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Abstract

Open Information Extraction for the Web

Michele Banko

Chair of the Supervisory Committee:
Professor Oren Etzioni

Computer Science and Engineering

The World Wide Web contains a significant amount of information expressed using

natural language. While unstructured text is often difficult for machines to understand, the

field of Information Extraction (IE) offers a way to map textual content into a structured

knowledge base. The ability to amass vast quantities of information from Web pages has

the potential to increase the power with which a modern search engine can answer complex

queries.

IE has traditionally focused on acquiring knowledge about particular relationships within

a small collection of domain-specific text. Typically, a target relation is provided to the

system as input along with extraction patterns or examples that have been specified by

hand. Shifting to a new relation requires a person to create new patterns or examples. This

manual labor scales linearly with the number of relations of interest.

The task of extracting information from the Web presents several challenges for existing

IE systems. The Web is large and heterogeneous; the number of potentially interesting

relations is massive and their identity often unknown. To enable large-scale knowledge ac-

quisition from the Web, this thesis presents Open Information Extraction, a novel extraction

paradigm that automatically discovers thousands of relations from unstructured text and

readily scales to the size and diversity of the Web.
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Chapter 1

INTRODUCTION

While today’s Web search engines are useful tools for locating answers to many questions,

finding answers to complex queries often requires a substantial effort on the user’s part.

Consider a student interested in politics who wishes to apply to universities in the eastern

United States with award-winning faculty on staff. Relevant information may be scattered

over many Web pages – university homepages, news articles announcing recent recipients of

the Pulitzer Prize, and an encyclopedia discussing the geography of the U.S. Once a set of

Web pages has been found, the user needs to identify the names of several key entities and

how they relate. Finally, the student must piece the assorted bits of information together

to formulate an answer. For instance, given that Harvard is a university in Boston, Boston

is on the eastern coast of the U.S., and that Samantha Power, who teaches at Harvard’s

Kennedy School of Government, won a Pulitzer Prize, the student may add Harvard to the

set of institutions matching the specified criteria. Repeating this process by hand in search

of additional candidates is both tedious and error prone.

Traditional search engines cannot automatically provide answers to such complex re-

quests. Instead of aggregating essential information from multiple sources, they return

results as a sequential list of documents. Furthermore, even though search engines analyze

hyperlinks and anchor text, they remain keyword-based; a page is retrieved only when it

(or the corresponding anchor text) matches the words in the user’s query. Search engines

have eschewed analysis involving entities and relationships because in the past, their iden-

tification has not been possible for the size and diversity of information contained on the

Web.

Information Extraction (IE), the task of automatically extracting knowledge from text,

offers a promising solution for improving Web search by bringing relational structure to

unstructured text. At the core of an IE system is an extractor, which identifies entities and
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relationships expressed using natural language. For example, an extractor might map the

sentence “Hitachi GST was established in 2003 and is headquartered in San Jose” to the

relational tuple (Hitachi GST, Headquarters, San Jose), which might be represented using

RDF or a formal logical language.

Considerable knowledge is necessary to accurately extract these tuples from a broad

range of text. To do so, traditional IE systems have thus relied on a significant amount of

human involvement. A target relation (e.g., companies and their locations) is provided to

the system as input along with hand-crafted extraction patterns or positive and negative

instances of the relation. Such inputs are specific to the target relation; shifting to a new

relation requires a person to manually create new extraction patterns or specify new training

examples. This manual labor scales linearly with the number of target relations. Moreover,

the user is required to explicitly pre-specify each relation of interest. These systems are

clearly not scalable or portable across domains.

Until recently, most work in IE has focused on locating instances of known relationships

from small, domain-specific text corpora, such as newswire articles or job postings. Modern

IE systems [33, 62, 86] have demonstrated the ability to extract a large number of facts

from the Web. However, these systems continue to require relation names as input. Thus,

the extraction process has to be run, and rerun, each time a relation of interest is identified.

Despite recent progress in IE, the task of extracting information from the Web presents

several challenges for existing systems. The Web is massive and heterogeneous, the relations

of interest are unanticipated, and their number can be large. Is it possible to obviate the

relation specificity of traditional IE architectures, guaranteeing that extraction of a massive

number of relations scales along with the size of the corpus?

This thesis introduces a solution to the above question by investigating the following

hypothesis:

We can automatically discover high-quality instances of a large, diverse

set of relationships from unstructured Web text using an amount of

time and effort that is independent of the number of target relations.
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This thesis presents Open Information Extraction (Open IE), a new paradigm that moves

away from architectures that require relations to be specified prior to query time in favor of

a single data-driven process that discovers an unbounded number of relations whose identity

need not be known in advance. Open IE makes it possible for users to issue diverse queries

over data extracted from the Web.

1.1 Thesis Overview

By addressing the following challenges outlined for extraction from the Web, the devel-

opment of the Open IE paradigm makes several important contributions to the field of

information extraction.

Automation To be able to handle a broad range of queries, a Web IE system must pre-

emptively extract instances of as many relations as possible. While the precise number of

relations in the English language is unknown, lexical resources for the English language

suggest that the number is in the thousands or higher. VerbNet [46] and PropBank [3], two

verb lexicons for the English language, contain 5000 and 3600 semantically distinct entries,

respectively. WordNet [56], a broad-coverage catalog of English words, contains over 25,000

verbs and 150,000 nouns.1

As opposed to traditional IE systems which require manual labor to build a distinct

extractor for every relation of interest, our research describes a method for learning one

model of how relationships are expressed in general. The model is relation-independent,

but language-specific. Thus, the cost to develop an Open IE system is incurred once per

language, and is independent of the number of target relations in a given language.

Without any relation-specific input, we show that an Open IE system obtains the same

precision compared to a traditional extractor trained using hundreds, and sometimes thou-

sands, of labeled examples per relation. While the baseline version of an Open IE system

achieves lower recall than traditional extractors, we show that we can leverage high-quality

output of the baseline system to automatically learn more about specific relations of interest

1While not all nouns indicate relationships, e.g. “carrot” or “fireplace,” many nouns such as “capital”
“population” and “headquarters” express salient relationships between objects.
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as needed, without additional manual labor. With this extension to Open IE, we show that

we can increase the number of high-precision extractions found by a factor of 3, and locate

an average of 10% more high-quality facts than a state-of-the-art supervised IE system.

Domain-Independence Due to the diversity of genres and topics present in Web text,

the ability of an Web IE system to process text in any domain is of critical importance. A

handful of approaches to knowledge acquisition [21, 54, 75] have tried to extract relationships

by analyzing the full structure and meaning (i.e. syntax and semantics) of natural language

text. The use of entity recognizers, which attempt to identify instances of a small, fixed set

of entity types, such as Person, Location and Organization, is another mechanism commonly

employed by traditional IE systems. Although such linguistic analyzers perform well when

trained and applied to a particular genre of text, such as financial news articles or biology

publications, their ability to handle the heterogeneity of Web text remains uncertain.

We develop an extraction model that learns to capture relational dependencies typically

obtained via syntactic and semantic analysis using only domain-independent features that

do not require deep linguistic processing. From the use of word-based features to semantic

analysis, we explore the use of natural language processing tools in the context of IE, and

find that deep linguistic analysis is not necessary for Web-scale extraction. Compared to

an extractor that employs full syntactic and semantic processing at extraction time, we

demonstrate that an Open IE system can achieve a relative gain in recall of 22% while

achieving the same level of precision and running at a speed that is 5 times as fast.

Efficiency A final property necessary for a Web-scale extraction system is the ability to

scale to corpora that contain hundreds of billions of documents. Each time a traditional IE

system is asked to find instances of a new set of relations, it may be forced to examine a

substantial fraction of the documents in the corpus, making system runtime O(RD) for a

collection of D documents and R target relations. When D and R are large, as is typically

the case on the Web, Open IE’s ability to extract information for all relations at once without

having them named explicitly in its input results in a significant scalability advantage over

previous IE architectures.
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We present TextRunner, a fully implemented Open IE system that supports efficient

extraction and exploration of data extracted from a corpus of 500 million Web pages. We

report on experiments that measure TextRunner’s ability to find high-quality facts as

the size of its corpus size increases by several orders of magnitude. When focusing our

study to a set of 10 known relations historically studied by the IE community, we find that

TextRunner locates hundreds of thousands of instances with a precision of 92.93% from

our corpus of 500 million Web pages.

1.1.1 Thesis Organization

The remainder of Chapter 1 surveys progress in the field leading up to Open IE. Chapter 2

considers the feasibility and design of an Open IE system, and considers existing work related

to the open extraction paradigm. Chapter 3 presents TextRunner, the first Open IE

system, and studies its ability to extract instances of relations when the number is large and

identity unknown. Chapter 4 reports on TextRunner’s performance when applied a Web

corpus containing hundreds of millions of documents. Chapter 5 assesses the performance

of Open IE relative to previous IE paradigms. We conclude with an overview of possible

directions for Open IE.

1.2 Advances in IE Automation

An important step in automating IE was the movement from knowledge-based systems to

extractors learned from data. Modern IE, beginning with the works of Soderland [84, 83],

Riloff [69] and Moldovan and Kim [48], automatically learned an extractor from a training

set in which domain-specific examples were tagged. Keeping pace with progress in machine

learning, a diverse set of learning algorithms has been applied to the task of IE, including

support vector machines [13, 21, 99], hidden Markov models [36], conditional random fields

[63, 23] and Markov logic networks [40].

Nevertheless, the development of suitable training data for supervised IE requires sub-

stantial effort and expertise. Systems based on weakly-supervised learning, where a human

provides a small number of inputs that bootstrap learning over an unlabeled corpus, and

self-supervised learning, where the system automatically finds and labels its own examples,
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further reduced the time required to develop IE systems. We now briefly survey these

methods.

1.2.1 Weakly-Supervised Systems

Brin [11], Agichtein and Gravano [1], Riloff and Jones [70], Pasca et al. [62], and Bunescu

and Mooney [12] sought to reduce the amount of manual labor necessary to perform relation-

specific extraction. Rather than demand hand-tagged corpora, these weakly-supervised IE

systems required a user to specify relation-specific knowledge in the form of a small set of

seed instances known to satisfy the relation of interest. For instance, by specifying the pairs

(Microsoft, Redmond), (Exxon, Irving) and (Intel, Santa Clara) these IE systems learned

patterns (e.g. <X> ’s headquarters in <Y> and <Y> -based <X> ) that identified addi-

tional pairs of company names and locations satisfying the Headquarters(X,Y ) relation.

While these systems reduced the amount of required labeled inputs by a significant

amount, and can achieve levels of precision and recall on par with fully-supervised systems,

the remaining amount of labeling effort becomes non-trivial when the goal is to extract

instances of thousands of relations.

1.2.2 Self-Supervised Systems

KnowItAll [33] is a state-of-the-art Web extraction system that addresses the automa-

tion challenge by learning to label its own training examples, and tackles issues pertaining

to corpus heterogeneity by not relying on deep linguistic analysis or entity recognizers.

Given a relation, KnowItAll used a set of domain-independent patterns to automatically

instantiate relation-specific extraction rules. For example, KnowItAll utilized generic

extraction patterns like “<X> is a <Y>” to find a list of candidate members X of the

class Y . When this pattern is used for the class Country, for instance, it would match the

sentence “Spain is a southwestern European country located on the Iberian Peninsula,” and

output Country(Spain).

KnowItAll’s extraction patterns were applied to Web pages identified via search-

engine queries. The resulting extractions were assigned a probability using information-
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theoretic measures derived from search engine hit counts, providing a method of identifying

which instantiations were most likely to be bona-fide members of the class. For example, in

order to estimate the likelihood that “China” is the name of a country, KnowItAll used

automatically generated phrases associated with the class to see if there is a high correla-

tion between the number of documents containing the word “China” and those containing

the phrase “countries such as.” Thus KnowItAll was able to confidently label China,

France, and India as members of the class Country while correctly knowing that “Garth

Brooks is a country singer” does not provide sufficient evidence that “Garth Brooks” is the

name of a country [30]. Finally, KnowItAll used a pattern-learning algorithm to acquire

relation-specific extraction patterns (e.g. “capital of <country>”) that led it to extract ad-

ditional countries. Inspired by KnowItAll, the URES Web IE system [71], also utilized

high-quality output from baseline KnowItAll to automatically supervise the learning of

relation-specific extraction patterns with success.

KnowItAll and URES are self-supervised; instead of utilizing hand-tagged training

data, each system selects and labels its own training examples and iteratively bootstraps its

learning process. Self-supervised systems are a species of unsupervised systems because they

require no hand-tagged training examples. However, unlike classical unsupervised systems,

self-supervised systems do utilize labeled examples. Instead of relying on hand-tagged data,

self-supervised systems autonomously “roll their own” labeled examples.

KnowItAll was the first published system to carry out unsupervised, domain-independent,

large-scale extraction from Web pages. The first implementation of KnowItAll required

large numbers of search engine queries and Web page downloads; as a result experiments

using KnowItAll often took weeks to complete. This issue was addressed in a subsequent

implementation, KnowItNow [14]. Despite having made important progress in automat-

ing IE at a Web scale, KnowItAll and KnowItNow are relation-specific — the set of

relations has to be named by the human user in advance. This is a significant obstacle to

open-ended extraction; while processing text one often encounters unanticipated concepts

and relations. Furthermore, the extraction process is performed over the entire corpus each

time a relation of interest is identified. In the remaining chapters we show how the Open

IE paradigm retains KnowItAll’s benefits but eliminates it inefficiencies.
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Chapter 2

OPEN INFORMATION EXTRACTION

This chapter introduces Open Information Extraction (Open IE), a novel extraction

paradigm that enables domain-independent discovery of relations directly from a large body

of text. Open IE has been designed to address the specific challenges outlined for extraction

over the Web that were discussed in Chapter 1, namely, automation, domain-independence

and scalability.

In order to automate extraction of a large, or possibly unknown, set of relationships, we

propose building a single model of how relationships are expressed, in general, in a particular

language. The language model, which can be learned automatically or developed by hand

using domain-independent methods, serves as the basis of a extractor whose input is a corpus

of documents in a single language, and whose output is a set of relational tuples. Compared

to traditional relation extraction methods, which separately model every relation of interest

in a corpus, Open IE’s relation-independent design has several advantages. First, relation-

independent extraction eliminates the need for a human system developer to manually

identify relations for extraction a priori. This ensures that the amount of manual labor

required for system development is constant rather than linear in the size of the relation

set. Second, the movement away from traditional IE architectures recasts extraction as

relation discovery, in which the output of the system consists of instances of a potentially

unbounded set of relations whose identity need not be known prior to extraction.

Due to the diversity of genres and topics present in the Web corpus, the ability of an

Open IE system to process text in any domain is essential. Thus, when considering the

set of linguistic cues that are potentially useful for identifying instances of relationships, an

open extractor should employ forms of linguistic analysis most likely to exhibit robustness –

the ability to analyze any text in the input language. In this chapter, we consider different

levels of text analysis that may be useful for open extraction.
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A final property of an Open IE system is an ability to scale to massive datasets –

corpora such as the Web which may contain hundreds of billions of documents. Traditional

IE systems must process a corpus of D documents for every relation of interest. This

architecture results in a O(RD) runtime that scales linearly with R, the number of relations.

While the exact number of relations in the English language is unknown, we can reasonably

estimate the number to be tens of thousands according to existing lexical resources such as

WordNet [56], VerbNet [46] and PropBank [3].

Given that R is large, to guarantee scalability along with the size of the document

collection, the open extraction process is designed to be independent of the number of

relations. Open extraction is simply a function of D, the size of the corpus. Considering

that D may be on the order of 1 billion, we believe that an extraction process having a

runtime cost of O(D2) or greater is not feasible. However, an extractor that takes a single,

or even k passes over the document collection, where k is fixed and small,1 would enable

extraction of a large number of relations at Web-scale.2

To summarize, the key properties that define an Open IE system are:

• Relation Discovery: Automatically discovers a large set of relations from a corpus

at once using a process that is constant, rather than linear, in the size of the relation

set.

• Domain Independence: Developed without the use of domain-specific knowledge,

and applicable to arbitrary Web documents in the target language.

• Scalability: Scales to Web-size document collections, e.g. billions of documents.

Table 2.1 encapsulates the differences between traditional IE and the new Open IE

paradigm.

