles obtained by a numerical solution of the classical equations

of motion. In these solutions, motion is restricted to the plane of the Wilson loop. As expected, the

boundary particles are confined to fixed rays whereas the bulk particles are free to move anywhere

in the plane.

in a similar way and were responsible for the different asymptotics of a 4 point correlator.

We can check our classical solution by comparing with some known results for J = 0 case.

From (3.32) for J = 0 we obtain:

∆ = ± 2ĝ

sin ϕ
2

(3.33)

which agrees perfectly with the equation (E.6) in [19]. We note that for ĝ > 0 only the

minus sign solution appears in the spectrum whereas the plus sign solution corresponds to

large and negative ĝ.

More general solutions can be obtained numerically. We generated a couple of solu-

tions, obtained by perturbing the analytic solution we just presented. These can be found

in figure 5a and figure 5b.

4 Classical integrability

In this section we prove that the dual model is integrable at the classical level by studying

its Poisson structure. We will construct the Lax matrices, corresponding to the particles in

the bulk, and the dynamical reflection matrix will represent the boundary particles. Using

these building blocks we will construct a family of mutually Poisson-commuting objects.
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The main purpose of this section is to establish the grounds for quantisation. For this

reason we will only build here a subset of all commuting integrals of motion, as they will

anyway appear in the quantum case in full generality.

4.1 Poisson brackets

In this section we discuss the Poisson structure following from the Lagrangian (3.15). For

the bulk DOFs the Poisson structure is identical to the closed fishchain case already studied

in [34]. One can find the conjugate momenta and define the Poisson bracket in the standard

way. In particular, for the bulk particles the momentum conjugate to Xi,M is

PM
i = ξẊM

i , (4.1)

and the Poisson bracket is defined as {Xi,M , PN
j } = δijδ

N
M . Due to the constraints the

Poisson brackets is ambiguous, and we could define a Dirac bracket. Alternatively, one

can work with gauge invariant quantities. The gauge invariant combination of phase space

coordinates for the bulk particles are the local symmetry generators

qMN
i =

1

ξ

(

XN
i P

M
i −XM

i PN
i

)

= XN
i Ẋ

M
i −XM

i ẊN
i , (4.2)

which form the SO(1, 5) algebra under the Poisson bracket:

{

qMN
k , qKL

k

}

=
1

ξ

(

−ηMKqNL
k +ηNKqML

k +ηMLqNK
k −ηNLqMK

k

)

, k= 1, . . . , J . (4.3)

Similarly, one can proceed with the boundary degrees of freedom t and s. The canonically

conjugate momenta to t(τ) and s(τ) are

Πt =
ξ

2t′(τ)
, Πs =

ξ

2s′(τ)
. (4.4)

Even though the boundaries explicitly break down the SO(1, 5) symmetry, it is still useful

to define qMN
0 and qMN

J+1 in a similar to (4.2) way

qNM
0 =

2

ξ

(

Y M
0 Y

′N
0 − Y N

0 Y
′M

0

)

Πt , qNM
J+1 =

2

ξ

(

Y M
J+1Y

′N
J+1 − Y N

J+1Y
′M

J+1

)

Πs , (4.5)

where

Y0 = {cosh t,− sinh t, 1, 0, 0, 0} , YJ+1 = {cosh s,− sinh s, cosϕ, sinϕ, 0, 0} . (4.6)

Since the Wilson lines explicitly break conformal symmetry, the Poisson bracket of q0 is

modified to

{qMN
0 , qKL

0 } =
1

ξ

(

−η̃MKqNL
0 +η̃NKqML

0 +η̃MLqNK
0 −η̃NLqMK

0

)

, η̃= η (1+C) , (4.7)

where C is the reflection matrix defined in (3.21). Similarly for the right boundary we get

{

qMN
J+1 , q

KL
J+1

}

=
1

ξ

(

−η̃MK
φ qNL

J+1 + η̃NK
φ qML

J+1 + η̃ML
φ qNK

J+1 − η̃NL
φ qMK

J+1

)

, η̃φ = η (1+G.G.C) ,

(4.8)

where G is the rotation matrix defined in (3.21).
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Finally, let us write the Hamiltonian H, corresponding to the lagrangian (3.15) in

terms of the local symmetry generators qi. For this we introduce

Hq ≡ 1

22J+2
tr
(

q2
0.q

2
1. . . . q

2
J .q

2
J+1.G.G.C.q

2
J . . . . .q

2
1.C

)

− 1 . (4.9)

Then we find that Hq is proportional to the Hamiltonian H up to a constant multiplier

and up to second order in constraints

Hq = exp
(

4
ξH
)

− 1 ≃ 4
ξH + O(H2) . (4.10)

As our constraint implies H = 0 we can equivalently use 4
ξHq instead. The advantage of

Hq over H is that it is written explicitly in terms of qi’s. At it is explained in [34] in the

case of qi’s there is no difference between the Poisson and Dirac brackets and so they are

more convenient for the quantization.

Next, we will build the Lax representation based on the Poisson structure explained

here and develop the integrability construction.

4.2 Lax representation

In this section we will build the classical integrals of motion. As at the classical level the

equations of motion mostly coincide with the closed fishchain case of [33, 34], we will review

the construction from there adapting for our notations.

In order to build the Lax representation, it is useful to introduce the local current

jMN
i = −2

X
[M
i−1X

N ]
i

Xi−1.Xi
, satisfying

q̇MN
i =

{

qMN
i ,H

}

= −1

2

(

jMN
i+1 − jMN

i

)

, i = 0, . . . , J + 1 . (4.11)

This allows us to define the Lax pair of matrices Li and Vi:

Li = u I4x4 +
i

2
qMN

i ΣMN , Vi = − i

4u
jMN

i ΣMN , (4.12)

where ΣMN are the 6D σ matrices, giving a 4D representation of SO(1, 5). The explicit

form we are using can be found in [34]. Both Li and Vi are complex 4 × 4 matrices with

entries that are functions on the phase space of the i-th site of the spin chain. One can

show [33] from (3.19) that Li and Vi satisfy the flatness condition

L̇i = Li.Vi+1 − Vi.Li = Vi+1.Li − Li.Vi . (4.13)

From that it follows immediately that the combination

T(u) = trL−J(u).L−1(u).L0(u).L1(u) · · ·LJ(u).LJ+1(u).G4.G4 , (4.14)

is conserved in time for any value of u, i.e. {T(u),H} = 0. In the above expression we have

defined

L−i(u) = C4.Lt
i(−u).C4 , (4.15)
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and also the reflection matrix and the twist matrix in irrep. 4:

C4ab
= C4

ab =













0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0













ab

, G4 a
f =













ei ϕ

2 0 0 0

0 e−i ϕ

2 0 0

0 0 e−i ϕ

2 0

0 0 0 ei ϕ

2













a

f

. (4.16)

As each coefficient in the polynomial in u, T(u), is an integral of motion we get ≤ 2J+2

integrals of motion. As we have 4J + 2 degrees of freedom in our system, some integrals of

motion are still missing. The remaining ones are hiding in T
6(u) and T

4̄(u) — the transfer

matrices in vector and anti-fundamental representations. We will discuss them in detail

in the quantum case in the next section. The classical construction for T
6(u) can be also

deduced from [34]. To prove that the model is classically integrable, we also need to show

that the integrals of motion are in convolution, i.e. that {T(u),T(v)} = 0. This in turn

is less trivial and cannot be obtained from the closed fishchain case immediately, as the

Poisson structure is modified due to the presence of the boundary particles.

In order to prove the convolution property of integrals of motion one can use (4.3)

and (4.12) to show that, for 1 ≤ n,m ≤ J :

ξ {(Ln)a
b(u), (Lm)c

d(v)} =
(Ln)a

d(u)(Ln)c
b(v) − (Ln)c

b(u)(Ln)a
d(v)

u− v
δnm (4.17)

and analogously for −J ≤ n,m ≤ −1. This relation can also be written by defining the

dynamical r-matrix r(u, v) = P

u−v , where P is the 16 × 16 permutation matrix:

ξ {Ln(u),Lm(v)} = [r(u, v),Ln(u) ⊗ Lm(v)]δnm . (4.18)

For the boundary particles we have a different relation due to the modifications in the

Poisson brackets (4.7) and (4.8). Denoting

K(u) ≡ C.L0(u) , K̄(u) ≡ G−1.LJ+1(u).G.C , (4.19)

we have:

ξ {Kab(u),Kcd(v)} =
Kad(u)Kcb(v) − Kad(v)Kcb(u)

u− v
− Kdb(u)Kca(v) − Kbd(v)Kac(u)

u+ v
,

(4.20)

and the same for K̄. In appendix A we use these identities to show that indeed

{T(u),T(v)} = 0 . (4.21)

In the next section we show how this consideration extend to the quantum case.