1That is, k is orders of magnitude smaller than R

2Another cost commonly incurred by an IE system, whether traditional or open, involves post-processing
steps such as sorting, duplicate removal and counting of tuples. This requires an additional O(T log T )
cost where T is the number of raw tuples. Since both extraction paradigms are subject to this cost, we
omit it from our comparative assessment of traditional and open IE.
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Traditional IE Open IE

Input Corpus Corpus

Labeled Data Domain-Independent Knowledge

Relations Specified in Advance Discovered Automatically

Development Cost O(R), R relations O(1)

Runtime O(RD) O(kD)

D documents, R relations D documents, small, fixed k

Table 2.1: The Contrast Between Traditional and Open IE: Traditional IE meth-
ods learn distinct models for individual relations using patterns or labeled instances, thus
requiring manual labor that is linear in the number of relations. Open IE learns a single
domain-independent extraction model that discovers an unbounded set of relations with
only a one-time cost.

We have identified the properties necessary for Open IE, yet is our ideal system feasible

given the nature of the English language? What would be the best approach for building

a scalable, relation-independent extractor for English? Section 2.1 considers the possibility

of open extraction based on an empirical study of how humans perceive relationships to

be expressed in text. Section 2.2 then weighs the relative strengths and weaknesses of

two possible approaches to open extraction: knowledge engineering and machine learning.

Section 2.3 concludes the chapter with a survey of existing work that is related to the

paradigm of Open IE.

2.1 The Feasibility of Relation-Independent Extraction

Previous work has noted that distinguished relations, such as hypernymy (is-a) and meronymy

(part-whole), are often expressed using a small number of lexico-syntactic patterns [41].

These patterns are formed using cues that pertain to generalized word and sentence struc-

tures. For example the pattern “NounPhrase1, including NounPhrase2” could be used

to learn that Seattle is an instance of the class City from the text, “Some cities, including
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Seattle, have increased the number of bike lanes.” The identification of these patterns by

hand inspired a body of work in which this initial set of extraction patterns is used to seed a

bootstrapping process that automatically acquires additional patterns for is-a or part-whole

relations [33, 39, 81].

KnowItAll demonstrated the ability to extract instances of binary “of” relations from

the Web using a small set manually-created relation-independent extraction patterns. A

simple pattern such as “NounPhrase1, R of NounPhrase2” could be used to recognize

CeoOf(Steve Jobs, Apple Computer) from the text, “Steve Jobs, the brilliant and forward-

thinking CEO of Apple Computer, will give a speech on Tuesday.” While these patterns

cover an important subset of binary relations, they are unable to capture many other ways

in which binary relations are expressed, such as through verbs (“Google acquired YouTube”)

or modifiers (“Lance Armstrong is the Tour de France winner”).

It is quite natural to consider whether it is possible to recognize all relationships in the

general case. How are relationships expressed in English sentences? Might it be possible to

build a relation-independent extractor? In this section, we show that many relationships are

consistently expressed using a compact set of relation-independent lexico-syntactic patterns,

and quantify their frequency based on a sample of 500 sentences from an IE training corpus

developed by [12]. Since not all sentences were guaranteed to contain a positive instance of

a relationship between entities tagged in the corpus, we sampled sentences at random until

the number of sentences containing an explicit relationship reached the desired sample size.

For simplicity, we restrict our study to binary relationships.

To characterize how binary relationships are expressed, we carefully studied the labeled

relation instances and produced a lexico-syntactic pattern that captured the relation for

each instance. Interestingly, we found that 95% of the patterns could be grouped into

the categories listed in Table 2.2; this observation leads us to believe that open relation

extraction is feasible. While a large proportion of the instances are verb-centric, i.e. those

patterns expressed by solely a verb (37.8%), the combination of a verb and a preposition

(16%), an infinitival phrase (9.4%) and a pair of noun phrases coordinated by the same

verb (1%), nearly 36% of the relationships are indicated by nouns and other linguistic

phenomena.
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Relative Simplified

Frequency Category Lexico-Syntactic Pattern Example

37.8 Verb E1 Verb E2 X created Y

22.8 Noun+Prep E1 NP Prep E2 X is birthplace of Y

16.0 Verb+Prep E1 Verb Prep E2 X moved to Y

9.4 Infinitive E1 to Verb E2 X plans to acquire Y

5.2 Modifier E1 Verb E2 Noun X is Y winner

1.8 Coordinaten E1 (and|,|-|:) E2 NP X-Y deal

1.0 Coordinatev E1 (and|,) E2 Verb X , Y merge

0.8 Appositive E1 NP (:|,)? E2 X hometown : Y

Table 2.2: Taxonomy of Binary Relationships: Nearly 95% of 500 binary extractions
were described using one of eight lexico-syntactic patterns. NP refers to noun phrases, Ei

refers to entities, and Prep indicates a preposition.

2.2 Designing an Open Extraction System

The goal of an Open IE system is to extract tuples representing all possible relationships

among entities in a given text. From the sentence, “Microsoft is headquartered in beautiful

Redmond, a city located near Seattle,” an Open IE system should be able to output three

distinct tuples — (Microsoft, is headquartered in, Redmond), (Redmond, is-a, city) and

(Redmond, located near, Seattle) — using a single extractor. This section considers two

classes of approaches to extraction, knowledge engineering and machine learning, and then

considers various levels of text analysis that may be useful for extraction under either

paradigm.

2.2.1 Knowledge Engineering

While the study of relationships performed in Section 2.1 lend support to the possibility

of open extraction, it should be apparent that simply applying the above patterns (or an

extended set thereof) is not a sufficient solution in itself due to concerns about both precision
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and recall.

The set of manually constructed lexico-syntactic patterns are greatly simplified; they

lack the exact conditions under which they will reliably produce a correct extraction. For

instance, while many relationships are indicated strictly by a verb, detailed contextual cues

are required to determine, exactly which, if any, verb observed in the context of two entities

is indicative of a relationship between them. Consider the following two sentences that

express the Acquisition(X,Y ) relationship between the entities Google and YouTube.

(1) Google announced Tuesday that it bought YouTube for $1.65 billion.

(2) Google has announced the acquisition of YouTube.

An extraction rule applied to the first sentence should recognize that the relationship

is indicated by the verb bought and not announced. In the second sentence, the extractor

should find that the relationship is indicated not by the verb announced, but rather by the

phrase acquisition of. We evaluated the simple verb-based pattern “NounPhrase1 .∗ Verb

.∗ NounPhrase2” over the collection of sentences used in our corpus study and found that

while recall was relatively high — 76.4% — precision was only 37.8%.

On the other hand, specifying a set of complex conditional rules that obtain a high level

of precision without sacrificing recall is a task that is often difficult for humans to perform.

Brill and Ngai [10] closely studied the performance of eleven advanced computer science

students who were asked to develop rules identifying base noun phrases in text. Given

a 25K-word training corpus, the researchers found that while the performance of the top

three performing annotators came within 0.5% precision and 1.1% recall of a state-of-the-art

supervised rule-learning algorithm trained from the same data, variance was high among

the group of annotators. The rules written by the worst-performing writers were up to 5.6%

less precise and had as much as 11.9% less recall. Interestingly, Brill and Ngai found that

while the best-performing rule-writers were able to propose rules covering high-frequency

noun phrases at a level on par with the learning algorithm, the human annotators were

significantly outperformed by the machine on low-frequency instances, citing a recall of

63.6% for humans compared to 83.5% for the learning algorithm. The authors attribute

this result to either reluctance or inability on behalf of the humans to carefully write rules
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that cover only a small number of instances.

2.2.2 Machine Learning

Early approaches to information extraction and other natural language processing tasks

were developed using the knowledge of experts. Such systems were designed for a specific

domain in a particular language, e.g. recognizing details about terrorist incidents reported

in text, constructing a dialogue to assist with airline travel reservations, or translating

Canadian government transcripts between English and French. The cost of building such

systems by hand required a non-trivial amount of effort and expertise, resulting in what is

known as the knowledge engineering bottleneck.

Due to the difficulties surrounding knowledge-intensive development, data-driven meth-

ods have become increasingly popular in recent decades. Machine learning algorithms,

designed to enable systems to automatically improve performance on a task using statis-

tical or symbolic methods, have made it possible to reduce the cost of labor involved in

developing intelligent applications. Learning algorithms require a set of training examples

that describe the task at hand as input, and output a model that can later be applied to

new inputs. Although so-called unsupervised algorithms aim to learn models without the

use of hand-tagged inputs, traditional supervised algorithms learn from data that has been

provided and annotated by a human.

If we opt for a learning-based approach to Open IE, we will either need to acquire

labeled data to be used for supervised learning, or devise an unsupervised method that

does not require hand-tagged instances. In the supervised case, to guarantee that we will

be able to extract instances of an unbounded set of relations from the Web, it is critical

to be able to acquire training data without incurring the O(R) cost usually required by

traditional IE systems, with R being the number of relations to extract. Alternatively, one

might endeavor to take a self-supervised learning approach. Self-supervised systems are a

species of unsupervised systems in that they do not require hand-tagged training examples.

Unlike classical unsupervised systems, self-supervised systems do utilize labeled examples,

yet instead of relying on hand-tagged data, self-supervised systems autonomously “roll their
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own” training examples.

Another point of concern relative to the use of learning for Open IE concerns the for-

mulation of the learning problem and the set of features used by the extraction model to

describe the task. Relation-independent extraction is notably more difficult than previous

learning-based formulations of relation extraction for several reasons. Traditional IE is often

framed as a classification problem: Given a sentence S and a relation R, does S assert R

between two entities? Such IE systems do not attempt to identify the actual snippets of

text that signify the name of a relation, since its identity is already known. In the open

extraction task, relation names are not provided in advance. An Open IE system has to

locate both the entities believed to participate in a relation, and the salient textual cues

that provide evidence of the relation between them. Moreover, to ensure high-levels of cov-

erage on a per-relation basis, following extraction, the system must identify exactly which

relation strings r1 . . . rk correspond to a general relation of interest R. We need, for example

to deduce that “’s headquarters in”, “is headquartered in” and “is based in” are different

ways of expressing Headquarters(X,Y).

2.2.3 Text Analysis

Information extraction systems can use information resulting from different levels of text

analysis, from simple lexical (e.g. word-based) features to more complex features derived

from grammatical or semantic analysis. Intermediate levels of analysis are provided by part-

of-speech (POS) taggers and phrase chunkers. A POS tagger takes a sequence of words as

input, and labels each word with its most likely part of speech, e.g. noun, verb, adjective

etc.. A phrase chunker subsequently uses words and POS tags to divide the sentence into

a set of non-overlapping phrases. Data-driven taggers and chunkers for English have been

shown to achieve a precision of up to 97% and 94%, respectively [89, 90], and are generally

considered to be robust.

Named-entity recognizers (NERs) locate and classify names in text. The set of entity

types is typically limited to a small number of classes that are specified in advance (e.g.

Person, Location, Organization). NERs are used by traditional IE systems to manually
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bound the type of entities that can legitimately participate in a relationship. For instance,

the first argument to Headquarters(X,Y) must be an Organization and the second ar-

gument a Location. Recent work by Downey [29] demonstrated the ability to recognize

complex entities in web text where the set of entity classes is unknown and the names are

often difficult to recognize (e.g. film or book titles).

A substantial body of work in natural language processing involves the development of

parsers, which attempt to capture structure and meaning of a single sentence. Given an

input sentence, a parser returns a tree or directed graph that captures various levels of

linguistic information, including the part-of-speech of each word, the presence of phrases,

grammatical structures and semantic roles. The structure and annotations provided by

parsers can be useful for identifying relationships between entities within a single sentence.

Figure 2.1 depicts the output typically provided by a parser. Examples of relationships ex-

pressed by the tree include, but are not limited to, subject-verb-object relationships (Jaguar,

sold, 1,214 cars), appositives (Jaguar, is, luxury auto maker), and location-based relation-

ships (cars, sold in, the U.S.).

In 2007, Jiang and Zhai [44], studied a large space of text-based features traditionally

used for learned extractors in the single-relation setting. They began with a set of basic

unit features that included words, part-of-speech tags and entity types, and then added

syntactic categories and semantic dependencies from a parser. After varying the set of

features selected for learning and closely studying the impact of each setting on two state-

of-the-art algorithms when applied to seven types of relations, Jiang and Zhai concluded

that the basic unit features were sufficient to achieve state-of-the-art performance. The use

of syntactic and and semantic information improved performance only slightly, if at all.

While simple unit features appear to adequately model extraction in the single-relation

setting, a relation-independent extraction process makes it difficult to leverage the full set

of lexical features typically used when performing extraction one relation at a time. For

instance, the presence of the words company and headquarters will be useful in detecting

instances of the Headquarters(X,Y) relation, but are not useful features for identifying

relationships in general. Finally, IE systems typically use entity types as a guide (e.g., the

second argument to Headquarters should be a Location). In Open IE, since the relations
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(S

(NP-SBJ

(NP (NNP Jaguar))

(, ,)

(NP (DT the) (NN luxury) (NN auto) (NN maker)))

(NP-TMP (JJ last) (NN year))

(VP (VBD sold)

(NP-OBJ (CD 1,214) (NNS cars))

(PP-LOC (IN in)

(NP (DT the) (NNP U.S.)))))

Figure 2.1: Natural Language Parsing: The output of a parser when applied to the
sentence, “Jaguar, the luxury auto maker last year sold 1,214 cars in the U.S.” Nodes of
the tree are typically annotated with semantic roles such as subjects (NP-SBJ), objects
(NP-OBJ) and phrases indicating time (TMP) and location (LOC).

are not known in advance, neither are their argument types.

There are several possible uses for parsers in the context of open extraction. Within

a learning-based paradigm, an extractor may use features derived from a parser as input

during training, perhaps to compensate for the lack of lexical features. In a knowledge-

engineering setting, one could use the output of parsers directly, and develop an algorithm

that identifies useful propositions contained in the structure of the parse tree. The extractor

could take the form of heuristics or tree-based patterns developed by a linguistic expert in

the given language of the corpus, or could be learned by an algorithm. We will report on

a few such systems in Section 2.3. Independent of this body of work, we now consider the

possible strengths and weaknesses of using parsers for extraction from large, heterogeneous

corpora such as the Web.

Parsers fall under one of two paradigms: grammar-driven parsers, which are developed

by hand using a formal grammar, and data-driven parsers, which learn probabilistic models

of word-based dependencies from annotated data. One of the greatest challenges for parsers
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is robustness, the ability to analyze any input. This is due to the fact that some inputs are

not in the language described by the parser’s formal grammar, or adequately represented

within the parser’s training data.

Concerns about domain-adaptability have long been a point of study and concern for the

parsing community. Minipar [53], a well-studied broad-coverage English parser, was shown

to achieve recall of 81.81% over a set of news articles, but its recall decreased when applied to

more complex genres such as fiction (75.29%), memoirs/letters (77.15%) and scholarly prose

(79.95%). Ratnaparkhi [66] assessed the cross-domain portability of a maximum-entropy

parser and found that when trained on a corpus of Wall Street Journal (WSJ) news articles

and tested on sections of the Brown corpus — a dataset comprised of fiction, magazines

and journal articles – precision dropped by 6.8% and recall by 6.2% compared to training

and testing exclusively on the WSJ. Gildea [38] witnessed similar results when studying a

statistical chart parser using the same corpora, citing cross-domain losses 5.8% and 5.6% in

precision and recall, respectively.

While the cost of CPUs and memory continue to decrease, thus making it possible to

speed-up and distribute computation, we also consider parser speed as a factor in our design

space. The grammar-based Minipar parser reportedly processes 500 words of newspaper

text per second on a 700MHz Pentium III with 500MB memory; its output was found to be

89% accurate on this corpus. By comparison, while a statistical parser developed this year

by Sagae and Tsujii [74] achieved the same accuracy with better recall (88.5% compared to

81.8%), its data-driven algorithm required nearly double the CPU time.

One of the most widely-used and accurate statistical parsers, which was developed by

Klein and Manning [50], parses newswire text with an accuracy of 91.0%. However, this

gain in accuracy comes at a cost to speed. On a 750MHz Pentium III with 2GB of RAM,

their parser requires an average of 90 seconds for sentences up to 40 words long, which is a

full three orders of magnitude slower that Minipar. Even on short sentences of 20 words,

Klein and Manning’s parser takes an average of 14 seconds.

As of December 2008, the English version of Wikipedia alone contains approximately

2.5 million articles consisting of a total of 1 billion words [93]. Based on previously reported

parser measurements, it would require roughly 23 CPUs to parse all of the sentences in the
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English Wikipedia corpus in a single day with Minipar, and over 8000 CPUs using Klein

and Manning’s parser.3 To parse a corpus of 1 billion articles, one would need nearly ten

thousand machines to be able to process the collection on a daily basis using the faster of

the two parsers, or a few thousand machines to process it on a weekly basis. The resources

required to parse massive bodies of text is impractical for all but a few organizations.

2.3 Related Work

A handful of recent efforts have sought to undertake the extraction of many relations si-

multaneously, indicating a growing interest in the problem. We now describe several bodies

of work that are related to the paradigm of Open IE, noting similarities and differences as

appropriate.

Knext [75] was developed to glean “general world knowledge” from English text. As

with Open IE, Knext aims to acquire a broad range of knowledge at once rather than

focus on a predetermined domain. Yet unlike IE, where the focus is on finding instances

of relationships among real-world entities, the goal of Knext is to obtain what can be

described as “common sense.” Whereas IE systems output relational data in the form of

tuples, database records or instantiated templates, Knext composes a body of abstract

formulas describing the world using formal logic. For example, given the sentence, “Mary

entered Jane’s room while she slept, bringing back her washed clothes.” Knext proposes

quantified logical propositions that express the following statements:

A named-entity may enter a room.

A female-individual may have a room.

A female-individual may sleep.

A female-individual may have clothes.

Clothes can be washed.

Knext operates by applying a set of general rules to the output of a parser. The set of

80 rules were engineered by hand to transform parse-tree fragments into standalone logical

3One can assume some speed-ups are possible as the performance of CPUs has improved in the last few
years.
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propositions. The ordered set of rules was designed to recognize instances of phrase-structure

and semantic patterns, combine and abstract the patterns into a logical representation, and

filter out malformed or vacuous propositions. This rule-based algorithm was observed to

yield an average of 2.47 propositions per sentence. Following post-processing and removal

of duplicate propositions, Knext’s extraction rate was found to output roughly 1.78 unique

propositions per sentence. Unlike most systems that acquire knowledge from data, Knext

does not use corpus statistics to assess the likelihood that a proposition is correct. Filtering

out any remaining ill-formed propositions is left strictly to human judgment.

An initial version of Knext was tailored to the Penn Treebank, a small corpus consist-

ing of 1.6 words of hand-parsed material, making it possible to circumvent any challenges

associated with parsing accuracy. Human assessors found about 60% of statements found

by Knext from the gold-standard parses of the Penn Treebank could be considered a

“reasonable general claim” by any judge; fewer propositions were unanimously judged to be

reasonable. In 2008, Knext was extended to analyze arbitrary inputs using a parser trained

from the Penn Treebank [32], and subsequently deployed over a Web corpus of nearly 11.7

million pages. On average, the percentage of propositions judged to be reasonable from this

corpus was between 50% and 60%.

There are at least two additional systems belonging to the species of extractors which

employ a parser along with a set of hand-crafted rules to harvest a large number of rela-

tionships from text. Inspired by the vision of Knext, Clark et al. [18], applied a parser to

a textual corpus of 800,000 news articles and yielded 1.1 million extractions. Instead of ma-

nipulating parser fragments into a complex logical representation, Clark’s system outputs

knowledge as relational tuples. The set of relation types was limited to subject-verb-object

relationships.

The Dirt system [54] used the Minipar parser to produce tuples relating two entities in

a single sentence. The overall goal of Dirt was not IE per se, but to discover rules from text

that could be used to infer whether the meaning of two relational statements is similar (e.g.

X wrote Y ≈ X is the author of Y and X manufactures Y ≈ X’s Y factory). The system

was applied to a 1GB collection of newspaper text from which it extracted 231,000 unique

tuples. While the accuracy of the underlying tuple extraction algorithm was not explicitly
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measured, the authors found that that accuracy of verb-based tuples was generally much

higher than extractions rooted in noun-based relationships. Dirt’s overall ability to learn

inference rules varied highly depending on the relation under consideration.

Independent of our work, Shinyama and Sekine [78] developed an unsupervised extrac-

tion process described as unrestricted relation discovery. Given a collection of documents,

the system first clusters the articles using a bag-of-words document representation. Ideally,

this step partitions the corpus into sets of articles believed to contain entities bearing simi-

lar relationships. Within each cluster, the system then performs named-entity recognition,

reference resolution and linguistic parsing, and uses the output to form relational patterns

used as features for an additional “meta-clustering” stage. Meta-clustering is computed in

pairwise fashion over the set of entities found in the document cluster under consideration.

Its output is a set of instances believed to participate in the same relationship, e.g. the

relationship among a person, company and job-title involved in a hiring event.

While the work of Shinyama and Sekine pursues the important goal of avoiding relation-

specificity, it is unlikely to meet the scalability requirement necessary to process the Web.

Their system, which uses pairwise vector-space clustering, initially requires an O(D2) effort

where D is the number of documents. Each document assigned to a cluster is then subject to

linguistic processing, resulting in another pass through the set of input documents. Finally,

each cluster is subject to an additional clustering process on the order of O(E2) where E

is the number of entities. By focusing on newswire articles and clustering only documents

authored on the same day, the authors have been able to reduce the cost of clustering

somewhat. From a collection of 28,000 newspaper articles, Shinyama and Sekine were able

to discover 101 relations, of which roughly 65% were judged to be correct. For a corpus

containing tens of thousands of documents, the relation discovery process was measured to

take an average of 10 hours using a single 2.4GHz CPU with 4GB of memory.

A final class of systems considered here involves the extraction of structured data ex-

clusively from Wikipedia. The Intelligence in Wikipedia (IWP) project [92] was designed

to exploit the fact that each article in Wikipedia corresponds to a primary object and that

many articles contain infoboxes, tabular summaries of the most important attributes (and

their values) for these objects. IWP engages in a self-supervised learning process in which it
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obtains a large set of relations to extract from the infoboxes. Using the value of infobox at-

tributes to match sentences in the article, IWP trains an extractor for each attribute. IWP’s

extractors have been demonstrated to achieve high levels of precision and recall for popular

attributes. For instance, it can recognize attributes of in the class U.S. County with 97.3%

precision and 95.9% recall. Unfortunately, some infoboxes may be partially instantiated,

and many articles lack infoboxes altogether. By autonomously learning a taxonomy over

infobox classes, and constructing schema mappings between the attributes of parent/child

classes, IWP uses shrinkage to improve both recall and precision. Once extractors have been

successfully learned, IWP can extract values from general Web pages in order to supplement

results which may not be present in Wikipedia.

Yago [86] is another system that uses properties specific to Wikipedia in order to extract

a large set of relational data. Yago performs extraction using a combination of manually

developed rules and heuristic methods. In addition to infoboxes, it also uses list-like infor-

mation contained within Wikipedia category pages (e.g. a page containing the names of all

winners of the Nobel Prize). While Yago will be considered in more detail in Chapter 4, it is

important to note here that while IWP can learn to extract values for any infobox attribute,

Yago’s heuristic-based approach limits the number of relations that can be extracted to a

predefined set.

While IWP and and Yago have each amassed an impressive collection of knowledge

from Wikipedia, the set of relations they are capable of extracting is limited to the rela-

tions contained in infoboxes and lists (and in the case of Yago, only a pre-specified subset

thereof). In 2008, the developers of IWP estimated that tabular summaries about Com-

panies contain 83 attributes, some of which are duplicates (e.g. type and company type).

Although infoboxes can provide key definitional attributes of a company such as its loca-

tion, the date on which it was founded and the name of its current CEO, the summaries fail

to capture many other interesting relations present in unstructured natural language text

— news about an impending acquisition, plans to offer a new product, or popular opinions

of the company.
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Chapter 3

THE TEXTRUNNER OPEN INFORMATION EXTRACTION

SYSTEM

This chapter presents TextRunner, the first open information extraction system. Tex-

tRunner is a fully-implemented system that extracts relational tuples from hundreds of

millions of Web pages. Section 3.1 begins with a detailed description of TextRunner’s

architecture and considers how each component addresses each of the challenges outlined

in Chapter 1. Section 3.2 reports on experiments that measure TextRunner’s ability to

extract instances of relationships when their number is large and identity unknown.

3.1 System Architecture

TextRunner consists of four key modules:

• Learner: Given a small corpus and set of relation-independent heuristics, the Learner

outputs a single extraction model of English relationships. While the model is language-

specific, it is relation-independent.

• Extractor: The Extractor makes a single pass over the entire corpus to extract tuples

for all possible relations.

• Assessor: The Assessor identifies instances describing the same real-world object or

relation using different names using an unsupervised algorithm [98], and assigns each

tuple a score based on a redundancy-based method.

• Query Processor: The Query Processor indexes TextRunner’s output using a

distributed index, supporting efficient exploration of extracted facts via user queries.

TextRunner’s extraction pipeline is depicted in Figure 3.1. We now describe each

module in more detail.
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Figure 3.1: The TextRunner Open Extraction System: TextRunner uses a small
set of relation-independent heuristics that when applied to parse trees, make it possible to
self-supervise the learning of an open extractor. The Extractor outputs a set of relational
tuples; synonymous tuples are then found, merged and scored by the Assessor.
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3.1.1 Learner

TextRunner’s self-supervised Learner operates in two steps. First, it automatically iden-

tifies and labels its own training examples as positive or negative instances of possible

relationships between entities. Second, it uses this labeled data to train the Extractor.

TextRunner is trained from a set of relational tuples where the relation can be any

relationship between entities. How might we acquire a set of training examples that is

relation-independent without undergoing a large effort to label them by hand?

Natural language parsers, which were discussed in Section 2.2.3, are widely used to

determine grammatical structure and semantic roles present in sentences. Syntactic parsers

provide an analysis of a sentence’s grammatical structure, returning a tree-based hierarchy

of all words in the input. An example was given previously in Figure 2.1. Dependency

parsers locate instances of semantic relationships between words, forming a directed graph

that connects all words in the input. As shown in Figure 3.2, examples of relationships

found by dependency parsers, include the subject relation (John ← hit), the object relation

(hit → ball) and phrasal modification (hit → with → bat). Some parsers return both syntax

and dependency information at once.

Figure 3.2: Dependency Parsing: Tokens within a sentence are labeled with semantic
roles and dependencies from which tuples can be extracted, e.g. (John, hit, ball)

We hypothesize that the use of parsers may not be useful for direct extraction over

the Web for several reasons. The first reason concerns difficulties pertaining to domain

adaptability and the heterogeneity of the Web corpus, as reported in Section 2.2.3. The

second can be attributed to the recent success of redundancy-based methods within the field
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of natural language processing [9]. Rather than use “deep” linguistic analyzers over small,

specific corpora, these systems use only “shallow” features that can be derived from words

and part-of-speech tags and instead rely on the redundancy of the input corpus – the ex-

istence of multiple, differently phrased statements of the same statement. As the size of

the input corpus increases, it becomes more likely that easy-to-understand forms of a state-

ment are present. For example, consider the transparency of the knowledge expressed by

“President Lincoln was killed by John Wilkes Booth” compared to a corpus which contains

only the text, “Booth attacked Lincoln at Ford’s Theater. He died the next morning from a

single gunshot wound to the back of the head, becoming the first American president to be

assassinated.”

Given that our goal is to apply our Open IE system to the Web, a corpus that is both

redundant and large, we designed TextRunner to use features that are fast and easy to

compute at extraction time. Instead of applying a parser directly to the Web corpus, we

are optimistic that we can use a set of trusted parse trees to train an extractor using a

one-time self-supervised procedure. The key to building this extractor is that we model the

positive and negative relation instances identified by the parser using only features that do

not depend on syntactic or semantic analysis at extraction time. Thus, the learned extractor

can be thought of as a system that approximates the behavior of the parser-based algorithm

using lower-level signals.

Prior to full-scale relation extraction, TextRunner applies a handful of relation-independent

heuristics to a set of parse trees and obtains a set of labeled examples in the form of re-

lational tuples. The heuristics were designed by hand to capture relational dependencies

obtained via syntactic parsing and semantic role labeling. The full algorithm is given in

Figure 3.3. Examples of heuristics used to identify positive examples include the extraction

of noun phrases participating in a subject-verb-object relationship (lines 6-7) and predicate-

argument structures expressing location, time, manner, direction, etc. (lines 10-11).1 For

instance, “Einstein received the Nobel Prize in 1921” yields two positive tuples: (Einstein,

receive, Nobel Prize) and (Einstein, receive (arg2) in, 1921 ). An example of a heuristic

1Semantic roles are identified according to the guidelines of the Penn Treebank as described in ftp:

//ftp.cis.upenn.edu/pub/treebank/doc/arpa94.ps.gz
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that locates negative examples is objects that cross the boundary of a clause (line 8), e.g.

“He studied Einstein’s work when visiting Germany” yields a negative instance: (Einstein’s

work, visiting, Germany). Another useful rule for identifying negative examples is detecting

objects that are separated by many words (line 1), or connected by a long chain of depen-

dencies, which typically do not capture salient relationships. The algorithm is designed to

target relationships that can be found with high precision; therefore TextRunner does

not extract modification-based relationships such as those expressed in the phrase “Honda

with sunroof” or “city of 1 million citizens” (line 3), or those expressed with punctuation

(e.g. “New York City, New York).

As the input to TextRunner’s training process, we used the Penn Treebank, a set of

manually constructed parse trees for approximately 42,000 sentences. The Penn Treebank is

annotated with both syntactic and semantic information. Applying the domain-independent

rule-based algorithm to this corpus yielded roughly 180,000 examples, 15% of which were

automatically labeled as positive instances.

The key to TextRunner’s ability to train a domain-independent extraction model can

be attributed to two characteristics of the training process. The features ultimately used

to describe the set of labeled examples can be extracted without subsequent syntactic or

semantic analysis. Furthermore, the model output by the Learner contains no relation-

specific or lexical features. Feature extraction is described in detail in Section 3.1.2.

3.1.2 Extractor

TextRunner learns to identify spans of tokens believed to indicate explicit mentions of

relationships between entities. For each sentence in the input corpus, TextRunner per-

forms entity identification using a maximum-entropy-based model of phrases. The Learner

is then used to identify possible instances of relations between each possible entity pair.

We developed two different open extractors; the first treated Open IE as a classification

problem, and the other as a sequence labeling task. The remainder of this section describes

both extraction models and the set of features used by both.
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Figure 3.3: Training TextRunner’s Extractor: TextRunner uses a domain-
independent rule-based algorithm to identify positive and negative examples of English
relationships from a parsed corpus of text.
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O-nb: Open Extraction as Classification

We first treated open extraction as a classification problem [5], using the set of self-labeled

examples to learn a Naive Bayes classifier that predicted whether heuristically-chosen tokens

surrounding two entities indicated a relationship or not. Given a pair of entities within a

sentence, candidate relationships were found by examining tokens in the immediate context

and eliminating non-essential items using evidence from the phrase chunker. Descriptive

modifiers such as adverbs and adjectives are dropped (e.g. “definitely developed” is reduced

to “developed”). Each candidate tuple is presented to the classifier and retained if it is

hypothesized to be a positive relation instance with sufficiently high probability. For the

remainder of this paper, we refer to this Open IE model as O-nb.

O-crf: Open Extraction as Sequence Labeling

Whereas classifiers predict the label of a single variable, graphical models model multiple,

interdependent variables. Conditional Random Fields (CRFs) [52], are undirected graphical

models trained to maximize the conditional probability of a finite set of labels Y given

a set of input observations X. By making a first-order Markov assumption about the

dependencies among the output variables Y , and arranging variables sequentially in a linear

chain, information extraction can be treated as a sequence labeling problem – the task of

assigning a single label to each element in a sequence. Linear-chain CRFs have been applied

to a variety of sequential text processing tasks including named-entity recognition, part-of-

speech tagging, word segmentation, semantic role identification, and traditional forms of

relation extraction [23]. CRFs have been shown to outperform other popular species of

graphical models such as Hidden Markov Models (HMMs) and Maximum Entropy Markov

Models (MEMMs) because instead of training to predict each label independently, CRFs

are trained to get the entire sequence correct.