5 Quantum integrability

In order to demonstrate the integrability at the quantum level we will have to embed the

graph building operator into a family of commuting operators. To first approximation, one

can replace the local SO(1, 5) generators qi by the operators q̂i. However, there are some

quantum corrections to work out due to non-commutativity of various components of q̂MN
i ,

and this is what we will do in this section.
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We will define the L̂ and K̂ operators as a quantum version of the classical ones. They

will continue to be 4 × 4 matrices, but now each component will become a differential

operator. Thus we will treat them as tensors acting on a tensor product of a finite, 4

dimensional vector space and an infinite dimensional functional space. We will refer to

these spaces as auxiliary and physical spaces as usual. In particular, the physical space for

the bulk Li matrices will be made of functions of 6D projective space variables Xµ
i , while

the physical space for the boundary K and K̄ matrices will be made of functions of the

boundary degrees of freedom t and s.

Our strategy to fix the quantisation ambiguities is to make sure that L̂ and K̂ satisfy

the Yang-Baxter equation and the Boundary Yang-Baxter equation correspondingly, which

are generalisations of the classical Poisson brackets (4.17) and (4.20). After that we will

build explicitly the quantum integrals of motion, demonstrate that the graph building

operator (2.9) is one of them and prove that they mutually commute with each other.

In order to get the complete set of integrals of motion, we will have to construct the

transfer matrices in all antisymmetric representations of sl(4). We do this via the fusion

procedure [63].

Next we will use integrability to compute the quantum spectrum. For that we will

construct the Baxter equation [64] and use it to determine the Q-functions. Then imposing

a suitable quantisation condition on the Q-functions we will demonstrate how to obtain

the spectrum non-perturbatively.

5.1 Quantisation of the integrability relations

We need to build the quantum analogue of (4.18), which is the Yang-Baxter equation, and

of (4.20), which is given by the boundary Yang-Baxter equation.

Quantum Lax matrix. The quantum version of the Lax matrix is5

L̂
a

i b(u) = u δa
b +

i

2
q̂MN

i Σ a
MN b , (5.1)

where q̂MN
i is the local generator of SO(1, 5), obtained as a quantisation of (4.2), i.e. by

replacing PK
j → P̂K

j = −i∂Xj,K
:

q̂MN
j = − i

ξ

(

XN
j

∂

∂Xj,M
−XM

j

∂

∂Xj,N

)

. (5.2)

It satisfies the SO(1, 5) commutation relation:

[

q̂MN
k , q̂KL

k

]

=
i

ξ

(

−ηMK q̂NL
k +ηNK q̂ML

k +ηMLq̂NK
k −ηNLq̂MK

k

)

, k= 1, . . . , J . (5.3)

As explained in [34] q̂i can be understood as acting on the functions of 4-dimensional

variables yi (e.g. CFT wave function) as if it was the corresponding conformal generator in

5Note that our conventions differ by sign in comparison with [34].
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4D. In other words one can use the following map between the functions of 4D coordinates

ym and functions of 6D coordinates XM

f(y1, . . . , ym) → 1

X−1 +X0
f

(

X1

X−1 +X0
, . . . ,

X4

X−1 +X0

)

(5.4)

as qi preserves the 6 interval XMXM we can set it to zero consistently. Note the action

on the 4D is only well defined for observables build out of qi’s. In particular P̂j and X̂j

themselves are operators living in AdS5 [34].

The Yang-Baxter (YB) equation can also be obtained by replacing {·, ·} by 1
i [·, ·]

in (4.17). One should, however, pay attention to the order of terms in the r.h.s. of (4.17)

as at the quantum level the order does matter. So the correct generalisation of (4.17),

following from (5.1) is:

L̂
b
e(u)L̂d

f (v)Ref
ac (v − u) = Rbd

fe(v − u)L̂e
c(v)L̂f

a(u) , (5.5)

where we introduced the R matrix, a quantum version of the r matrix seen in (4.18), which

acts on two copies of the 4D auxiliary space and is defined as:

Rb c
a d(u) = I(aux×aux) +

i

ξ u
P = δb

a δ
c
d +

i

ξ u
δb

d δ
c
a . (5.6)

Here P is the permutation operator, acting on vectors in the direct product of two spaces

by interchanging them.

It will be also convenient to introduce the Lax operator for the reflected particles:

ˆ̄
L

a
i b (u) = −L̂

a
i b(u) , (5.7)

and the corresponding R̄-matrix:

R̄b c
a d(u) = Rb c

a d(−u) . (5.8)

Diagrammatic notation. In what follows it is extremely convenient to use the following

notations: we denote the physical space by a double green line, the boundary spaces by

thick black lines; the auxiliary space will be denoted by a solid line, and for the reflected

auxiliary space we use a dotted line; the auxiliary space is equipped with a direction and

a spectral parameter; then various tensors correspond to intersection vertices following the

rules depicted in figure 6.

For example, the YB equation (5.5) can be easily expressed using this notation in the

following way:

In addition we have two other YB equations involving reflected auxiliary space (see figure 7).
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Figure 6. Diagrammatic rules.

Figure 7. Additional Yang-Baxter equations, which follow from (5.5), but look a slightly differently

diagrammatically.

5.2 Boundary reflection operator

In the classical case at the boundary we found that q0 and qJ+1 satisfied the modified

Poisson brackets (4.7). This in turn results in a different relation (4.20) for the boundary

Lax-type operator denoted by K. In order for integrability to persist at the quantum

level (4.20) should become the boundary Yang-Baxter equation (BYBE) [31].

The quantum version of q0 and qJ+1 are again obtained by replacing Πt → −i∂t and

Πs → −i∂s, and read:

q̂NM
0 ≡ −i2

ξ

(

Y M
0 Ẏ N

0 − Y N
0 Ẏ M

0

)

∂t , q̂NM
J+1 ≡ −i2

ξ

(

Y M
J+1Ẏ

N
J+1 − Y N

J+1Ẏ
M

J+1

)

∂s , (5.9)

where Y ′s are explicit functions of s and t, parameterising the Wilson rays defined in (4.6).

Following the classical case, we also introduce:

L̂
a

0 b(u) = u δa
b +

i

2
q̂MN

0 Σ a
MN b , L̂

a
J+1 b(u) = u δa

b +
i

2
q̂MN

J+1Σ a
MN b . (5.10)

Next we need to identify the quantisation of K (4.19), such that (4.20) becomes the BYBE,

which for the left boundary is:

K̂d2c2(v)R̄c2c1
a2d1

(u+ v)K̂c1a1(u)Rd1d2
b1b2

(v − u) = Rc2c1
a2a1

(v − u)K̂b1d1(u)R̄d1d2
c1b2

(u+ v)K̂d2c2(v) .

(5.11)
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Diagrammatically this equation becomes

=

We find that at the quantum level there is a quantum correction to the spectral parameter,

invisible in the classical ξ → ∞ limit. Namely the equation (5.11) is solved by

K̂(u) = C.L̂0

(

u− i
2ξ

)

, (5.12)

where C is the same reflection matrix as the classical case (4.16). Similarly for the right

boundary we have the following BYBE:

Rb1b2
c1c2

(u−v) ˆ̄
K

d2c2(v)R̄a2c1
d2d1

(−u−v) ˆ̄
K

a1d1(u) = ˆ̄
K

c1b1(u)R̄d1b2
c1c2

(−u−v) ˆ̄
K

d2c2(v)Ra1a2
d1d2

(u−v) ,

(5.13)

which can be expressed diagrammatically as follows

=

One can easily verify that the solution to this equation has the following form:

ˆ̄
K(u) = G−1.LJ+1

(

u+ i
2ξ

)

.G.C , (5.14)

where G is the twist matrix defined in (4.16). This expression is again identical to the

classical expression up to a quantum correction in the spectral parameter.

In the rest of this section we will use the building blocks K, L and R to build a complete

system of conserved, mutually commuting operators and also show that the inverse graph-

building operator is part of this family.
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5.3 Normalisation of the R-matrix

The R-matrix itself is defined up to an arbitrary scalar factor, which does not affect any of

the previous relations. However, in the next sections we will be using the fusion procedure

for the boundary reflection matrix which is sensitive to the normalisation.

In order to fix the normalisation one can think about the R-matrix as an S-matrix and

impose unitarity. Therefore we denote the normalised R-matrix by S:

S(u) = a(u)R(u) , S̄(u) = a(−u)R̄(u) , (5.15)

where a(u) is the normalisation factor which we fix by the unitarity condition

S(u)S(−u) = I , (5.16)

which diagrammatically an be expressed as follows:

and takes the following form when written explicitly with all indices:

Sa d
b e(u)Sb e

c f (−u) = S̄a d
b e(−u)S̄b e

c f (u) = δa
c δ

d
f . (5.17)

To satisfy this, we must have that:

A(u) ≡ a(u)a(−u) =
u2 ξ2

1 − u2ξ2
. (5.18)

Below we will only need the combination of the scalar factors A(u), so we do not need to

decode individual a(u) by imposing additional analyticity conditions.