In light of the success of CRFs, we developed an extractor, referred to as O-crf [7],

which uses a second-order linear chain CRF to learn whether sequences of tokens are part of

a salient relation or not. Following entity identification, each pair of entities appearing no

more than a maximum number of words apart and their surrounding context are considered
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as possible evidence of a relation. The entity pair serves to anchor each end of a linear-

chain CRF, and both entities in the pair are assigned a fixed label of ENT. Tokens in the

surrounding context are labeled using the BIO encoding widely-used for natural language

tasks [65], where each token is labeled as B-X, I-X or O. B-X means “begin a phrase of

type X,” I-X means “continue a phrase of type X” and O means “not in a phrase.” We use

the formalism to labeling textual cues believed to explicitly indicate a relation, as illustrated

in Figure 3.4. O ✁ R E L O ✁ R E L O ✁ R E L B ✝ R E L I ✝ R E LE N T E N Ti s c r e d i t e d w i t h h a v i n g i n v e n t e dT i mB e r n e r s✮ L e e t h eW W W
Figure 3.4: Relation Extraction as Sequence Labeling: A CRF is used to identify the
InventorOf relationship between Tim Berners-Lee and the WWW.

Another advantage of using CRFs is that the formulation makes it possible to model

relations possessing more than two arguments in an elegant manner. For example, the

following labeling extends the Acquisition(X,Y ) relation to include the price of the sale,

yielding a tuple with three arguments: (Google, acquire (arg2) for, YouTube, $1.65 billion):

Google/ENT announced/O that/O it/O acquired/B-REL

YouTube/B-NP for/B-REL an/ENT astonishing/ENT $1.65 billion/ENT

O-crf was built using the CRF implementation provided by Mallet [55], as well as

part-of-speech tagging and phrase-chunking tools available from OpenNLP.2

Features

The set of features used by O-nb and O-crf is similar to those used by other state-of-the-

art relation extraction systems [12, 63] with a few exceptions. Within the context of the

2http://opennlp.sourceforge.net
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entities under consideration for extraction, TextRunner models features include words,

part-of-speech tags and phrase chunks, regular expressions (e.g. detecting capitalization,

punctuation, etc.), and conjunctions of features occurring in adjacent positions within a fixed

window.3 A unique aspect of TextRunner’s extraction model is that it is unlexicalized.

That is, it models words belonging only to closed classes (e.g. prepositions and determiners)

but not function words such as verbs or nouns. Also, unlike most IE systems, O-nb and

O-crf do not try to recognize semantic classes of entities.

Relation-independent extraction forces a few limitations, most of which are shared with

other systems that perform extraction from natural language text. First, O-nb and O-crf

only extract relations that are explicitly mentioned in the text; implicit relationships that

could inferred from the text would need to be inferred from open extractions. Second, O-nb

and O-crf focus on relationships that are primarily word-based, and not indicated solely

from punctuation (e.g. Seattle, WA) or document structure (e.g. lists and tables). Finally,

relations must occur between entity names within the same sentence.

3.1.3 Assessor

Once the extractor has been applied to the input corpus, TextRunner prepares its output

for indexing using a few post-processing steps. This procedure normalizes the raw tuples,

identifies extractions believed to express the same fact, and assigns them a score using a

redundancy-based method. We now describe each step in more detail.

Normalization

TextRunner unifies extracted entity and relation names using a simple normalization

routine. All tokens are stemmed into their base forms using a morphological analyzer [37].

Given a hypothesized part of speech tag, the stemmer identifies, for instance, that “invent”

is the root of the words “invented” and “invents” and that “companies” maps to “company.”

TextRunner further simplifies the names of entities by omitting tokens from noun

phrases that potentially lead to overspecification. Entities consisting of common noun

3TextRunner uses a window of size 6, due to the fact that it does not attempt to model long-distance
relationships.
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phrases are reduced to their lexical heads using a set of head-finding rules developed and

used widely by the parsing community [19]. For example, “Young scientists from many

universities are studying exciting new technologies” is analyzed as “Scientists are studying

technologies”). While these heuristics are sufficient in many cases, important information

can sometimes be lost, such as that pertaining to quantification (e.g. “most people” is re-

duced to “people”) and certain modifiers (e.g. “green technology becomes “technology”). We

hope to address this issue in future work.

Synonym Resolution

IE systems often locate assertions that refer to the same real-world object or relation using

different names. For example, the tuples (Washington D.C., is capital of, U.S.) and (D.C.,

is capital city of, America) refer to the same fact. Identifying synonymous tuples is critical

for high-quality information extraction. End-users of an IE system may face low recall if

the system fails to recognize all expressions of a relation in response to a query about a

given relation. Another risk is that users are presented with redundant information instead

of a concise display.

A study by Yates [97] empirically quantified the importance of synonym resolution, the

task of identifying synonymous entity and relation names. He examined a large set of

TextRunner’s extractions and found that the top 80 most frequently extracted objects

were described by an average of 2.9 different names, with some having as many as 10 names.

The 100 most frequent relations had an average of 4.9 synonyms.

Yates developed the Resolver algorithm [98], to meet the challenges of information

extraction over the Web. Resolver is an unsupervised, domain-independent algorithm

that runs in time O(kN log N) where N is the number of extractions and k is the maximum

number of synonyms per word.4 It uses a probabilistic model to predict the likelihood

that two strings refer to the same item based on string-similarity and shared relational

attributes. Experiments have shown that Resolver outperforms previous approaches to

synonym resolution, finding entity synonyms with 78% precision and 68% recall, and relation

4Based on empirical analysis, Resolver finds that k = 10 is sufficient.
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synonyms with 90% precision and 35% recall.

Once TextRunner’s set of raw tuples has been normalized, sorted and duplicates

removed, Resolver is applied to the set of collated tuples. The resulting output serves as

the final set of extractions that is assigned a score and then indexed by TextRunner’s

query processor.

Assessment

Following normalization and synonym resolution, TextRunner automatically merges tu-

ples in which the entities and relations are identical. The system counts the number of

distinct sentences from which each extraction was found. These counts serve as a measure

of confidence that a tuple is a correct instance of a relation among entities. Extractions

with a count of one are not added to the system’s knowledge base.

The task of sorting tuples and identifying duplicate sentences can become memory-

intensive as the number of extracted tuples increases. However, use of the MapReduce

framework [27], a programming model that facilitates large-scale distributed processing,

has made it possible to efficiently process output from large corpora.

3.1.4 Query Processor

TextRunner is capable of responding to queries over millions of tuples at interactive speeds

due to an inverted index5 distributed over a pool of machines. This index is analogous to

a standard inverted index computed over corpus documents for document retrieval. In a

standard inverted index, each corpus term points to a list of all the documents in which

that term appears. In TextRunner’s inverted index, each entity found in an extracted

triple points to a list of all the triples in which it appears, and similarly for relations.

The efficient indexing of tuple in TextRunner means that when a user (or application)

wants to access a subset of tuples by naming one or more of its elements, the relevant subset

can be retrieved in a manner of seconds, and irrelevant extractions remain unrevealed to

the user.

5The inverted index is built using Lucene, an open source search engine.
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TextRunner’s tuple index enables relational Web search [15] – search through a large

entity-relationship graph that is automatically derived from the text of Web pages. Each

node in the graph corresponds to an entity found by TextRunner, with edges representing

relationships between entities.

While traditional search engines analyze hyperlinks and anchor text, they remain keyword-

based and fail to aggregate information contained over multiple documents. TextRunner

makes it possible for a user to issue complex relational queries that are not currently possible

using today’s search engines, including:

• Relationship Queries: Find the relationship(s) between two objects (e.g. the rela-

tionship between Bill Clinton and Justice Ginsberg).

• Factoid Queries: Find the answer(s) to a query having a short, factual answer (e.g.

What kills bacteria?, which is depicted in Figure 3.5).

• Qualified List Queries: Retrieve a list of objects that share multiple properties (e.g.

British spy novelists). An algorithm for computing answers to qualified list queries

using TextRunner was presented in [15].

• Unnamed-Item Queries: Qualified-List queries that aim to locate a single object

whose name the user cannot recall (e.g. the 40th president of the U.S.).

3.2 Experimental Results

In Section 2.1 we found that that English relationships (in the binary case) can be consis-

tently described by a set of linguistic patterns. The precise conditions under which they

apply, however, are difficult to specify by hand without making significant tradeoffs between

precision and recall. Is it, then, possible to learn a model of English relationships? Is deep

linguistic parsing necessary for open extraction? This section measures the performance

of several relation-independent extraction algorithms, when the number of relationships is

large and unknown prior to extraction. We assess the behavior of two learned open extrac-

tors as well as a hand-built extractor designed to identify instances of binary relationships.
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Figure 3.5: Query Processing: TextRunner finds answers to the query, What kills
bacteria? from multiple documents
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• We measure the precision and recall O-nb and O-crf, two distinct self-supervised

learners developed as part of the TextRunner open extraction system. We show that

without any relation-specific input, O-crf extracts instances of binary relationships

with high precision and a recall that nearly doubles that of O-nb.

• We quantify the performance of O-crf, TextRunner’s best performing extractor,

relative to O-parser, a hand-built method that utilizes deep linguistic parsing at

extraction time. We find that the learned extractor improves recall by 22% relative

to the parser-based approach, while achieving the same level of precision and running

at a speed that is 5 times as fast.

3.2.1 Learning an Open Extractor

To measure the precision and recall of both O-nb and O-crf, we used the random sample

of 500 sentences and their manually-tagged tuples described in Section 2.1. The use of this

corpus further enables us to examine the system output according to the different relation-

independent categories which were previously determined by a human annotator. O-nb

and O-crf were designed and trained prior to obtaining the results of the study; thus the

results on this sentence sample provide a fair measurement of their performance.

As shown in Table 3.1, O-crf extracts relational tuples with a precision of 88.3% and

a recall of 45.2%. O-crf achieves a relative gain in F1 of 63.4% over the O-nb model

employed by TextRunner, which obtains a precision of 86.6% and a recall of 23.2%. The

recall of O-crf nearly doubles that of O-nb.

O-crf is able to extract instances of the four most frequently observed relation types –

Verb, Noun+Prep, Verb+Prep and Infinitive. Three of the four remaining types – Modifier,

Coordinaten and Coordinatev – which comprise only 8% of the sample, are not handled by

TextRunner due to a simplifying assumption made by TextRunner that models rela-

tionships using only words that occur in positions between entity mentions in the sentence.

In retrospect, it would be straightforward to extend TextRunner’s extraction model to

consider cues to the left and right of candidate entities in order to find relationships ex-

pressed in those contexts.
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Punctuation-based relationships are difficult to model with high-precision, and were

thus eliminated from the design of TextRunner’s extraction model. As a result, Tex-

tRunnerhas difficulty locating appositives, a class of expressions indicating the IsA(X,Y )

relationship, because they are frequently indicated strictly by punctuation (e.g. “Steve Jobs,

the CEO of Apple, . . .” TextRunner also fails to capture implicit relationships such as

that between Seattle and Washington given the text “Amazon.com is based in Seattle, Wash-

ington.”

3.2.2 To Parse or Not to Parse

Another question of interest concerns the tradeoffs between parsing at extraction time and

using more lightweight forms of text analysis. As discussed in Chapter 2, one species

of extractors capable of locating instances of many relations at once is built from two

components — a linguistic parser and a set of hand-crafted rules that compose knowledge

directly from the parser’s output at extraction time.

To explore the performance of TextRunner’s lightweight approach to open extraction,

we developed a parser-based extraction system which we refer to as O-parser. Preferring

speed at first, we began with the extraction heuristics previously implemented as part of the

Dirt system [54], which used the speedy Minipar parser to identify textual paraphrases.

Despite its fast performance, we found that the system traded precision for high recall at

an undesirable rate. The parser’s grammar-based (i.e. non-statistical) nature did not allow

us to optimize its output for higher levels of precision.

Deciding to trade speed for accuracy, we then built O-parser from Klein and Manning’s

Treebank-trained statistical parser and the algorithm described in Figure 3.3 – the same

algorithm used by TextRunner to automatically identify its training data. An important

advantage of this design is that the use of this algorithm provides a controlled setting in

which to measure how well O-crf is learning to approximate the knowledge provided by

its training data. In addition to using the same parser-to-tuple algorithm, both O-crf and

O-parser are trained using the same corpus, the Penn Treebank.

O-parser begins by applying the same part-of-speech tagger used by O-crf to an
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input sentence. It then analyses each tagged sentence using Klein and Manning’s parser.

The algorithm in Figure 3.3 is then applied; if the algorithm returns a tuple labeled as

positive, O-parser adds the tuple to its extraction set.

We ran O-parser over the set of 500 Web sentences previously used to evaluate O-nb

and O-crf. The results are given in Table 3.1. We observed that the precision of O-crf and

O-parser are comparable, with O-parser achieving 88.9% precision compared to 88.3%

obtained by O-crf. A significant number of errors made by both systems can be attributed

to mistakes made during entity identification. For example O-crf yields (Google, confirms,

YouTube) from the sentence, “Google confirms YouTube acquisition - BBC News , ” and

O-parser thinks “Whereas President Truman” refers to an object in “Whereas President

Truman established the Presidential Medal of Freedom in 1945,” . . . While each system uses

a different entity-finding mechanism – O-parser’s is modeled directly by the parser and

O-crf uses a phrase chunker – we did not detect a significant difference in their behavior.

Some errors made by O-parser that are not observed in O-crf’s output are due to

ambiguities concerning phrase attachment, which leads to incorrect extractions such as

(Charlie Chaplin, was born on, London) from the text “Charlie Chaplin was born on April

16, 1889 in London . . .” We hypothesize that O-crf is able to avoid this problem since the

gold-standard parses used to train O-crf do not contain attachment errors and its lack of

a parser at extraction time mitigates the likelihood of this type of mistake.

With respect to recall, we found that O-crf outperformed O-parser with a recall of

45.2% compared to 37.0%. The parser was unable to apply its full statistical model to 102

of 500 sentences and was forced to back-off to a simpler model. As a result, O-parser

proposed a tuple for only 41.6% of the labeled test instances (208/500), compared to 51.2%

(256/500) proposed by O-crf.

We also compared the time it takes for each method to process a sentence for extraction.

On average, sentences in the test corpus contain 21.1 tokens. Using a Pentium 4 3.40GHz

with 1GB of memory, O-parser was measured to spend an average of 3.2 seconds per

sentence. O-crf is more than 5 times faster, taking only 0.6 seconds per sentence, or an

average of 10 seconds per document. Not surprisingly, O-nb which employs a Naive-Bayes

classifier, is the fastest of the open extractors we consider, extracting tuples at a rate of
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O-NB O-CRF O-Parser

Category P R F1 P R F1 P R F1

Verb 100.0 38.6 55.7 93.9 65.1 76.9 96.9 49.7 65.7

Noun+Prep 100.0 9.7 17.5 89.1 36.0 51.3 74.4 25.4 37.9

Verb+Prep 95.2 25.3 40.0 95.2 50.0 65.6 86.5 56.2 68.2

Infinitive 100.0 25.5 40.7 95.7 46.8 62.9 91.7 23.4 37.3

Other 0 0 0 0 0 0 75.0 8.6 15.4

All 86.6 23.2 36.6 88.3 45.2 59.8 88.9 37.0 52.3

Table 3.1: Open Extraction by Relation Category: O-crf outperforms O-nb, ob-
taining nearly double its recall and increased precision. O-crf’s gains are partly due to its
lower false positive rate for relationships categorized as “Other.”

0.036 seconds per sentence. Thus using 100 machines, it takes less than 2 hours to process

1,000,000 documents with O-nb, 1.15 days with O-crf, and 5.75 days with O-parser.

3.2.3 Conclusion

Our experiment demonstrates that it is possible to learn a relation-independent extractor

with high precision, without having to anticipate and thus acquire training data for each

relation in the corpus. While unit features are sufficient for high precision open extrac-

tion, the use of a Web-based named-entity recognizer such as [29] could further improve

the quality of the output. In the next chapter, we present a full Web-scale evaluation of

TextRunner when applied to hundreds of millions of Web pages.
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Chapter 4

OPEN EXTRACTION MEETS THE WEB

Information extraction technology has been developed for a variety of text collections,

ranging from domain-specific corpora [36, 63, 70, 82] to newspaper articles [1, 78, 99] to the

general-purpose Brown Corpus [75]. In recent years, members of the IE community identi-

fied Wikipedia as a valuable corpus for knowledge acquisition. As noted by Wu and Weld

[96], there are several characteristics of Wikipedia that have made it an increasingly popular

target for extraction. The collection of articles offers up-to-date coverage of several million

topics and are less prone to factual errors found on arbitrary Web sites (e.g. Elvis killed

President Kennedy). Wikipedia’s regular page structure makes it easy to separate meaning-

ful textual content from spurious text. Finally, Wikipedia infoboxes, which summarize an

object’s key attributes in tabular form, provide a rich source of relational data, while the

presence of categories make it possible to assign a taxonomic structure over objects. These

observations have sparked several extraction efforts [64, 86, 96] that focus on mining these

semi-structured resources as opposed to the unstructured text of Wikipedia articles.