5.4 Transfer matrix

In this section we will build a family of mutually commuting operators out of the building

blocks discussed above. First we will build the transfer matrix in fundamental representa-

tion, following the discussion in the classical case. As we know already, it cannot encode

all the integrals of motion. In order to complete our system of IMs we will also have to

build the transfer matrix in vector and anti-fundamental representations. For that we will

follow the fusion procedure.

5.4.1 Transfer matrix in fundamental representation

For the transfer matrix in fundamental representation we can mainly mimic the classical

transfer matrix (4.14). From that we can deduce the diagrammatic representation as in

figure 8 and follow the rules outlined in section 5.1 to deduce the quantum counterpart.

We will use the index 4 to indicate the fundamental representation, and define the transfer

matrix as:

T̂
4(u) = tr

[

L̄J(−u) · · · L̄2(−u)L̄1(−u)K(u)L1(u) . . .LJ−1(u)LJ(u)GK̄(u)Gt
]

. (5.19)
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Figure 8. Transfer matrix in fundamental representation for J = 3.

We show now that the transfer matrices form a family of mutually commuting operators:

[

T̂
4(u), T̂4(v)

]

= 0 . (5.20)

This is particularly easy to see using the diagrammatic representation as we do in figure 9 for

the particular case J = 0 for simplicity. The step 1 represents T̂4(u)T̂4(v). In step 2, we use

unitarity of S-matrix (5.16) to insert 4 scattering matrices. In step 3 we use BYBE (5.11)

and (5.13). In step 4 we cancel the S-matrices using unitarity again, obtaining T̂
4(v)T̂4(u).

For the case J > 0, we will have L and L̄ operators too. Suppose that they will be on

the left of the two pairs of S-matrices we insert in step 2. Therefore, before being able to

apply step 3, we need to commute the two leftmost S-matrices through all the L-operators

using the second Yang-Baxter equation of figure 7. After this, we can apply step 3 and

step 4 as in the case J = 0.

In order to be able to conclude that the quantum system is integrable we need to

demonstrate that the Hamiltonian is part of the system of commuting operators. For

that end in the next section we will build the transfer matrix in vector representation and

demonstrate that it does contain the Hamiltonian.

5.4.2 Ingredients of the transfer matrix in vector representation

In order to build T
6 — the transfer matrix in vector representation — we will need the cor-

responding building blocks, which are K and L in vector representation. The simplest way

to obtain those is by applying the fusion procedure [63]. Roughly speaking, we will need two

copies of L (or K) in the fundamental representation with spectral parameters u± i
2ξ com-

bined together in an antisymmetrised way. This procedure was already applied to L in [34]

where L
6, L4̄ and L

1̄ — i.e. L in all anti-symmetric representations — were computed.

The L
6 needed in this section has auxiliary space being the 6-dimensional Minkowski

space with metric ηMN . The Lax operator is now a quadratic polynomial with coefficients

built out of local charge operators q̂i as follows:6

L̂
6 MN
i (u) =

(

u2 − 1

8
tr q̂2

i

)

ηMN − uq̂MN
i +

(

1

2
q̂2 MN

i − i

ξ
q̂MN

i +
1

4ξ2
ηMN

)

. (5.21)

6Due to the sign difference in L̂
4

i (u) in comparison with [34], the linear term in u also has a different sign.
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(a) Step 1 — We start off with

T(u)T(v), which acts as a differen-

tial operator on the quantum space.

(b) Step 2 — By introducing the

identity as a product of S-matrices

from (5.16), we can pass the parti-

cle line of T(u) through T(v).

(c) Step 3 — Now we apply

the boundary Yang-Baxter equa-

tions (5.11) and (5.13).

(d) Step 4 — Finally we resolve the

identity again using (5.16), to ob-

tain T(v)T(u) hence proving that

indeed the transfer matrices com-

mute with each other for arbitrary

values of the spectral parameter.

Figure 9. Diagrammatic proof of [T̂4(u), T̂4(v)] = 0.

We also define the reflected operators ˆ̄
L

6

i by

ˆ̄
L

6

i (u) ≡ L̂
6

i (−u) . (5.22)

Having L̄
6 defined allows us to maintain the same definition for T6 as the other T-operators

like (5.19).

Boundary reflection operator. What remains to be done is fusing the reflection op-

erators. In order to keep them covariant and ensure the structure of the BYBE, we have

to insert an additional R-matrix between the tensor product of two reflection matrices, as

shown in figure 10. In terms of Y = Y0, defined in (4.6), we get:

K̂
6

MN (u) = C6

MNu

(

u− i

ξ

)

+ u
2i

ξ

(

YN ẎM − YM ẎN

)

∂t (5.23)

+
2

ξ2
YN ∂̂tYM ∂̂t − 2i

ξ3u
YM ∂̂tYN ∂̂t .

As we can see, it is a second order differential operator in t and a second order polynomial

in the spectral parameter u. Similarly for the right boundary we get (replacing t by s):

ˆ̄
K

6

MN (u) = C6

MNu

(

u+
i

ξ

)

+ u
2i

ξ

(

YN ẎM − YM ẎN

)

∂s (5.24)

+
2

ξ2
YM ∂̂sYN ∂̂s +

2i

ξ3u
YN ∂̂sYM ∂̂s .
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(a) K̂
6

(b) ˆ̄
K

6

Figure 10. Boundary reflection matrices in vector representation via fusion procedure.

In the equations above we are using the reflection matrix C6 in vector representation is

the matrix C we introduced in (3.21). An important property, which follows directly from

the definitions (5.23) and (5.24), is that K
6(+i/ξ) = 0 and K̄

6(−i/ξ) = 0.

Using q̂0 (5.9) we can write

K̂
6(u) = C6u

(

u− i

ξ

)

− uq̂0 +
1

2
q̂2

0 − i

2ξu
(q̂2

0)T . (5.25)

For the right boundary we have very similar expression

ˆ̄
K

6(u) = (G6)−1.

(

u

(

u+
i

ξ

)

− uq̂J+1 +
1

2
(q̂2

J+1)T +
i

2ξu
q̂2

J+1

)

.G6.C6 , (5.26)

where G6 in vector representation is the twist matrix G from (3.21). The twist matrix G6

appears in the expression (5.26) for the right boundary reflection operator, as it is defined

in a way that does not depend on ϕ.

Having all the needed ingredients we can compute T
6 by replacing in the r.h.s. of (5.19)

all the operators and matrices by their vector representation counterpart. In addition, one

should multiply the result by A(2u) in order to account for the correct normalisation of

the extra R(2u) and R̄(2u) appearing in the fusion procedure of the boundary reflection

operators (see figure 10).

We will present some explicit examples of the transfer matrices later in section 5.4.6

and appendix C. In the next sections we will first prove that the transfer matrix in the

vector representation contains the Hamiltonian, and then proceed with the antifundamental

representation.
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5.4.3 Hamiltonian from the transfer matrices

In this section we will show that the Hamiltonian of the system is a part of the commuting

family of operators. For that consider:

T
6(0) = 4 lim

u→0
u2ξ2 tr

[

L̄J(0) · · · L̄2(0)L̄1(0)K(u)L1(u) . . .LJ−1(0)LJ(0)GK̄(u)Gt
]

. (5.27)

First we can use that:

L̂
6 MN
i (0) =

q̂2 MN
i

2
− i

ξ
q̂MN

i − ηMN

8
tr q̂2

i +
ηMN

4ξ2
=

: q̂2
i :MN

2
=

1

2ξ2
XM

i XN
i ∂

2
XK

i
, (5.28)

where in the last equality we used the identity from [34]. Also from (5.23) and (5.24) we have

u ξ K̂6 MN (u)
∣

∣

∣

u=0
= − i

2
(q̂2

0 )NM = − 2i

ξ2
Y M

0 ∂̂tY
N

0 ∂̂t , (5.29)

uξ
(

G6 ˆ̄
K

6(u)(G6)−1
)MN

∣

∣

∣

∣

u=0
= +

i

2
(q̂2

J+1)MN = +
2i

ξ2
Y N

J+1∂̂sY
M

J+1∂̂s . (5.30)

Combining all parts together, up to sub-leading terms in 1/ξ we get the quantum version

of Hq + 1, where Hq is defined in (4.9). In order to check that this produces the correct

quantisation of Hq, i.e. the one related to the graph building operator, we have to analyse

the expression (5.28) more carefully. Paying attention to the order of the operators we get

T
6(0) = 4

4

22Jξ4J+4
ηNMXM

J XJ .XJ−1 . . . X1.Y0∂t

J
∏

i=1

�
(6)
i (5.31)

× Y0.X1X1.X2 . . . XJ .YJ+1∂sY
N

J+1∂s∂t

J
∏

i=1

�
(6)
i ,

where all derivatives are understood as operators acting on the CFT wavefunction embed-

ded in the lightcone of 6D Minkowski spacetime. In order to relate the above expression

with the graph building operator (2.9), which is expressed in terms of derivatives acting

on functions in 4D Euclidean spacetime, we recall that T
6 is built out of qi’s and as such

we can act with it, in a consistent way, on functions of 4D coordinates, following the pre-

scription (5.4). Furthermore, one can just replace the 6D d’Alembertian operator in 4D

d’Alembertian due to the identity

�
(6) = �

(4) + ∂X+∂X−
, (5.32)

and the fact that there is no dependence on X− in the 4D functions, by construction (5.4).

Therefore,

Y0.X1X1.X2 . . . XJ .YJ+1∂s∂t

J
∏

i=1

�
(6)
i = (5.33)

(

−1
2

)J+1 ∂s∂t

|y′
0||y′

J+1|
J
∏

i=0

(yi − yi+1)2
J
∏

i=1

�
(4)
i =

(

1
2

)J+1
(4ĝ2)J+1B̂−1 , (5.34)
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where we used that X1.X2 = −1
2(x1 − x2)2 and Y0.X1 = − e−t

2 (x0 − x1)2. We use the

expression for the inverse of the graph-building operator B̂−1 from (2.9). Then for T
6(0)

one gets precisely

T
6(0) = 4B̂−2 . (5.35)

Where we used (3.10) to relate ξ and ĝ. We see that all factors cancel exactly, implying that

at the quantum level we also have T6(0)ψ = 4ψ as it follows from (2.9). At the same time we

see that the quantum graph building operator B̂ is indeed a part of the commuting family

of operators, which demonstrates the integrability of the initial system of Feynman graphs.

Now in order to find the spectrum ∆(ξ) we will have to build two remaining transfer

matrices in the two sections below.

5.4.4 Ingredients of the transfer matrix in the anti-fundamental

representation

Here we compute the 4̄ transfer matrix, corresponding to the antisymmetrisation of the

tensor product of three copies of 4 irrep. ingredients with the corresponding shifts in the

spectral parameters, dictated by the fusion procedure. The calculation for L
4 was done

in [34]. The result for L
4̄ can be re-expressed in terms of one L

4 times a scalar polynomial

factor

L̂
4̄ b
k a (u) =

(

u2 − trq̂2
k

8
+

1

ξ2

)

ˆ̄
L

4 b
k a (−u) , (5.36)

and ˆ̄
L

4̄ a
k b(u) = L̂

4̄ a
k b (u). The fusion of the boundary reflection operator is done in analogy

with 6 representation. For that one follows the diagram in figure 11 to obtain:

K̂
4̄ab(u) = −

(

u2− iu

ξ
+

3

4ξ2

)

ˆ̄
K

4ba(−u) , ˆ̄
K

4̄

ab(u) = −
(

u2+
iu

ξ
+

3

4ξ2

)

K̄
4

ba(−u) . (5.37)

Finally, the twist matrix is the inverse of the one for the 4 irrep. (4.16). The polynomial fac-

tors in (5.36) and (5.37) will play an important role below, when we derive the TQ-relations.

5.4.5 Ingredients of the quantum determinant

Here we compute the ingredients of the transfer matrix in the representation 1̄, also known

as the quantum determinant. Like in the previous sections, this can be computed as an an-

tisymmetrisation of the tensor product of four copies of L and K in the 4 irrep. For both L
1̄

and K
1̄ we find that they are just fourth order polynomials in u acting trivially on the phys-

ical space. Again the calculation of L1̄ was already performed in [34] and the result reads:

L̂
1̄

i (u) =

(

u2 − tr q̂2
i

8
+

5

4ξ2

)2

+
tr q̂2

i

8ξ2
− 1

ξ4
. (5.38)

The expression for ˆ̄
L

1̄

i is the same. For the boundary reflection operator we follow the

diagram on figure 12 to obtain:

K
1̄(u) =

(

u− 2i

ξ

)(

u− i

ξ

)

u

(

u+
i

ξ

)

, K̄
1̄(u) =

(

u+
2i

ξ

)(

u+
i

ξ

)

u

(

u− i

ξ

)

. (5.39)

In the next section we will discuss the implications of these polynomial factors for the

analytical properties of the transfer matrices and then derive the TQ-relations.
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(a) K̂
4̄

(b) ˆ̄
K

4̄

Figure 11. Fusion of the boundary reflection operators to anti-fundamental irrep. 4̄.

(a) K
1̄ (b) K̄

1̄

Figure 12. Fusion of the boundary reflection operators to obtain the quantum determinant.
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5.4.6 J = 0 example

Before discussing the general case we first give the explicit result for the simplest case

of a chain of zero length. This means that we are only left with the boundary reflection

operators. Furthermore, the graph-building operator is a second order differential operator

in s and t, as it should commute with the dilatation operator only one variable remains.

If we further impose T
6(0) = 4, we will automatically diagonalise all transfer matrices

obtaining the following results for their eigenvalues:

T
4(v) =

1

ξ2

(

4v2 cosϕ+ cosϕ+ 8ξ2
)

,

T
6(v) = A(2v)

v2 + 1

ξ4v2

(

v4(2 cos(2ϕ) + 4) + v2
(

16ξ2 cosϕ− 4∆2 sin2 ϕ
)

+ 16ξ4
)

,

T
4̄(v) = A(2v)A(2v + i)A(2v − i)

(

4v2 + 1
) (

4v2 + 9
)

16ξ6

(

4v2 cosϕ+ cosϕ+ 8ξ2
)

,

T
1̄(v) = A2(2v)A(2v + i)A(2v − i)A(2v + 2i)A(2v − 2i)

v2
(

v2 + 1
)2 (

v2 + 4
)

ξ8
,

(5.40)

where we introduced the rescaled spectral parameter v = u ξ. The factors A, where A(v) =
v2

1+v2 , are due to the R-matrix normalisation as discussed in section 5.3. We also worked

out the form of the transfer-matrix eigenvalues for J = 1 case in appendix C in terms of a

few unknown constants. We have explicitly verified that all the T-operators for J = 0 and

J = 1 commute between themselves and with the charges ∆, S, H as expected.

In the next section we will extend these results to the general J case.

5.4.7 Eigenvalues of the transfer matrices

Here we deduce the general form of the eigenvalues of the transfer matrices. First, one

can notice explicitly that for J = 0 and J = 1 case they are even functions of the spectral

parameter. In appendix B we prove that this is true for any J . Some other properties of

the transfer matrices are:

• T
4 is a polynomial of degree 2J + 2 in v, as it follows from its definition (5.19).

• T
6 is a rational function with two poles at v = ±i/2, coming from the normalisation

factor A(2v). Another potential pole at v = 0, coming from the boundary reflection

operators, is cancelled by the same A(2v). At large v it behaves as ∼ v4J+4.

• Previously we noticed that K
6(u = +i/ξ) = 0 and K̄

6(u = −i/ξ) = 0, therefore we

can see that T
6 should have a prefactor of v2 + 1 = ξ2u2 + 1.

• Finally, in section 5.4.3 we have showed that T
6(0) = 4 due to (5.35).

• The properties of T4̄ are very similar to those of T4, apart from the trivial factors of

A’s and additional trivial factors coming from L
4̄ and K

4̄.

• Finally, T1̄ (the quantum determinant) contains only trivial factors and can be com-

puted explicitly for any J .
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Basing on these observations we can write the transfer matrices in terms of the polynomials

P λ
k (v2) as:

T
1(v) = 1 ,

T
4(v) ≡ P 4

J+1(v2)

ξ2J+2
,

T
6(v) ≡A(2v)

v2 +1

v2

P 6

2J+2(v2)

ξ4J+4
,

T
4̄(v) =A(2v)A(2v+ i)A(2v− i)

(v2 + 9
4)(v2 + 1

4)2J+1P 4̄

J+1(v2)

ξ6J+6
,

T
1̄(v) =A2(2v)A(2v+ i)A(2v− i)A(2v+2i)A(2v−2i)

(v2 +4)(v2 +1)2J+2v4J+2

ξ8J+8
.

(5.41)

Here, P λ
k is a polynomial of degree k, labelled by the representation λ in the auxiliary

space. The eigenvalues of the conserved charges of the system are the coefficients of the

powers of v2 in these polynomials. We will denote them as (defining w ≡ v2):

P 4

J+1(w) =
J+1
∑

i=0

aiw
−i+J+1 ,

P 6

2J+2(w) =
2J+2
∑

i=0

biw
−i+2J+2 ,

P 4̄

J+1(w) =
J+1
∑

i=0

ciw
−i+J+1 .