Compared to these extractors, systems such as TextRunner, which process unstruc-

tured text, have the potential to acquire a wider range of information. While the number

of relations contained in Wikipedia infoboxes is by some measures close to 1,000,1 many

infoboxes are incomplete and many articles lack infoboxes altogether. Figure 4.1 illustrates

the difference between the infobox for “Napoleon Bonaparte,” and high-ranking extractions

found by TextRunner. TextRunner is able to offer information about the emperor’s in-

vasions, battle victories, exile and participation in treaties that is missing from his Wikipedia

summary.

Unfortunately for natural language extractors, the importance of solving AI-hard tasks

such as anaphora resolution, discourse processing, and inference becomes greater when

1http://wiki.dbpedia.org/Ontology
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extracting from a small corpus such as Wikipedia.2 For instance, each of these difficult

tasks must be solved in order to recognize CapitalOf(Paris, France) from a news article

containing the text: “Paris will be given a new brand image through an advertising campaign

based on famous artworks. The artistic side of the French capital will be one of the major

aspects of its promotion over the next 12 months.”

One alternative proposed by the empirical natural language processing community in

recent years is to forgo making improvements to deep linguistic analyzers in favor of em-

ploying techniques light on natural language understanding over significantly larger datasets

such as the Web [9]. By increasing the size and variety of the input corpus, these systems

rely on the redundancy of the corpus – the existence of multiple, differently phrased state-

ments of the same underlying information. While a fact might be mentioned only once in

a news article or biography, it is more likely to be mentioned often, perhaps using easy-

to-understand language, on the Web. This observation has been exploited with success in

a variety of areas including ambiguity resolution [4, 57, 91], language modeling [47] and

thesaurus construction [24].

Redundancy-based techniques for extraction were first explored by the Mulder [51] and

AskMSR [31] question answering systems. These systems performed lightweight text pro-

cessing, transforming natural language queries (‘‘What is the capital of France?’’)

into search queries that anticipated forms of the answer ( ‘‘The capital of France is’’

and ‘‘is the capital of France’’) most likely to be present in a large corpus.

The KnowItAll Web information extraction system [33] also leveraged the redun-

dancy of the Web, relying on the presence of simple sentences that would match domain-

independent extraction patterns. The developers of KnowItAll found that the number

of different patterns leading to a given extraction was a good predictor of its quality. The

notion that the probability of an extraction increases with the number of distinct sentences

in the corpus that suggest the fact became known as the KnowItAll hypothesis. This

statement was later formalized by [30] as the Urns model of redundancy and empirically

shown to outperform models previously used to assess extraction probabilities. Like Know-

2Small, relative to the size of the Web
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Figure 4.1: A query for “Napoleon Bonaparte” illustrates the difference between information
found in his Wikipedia summary (top) and facts extracted by TextRunner (bottom).
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ItAll, TextRunner is a redundancy-based extraction system. TextRunner assigns a

confidence measure to each extracted fact equal to the number of different sentences from

which it was found.

Although the size and diversity of Web text make it an attractive source of information,

processing the Web also presents a number of challenges. Compared to trusted resources

such as Wikipedia and newspaper articles, the Web contains information authored by unre-

liable or biased sources that may be repeated throughout many documents. Unfortunately,

frequency does not always correlate positively with truth. Another problematic characteris-

tic of Web text is that it is often informal. An attempt to extract facts from a blog written

in a colloquial nature may unearth many ambiguous or uninteresting assertions, such as

(Aunt Mary, will visit, next July). Finally, unlike authoritative sources such as Wikipedia

and news articles, Web text is more likely to contain grammatical errors that may thwart

models of natural language trained from well-formed sentences.

In light of the discussion raised above, we now explore answers to the following questions.

Is a redundancy-based design justified for Open IE? What is the difference in the quality,

type and size of information extracted from a massive sample of Web pages compared to the

knowledge it extracts from Wikipedia, a smaller yet more trustworthy document collection?

How many distinct relations does TextRunner find and what are they like? How does the

factbase amassed by the TextRunner system compare to other recent efforts that have

targeted extraction from Wikipedia?

While Section 3.2 assessed the performance of TextRunner on a small corpus of sen-

tences, this this chapter evaluates TextRunner when applied to a Web-scale corpus. We

first evaluate TextRunner when applied to 2.5 million Wikipedia articles, and then com-

pare its performance after increasing the size of its input corpus by several orders of mag-

nitude to a total of over 500 million Web pages. The chapter concludes with a discussion

of the differences between TextRunner, a system designed to process arbitrary unstruc-

tured English text, to DBpedia and Yago, two large-scale efforts handcrafted to acquire

knowledge solely from Wikipedia articles.

The contributions of this chapter are:
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• We quantify TextRunner’s ability to extract instances of previously unspecified

relationships from hundreds of millions of Web pages, and demonstrate that Tex-

tRunner automatically discovers millions of facts spanning thousands of different

relationships from a large Web corpus. From 500 million Web pages, TextRunner

extracts approximately 218 million facts. Of those, 13.5 million describe more than

16,000 relationships between named entities; the remainder imply abstract properties

of general classes.

• We measure the precision and recall of TextRunner’s extractions from large Web

corpora. For a set of 10 well-defined relations commonly studied by the IE community,

TextRunner locates hundreds of thousands of instances with a precision of up to

90.49% from Wikipedia and 92.93% from a corpus that contains Wikipedia plus an

additional 500 million pages representative of the general Web.

• We test TextRunner’s redundancy-driven design by measuring precision as the num-

ber of distinct sentences in which an assertion is found increases. Over a vast sample of

different relations, assertions extracted from only two different sentences were judged

to have a precision of 84.3%. Precision increases to 87.1% when at least 20 different

sentences support an extraction, and to 92.3% when 200 distinct supporting sentences

are found.

• We discuss the number and quality of relations found by TextRunner, and compare

them to those found in DBpedia and Yago, each of which contains millions of facts

extracted from Wikipedia using a combination of manual and semi-automatic meth-

ods. TextRunner finds an order of magnitude more relations than these handcrafted

Wikipedia extractors at a comparable level of precision.
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4.1 Experimental Setup

4.1.1 Terminology and Parameters

Upon inspection, the type of knowledge extracted by TextRunner can be classified into

two categories. The system locates a large number of abstract tuples – tuples that are

underspecified, such as (Einstein, derived, theory), or imply properties of general classes,

such as (scientist, is author of, article). TextRunner also finds what we refer to as

concrete extractions, where truth of the tuple is grounded in particular entities, for example,

(Einstein, born in, Germany). While in previous work [5] we reported experiments in which

the distinction between abstract and concrete tuples was made by hand, the experiments

we report on use part-of-speech tag information about the entities under consideration to

automatically characterize TextRunner’s output.

While abstract assertions are potentially useful for ontology learning, concrete tuples

are more useful for IE and question answering tasks. Furthermore, providing human judg-

ments about concrete tuples is significantly easier than abstract tuples; for the most part,

they do not require strict judgments involving quantification or disambiguation.3 Finally,

algorithms that recognize synonymous objects and relations assume that entities in question

refer to real-world, concrete objects. Algorithms for detecting similarity in the context of

abstract assertion remains an open problem. For these reasons, we focus on the evaluation

of TextRunner’s ability to extract concrete tuples, from both Wikipedia and the Web in

general.

We define a concrete tuple as follows. Given a tuple (X,R, Y ), where X is referred to

as the primary entity and Y referred to as the secondary entity, a concrete tuple has a

primary entity that is a proper noun, and the secondary entity that is either a proper noun

or date. We use regular expressions and part-of-speech tags to identify these broad classes

of entities. We do not use a named-entity tagger to find more specific types such as Person

or Location.

Following extraction, the following distributional constraints are imposed on the entire

3For example, consider the prospect of judging the assertion (fruit, is low in, fat) given the existence of
the avocado.
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set of tuples. We discard tuples in which the predicate R occurs with fewer than n distinct

facts in the entire extraction set. Furthermore, a predicate R must be observed with at

least e1 unique primary entities and e2 unique secondary entities; otherwise all tuples with

R are discarded as well. This restrictions are placed due to the belief that tuples contain-

ing relations that co-occur with a limited set of entities are either of little interest or are

systematic extraction errors. Preferring high precision, perhaps at some cost to recall, we

found empirically that setting the above parameters to n = 50 and e1 = 50 and e2 = 20 for

a corpora containing at least 1 million documents.

4.1.2 Corpora

Open Extraction from Wikipedia

We ran TextRunner over an English version of Wikipedia archived in January of 2008.

At that time, the corpus contained 2,496,172 articles. Given the small size of the collection

and the breadth of topics covered, we did not expect the corpus to contain a large amount

of redundant information. Thus, contrary to TextRunner’s default design which does not

retain tuples found in only one sentence, we permitted TextRunner to store all extractions

when processing Wikipedia.

Of the nearly 32.5 million tuples found by TextRunner in the Wikipedia corpus, ap-

proximately 6.1 million were considered to be concrete according to our definition. After

imposing distributional constraints, TextRunner was found to have extracted 3.8 million

concrete assertions about 1.3 million primary named entities using 7657 different relations.

After using Resolver to identify sets of strings that refer to the same real-world object,

TextRunner found a total of 673 sets containing two or more synonymous relations, but

only a handful of sets containing synonymous entities. After merging tuples containing

synonymous strings, the final number of distinct relations in Wikipedia as found by Tex-

tRunner was 6742. These results are summarized in Figure 4.2.
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Figure 4.2: Open Extraction from Wikipedia: TextRunner extracts 32.5 million
distinct assertions from 2.5 million Wikipedia articles. 6.1 million of these tuples repre-
sent concrete relationships between named entities. The ability to automatically detect
synonymous facts about abstract entities remains an open problem.

Open Extraction from The General Web

What happens when we augment the size of TextRunner’s input corpus by several orders

of magnitude? In addition to processing Wikipedia, we added 500 million Web pages to

the set of documents processed by TextRunner.4 This combination of Wikipedia and the

Web is thus referred to as General-Web.

After eliminating extractions found only in a single sentence, TextRunner was found

to extract approximately 850 million raw tuples from General-Web, with 218 million tu-

ples representing unique facts. Of these 218 million, 16.5 million tuples represent concrete

facts; 14 million concrete facts remained after applying the aforementioned distributional

4The author wishes to thank Google Inc. for providing the corpus.
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Figure 4.3: Open Extraction from the Web: TextRunner extracts 218 million distinct
assertions from 2 or more different sentences in a corpus of over 500 million Web pages
(including Wikipedia) . 13.5 million of these tuples represent concrete relationships between
named entities. Due to TextRunner’s redundancy-driven design, the measurements do
not include assertions extracted from only one sentence. The ability to detect synonyms of
abstract entities and relationships represents an area for future work.

constraints to the knowledge base. From this set of assertions, Resolver was able to find

582 relation synonym sets and 1671 entity synonym sets, allowing the extraction set to be

compressed to 13.5 million tuples. The final set of concrete assertions output by TextRun-

ner from this corpus spans 16,247 different relations and approximately 4.2 million primary

entities. These results are summarized in Figure 4.3.

4.1.3 Evaluation Criteria

Since we cannot measure true recall over a corpus as large as the Web, we use the term

recall to refer to the size of the set of tuples extracted.
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When evaluating the precision of extracted tuples, a human assessor uses the following

criteria. First, the judge decides whether the predicate is well-formed. A predicate R is

considered to be well-formed if there is some pair of entities X and Y such that (X,R, Y ) is

a relation between X and Y . For example (Wilhelm Roentgen, discovered, X-rays) contains

a well-formed relation, but (Barack Obama, is while, Mike Huckabee) does not.

If a tuple is found to possess a well-formed predicate, it is then judged to see if the

entities are appropriate relative to the relation. X and Y are well-formed entities for R if X

and Y are of a type of entity that can form a relation (X,R, Y ), and if X and Y refer to valid

objects (i.e., the proper boundaries have been detected during noun-phrase recognition).

Examples of tuples with entities that are not well-formed are (Whilst Shakespeare, died

on:date, 23 April) and (Robert Louis Stevenson, is author of, Dr. Jekyll).

Finally, each tuple is judged as consistent or not, based on whether it reflects the in-

formation contained in the sentence from which it is extracted. For example, (Al Gore,

invented, The Internet) may be tagged as consistent due to the presence of sentences such

as “On January 12, Washington Post columnist Al Kamen wrote: “We all know that Al

Gore invented the Internet.””

In some instances, the validity of assertions suggested by tuples are difficult to dis-

ambiguate without the context of the sentence or document from which it is extracted.

Examples of such statements are (Anderson, born in:date, 1967) and (Aerospace Division,

established in:date, 1998). Other tuples fail to provide complete knowledge due to limi-

tations imposed by the arity of tuples, e.g. (Senator Kennedy, asked, Congress). For this

reason we established both a strict and a non-strict approach to evaluation. Under a strict

interpretation, tuples containing ambiguous or incomplete tuples are marked as false. In a

non-strict context, such tuples are ignored and do not affect the final precision of the judged

sample.

4.2 Experimental Results

TextRunner extracts millions of tuples about thousands of different relations. What is

the quality and nature of its output? We begin our evaluation by measuring precision

and recall for a set of ten well-studied relations. We then analyze how the redundancy



50

of the input corpus impacts the precision of TextRunner’s extractions. Finally, while

it is difficult to evaluate the quality and recall of the complete set of relations discovered

by TextRunner, due to their large number, we provide a look at the relations found by

TextRunner relative to other Web-based knowledge bases.

4.2.1 Relation Extraction

We measured precision and recall for ten relations that have often been the focus of study

of previously published work in IE, specifically that of Dipre [11], Snowball [1], Know-

ItAll [33], Yago [85, 86] and Bunescu’s SSK relation extraction algorithm [12]. While

direct comparisons to results previously published by Dipre, Snowball and KnowItAll

are difficult due to differences in input corpora, we are able to provide a comparison to

Yago later in Section 4.2.3 and SSK in Section 5.3. for the appropriate set of relations and

data.

A human assessor evaluated a random sample of between 150 and 200 TextRunner

extractions, per relation, per input corpus, according to the criteria previously outlined.

The results are given in Table 4.1. On average, TextRunner obtains a precision of 92.9%

when extracting relations from General-Web, compared to 90.5% when solely processing

Wikipedia. The increase was found to be statistically significant at the 90% level, according

one-tailed paired t-test [42]. The precision of TextRunner’s relation-independent extrac-

tor is comparable to other recent attempts at Web-scale extraction in the single-relation

setting. Pasca [62] extracted 1 million instances of the BornOnDate relation from 100

million Web pages with a precision of around 90%. Yago [86] extracted around 350,000

instances of the same relation from Wikipedia with a precision of 93.1% percent.

When strict grading is enforced, where ambiguous tuples are considered incorrect, the

precision of the extractions is 87.9% over General-Web and 86.7% over Wikipedia, a non-

significant difference. Compared to the general Web, extractions from Wikipedia were

ambiguous less often, perhaps due to Wikipedia’s more formal, encyclopedic style and the

increased presence of conversational text on the Web. For example:
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Wikipedia General-Web

Relation Precision Recall Precision Recall

Strict/Non-Strict f ≥ 1 Strict/Non-Strict f ≥ 2

Acquisition 81.2/82.2 16,673 84.8/85.3 31,738 (1.9x)

Birthplace 93.9/94.5 122,984 90.1/95.8 225,536 (1.8x)

BornOnDate 90.5/96.8 5,707 89.2/95.7 60,086 (10.5x)

CapitalOf 78.8/78.8 2,621 94.1/94.1 8,514 (3.2x)

CeoOf 91.1/91.7 624 78.3/86.1 6,420 (10.3x)

DiedOnDate 87.7/95.5 5,691 90.2/96.3 30,329 (5.3x)

EstablishedOnDate 89.4/95.6 977 92.6/96.5 99,566 (102.0x)

Headquarters 85.4/89.6 3,913 88.6/91.9 52,125 (13.3x)

LocatedIn 90.5/93.0 63,033 90.6/94.1 159,901 (2.5x)

WonPrize 76.8/85.6 14,843 80.7/92.4 41,068 (2.8x)

Total 86.7 ±5.8 / 90.5 ±6.2 237,066 87.9 ±5.1 / 92.9 ±4.1 715,285 (3x)

Table 4.1: Comparison of TextRunner on Wikipedia and General-Web Corpora:
From over 500 million Web pages in the General-Web corpus, TextRunner extracts in-
stances of ten well-studied relations with an average precision of 92.93%. When applied to
the smaller Wikipedia corpus, TextRunner’s precision is 90.49%, a difference found to be
statistically significant with 90% confidence; standard deviation of the mean of differences
is 4.0. If tuples containing ambiguous entities are judged as errors, differences in strict
precision are not significant. The total number of extractions per-relation is also provided,
noting that we do not retain singleton extractions (f = 1) from the General-Web corpus.