(5.42)

In our definition, a0 will represent the coefficient of the highest power in v2 in P 4

J+1, a1 the

second highest etc. The leading coefficients are easy to compute explicitly directly from

the definition

a0 = c0 = 4 cosϕ , b0 = 2 cos 2ϕ+ 4 . (5.43)

They just give the twisted (or q-)dimension of the corresponding representations. Since

the leading coefficients are trivial, in total we get 4J + 4 non-trivial coefficients in the

polynomials P . As our system has 4J + 2 degrees of freedom it may suggest that there

are 2 more relations between the coefficients of the polynomials P . Indeed, in the J = 0

and J = 1 cases we found them by computing the differential operators explicitly, but it is

rather hard to deduce the general relations. In J = 1 case we found exactly 6 independent

operators guarantees integrability of the system.

We found that the global charges ∆ and S are encoded into the sub-leading coefficients

in the following way:

c1 − a1 = 8 i S∆ sinϕ , (5.44)

(a1 + c1) cosϕ− b1 = 2
(

2S2 + 2 ∆2 + J
)

sin2 ϕ+ 2 cos2 ϕ .

These relations are also quite hard to derive in general, but we explicitly verified the first

relation up to J = 3 and the second up to J = 2.
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Finally, the condition T
6(0) = 4 implies:

b2J+2 = ξ4J+4 = 16ĝ4J+4 . (5.45)

In order to find the eigenvalues of all coefficients of the transfer matrices we will have

to develop a numerical procedure. For that we will first build the TQ-relations in the next

section.

6 Baxter equation

In this section we follow the derivation of [15] to deduce the general simplified form of

the TQ-relations and deduce asymptotic of the Q-functions. The starting point is the

TQ-relation [64–66]:

Q(v+2i)+T
4(v+ i/2)Q(v+ i)+T

6(v)Q(v)+T
4̄(v− i/2)Q(v− i)+T

1̄(v− i)Q(v−2i) = 0 .

(6.1)

As we discussed above the transfer matrices have a number of trivial factors. In order to

remove these fixed, non-dynamical factors, we perform the following gauge transformation

of the Q-function

Q(v) = q(v)
eπ(J+1)vΓ(−iv)ξ2i(J+1)vΓ(iv + 1)−2J−1

Γ
(

−iv − 1
2

)

Γ(iv + 2)
, (6.2)

which brings (6.1) to a simpler and more symmetric form:

P 6

2J+2(v2)

v2J+3
q(v) = −(v + i)2J+1q(v + 2i) − v + i

2

v(v + i)
P 4

J+1

(

(v + i
2)2
)

q(v + i) (6.3)

− (v − i)2J+1q(v − 2i) − v − i
2

v(v − i)
P 4̄

J+1

(

(v − i
2)2
)

q(v − i) .

As a test of this equation we can compare with the case J = 0, studied as a ladder limit of

QSC in N = 4 SYM. For J = 0, by plugging in the explicit form of the polynomials (5.40)

into (6.3), we obtain:

q(v)

(

2
(

8ĝ2v2 cos(ϕ) + 8ĝ4 + v4(cos(2ϕ) + 2)
)

v3
− 4∆2 sin2(ϕ)

v

)

+
2(2v − i)q(v − i)

(

2ĝ2 + v(v − i) cos(ϕ)
)

v(v − i)
+

2(2v + i)q(v + i)
(

2ĝ2 + v(v + i) cos(ϕ)
)

v(v + i)

+ (v − i)q(v − 2i) + (v + i)q(v + 2i) = 0 . (6.4)

This is the same as what was found in [19, 28] for a cusped Wilson line in the ladders limit,

as expected (see detailed comparison in appendix C).

The equation (6.3) for general J is one of our main result. As we show in section 7 it

lets us evaluate numerically the spectrum.
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6.1 Large v asymptotic of Q-functions

For the numerical evaluation, which we describe in the next section, it is important to have

the large v asymptotics under control. As the leading and partially subleading coefficients

in the polynomials P are known from (5.43) and (5.44), we can deduce that the 4 linearly

independent solutions of the equation (6.3) should have the following large v asymptotic

expansion:

q1 = e+φvv+∆−S−J
(

1 +
c1,1

v
+ . . .

)

,

q2 = e−φvv+∆+S−J
(

1 +
c2,1

v
+ . . .

)

,

q3 = e+φvv−∆+S−J
(

1 +
c3,1

v
+ . . .

)

,

q4 = e−φvv−∆−S−J
(

1 +
c4,1

v
+ . . .

)

.

(6.5)

where φ = π − ϕ. The above asymptotics suggest the following relation to the QSC

Q-functions of [24]:

qi(v) ∼ Qi(v)

vJ+1/2
, (6.6)

which is similar to the relations found in the fishnet model [11]. Subleading coefficients in

1/v can be found systematically in terms of the coefficients of the polynomials P , i.e. ai, bi

and ci, by plugging the expansion (6.5) into (6.3). In order to fix the coefficients of the

polynomials P one has to use the gluing (or quantisation) condition, which we describe in

the next section.

7 Numerical solution

After having established the key properties of the Baxter equation we can solve them

numerically and fix the remaining coefficients ai, bi and ci. The method we implement is

essentially the one of [27] which was adopted and simplified to the current type of problems

in [11, 15, 16, 28]. The 4th order finite difference equation (6.3) has 4 linearly independent

solutions with the asymptotic (6.5). The way to find them numerically is first finding the

asymptotic solution at large v, where (6.3) reduces to a linear problem for the asymptotic

expansion coefficients. The truncated asymptotic series gives a very good approximation

at sufficiently large |Im v|. In order to bring Im v to a finite value, we can simply use (6.3)

itself, as it allows to find q(v) in terms of q(v+in), n = 1, . . . , 4 (or q(v−in), n = 1, . . . , 4).

Using (6.3) as a recursion relation, we can gradually decrease |Im v|. By doing this there

are two options: starting from +i∞ or from −i∞. Correspondingly, we will find 4 analytic

solutions in the upper-half plane, q↓
i , and other 4 analytic in the lower-half plane, q↑

i .

Since the Baxter equation is a fourth order equation, we can have only four independent

solutions, meaning that the q↑
i and q↓

i should be related by a linear transformation. We

should therefore have:

q↑
i (v) = Ω j

i (v)q↓
j (v), Ω j

i (v + i) = Ω j
i (v) , (7.1)
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where

Ω j
i (v) =

ǫj j1 j2 j3

3!

detn=0,...,3

{

q↑
i (v − in), q↓

j1
(v − in), q↓

j2
(v − in), q↓

j3
(v − in)

}

detn=0,...,3

{

q↓
1(v − in), q↓

2(v − in), q↓
3(v − in), q↓

4(v − in)
} . (7.2)

Ω j
i (v) is an i-periodic function which can have poles at v = in of order no higher than

qi(v)’s themselves. From the Baxter equation (6.3) it is easy to see that qi(v) only has poles

at v = in of maximal order 2J + 2, which implies that Ω j
i (v) is a trigonometric rational

function of the form:

Ω j
i (v) =

2J+2
∑

n=0
C

(n) j
i e

2 π n u

(1 − e2 π u)2J+2
. (7.3)

The quantisation condition can be obtained by comparing with the QSC description of the

cusped Wilson line [24], where one defines an antisymmetric matrix ωik, related to Ω j
i in

the following way:

ωik = Ω j
i Γjk , (7.4)

where the so-called gluing matrix is:

Γjk =













0 γ1 sinh(2πv) 0 γ3

γ2 sinh(2πv) 0 γ4 0

0 γ5 0 0

γ6 0 0 0













, (7.5)

where γi are some constants. All we need to know, from QSC, is that ω in (7.4) is anti-

symmetric i.e. Ω j
i Γjk = −Ω j

k Γji, which, in particular, implies:

Ω41 = Ω32 = 0 . (7.6)

As each component of Ω(u) is a nontrivial function parametrised in terms of 2J+3 constants

C
(n)
ij , imposing (7.6) is usually sufficient to fix 4J + 4 unknown constants, contained in the

Baxter equations.

Tests. By applying the numerical method we studied the spectrum for J = 1 and J = 2

cases. For J = 1 we also found a large number of excited states (see figure 13), correspond-

ing to additional insertions of Φ2 and Φ1 fields at the cusp, as discussed in [19]. We tested

our results against the weak coupling result of [23], which in our notations reads

∆ = J + ĝ2J+2 (−1)J24J+3π2J+1 csc(ϕ)B2J+1

( ϕ
2π

)

Γ(2J + 2)
+ O(ĝ4J+4) , (7.7)

which agreed with high precision (of more than 15 digits) with our numerical data for

J = 0, J = 1 and J = 2. For example for J = 2 and ϕ = 2π/3 we get the following fit for

the numerical data on figure 14:

∆ = 2 − 124.08839542210ĝ6 + 23271.513371517ĝ12 + . . . (7.8)

– 32 –



J
H
E
P
0
7
(
2
0
2
1
)
1
2
7

Figure 13. Numerical spectrum with excited states for J = 1 and S = 0. The lowest curve

(starting at ∆ = 1 at zero coupling) corresponds to the case with a single insertion of Z at the

cusp. The curves which begin at higher integers at zero coupling correspond to excited states of

the solution of the Baxter equation, which correspond to additional insertions of Φ2 and Φ1 at the

cusp (see [19] for some explicit examples). Whereas for the ground state the dimension ∆ is real,

excited states could appear in complex conjugate pairs.

in agreement with (7.7), which for J = 2 gives

2 + ĝ6 8

45
ϕ
(

3ϕ4 − 15πϕ3 + 20π2ϕ2 − 8π4
)

cscϕ = 2 − ĝ6 512π5

729
√

3
. (7.9)

The states ZJ for the cases J = 1 and J = 2 do not behave classically at large ξ, i.e. ∆

decreases faster than linear. Like in [11] we expect the classical regime to describe the

highly excited states.
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0.2 0.4 0.6 0.8 1.0
g

-6

-4

-2

2

Δ J=2, φ=2π /3

Figure 14. Numerical data (dots) for the ground state of length-2 chain with ϕ = 2π/3. Red solid

line shows the Lüscher formula prediction of [23].

8 Conclusion

In this paper we show that the cusped Wilson-Maldacena loop with insertions of J orthog-

onal scalars is an integrable system, and also describe its strong coupling dual description

in terms of a classical chain of particles with nearest neighbour interactions, sitting on the

lightcone in 6-dimensional Minkowski spacetime — the open fishchain. We compute the

transfer matrices of this model, which gives us all the conserved charges of the system.

Moreover, we obtain a Baxter equation which can be solved numerically for any J and find

the spectrum of dimensions ∆ non-perturbatively (for J = 0, 1, 2). This lets us find the

Q-functions of the system, which are a crucial quantity in a quantum integrable systems.

There is a number of future directions of our work. We outline some of them below.

Since we have the spectrum under control, the natural next step is to compute correla-

tion functions. In [19, 67], the first steps towards this is taken, where the authors calculate

the three point functions of three cusped Wilson lines in the ladders limit. Remarkably,

they observe that the structure constants can be expressed as overlaps between the same

q-functions that appear in the QSC that describes the system. This is one of many re-

sults [16, 25, 26, 68–77] in the rapidly developing separation of variables (SoV) program.

Another possibility is to first probe the SoV structure at strong coupling, using the dual

fishchain description which becomes classical in this limit.

In general it would be interesting to get away from the ladders/fishnet limit both in

our set-up and in deformed N = 4 SYM. Such an exploration could give some clues as to

how to develop a first principles holographic derivation for the full theory.

It would be also interesting to establish links with the bootstrap program, in particular

in the straight line limit, where the Wilson line defines a defect CFT. Our Baxter equation

allows to more easily generate the spectrum here than in the case of the full N = 4 SYM,

which could give a better understanding on how the conformal bootstrap works in this case.
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Another direction of exploration would be to try to expand our construction to Wilson

loops in the ABJM theory [78] where there is already some evidence of integrability [79]

and further, it admits treatment from a defect CFT point of view [80, 81]. Here too, a

fishnet limit exists with Feynman graphs which look like a triangular lattice [82] and one

can envisage the definition and study of a similar CFT wavefunction like the one we studied

in this paper.

Finally it would be interesting to look at other examples of integrable boundary condi-

tions in N = 4 SYM. These include determinant operators [83–86] (and references therein)

and giant Wilson loops [87].
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EXACTC.

A Proof of Poisson-commutativity of T(u)

In this appendix, we prove that the classical transfer matrix (4.14) forms a family of

mutually Poisson-commuting functions for any value of the spectral parameter and for any

J . We start by the J = 0 case. We have that:

{T(u),T(v)} ={Kab(u),Kαβ(v)}K̄ba(u)K̄βα(v) + Kab(u)Kαβ(v)
{

K̄
ba(u), K̄βα(v)

}

. (A.1)

Using (4.20) and its analog for K̄:

{T(u),T(v)} = −K̄
ba(u)K̄βα(v)

ξ(u+ v)
[Kβb(u)Kαa(v) − Kbβ(v)Kaα(u)] +

+
K̄

ba(u)K̄βα(v)

ξ(u− v)
[Kaβ(u)Kαb(v) − Kaβ(v)Kαb(u)] −

− Kab(u)Kαβ(v)

ξ(u+ v)

[

K̄
αa(u)K̄βb(v) − K̄

aα(v)K̄bβ(u)
]

+

+
Kab(u)Kαβ(v)

ξ(u− v)

[

K̄
bα(u)K̄βa(v) − K̄

bα(v)K̄βa(u)
]

.

(A.2)

By relabelling indices appropriately, all terms cancel as expected.

For the rest of this section, we will use the shorthand notation:

(L)a
b(u) ≡ (L1(u).L2(u) . . .LJ(u))a

b , (L̄) b
a (u) ≡ (L−J(u).L−(J−1)(u) . . .L−1(u)) b

a .

(A.3)
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It is easy to see that these matrices follow the same Poisson brackets as individual L-

matrices, i.e. (4.17). Thus, for general J we have that:

{T(u),T(v)} = {Kab(u),Kαβ(v)}(L̄) a
c (u)(L̄) α

γ (v)K̄dc(u)K̄δγ(v)(L)b
d(u)(L)β

δ(v)+

Kab(u)Kαβ(v)(L̄) a
c (u)(L̄) α

γ (v){K̄dc(u), K̄δγ(v)}(L)b
d(u)(L)β

δ(v)+

+ (Poisson brackets between L) =

= (L̄) a
c (u)(L̄) α

γ (v)(L)b
d(u)(L)β

δ(v)
{

− 1

ξ(u+ v)

[

Kβb(u)Kαa(v)K̄dc(u)K̄δγ(v) − Kbβ(v)Kaα(u)K̄dc(u)K̄δγ(v)+

+ Kab(u)Kαβ(v)K̄γc(u)K̄δd(v) − Kab(u)Kαβ(v)K̄cγ(v)K̄dδ(u)
]

+

+
1

ξ(u− v)

[

Kaβ(u)Kαb(v)K̄dc(u)K̄δγ(v) − Kaβ(v)Kαb(u)K̄dc(u)K̄δγ(v)+

+ Kab(u)Kαβ(v)K̄dγ(u)K̄δc(v) − Kab(u)Kαβ(v)K̄dγ(v)K̄δc(u)
]

}

+

+ (Poisson brackets between L) . (A.4)

We now relabel indices in order to collect the boundary reflection matrices as:

{T(u),T(v)} = Kab(u)Kαβ(v)K̄dc(u)K̄δγ(v)
{

− 1

ξ(u+ v)

[

(L̄) β
c (u)(L̄) α

γ (v)(L)b
d(u)(L)a

δ(v)−

− (L̄) a
δ (u)(L̄) α

γ (v)(L)b
d(u)(L)β

c(v)+

+ (L̄) a
c (u)(L̄) α

d (v)(L)b
γ(u)(L)β

δ(v)−
− (L̄) a

c (u)(L̄) b
γ (v)(L)α

d(u)(L)β
δ(v)

]

+

+
1

ξ(u− v)

[

(L̄) a
c (u)(L̄) α

γ (v)(L)β
d(u)(L)b

δ(v)−

− (L̄) α
c (u)(L̄) a

γ (v)(L)b
d(u)(L)β

δ(v)+

+ (L̄) a
γ (u)(L̄) α

c (v)(L)b
d(u)(L)β

δ(v)−

− (L̄) a
c (u)(L̄) α

γ (v)(L)b
δ(u)(L)β

d(v)
]

}

+

+ (Poisson brackets between L) .

(A.5)

The Poisson Brackets between L-matrices give:

{T(u),T(v)} = (Poisson brackets between K)+

+ Kab(u)Kαβ(v)K̄dc(u)K̄δγ(v)
[

{(L̄) a
c (u), (L̄) α

γ (v)}(L)b
d(u)(L)β

δ(v)+

+ (L̄) α
γ (v){(L̄) a

c (u), (L)β
δ(v)}(L)b

d(u)+

+ (L̄) a
c (u)(L̄) α

γ (v){(L)b
d(u), (L)β

δ(v)}+

+ (L̄) a
c (u){(L)b

d(u), (L̄) α
γ (v)}(L)β

δ(v)
]

.