Wikipedia: Steven Paul Jobs (born February 24, 1955) is the co-founder, Chairman and CEO of

Apple Inc and former CEO of Pixar Animation Studios.

Web: As many of you know, Steve is the founder & CEO of Apple.

Do I think ’The Steve’ is doing a good job as CEO of Apple Computer?

Steve is of course the CEO of Apple Computer and the founder of Pixar.
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Considering the errors made by TextRunner in general, we found that most can be

attributed to the presence of an entity that is either malformed (34.4% of errors) or not of

the appropriate type (43.1% of errors). The first type of errors are due to difficulties with

locating sentence boundaries and noun-phrase boundaries. For instance, (Rainboworange,

based in, IL. Specializing is mistakenly extracted from “Rainboworange - Web Design Com-

pany based in Chicago, IL. Specializing in . . .”) and (Tory Johnson, is ceo of, Women) from

“Tory Johnson is the founder and CEO of Women for Hire.” The second type of errors

can be largely attributed to errors made by the part-of-speech tagger that cause capitalized

words to be mistaken for names, e.g. (Biography, born in, New York City) is erroneously

extracted from ”Biography - John Leibowitz was born in New York” The remaining type

of errors are extractor-level failures that produce tuples inconsistent with the information

contain in the source document from which they are extracted. For example, the extractor

proposes the tuple, (Tirupur, capital of, India) from the sentence, “Tirupur is the knitwear

capital of India.”

4.2.2 The Importance of Redundancy

Contrary to Wikipedia, we expect the Web to possess a much higher level of redundancy,

due to its size and large number of genres represented. This belief is confirmed by Figure 4.4,

which for each corpus, shows the number of concrete assertions that have been extracted a

given number of times. Not surprisingly, Wikipedia exhibits a low level of redundancy. An

extremely small number of concrete assertions were extracted from more than one distinct

sentence – only 44,450 which is only 1.2%. If we discarded all tuples with a count of one

when processing Wikipedia, the total number of extractions for the set of ten relations we

studied would be too small to be of significant importance. Given the high level of precision

of tuples extracted from Wikipedia, most of which were supported by a single sentence, our

decision to retain low-frequency extractions when provided with an authoritative corpus

appears to be a sound choice. Thus, we conclude that when processing a high-quality, fact-

based corpus, the lack of redundancy does not hamper TextRunner’s effort to extract

information with high precision.
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Figure 4.4: Measuring the Redundancy of Wikipedia and General-Web: Compared
to Wikipedia, where only 1.2% of facts are repeated in multiple sentences, the Web contains
many different expressions of the same concept.

To further characterize the nature of the Web, we then found the set of facts extracted

from both Wikipedia and General-Web and compared the number of times each fact was

found in both corpora. The correlation between extraction frequencies is plotted in Fig-

ure 4.5. We found that a fact appearing only once in Wikipedia was found in 4.4 differ-

ent sentences in our 500-million-page corpus, on average. Given the general reliability of

Wikipedia content, this suggests that when considering tuples extracted from a noisier col-

lection of Web documents, tuples found to have an extraction frequency greater than 4 may

be more reliable.

Given that General-Web contains a large amount of redundant information, we continued

to explore the impact of redundancy on precision relative to this corpus. As previously

mentioned, a corpus such as General-Web is likely to contain more ambiguous and unreliable

information than Wikipedia. Can TextRunner, which implements the hypothesis that
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Figure 4.5: A fact found once in Wikipedia was found in more than four different sentences
on the Web, on average.

assertions extracted from a variety of sources are more likely to be correct, leverage the

presence of redundant information to automatically identify high-quality extractions?

We sampled 850 concrete tuples from TextRunner’s output from the General-Web

corpus. Unlike the previous experiment which considered only instances of pre-specified

relations, this sample was collected in a relation-independent manner. Therefore, tuples

included in the sample may potentially contain malformed relations. Despite the redundancy

of General-Web, the bulk of its tuples are supported by at most 5 different sentences.

Therefore, we gave twice as much weight to extractions found within 5 or more sentences in

the General-Web corpus. This weighing scheme was applied to increase the likelihood that

a meaningful number of high-frequency extractions would be present in our sample.

A human annotator examined the well-formedness and truth of each tuple. Figure 4.6

plots precision P against extraction frequency, f . We found that tuples with f ≥ 2 were

judged to have a precision of 84.3%. At f ≥ 5, precision jumped to 86.9%, and at f ≥ 50,
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Figure 4.6: The Impact of Redundancy on Precision: While assertions found within
at most two different sentences had a precision of 84.3%, precision improved to 87.1% when
20 or more supporting sentences were found, and to 92.3% when at least 200 sentences
expressed a single assertion.

precision jumped to 88.8%. Compared to per-relation analysis reported in Section 4.2.1,

overall precision is slightly lower due to the fact that in the former experiments, the set of

tuples evaluated were guaranteed a priori to contain a meaningful, well-formed relation.

Based on our sample statistics and with the frequencies computed in Figure 4.4, we can

conclude that TextRunner contains 13.5 million facts at 84% precision (f ≥ 2), and 1

million facts at 87% precision (f ≥ 5).

4.2.3 Relation Discovery

Recent efforts at large-scale knowledge acquisition have targeted semi-structured data con-

tained in Wikipedia such as tabular summaries and lists. What is the difference in the

type of information that can be gleaned from these resources as opposed to that which
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can be found in unstructured text? This section compares the size and quality of relations

found by TextRunner to both DBpedia and Yago, two recent efforts designed to extract

structured data from Wikipedia.

DBpedia is a community effort designed to extract structured data from Wikipedia

[2]. Among other knowledge sources, DBpedia includes an ontology that was created by

hand from Wikipedia infoboxes. The resulting structure forms a hierarchy over 170 entity

types (e.g. Place, Person, Organization) describing 882,00 distinct entities. The DBpedia

ontology contains 940 distinct relationships expressed as RDF, mapped from 2350 variants of

popular infobox attributes. (The authors note that despite its impressive size, the ontology

covers only a subset of all available attributes.) As of November 20008, the total number

of facts is estimated to be near 5.6 million. An example of relations about the entity type

Company are shown in Figure 4.7.

Figure 4.7: The DBpedia Ontology: A hand-built ontology derived from Wikipedia
contains 14 relations about objects of type Company. 8 additional relations are inherited
from its parent type, Organization.

Another large source of extracted knowledge is provided by the Yago IE system, which

was previously discussed in Section 2.3. Like DBpedia, Yago also identifies instances of

relationships using a set manually developed rules. These rules are designed around the

use of a natural language parser and the WordNet lexical database. Instead of performing

extraction from the text of articles, Yago targets both Wikipedia infoboxes and category

pages – pages that consist of a list of objects belonging to a class named in title of the

page. For example, given that Napoleon Bonaparte belongs to a page of “1769 births,”
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TextRunner DBpedia 3.2 Yago

Entities 4.2 million 882,000 1.5 million

Relations 16,247 940 92

Facts 16.5 million 5.6 million 15 million

Classes 0 170 224,391

Source Web Wikipedia Wikipedia

Text Infoboxes Infoboxes and

Lists

Architecture Relation Relation Relation

Independent Specific Specific

Table 4.2: A Comparison of Web Extraction Systems: The estimated number of
entities, relations, facts and classes found by each of TextRunner, the DBpedia ontology,
and Yago.

Yago outputs BornOnDate(Napoleon Bonaparte, 1769). The set of extraction patterns

used by Yago is both handcrafted and relation-specific. While the expression “([0− 9]3, 4)

births” captures instances of BornOnDate, a distinct rule is needed to recognize IsPoliti-

cianOf(Napoleon Bonaparte, France) given he also falls into the category, “Emperors of

France.”

As with DBpedia, the developers of Yago designed a mapping by hand that assigns

frequently appearing infobox attributes into one of many distinct relations. Specifically, 170

rules were created to map attributes into 92 distinct relations. Of those, 64 represent non-

taxonomic relations – BornOnDate, WonPrize, HasPopulation, etc. – as opposed

to hierarchical relationships – typeOf,subClassOf,means, etc. These statistics reflect

measurements taken in July 2008, as reported in [86]. Table 4.2 summarizes the knowledge

contained in the output of TextRunner, DBpedia and Yago.

While to our knowledge, the accuracy of information contained in DBpedia has not

been reported, the developers of Yago measured precision and recall (in terms of the
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Yago TextRunner

Relation Precision # Facts Precision #Facts

BornOnDate 93.14 350,613 95.80 60,086

EstablishedOnDate 96.84 69,529 96.45 99,566

DiedOnDate 98.72 168,037 96.32 30,329

WonPrize 98.47 13,645 92.41 41,068

Total 96.79 601,824 95.25 231,849

Table 4.3: TextRunner and Yago: Yago utilizes a set of handcrafted patterns to extract
data for a small, fixed set of relations from Wikipedia. TextRunner learns a relation-
independent model to extract data from arbitrary Web pages at a comparable level of
precision. The number of facts found by the two systems varies by relation and corpus.

number of facts found) for a subset of relations. As summarized in Table 4.3, Yago’s

estimated precision for these relations is comparable to TextRunner. The number of

extracted facts varies by relation, illustrating the tradeoffs between the two approaches.

Given a relationship such as BornOnDate, which are mentioned frequently in Wikipedia

using a regular pattern, Yago’s handcrafted extractor is able to locate more instances

than TextRunner. As we will now discuss, TextRunner’s advantage lies in its ability

to discover a wider variety of relations than can feasibly be covered using Yago’s labor

intensive approach.

It is difficult to evaluate the complete set of relation names discovered by TextRunner

in a standalone manner. Aside from their large number, it is often difficult to make strict

decisions about the utility of extracted relations independent of a specific application. For

instance, while the tuple (Senator Robinson, asked, Exxon’s CEO) may not be a scintillating

fact in its own right, it may indirectly provide useful evidence that the politician has some

type of relationship with the oil industry.

A look at the relations covered by DBpedia, Yago and TextRunner highlights the

power of Open IE’s relation-independent architecture. To facilitate exploration, we focused

on relations describing 7 popular entity types described in DBpedia and Yago. Since
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TextRunner lacks information about entity types, we obtained a list of entities belonging

to each of the 7 classes using WordNet. Then for each class, we found all TextRunner

tuples whose primary entity was contained in the list. Using pointwise mutual information

(PMI), we computed a ranking of relations relative to each class. PMI, defined here as

PMI(R,C) =
Count(e1 ∈ C,R, ∗)

Count(∗, R, ∗)

measures the association between a relation R and a class C of entities.

Table 4.4 summarizes the number of relations found by each system for each of the

7 types. Additionally, we provide a list of the 25 top relations for 3 domains studied –

Politician (Table 4.5), Country (Table 4.6) and Company (Table 4.7) – giving an example

for each of three popular top-level categories, Person, Place and Organization. Relations

derived by DBpedia and Yago are ordered based on the number of instances. Due to space

limitations, we list the relations found by TextRunner when applied to General-Web, and

omit those it finds in Wikipedia alone.5

Even when accounting for failures to collapse all distinct forms of a relation into a single

predicate – Resolver’s recall when attempting to identify relation synonyms was estimated

to be around 35% – TextRunner covers a significantly larger set of relations without any

domain-specific tuning. The interestingness of the relations is a subjective decision that is

best left to the reader. However, a careful study of the output produced by each system

reveals that the set of relations discovered by TextRunner covers many that are not

currently supported by other Web IE systems. While some applications may be interested

in finding only definitional attributes that are commonly provided in Wikipedia summaries,

others may demand data describing event-based facts, such as a company’s recent product

recall, or a country’s attack on a rival nation. TextRunner enables extraction of both

classes of data.

5The full set of relations is available online at http://www.cs.washington.edu/research/textrunner/

banko-thesis-data.tar.gz
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Number of Relations

DBpedia Ontology Yago TextRunner TextRunner

Entity Type (Wikipedia) (Wikipedia) (Wikipedia) (Web)

Actor 54 27 822 2569

Company 22 17 314 1478

Country 30 32 902 3632

Politician 32 25 300 630

Scientist 32 21 179 283

Software 15 5 63 341

University 31 3 156 384

Total 216 130 2736 9317

Table 4.4: Estimated Number of Relations about Popular Entity Types: Tex-
tRunner, an Open IE system finds an order of magnitude more relations than handcrafted
Wikipedia extractors DBpedia and Yago.
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Domain: Politician

DBpedia Ontology Yago TextRunner (Web)

occupation bornOnDate ended

birthPlace isAffiliatedTo resigned as leader of

birthDate bornIn announced resignation from

deathPlace diedOnDate served on committees in

almaMater hasPredecessor announced candidacy for

religion livesIn has headed

children hasSuccessor has run for

nationality hasWebsite ran for seat in

residence diedIn served as Z with

spouse graduatedFrom lost seat to

education isLeaderOf to run against

award isCitizenOf ran as Z in

party politicianOf campaigned in

birthName actedIn saw

homeTown isMarriedTo ran in:date

title hasChild won seat in

relations isNumber lost $Z to

parents hasWonPrize missed of:date

otherNames created ran for Z in

knownFor produced has been critic of

restingPlace influences will run for

successor wrote lost election to

predecessor interestedIn married Z in:date

ethnicity isOfGenre gained title of

deathCause directed entered Z as

Table 4.5: Relations Associated with Politicians: Using handcrafted rules, DBpedia’s
ontology contains 32 relations, while Yago finds 21 relations. TextRunner finds 630
relations from the general Web in a domain-independent manner. A maximum of 25 results
are listed per system.
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Domain: Country

DBpedia Ontology Yago TextRunner (Web)

currency particpatedIn has embassy in

capital establishedOnDate has not ratified

language hasCapital welcomed

anthem hasOfficialLanguage has not signed

governmentType hasCurrency gained independence from

latitudeNorthOrSouth hasPopulation has rate of

longitudeEastOrWest hasUTCOffset established relations with

latitudeDegrees hasGDP is ally of

longitudeDegrees hasCallingCode acceded to

latitudeMinutes hasPopulationDensity walked from

longitudeMinutes hasTLD invaded Z in

areaMetroSquareMiles hasWaterPart has occupied

populationDensitySquareMiles hasMotto recognized independence of

motto hasHDI qualified for $Z in

areaMagnitude locatedIn surrendered on:date

demonym hasWebsite withdrew in:date

ethnicGroup dealsWith will invade

regionalLanguage hasGini deported

largestCity exports in Z held in

languageType imports maintained relations with

largestSettlement hasNominalGDP annexed

ethnicGroupsInYear hasImport did not attack

elevation hasInflation to apologize to

location hasExpenses intervened in

coordinates hasEconomicGrowth signed treaty of

Table 4.6: Relations Associated with Countries: Using handcrafted rules, DBpedia’s
ontology contains 30 relations, while Yago finds 32 relations. TextRunner finds 3632
relations from the general Web in a domain-independent manner. A maximum of 25 results
are listed per system.
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Domain: Company

DBpedia Ontology Yago TextRunner (Web)

location established on:date has shipped

products has website should buy

industry has number of people started selling

type created came out with

revenue has motto announce development of

locationCity has product has discontinued

parentCompany produced has licensed

locationCountry has successor released Z for

areaServed is of genre to ship

netIncome lives in has confirmed to

operatingIncome has production language introduced version of

subsid participated in announced version of

services located in discontinued

owningCompany created on:date has announced that

owner born on:date has unveiled

divisions has won prize has done with

assets released version of

locations will be publishing

genre will release

footnotes should make

equity rolled out

language will be releasing

unveiled

acquired Z in:date

has come out with

Table 4.7: Relations Associated with Companies: Using handcrafted rules, DBpedia’s
ontology contains 22 relations, while Yago finds 17 relations. TextRunner finds 1478
relations from the general Web in a domain-independent manner. A maximum of 25 results
are listed per system.
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Chapter 5

THE RELATIONSHIP BETWEEN OPEN AND TRADITIONAL IE

Traditionally, information extraction has been cast as a classification problem – the task

of recognizing whether or not a sentence expresses a given relation among entities of a

known type, e.g. Headquarters(Company, City). Several approaches have employed

support-vector machines tuned with natural language-oriented kernels to classify pairs of

entities [13, 21, 99]. Recent progress in the probabilistic inference and machine learning has

made it possible to recognize named entities and relations simultaneously [72, 40].