(A.6)
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Using the Poisson brackets (4.17) and their analogues:

ξ
{

(L−n) b
a (u), (L−m) d

c (v)
}

=
(L−n) d

a (u)(L−n) b
c (v) − (L−n) b

c (u)(L−n) d
a (v)

u− v
δnm , (A.7)

ξ
{

(L−n) b
a (u), (Lm)c

d(v)
}

=
(L−n) c

a (u)(Ln)b
d(v) − (L−n) b

d (u)(Ln)c
a(v)

u+ v
δm n , (A.8)

we get:

{T(u),T(v)} = (Poisson brackets between K)+

+ Kab(u)Kαβ(v)K̄dc(u)K̄δγ(v)
{

1

ξ(u− v)

[

(L̄) α
c (u)(L̄) a

γ (v)(L)b
d(u)(L)β

δ(v)−

− (L̄) a
γ (u)(L̄) α

c (v)(L)b
d(u)(L)β

δ(v)+

+ (L̄) a
c (u)(L̄) α

γ (v)(L)b
δ(u)(L)β

d(v)−
− (L̄) a

c (u)(L̄) α
γ (v)(L)β

d(u)(L)b
δ(v)

]

+

+
1

ξ(u+ v)

[

(L̄) β
c (u)(L̄) α

γ (v)(L)b
d(u)(L)a

δ(v)−

− (L̄) a
δ (u)(L̄) α

γ (v)(L)b
d(u)(L)β

c(v)−
− (L̄) a

c (u)(L̄) b
γ (v)(L)α

d(u)(L)β
δ(v)+

+ (L̄) a
c (u)(L̄) α

d (v)(L)b
γ(u)(L)β

δ(v)
]

}

.

(A.9)

It is easy to verify that the terms from the Poisson Brackets of L-matrices cancel exactly

the ones from the Poisson brackets of K-matrices. Therefore, the transfer matrices form a

family of functions in convolution between themselves:

{T(u),T(v)} = 0 . (A.10)

B Parity of quantum transfer matrices

In this appendix we will prove explicitly the parity of the quantum transfer matrices in all

the antisymmetric representations of the auxiliary space.

Parity of T
4. We need to evaluate:

T̂
4(−u) = Tr(ˆ̄

L
4

J(u). ˆ̄L4

J−1(u) . . . ˆ̄L4

1(u).K̂4(−u).L̂4

1(−u).L̂4

2(−u) . . . L̂4

J(−u).G4. ˆ̄K4(−u).G4T ) .

(B.1)

Transposing inside of the trace:

T̂
4(−u) = Tr(G4. ˆ̄K4 T (−u).G4 T .L̂4 T

J (−u).L̂4 T
J−1(−u) . . . L̂4 T

1 (−u).

.K̂4 T (−u). ˆ̄L4 T
1 (u). ˆ̄L4 T

2 (u) . . . ˆ̄L4 T
J (u)) .

(B.2)
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Now since L̂
4 T
j (−u) = − ˆ̄

L
4

j (−u) and ˆ̄
L

4 T
j (u) = −L̂

4

1(u) we get:

T̂
4(−u) = Tr(ˆ̄

L
4

J(−u). ˆ̄L4

J−1(−u) . . . ˆ̄L4

1(−u).K̂4T (−u).L̂4

1(u).L̂4

2(u) . . . L̂4

J(u).G4. ˆ̄K4T (−u).G4T ) .

(B.3)

We can now insert a pair of S̄-matrices near the K̂-operator using the unitarity condition

S̄(2u)S̄(−2u) = I and then commute S̄(2u) through the L̂-operators using the Yang-Baxter

equation, obtaining:

T̂
4(−u) = Tr(ˆ̄

L
4

J(−u). ˆ̄L4

J−1(−u) . . . ˆ̄
L

4

1(−u).K̂4 T (−u).S̄(−2u).

.L̂4

1(u).L̂4

2(u) . . . L̂4

J(u).G4.S̄(2u). ˆ̄K4 T (−u).G4 T ) .
(B.4)

Using the following identities:

ᾱ(2u)R̄c d
a b(2u)K̂4

cd(−u) = K̂
4

ba(u) , (B.5)

ᾱ(−2u)R̄a b
d c(−2u)( ˆ̄

K
4)dc(−u) = ( ˆ̄

K
4)ba(u) , (B.6)

which in matrix notation are:

K̂
4 T (−u).S̄(2u) = K̂

4(u) , (B.7)

S̄(−2u). ˆ̄K4 T (−u) = ˆ̄
K

4(u) , (B.8)

we obtain that T̂
4(−u) = T̂

4(u), thus seeing that T̂
4 is even for any J .

We will now give a more detailed proof of the last passage above. We will use the

YBE in figure 7 (substituting R(−u) with S̄(u)), the unitarity condition (5.16) and the

identities (B.5) and (B.6). Starting from (B.3) we insert an identity and we use (5.17) to get:

T̂
4(−u) = (ˆ̄

L
4

J(−u). ˆ̄L4

J−1(−u) . . . ˆ̄
L

4

1(−u)) γ
a S̄δ α

ζ η(2u)S̄ζ η
γ β(−2u)K̂4

αδ(−u)

(L̂4

1(u).L̂4

2(u) . . . L̂4

J(u))β
h(G4. ˆ̄K4 T (−u).G4 T )ha .

(B.9)

We can now use (B.5) to get:

T̂
4(−u) = (ˆ̄

L
4

J(−u). ˆ̄L4

J−1(−u) . . . ˆ̄
L

4

1(−u)) γ
a S̄ζ η

γ β(−2u)K̂4

ζη(u)

(L̂4

1(u).L̂4

2(u) . . . L̂4

J(u))β
h(G4. ˆ̄K4 T (−u).G4 T )ha .

(B.10)

We now use YBE in figure 7 (substituting R(−u) with S̄(u)) to commute the remaining

S-matrix through all the L̂i and ˆ̄
Li, obtaining for i = 1:

T̂
4(−u) = (ˆ̄

L
4

J(−u). ˆ̄L4

J−1(−u) . . . ˆ̄
L

4

2(−u)) ω
a S̄γ β

ǫ ω(−2u)L̂4 η
1 γ(u)L̂4 ζ

1 β (−u)K̂4

ζη(u)

(L̂4

2(u) . . . L̂4

J(u))ǫ
h(G4. ˆ̄K4 T (−u).G4 T )ha .

(B.11)

Continuing this process for ∀i = 2 . . . J we obtain:

T̂
4(−u) = (ˆ̄

L
4

J(−u). ˆ̄L4

J−1(−u) . . . ˆ̄
L

4

1(−u).K̂4(u).L̂4

1(u).L̂4

2(u) . . . L̂4

J(u))ǫ ω

S̄ǫ ω
h a(−2u)(G4. ˆ̄K4 T (−u).G4 T )ha .

(B.12)

Finally we use (B.6) and get:

T̂
4(−u) = (ˆ̄

L
4

J(−u). ˆ̄L4

J−1(−u) . . . ˆ̄
L

4

1(−u).K̂4(u).L̂4

1(u).L̂4

2(u) . . . L̂4

J(u))ǫ ω

(G4. ˆ̄K4(u).G4 T )ω ǫ = T̂
4(u) .

(B.13)
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Parity of T
6. Remembering that L̄

6

i (u) = L
6

i (−u), we write:

T̂
6(u) = Tr

(

L̂
6

J(u) . . . L̂6

1(u).K̂6(u).L̂6

1(u) . . . L̂6

J(u).G6. ˆ̄K6(u).G6 T
)

. (B.14)

Hence we have that:

T̂
6(−u) = Tr

(

L̂
6

J(−u) . . . L̂6

1(−u).K̂6(−u).L̂6

1(−u) . . . L̂6

J(−u).G6. ˆ̄K6(−u).G6 T
)

. (B.15)

Taking a transpose inside the trace and noticing from definition (5.21) that L̂
6 T
i (−u) =

L̂
6

i (u):

T̂
6(−u) = Tr

(

L̂
6

J(u) . . . L̂6

1(u).K̂6 T (−u).L̂6

1(u) . . . L̂6

J(u).G6. ˆ̄K6 T (−u).G6 T
)

. (B.16)

We now need identities analogous to (B.5) for 6 irrep. First, we need the S̄6-matrix.

Making the ansatz that it is formed by all compatible indices structures, we can fix the

relative coefficients by requiring that it satisfies the Yang-Baxter equation:

L̂
6 B

E(u)ˆ̄
L

6 D
F (−v)S̄6E F

A C(u+ v) = S̄6B D
F E(u+ v)ˆ̄

L
6 E

C (−v)L̂6 F
A(u) . (B.17)

We get that:

S̄6 A C
B D(u) = c(u)



δA
B δ

C
D − i

ξ u
δA

D δC
B +

i

ξ
(

u− 2i
ξ

)ηAC ηBD



 . (B.18)

The overall coefficient c(u) is fixed by unitarity, S̄6 A C
B D(u)S̄6 B D

E F (−u) = δA
E δ

C
F , as:

c(u) =
u
(

u− 2i
ξ

)

2
ξ2 + u

(

u+ i
ξ

) . (B.19)

The identities we need are:

K̂
6 T (−u).S̄6(2u) = K̂

6(u) , (B.20)

S̄6(−2u). ˆ̄K6 T (−u) = ˆ̄
K

6(u) . (B.21)

Hence, inserting into (B.16) a pair of S̄-matrices via unitarity and repeating the passages

of the section above, it is easy to prove that:

T̂
6(−u) = T̂

6(u) . (B.22)

Parity of T
4̄. Using the definitions of section 5.4.4 one can rewrite T̂

4̄(u) in terms of

L̂
4-operators and K̂

4-operators as:

T̂
4̄(u) = β̂(u) Tr(ˆ̄

L
4

1(u) . . . ˆ̄
L

4

J(u).(G4)−T .K̂4(−u).(G4)−1.L̂4

J(−u) . . . L̂4

1(−u). ˆ̄K4(−u)) .

(B.23)

Where β̂(u) is an operator which is an even polynomial in u, composed by all the prefactors

appearing in the definitions of the 4̄ operators. Following the same passages used for the

parity of T4, it is then easy to prove that:

T
4̄(−u) = T

4̄(u) . (B.24)
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Parity of T
1̄. From the definitions of section 5.4.5, it is evident that the L

1̄-operators

are even polynomials in u. Also, since the K
1̄-operators are proportional to the identity

operator, we can move them together through all L1̄. Their product is:

K
1̄(u)K̄1̄(u) =

(

u2 +
4

ξ2

)(

u2 +
1

ξ2

)2

u2 . (B.25)

Hence, T1̄(u) is even as it is a product of even functions.

C Explicit form of transfer matrices

J = 0 case. The polynomials P that enter the transfer matrices for the J = 0 case

in (5.40) are

P 4 = P 4̄ = 4 cosϕv2 − 8h+ cosϕ ,

P 6 = (2 cos 2ϕ+ 4)v4 − (4 ∆2 sin2 ϕ+ 16h cosϕ)v2 + 16h2 ,
(C.1)

where h = −ĝ2B−1. The above expressions lead to the Baxter equation (6.4).

In order to make a comparison with [19, 28] we introduce the notation for the final

difference operators Ô±

Ô±q ≡ q(u)
(

4ĝ2 − 2u2 cos(φ) ± 2∆u sin(φ)
)

+ u2q(u− i) + u2q(u+ i) . (C.2)

The second order equations used in [19, 28] was of the form Ô±q = 0. At the same time

the forth order equation (6.4) can we written as

− 1

u2
Ô+

1

u
Ô−q = − 1

u2
Ô−

1

u
Ô+q = 0 . (C.3)

We see that the four independent solutions of the two second order equations Ô±q = 0 are

the 4 solutions of (6.4), which indeed demonstrates their equivalence.

J = 1 case. For the J = 1 case we explicitly built all 3 transfer matrices as differential

operators acting on the CFT wavefunction of 6 variables s, t, ~x1. We verified the general

analytic properties outlined in the text in section 5.4.7. Furthermore, we found some

additional relations between the coefficients as shown below

P 4 = 4 cosϕv4 + a1 v
2 +

a1

4
+ 8h− 1

4
cosϕ ,

P 6 = (2 cos 2ϕ+ 4) v8 + 2

[

cosϕ
a1 + c1

2
+ cos 2ϕ∆2 − (∆2 + 1)

− 2S2 sin2 ϕ

]

v6 + b2 v
4 + b3 v

2 + 16h2 ,

P 4̄ = 4 cosϕv4 + c1 v
2 +

c1

4
+ 8h− 1

4
cosϕ .

(C.4)

Here, h = −ĝ4B−1 ≃ −ĝ4 so we can see that the relation (5.35) does hold indeed. The

coefficients a1, c1, b2, b3 and h are complicated differential operators whose explicit form
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can be provided upon request. There are no further simple relations we found between

them except for c1 − a1 = 8 i S∆ sinϕ, agreeing with (5.44). This implies that under spin

flipping S → −S, T4(u) interchanges with T
4̄(u) up to the trivial explicit prefactor. We see

that in total we have 6 independent commuting operators a1, b2, b3, h, S,∆, which equates

the number of degrees of freedom in J = 1 case.

The limit of straight line ϕ → π is especially interesting as 1D Conformal symmetry

gets restored. The space naturally decomposes into a 1D line and the 3D space orthogonal

to it. The corresponding symmetry is thus SO(3) × SO(2, 1), and its representations are

parametrised by the spin S of SO(3) and the conformal weight ∆ of SO(2, 1). Fixing ∆

and S removes two variables in our CFT wavefunction out of 6. Furthermore, we can

restrict ourselves to Highest Weight states w.r.t. to both subgroups, which imposes on the

wave function 2 more conditions Kψ = 0 and S+ψ = 0, which can be used to further

reduce the number of variables from 4 to 2. In this reduced system B−1 and b3 remain

two non-trivial differential operators, whereas all others can be expressed explicitly in

terms of ∆ and S. In particular, a1 becomes 2(P1K1 + ∆2 − ∆ + 1), where Kµ is the

special conformal transformation generator and Pµ is the generator of translations, and

thus simplifies considerably for the primary operators in the 1D defect CFT, for which by

definition K1 = 0.

In the simplified case S = 0 we get the following relations

P 4 = −4v4 +
(

2∆2 − 2∆ + 2
)

v2 +
1

4

(

2∆2 − 2∆ + 3
)

− 8ĝ4 ,

P 6 = +6v8 − (4(∆ − 1)∆ + 6)v6 + v4
(

(∆ − 1)2∆2 + 16ĝ4
)

+ b3v
2 + 16ĝ8 ,

P 4̄ = −4v4 +
(

2∆2 − 2∆ + 2
)

v2 +
1

4

(

2∆2 − 2∆ + 3
)

− 8ĝ4 ,

(C.5)

so there are only two non-trivial functions ∆(g) and b3(g), which can only be deduced

numerically.

D Generalisation: addition of impurities

In order to develop an SoV construction for this spin chain, it would be good to introduce

impurities like in [68]. This is done by introducing a dependence on some parameters

{θi}, i = 1 . . . J in the rapidities of the bulk particles. To preserve parity in the argument

u of the T -operators, the correct choice (up to a normalisation of the θi) amounts to:

T̂
λ
θ (u) = Tr

(

ˆ̄
L

λ
J(−u−θJ) . . . ˆ̄Lλ

1(−u−θ1).K̂λ(u).L̂λ
1(u−θ1) . . . L̂λ

J(u−θJ).Gλ. ˆ̄Kλ(u).Gλt
)

,

(D.1)

where λ = {4, 4̄,6, 1̄}. These transfer matrices form a family of mutually commuting

operators: this was verified explicitly up to the case J = 1. However, they do not commute

with the original Hamiltonian H: this is expected, as introducing impurities changes the

physical system and thus the Hamiltonian as well.

The next step is to introduce the polynomials P λ
k and to write the Baxter equation.

In this case, the polynomials will acquire a {θi} dependence. Moreover, the prefactors
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appearing in equations (5.41) will also be modified. We obtain that:

T
1

θ (v, {ζi}) = 1 ,

T
4

θ (v, {ζi}) ≡ P 4

J+1(v2, {ζi})

ξ2J+2
,

T
6

θ (v, {ζi}) ≡ A(2v)
v2 + 1

v2

P 6

2J+2(v2, {ζi})

ξ4J+4
,

T
4̄

θ (v, {ζi}) = A(2v)A(2v + i)A(2v − i)

(v2 + 9
4)(v2 + 1

4)
∏J

i=1

(

ζ2
i +

(

v2 − ζ2
i + 1

4

)2
)

P 4̄

J+1(v2, {ζi})

ξ6J+6
,

T
1̄

θ (v, {ζi}) = A2(2v)A(2v + i)A(2v − i)A(2v + 2i)A(2v − 2i)

(v2 + 4)(v2 + 1)2v2∏J
i=1

(

(

v2 − ζ2
i

)2
(

4ζ2
i +

(

v2 − ζ2
i + 1

)2
))

ξ8J+8
,

where v ≡ u ξ and ζi ≡ θi ξ. We can now rewrite the Baxter equation (6.1). Defining

ζ0 ≡ 0, ζ−i ≡ −ζi and identifying:

Q(v) → Γ(−iv) exp(π(J + 1)v) q(v) ξ2iv(J+1)

Γ
(

−iv − 1
2

)

Γ(iv + 2)

J
∏

i=−J

(

Γ(i(v + ζi) + 1)−1
)

, (D.2)

we obtain:

P 6

2J+2(v2)

v2
∏J

i=−J(v − ζi)
q(v) = −

J
∏

i=−J

(v + i− ζi) q(v + 2i) − v + i
2

v(v + i)
P 4

J+1

(

(v + i
2)2
)

q(v + i)

−
J
∏

i=−J

(v − i− ζi) q(v − 2i) − v − i
2

v(v − i)
P 4̄

J+1

(

(v − i
2)2
)

q(v − i) .

A similar construction with inhomogeneities in the closed fishchain is introduced in [88].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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