An important distinction between standard IE systems and the new Open IE paradigm

is that while traditional extractors can learn to identify instances of relationships using

words that appear often in the surrounding context, specific words are not useful indica-

tors of binary relationships in general. This relationship is analogous to the relationship

between lexicalized and unlexicalized parsers. Statistical parsers are usually lexicalized, i.e.,

they make parsing decisions based on statistics computed over words. However, Klein and

Manning [49] showed that unlexicalized parsers are more accurate than previously believed,

and can be learned in an unsupervised manner. Klein and Manning analyze the tradeoffs

between the two approaches to parsing and argue that state-of-the-art parsing will benefit

from employing both approaches in concert.

Can the same be said of IE? How does the precision and recall of Open IE compare with

a traditional IE system? Is it possible to combine Open IE with a “lexicalized” system to

achieve gains in performance? In this chapter, we examine the tradeoffs between relation-

specific (“lexicalized”) extraction and relation-independent (“unlexicalized”) extraction and

reach a conclusion analogous to that of Klein and Manning.

This chapter addresses the questions raised above and makes the following contributions:

• Section 5.1 compares O-crf, an extractor developed as part of the TextRunner

Open IE system to a traditional IE system. Without any relation-specific input, O-
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crf obtains the same precision with lower recall compared to a lexicalized extractor

trained using hundreds, and sometimes thousands, of labeled examples per relation.

• Section 5.2 presents H-crf, an ensemble-based extractor that learns to combine the

output of the lexicalized and unlexicalized IE systems and achieves a 10% relative

increase in precision with comparable recall over traditional IE.

• Section 5.3 introduces R-TextRunner, an extension to TextRunner that uses

initial knowledge automatically acquired about relations and their instances to achieve

additional gains in precision and recall, without any relation-specific labor. At 90%

precision, R-TextRunner improves the recall of Open IE from 16.2% to 47.6%,

and locates a relative average of 10% more high-quality facts than a state-of-the-art

supervised IE system.

5.1 Traditional Relation Extraction

How does the precision and recall of Open IE compare with that of traditional relation-

specific extraction? We compare the behavior of open, or “unlexicalized,” extraction to

relation-specific, or “lexicalized” extraction, when a target relation is specified in advance.

To facilitate a controlled comparison, we developed a CRF-based extractor, which we

refer as R1-crf. Although the graphical structure of R1-crf is the same as O-crf, R1-

crf differs in a few ways. A relation R is specified a priori along with its entity types.

R1-crf is trained from hand-labeled positive and negative instances of R. The extractor

is also permitted to use all lexical features, and is not restricted to closed-class words as is

O-crf. Since R is known in advance, R1-crf outputs a tuple at extraction time, the tuple

is believed to be an instance of R. Thus, following extraction with R1-crf, computing

relation synonyms is not necessary.

We compare O-crf to R1-crf as opposed to published classification-based relation

extraction systems in order to isolate the effects of lexicalization vs. unlexicalization, super-

vised vs. self-supervised training, and single-relation vs. multi-relation extraction, keeping

the model-structure constant.
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5.1.1 Experimental Results

To compare performance of the extractors when a small set of target relationships is known

in advance, we used labeled data for four different relations – corporate acquisitions, birth-

places, inventors of products and award winners. The first two datasets were collected from

the Web, and made available by Bunescu and Mooney [12]. To augment the size of our cor-

pus, we used the same technique to collect data for two additional relations, and manually

labeled positive and negative instances by hand over all collections. While in the previous

chapter, the size of the Web corpus made it infeasible to measure absoulte recall, the use of

this hand-labeled dataset makes it possible to estimate recall according to the traditional

definition – the proportion of positive instances that the system extracts for each relation.

For each of the four relations in our collection, we trained R1-crf from labeled training

data, and ran each of R1-crf and O-crf over the respective test sets, and compared the

precision and recall of all tuples output by each system. Table 5.1 provides the amount of

data collected for each relation.

Train Test

Relation Examples Examples

Acquisition 3042 (1481) 1017 (169)

Birthplace 1852 (260) 601 (45)

InventorOf 1000 (421) 300 (120)

WonPrize 1000 (255) 390 (216)

Table 5.1: Summary of IE Corpora: A collection of labeled Web sentences containing
instances of four relations. The numbers in parenthesis indicate the number of positive
examples.

Figure 5.1 shows that without any relation-specific data, O-crf can achieve a level of

precision comparable to R1-crf. However the recall of the open extractor is lower; at

90% precision, O-crf obtains 13.6% recall compared to 35.1% found by R1-crf. At 75%

precision, O-crf’s recall is 18.4% compared to R1-crf’s 58.4%,
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Figure 5.1: Precision-Recall Tradeoff Between Open and Traditional IE: O-crf
can achieve high precision without any relation-specific input. Recall is lower than R1-crf,
a traditional extractor trained using thousands of examples per relation.

A large number of false negatives on the part of O-crf can be attributed to its lack of

lexical features, which are often crucial when part-of-speech tagging errors are present. For

instance, in the sentence, “Yahoo To Acquire Inktomi”, “Acquire” is mistaken for a proper

noun, and sufficient evidence of the existence of a relationship is absent. The lexicalized

R1-crf extractor is able to recover from this error; the presence of the word “Acquire” is

enough to recognize the positive instance, despite the incorrect part-of-speech tag.

Another source of recall issues facing O-crf is its ability to discover synonyms for a given

relation. We found that while Resolver improves the relative recall of O-crf by nearly

50%, O-crf locates fewer synonyms per relation compared to its lexicalized counterpart.

With Resolver, O-crf finds an average of 6.5 synonyms per relation compared to R1-

crf’s 16.25.

Exactly how many training examples per relation does it take R1-crf to achieve a

comparable level of precision? We varied the number of training examples given to R1-

crf, and found that in 3 out of 4 cases it takes hundreds, if not thousands of labeled
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O-CRF R1-CRF

Relation P R P R Train Ex

Acquisition 75.6 19.5 67.6 69.2 3042∗

Birthplace 90.6 31.1 92.3 53.3 600

InventorOf 88.0 17.5 85.7 27.8 1000∗

WonPrize 62.5 15.3 62.7 24.1 35

All 75.0 18.4 75.0 43.8 >4677

Table 5.2: An Effort to Match Open IE: For 4 relations, a minimum of 4677 hand-
tagged examples is needed for R1-crf to approximately match the precision of O-crf for
each relation. A “∗” indicates the use of all available training data; in these cases, R1-crf
was unable to match the precision of O-crf.

examples for R1-crf to achieve precision comparable to O-crf. In two cases – acquisitions

and inventions – R1-crf is unable to match the precision of O-crf, even with many labeled

examples. Table 5.2 summarizes these findings.

In light of our findings, the relative tradeoffs of open versus traditional IE are as follows.

Open IE automatically offers a high level of precision without requiring manual labor per

relation, at the expense of recall. When relationships in a corpus are not known, or their

number is massive, Open IE is essential. When higher levels of recall are desirable for a small

set of known target relations, traditional IE is more appropriate. However, in this case, one

must be willing to undertake the cost of acquiring labeled training data for each relation,

via human annotators or a computational procedure such as bootstrapped learning.

5.2 Hybrid Relation Extraction

Since O-crf and R1-crf have complementary views of the extraction process, it is natural

to wonder whether they can be combined to produce a more powerful extractor. Empirical

multistrategy learning refers to the combination of multiple learning approaches using a

single algorithm [28]. In a variety of machine learning settings, the use of an ensemble of

diverse classifiers during prediction has been observed to yield higher levels of performance
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compared to individual algorithms. We now describe an ensemble-based or hybrid approach

to RE that leverages the different views offered by open, self-supervised extraction in O-crf,

and lexicalized, supervised extraction in R1-crf.

5.2.1 Stacked Relation Extraction

Stacked generalization, or stacking, [94], is an ensemble-based framework in which the goal is

learn a meta-classifier from the output of several base-level classifiers. The training set used

to train the meta-classifier is generated using a leave-one-out procedure: for each base-level

algorithm, a classifier is trained from all but one training example and then used to generate

a prediction for the left-out example. The meta-classifier is trained using the predictions of

the base-level classifiers as features, and the true label as given by the training data.

Previous studies [88, 100, 79] have shown that the probabilities of each class value as

estimated by each base-level algorithm are more effective features when training meta-

learners. Stacking was shown to be consistently more effective than voting, another popular

ensemble-based method in which the outputs of the base-classifiers are combined either

through majority vote or by taking the class value with the highest average probability.

Other researchers have found the stacking framework to yield benefits in the context

of IE. Freitag [35] used linear regression to model the relationship between the confidence

of several inductive learning algorithms – rote learning, Naive Bayes, grammatical infer-

ence and a relational rule learning – and the probability that a prediction is correct. Over

three different document collections, the combined method yielded improvements over the

best individual learner for all but one relation. The efficacy of ensemble-based methods

for extraction was further investigated by [79], who experimented with combining the out-

puts of a rule-based learner, a Hidden Markov Model and a wrapper-induction algorithm in

five different domains. Of a variety of ensemble-based methods, stacking proved to consis-

tently outperform the best base-level system, obtaining more precise results at the cost of

somewhat lower recall.

We used the stacking methodology to build an ensemble-based extractor, referred to as

H-crf. Treating the output of an O-crf and R1-crf as black boxes, H-crf learns to
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R-CRF Hybrid

Relation P R F1 P R F1

Acquisition 67.6 69.2 68.4 76.0 67.5 71.5

Birthplace 93.6 64.4 76.3 96.5 62.2 75.6

InventorOf 85.7 50.0 42.0 87.5 52.5 65.6

WonPrize 73.6 52.8 61.5 75.0 50.0 60.0

All 74.6 58.2 65.4 79.2 56.9 66.2

Table 5.3: Hybrid Information Extraction: A hybrid extractor that uses Open IE
improves precision for all relations, at an insignificant cost to recall.

predict which, if any, tokens found between mentions of a pair of entities (e1, e2), indicates

a relationship. Due to the sequential nature of our RE task, H-crf employs a CRF as the

meta-learner, as opposed to a decision tree or regression-based classifier.

H-crf uses the probability distribution over the set of possible labels according to each

O-crf and R1-crf as features. To obtain the probability at each position of a linear-chain

CRF, the constrained forward-backward technique described in [22] is used. H-crf also uses

a numeric string-similarity feature that compares the similarity of the relations predicted

by O-crf and R1-crf and a numeric feature that indicates whether either or both base

extractors return “no relation” for a given pair of entities. Finally, at each given position i

between e1 and e2, H-crf uses the presence of the word observed at i as a feature, as well

as the presence of the part-of-speech-tag at i.

5.2.2 Experimental Results

In this section, we evaluate the performance of H-crf, an ensemble-based extractor that

learns to perform RE for a set of known relations based on the individual behaviors of

O-crf and R1-crf.

As shown in Table 5.3, the use of Open IE as part of H-crf, improves precision from

74.6% to 79.2% with only a slight decrease in recall. Overall, F1 improved from 65.4% to
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66.2%. However, one disadvantage of a stacking-based hybrid system is that labeled training

data is still required.

5.3 The R-TextRunner System

In Section 5.1.1 we found that while our self-supervised Open IE system could match the

precision of a supervised IE system, its recall was notably lower. Thus, it appeared that

the developer of an IE system might be forced to make a tradeoff: develop an Open IE

system, incurring only a one-time development cost to extract instances of a massive set

of unknown relationships, but accept low recall, or invest the time and expertise required

to enumerate a set of possibly interesting relationships from a large body of text, and then

train an extractor for each one.

Perhaps, however, we do not need to be resigned to making such a decision. Earlier in

Section 1.2.1, we surveyed weakly-supervised IE, a class of systems that made significant

gains in automating the development process. Compared to supervised algorithms, in which

every example in a training set must be labeled as positive or negative, weakly-supervised

algorithms demand only a small set of handcrafted seed inputs and an unlabeled training

corpus. For IE, seeds take the form of extraction patterns or entities known to be positive

or negative instances of the relation. Two recent Web IE systems [12, 62], demonstrated the

ability to extract relations in the weakly-supervised setting using only 8-10 training examples

per relation. These approaches have yielded significant reductions in manual labor relative

to supervised algorithms which typically require several orders of magnitude more labeled

inputs. However, when the goal is to extract instances for a large set of relations, i.e. the

25,000 verbs defined in WordNet or the 8,000 different attributes that appear in Wikipedia

summaries, even this amount of effort becomes non-trivial.

Recognizing that seed inputs need not necessarily be specified by hand, two self-supervised

IE systems reduced the labor required for system development even further. A baseline ver-

sion of the KnowItAll system [33] used strictly domain-independent patterns to extract

instances of a given relationship. While recall was sometimes low, KnowItAll’s relation-

independent patterns were successful at identifying facts with very high levels of accuracy.

Thus, a subsequent version of KnowItAll used high-scoring output from the baseline sys-
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tem as seed inputs to a pattern learning algorithm. KnowItAll’s acquisition of relation-

specific extraction patterns yielded a 50% to 80% boost in recall and 28% to 35% reduction

in error. URES [71] also leveraged high-quality output from baseline KnowItAll to train

a pattern-learning algorithm that increased the number of facts extracted while maintaining

the same precision of the baseline system.

Wu, Hoffmann and Weld [95] also demonstrated they could improve the recall of a high-

precision extraction algorithm by applying shrinkage, a technique that enables a system to

find additional training examples within a corpus when the initial set of training instances is

sparse. Additional gains in recall were observed after retraining the extractors with a corpus

augmented with both the output of TextRunner and additional examples automatically

identified from a large Web corpus.

Is it possible to employ a similar approach in the open extraction setting? Once Tex-

tRunner has initially discovered relationships present within a corpus and located a set of

high-quality instances, can we learn to improve extraction of specific relations of interest?

Inspired by KnowItAll and URES, we now describe R-TextRunner, a system that uses

extractions deemed trustworthy by TextRunner’s Assessor to automatically identify a set

of sentences containing positive and negative instances of a given relation. The labeled data

is used to learn more about individual relationships using a traditional relation extraction

algorithm. Our experiments demonstrate that we can leverage TextRunner’s knowledge

about entities and relationships to improve extraction recall on a per-relation basis, without

incurring any additional manual labor.

5.3.1 Algorithm

Instead of requiring a set of seed patterns or named entity pairs, the R-TextRunner system

uses tuples automatically found by an open extraction system to seed a self-supervised

learning process about specific relations. While this process is relation-specific, no additional

human labor is necessary. The relation names and training data are provided automatically

by the Open IE system. Specific relationships can be targeted using a data-driven approach

(e.g. those relationships about which the system currently knows most/least about) or a
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user-driven approach (e.g. the relationships most often queried or those explicitly demanded

by a user). The automatically labeled data can be used to train any traditional relation

extraction algorithm.

The process begins by running TextRunner over an unlabeled corpus C, which pro-

duces a set of named relationships R. For every R ∈ R, TextRunner also outputs T+
r ,

the set of tuples believed to be positive instances of R. While the accuracy of TextRun-

ner’s extractor is sufficiently high, it is likely that T+
r will contain some false positives. We

can mitigate this issue by selecting only those instances extracted from a large number of

sentences, which are more likely to be trustworthy.

While obtaining a reliable set of positive examples is rather straightforward, how can

we choose a set of negative training examples for a given relation R? Our solution is based

on the observation that in many cases, more than one relation is observed between a pair

of objects e1 and e2. While TextRunner identifies that (Mozart, was born in, Vienna)

satisfies the Birthplace relation, it also finds that (Mozart, worked in, Vienna) and (Mozart,

left, Vienna) are asserted in the corpus. Due to Resolver, the system already knows that

“worked in” and “left” are not synonymous with “was born in.” R-TextRunner uses

precisely this knowledge to automatically label sentences in which a relationship is extracted

between entities in the seed tuples. R-TextRunner uses sentences yielding tuples of the

form (e1, P, e2) where P 6= R and (e1, R, e2) also holds as negative examples.

Perhaps greater than the potential of false positives, is the danger of false negatives.

TextRunner’s knowledge of relation synonyms is imperfect. For instance, Resolver

did not find that “X is from Y ” can be a synonym of “X was born in Y .” By default,

TextRunner parameterizes Resolver to favor high precision resolution of synonyms,

making potential sacrifices in recall. To use Resolver for self-supervised training, we find

that it helps significantly to recompute relation synonyms on demand using a more relaxed

parameter setting.

Specifically, R-TextRunner operates as follows:

1. Run TextRunner on C, an unlabeled corpus.

2. For a relation R ∈ R, the set of relations discovered by TextRunner:
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(a) Get T+
r , the set of tuples asserting t = (e1, R, e2) discarding any t found in fewer

than m sentences in C. Retain the sentences from which each tuple was extracted.

(b) Get T−

r , the set of tuples asserting t = (e1, P, e2) such that P 6= R and (e1, R, e2)

also holds. Retain the sentences from which each tuple was extracted.

(c) Let T = T+
r ∪ T−

r . Run Resolver with input T . Output the hypothesized

synonyms of R.

(d) For each t = (e1, x, e2) ∈ T , label each sentence asserting t as positive if x is a

synonym of R and negative otherwise.

(e) Use the set of labeled sentences to train an extractor for R.

5.3.2 Experimental Results

In this section we compare several paradigms for IE using the following embodiments:

• Open IE: Open extractor that discovers and extracts a large set relations at once from

an unlabeled corpus. We use the TextRunner system as described in Chapter 3.

• Supervised IE: Supervised extractor trained one relation at a time from a fully

labeled corpus. We use a public implementation of Bunescu’s Subsequence Kernel

(SSK) algorithm1 [13]. SSK uses a support vector machine to model relations between

a set of entities. Using sequences of features derived from words, part-of-speech tags

and phrase chunks, SSK was shown to outperform a similar kernel-based algorithm

that used features derived from a dependency parser.

• Weakly-Supervised IE: Weakly-supervised extractor trained one relation at a time

from a handful of inputs and an unlabeled corpus. We use published test data for

SSK-MIL [12], an extension of SSK that belongs to the class of multiple instance

learning (MIL) algorithms. MIL [87] is a weakly supervised learning framework in

which a model is trained from bags of examples. As opposed to individual instance

labels, only the bag labels are required for learning. A bag is considered positive if

1http://ace.cs.ohiou.edu/∼razvan/code/ssk cor.tar.gz
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it contains at least one positive example; thus, one only needs to provide a pair of

entities known to embody the relation along with an unlabeled corpus sufficiently large

enough to guarantee the presence of a positive instance. Relative to a Web IE corpus

containing thousands of training examples per relation, SSK-MIL is competitive with

its fully-supervised counterpart. At 90% precision, the recall of SSK and SSK-MIL

is 57.8% and 44.3%, respectively.

• Self-Supervised IE: The R-TextRunner algorithm self-trained one relation at a

time using automatically generated relation names and training data from TextRun-

ner. R-TextRunner employs the SSK algorithm to train each new extractor.

To evaluate each paradigm, we used the training and test corpora described in Sec-

tion 5.1.1 which covers four relations — Acquisition, Birthplace, InventorOf and WonPrize.

SSK trains each extractor using all available training examples: Acquisition (3042), Birth-

place (1852), InventorOf (1000), WonPrize (1000).

SSK-MIL uses 8 seed inputs per relation to label an unlabeled version of the same

training corpus. We had access only to the algorithm’s output as reported on the original

test relations, Acquisition and Birthplace, and not to the system implementation. Therefore,

we are not able to report performance of the weakly-supervised algorithm for InventorOf

and WonPrize, the two relations whose data we added to the collection.

R-TextRunner uses seed data output by TextRunner after it has been applied to

a corpus of 500 million Web pages previously described in Section 4.1.2. Tuples appear-

ing fewer than 3 times in the corpus were not used as seeds. The baseline version of

R-TextRunner was constrained to use only the same number of training examples per

relation as SSK and SSK-MIL. The training sentences were chosen randomly from all that

were available from TextRunner while maintaining the balance of positive and negatives

in the full set. The full version of R-TextRunner was permitted to use 10,000 randomly-

chosen training examples per relation. While more examples were available, we found that

changes in F-measure, the harmonic mean of precision and recall, did not vary significantly

after the 7,500-10,000 mark.
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Figure 5.2 compares TextRunner, our baseline Open IE system, to its extension R-

TextRunner. The precision-recall curves demonstrate the utility of self-supervised learn-

ing. Using only 1,000 self-labeled examples per relation, R-TextRunner finds 2.3 the

number of correct instances found by TextRunner. At 90% precision, recall improves

from 16.2% to 37.0% over the set of 4 test relations. Significant gains are made when R-

TextRunner uses an order of magnitude more Web training data, which is labeled at no

additional expense. Using 10,000 self-labeled examples, recall increases by nearly a factor

of three. At 90% precision, R-TextRunner improves the recall of Open IE from 16.2%

to 47.6%. On a Pentium 4 3.40GHz with 1GB of memory, training the classifier takes

approximately 10 minutes with 1,000 examples, and 3 hours with 10,000 examples.

Table 5.4 provides a list of expressions R-TextRunner believes to be positive indicators

for each test relation. Not surprisingly, there is some noise introduced by the algorithm’s self-

labeling process. For example, in the case of the WonPrize relation, “leave” is mistakenly

identified as a synonym, as is “win while” which is a malformed relation, “be awarded”

is erroneously tagged as a negative example. Even with approximately 5% of instances

mistakenly labeled, R-TextRunner is able to improve recall without making sacrifices to

precision.

Figure 5.3 plots the precision and recall of TextRunner and R-TextRunner rela-

tive to supervised and weakly-supervised IE systems. Without any relation-specific labor

or hand-tagging of data, R-TextRunner locates a relative average of 10% more high-

quality facts than a state-of-the-art supervised IE system. We also computed area under

the precision-recall curve (AUC) in the high-precision range (90% - 100%) by measuring the

trapezoidal areas created between each point. On average, R-TextRunner reduces the

error rate of a supervised extractor by 4.5%, increasing area under the curve from 0.430 to

0.474. For each relation, the difference is statistically significant at p < 0.01 according to

a two-sample t-test, using the methodology for measuring the standard deviation of AUC

given in [68].

Table 5.5 summarizes the paradigms studied. At a one-time cost incurred per language

of interest, Open IE can locate high-quality instances of a large set of relationships whose

identity need not be known in advance. While recall may at first be lower than traditional
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Figure 5.2: Automatically Improving the Recall of Open IE: Once a set of relation
names and reliable instances have been extracted by TextRunner, R-TextRunner uses
them to improve the recall on a per-relation basis. On average, recall more than doubles
when using 1,000 examples per relation and triples when using 10,000 examples.

supervised extractors, one can leverage the knowledge initially acquired by Open IE to

bootstrap additional learning about specific relations as needed. Thus, both state-of-the-

art precision and recall can be achieved without making labor-intensive or domain-specific

efforts.
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Figure 5.3: State-of-the-Art Web IE without the Effort: For a set of 4 relations,
R-TextRunner, a self-supervised Web IE system, uses the knowledge acquired by an
Open IE system to automatically improve its performance. Without any manual input, R-
TextRunner identifies a larger number of high-precision assertions than its supervised and
weakly-supervised counterparts, which require anywhere from tens to thousands of labeled
inputs per relation.
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Acqusition Birthplace InventorOf WonAward

X.∗ acquire .∗Y X.∗ be born in .∗Y X.∗ invent .∗Y X.∗ win .∗Y

X.∗ to acquire .∗Y X.∗ would be born in .∗Y X.∗ create .∗Y X.∗ have win .∗Y

X.∗ to buy .∗Y X.∗ have be born in .∗Y X.∗ develop .∗Y X.∗ will win .∗Y

X.∗ have acquire .∗Y X.∗ be born in of .∗Y X.∗ have invent .∗Y X.∗ to win .∗Y

X.∗ purchase .∗Y X.∗ who be born in .∗Y X.∗ who invent .∗Y X.∗ receive .∗Y

X.∗ have buy .∗Y X.∗ to be born in .∗Y X.∗ introduce .∗Y X.∗ win in .∗Y

X.∗ is buying .∗Y X.∗ will be born in .∗Y X.∗ patent .∗Y X.∗ can win .∗Y

X.∗ merge with .∗Y X.∗ marry be born in .∗Y X.∗ is inventing .∗Y X.∗ leave .∗Y

X.∗ have purchase .∗Y X.∗ be born in before .∗Y X.∗ demonstrate .∗Y X.∗ would win .∗Y

X.∗ will acquire .∗Y X.∗ must be born in .∗Y X.∗ bring .∗Y X.∗ is winning .∗Y

X.∗ buy out .∗Y X.∗ have create .∗Y X.∗ may have win .∗Y

X.∗ is acquiring .∗Y X.∗ may have invent .∗Y X.∗ could win .∗Y

X.∗ pay for .∗Y X.∗ have bring .∗Y X.∗ will win in .∗Y

X.∗ will buy .∗Y X.∗ can create .∗Y X.∗ have win in .∗Y

X.∗ offer for .∗Y X.∗ who develop .∗Y X.∗ win while .∗Y

X.∗ snap up .∗Y X.∗ is creating .∗Y X.∗ win with .∗Y

X.∗ offer .∗Y X.∗ is introducing .∗Y

X.∗ which acquire .∗Y

X.∗ which own .∗Y

X.∗ invest in .∗Y

X.∗ which buy .∗Y

X.∗ aquire .∗Y

X.∗ take over .∗Y

X.∗ pick up .∗Y

X.∗ bring .∗Y

Table 5.4: R-TextRunner: Once TextRunner has discovered a set of relations and
trustworthy instances of each, the output can be used to automate additional learning
about a particular relation. For the four relations we studied, we provide the phrases most-
frequently used by R-TextRunner to automatically label positive instances for learning.
Words have been normalized to their base forms.
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Open Supervised Weakly-Supervised Self-Supervised

Relation AUC P ≥ 90%

Acquisition 0.170 ± 0.041 0.458 ± 0.006 0.340 ± 0.006 0.475 ± 0.007

Birthplace 0.309 ± 0.033 0.681 ± 0.020 0.528 ± 0.021 0.760 ± 0.021

InventorOf 0.164 ± 0.011 0.293 ± 0.009 n/a 0.310 ± 0.011

WonPrize 0.040 ± 0.038 0.287 ± 0.006 n/a 0.352 ± 0.007

Labor Cost

O(1) O(1000R) O(10R) O(1)

Runtime

O(kD) O(RD) O(RD) O(kD + RD)

Table 5.5: A Comparison of IE Paradigms: Given a corpus of D documents and
R relations to extract, we compare an open extractor, a supervised extractor, a weakly-
supervised extractor and a self-supervised extractor trained using the open extractor and
the Web. Listed are area under the precision/recall curve (AUC) in the high-precision
range (90%-100%). With the exception of the open extractor, each system uses the same
underlying extraction algorithm to learn a traditional single-relation extractor. While the
labor cost of supervised and weakly-supervised learning is on the order of 10 and 1000
hand-labeled instances per relation, respectively, the amount of manual effort required by
the open and self-supervised systems is independent of R. The self-supervised extractor
consistently locates a greater number of high-precision extractions than the completely
supervised version.
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Chapter 6

CONCLUSIONS

This thesis presented Open Information Extraction (Open IE), a powerful new paradigm

that eschews relation-specific extraction in favor of process in which relations of interest are

automatically discovered from natural language text. Unlike traditional IE systems that

require development of training data and corpus analysis with the naming of each new

relation, Open IE uses domain-independent methods to learn to identify instances of an

unbounded set of relationships in a single data-driven pass.

This thesis also introduced TextRunner, a fully implemented Open IE system that

supports a broad range of unanticipated queries over arbitrary relations. TextRunner

identifies its own training examples, learns a relation-independent extractor for the English

language in the form of a conditional random field, and identifies relation synonyms using

an unsupervised algorithm. From 500 million Web pages, TextRunner was found to

extract approximately 218 million distinct facts involving both named entities and abstract

objects. Of those, 13.5 million describe more than 16,000 relationships about 4.2 million

named entities with a precision of 84%. Relative to recent efforts to acquire a diverse set

of knowledge from Wikipedia, the set of relationships discovered by TextRunner is larger

by an order of magnitude and covers a more diverse set of phenomena.

We found that Open IE, as embodied by TextRunner, achieved precision comparable

to relation-specific extractors trained from hundreds, and sometimes thousands, of labeled

examples per relation. While the recall of TextRunner was initially lower than traditional,

supervised extractors, we developed a self-supervised algorithm that improved the recall of

specific relations on demand. Without incurring any additional labor costs, this method

nearly tripled the recall of TextRunner and surpassed the recall of a supervised extractor.

We conclude that when relationships in a corpus are not known, or their number is

massive, such as on the Web, Open IE is essential. To further improve the power of Open
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IE, we have identified several directions for future work.

Extractor-Level Improvements Certain improvements to TextRunner’s entity iden-

tification process have the potential to improve the system’s overall precision and recall.

These include integration with a Web-scale named-entity recognizer such as Lex [29], de-

veloping the ability to resolve underspecified entities (e.g. (the company, led by, Steve Jobs)

refers to Apple Computer), and finding a way for TextRunner to disambiguate entity

mentions (e.g., does (Will Smith, arrived in, Florida) refer to the actor or the athlete?).

Application to Other Languages One particular challenge of interest involves the

application of the Open IE paradigm to languages other than English. TextRunner

leveraged an English parser as a resource for automatically providing domain-independent

training examples. While parsing technologies exist for several widely-spoken languages,

including Chinese, German, French and Spanish, their existence is not guaranteed for all

possible target languages. In this case, one must explore other means for acquiring a large

set of relation-independent training data.

Textual Theories and Inference While IE systems such as TextRunner can uncover

assertions about individual entities, the formation of a coherent theory from a textual cor-

pus involves representation and learning abilities not currently achievable by today’s IE

systems. Compared to individual assertions output by IE systems, a theory includes collec-

tive knowledge about general concepts. This may include knowledge of classes of entities

and their properties, (e.g. Fruit is something that Grows), knowledge of relationships at

the class level, (e.g. Contain(Fruit, Nutrient)) and rules that encode dependencies among

propositions (e.g. GrownIn(X,Y ) & IsA(X, CitrusFruit) → HasWarmClimate(Y )).

The Alice system [6] demonstrated it could discover high-level concepts and relations

among them from the output of TextRunner. To facilitate the learning of rules that

would enable an Open IE system to reason over the facts it has acquired, the system must

be integrated with inference. For instance, a query asking “What vegetables help prevent

osteoporosis?” may reveal few sentences stating directly that “Kale prevents osteoporosis.”
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To answer the question, a system must piece together the answer from multiple sources,

such that kale is a vegetable, kale contains calcium and doctors believe that calcium prevents

osteoporosis.

While methods for textual inference have typically applied at the sentence or paragraph

level, the Holmes system [73] recently demonstrated it could use assertions output by

TextRunner applied to millions of Web pages to answer complex queries. Further work is

needed to extend Holmes’s ability to answer a wide variety of query types and to make it

run at interactive speeds. The development of scalable inference methods is a critical step

that will help us achieve our original vision of tomorrow’s search engine.
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Appendix A

TEXTRUNNER DATA

We have made the following data available at http://www.cs.washington.edu/

research/textrunner/banko-thesis-data.tar.gz

• The complete list of concrete relations found by TextRunner after processing each

of Wikipedia and the General-Web corpora.

• The set of tuples found by TextRunner for the ten relations evaluated in Table 4.1,

for both the Wikipedia and the General-Web corpora.

• A complete list of concrete relations relative to the entity types listed in Table 4.4 for

the following systems

– TextRunner: Wikipedia and General-Web corpora

– DBpedia: Wikipedia corpus

– Yago: Wikipedia corpus

• The list of seed instances found by TextRunner, used to boot the R-TextRunner

system described in Section 5.3 and evaluated in Section 5.3.2.


