
Open Integrated Development and
Analysis Environments

Vom Fachbereich Informatik der Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

vorgelegt von

Diplom Wirtschaftsinformatiker Michael Eichberg

geboren in Langen

Referent: Prof. Dr.-Ing. Mira Mezini

Korreferent: Prof. Dr. Oege de Moor

Datum der Einreichung: 20. November 2006

Datum der mündlichen Prüfung: 12. Januar 2007

Erscheinungsjahr 2007

Darmstadt D17

ii

Abstract

Comprehensive tool support is essential to enable developers to cope with

the complexity of modern software development projects. Software projects

are getting larger and larger, are being developed using different languages,

and make use of many third-party libraries as well as frameworks. Hence,

tools are required: for software comprehension, for checking that libraries

and frameworks are correctly used, and to ensure that the design does not

degrade over time.

Though numerous successful tools have already been developed for these

tasks [DDL99, HP04, JD03, Fav02, HVdM06, LL05], several issues remain:

the tools are usually highly specialized, their extensibility is limited, and an

integration between the tools is lacking. Furthermore, IDE integration and

in particular an integration with the incremental build process offered by

modern IDEs is also often missing. Unfortunately, the direct integration of

several code analysis tools with the incremental build process is not possible.

When each tool processes the project’s resources on its own and also main-

tains its own source model, the overall memory requirements and analysis

time is prohibitive.

To address these issues, this thesis proposes the concept of a Build Pro-

cess Integrated Open Static Analysis Platform. The core functionality of such

a platform is to coordinate the execution of static analyses that are encap-

sulated into modules with well-defined interfaces. These interfaces specify

what the analyses require and provide in terms of the data they process. For

a tool that is built upon such a platform it is sufficient to specify the data

it requires. The platform can then determine the set of analyses and their

execution order to satisfy the tool’s requirements.

Modeling analyses as modular producer-consumer units facilitates the si-

multaneous integration of several tools into the incremental build process of

modern IDEs. When compared to using several independent tools, the over-

all memory requirements are reduced, since the source model derived by the

executed analyses is shared among all tools built upon the platform. Further-

more, the overall analysis time is also reduced since analyses are executed at

iii

iv ABSTRACT

most once, even if the derived information is required by more than one tool.

The overall analysis time is further minimized by the parallel execution of

those analyses that process different information.

The feasibility of the proposed approach is demonstrated by Magellan.

Magellan is an open static analysis platform tightly integrated with the

incremental build process of the Eclipse IDE. This integration turns Eclipse

into an Integrated Development and Analysis Environment. The set of mod-

ules implementing the static analyses is freely extensible and the data model

of the database is open. An open data model is crucial to support new

analyses that need to store derived information for the use by subsequent

analyses.

Besides featuring a fully flexible analysis stack, Magellan also supports

the embedding of query engines. Supporting the execution of queries is indis-

pensable for enabling end-users to define application specific analyses. The

ability to execute queries is also required to facilitate software comprehen-

sion tools. As a proof of concept an XQuery processor and a Prolog system

are embedded into Magellan. Both engines are evaluated w.r.t. to using

them for the execution of queries along with the incremental build process.

The XQuery engine is additionally evaluated in the context of software com-

prehension tools as a means to enable the end-user to define new ways to

navigate through code.

The platform is validated by four tools built on top of it: a software explo-

ration tool, a metrics tool, an optional type system, and a set of lightweight

static analyses that check structural properties of source code.

Zusammenfassung

Eine Umfassende Werkzeugunterstützung ist essentiell, um Entwicklern die

Beherrschung der Komplexität moderner Softwareentwicklungsprojekte zu

ermöglichen. Softwareprojekte werden zunehmend größer, verwenden ver-

schiedene Sprachen und nutzen eine große Anzahl externer Bibliotheken und

Frameworks. Vor diesem Hintergrund werden Werkzeuge zur Förderung des

Softwareverständnisses benötigt, um zu prüfen, ob Bibliotheken und Frame-

works korrekt benutzt werden und um sicherzustellen, dass das Design von

Anwendungen während der Entwicklung nicht zerfällt.

Obwohl bereits zahlreiche erfolgreiche Werkzeuge für diese Aufgaben ent-

wickelt wurden [DDL99, HP04, JD03, Fav02, HVdM06, LL05], sind einige

Probleme noch ungelöst: die Werkzeuge sind typischer Weise hoch speziali-

siert, ihre Erweiterbarkeit ist beschränkt und eine Integration zwischen den

Werkzeugen ist nicht vorhanden. Weiterhin ist eine Integration in integrierte

Entwicklungsumgebungen (IDEs) und insbesondere eine Einbettung in den

inkrementellen Übersetzungsvorgang moderner IDEs meist nicht vorhanden.

Eine direkte Integration mehrerer Analysewerkzeuge mit dem inkrementellen

Übersetzungsvorgang ist nicht möglich. Wenn jedes Werkzeug den Quelltext

des Projekts selbständig verarbeitet und auch ein eigenes Modell der Software

wartet, dann sind die Gesamtanforderungen bezüglich Speicherbedarf und

Analysezeit zu hoch.

Um diese Probleme zu lösen, wird in dieser Dissertation das Konzept

von offenen statischen Analyseplattformen vorgeschlagen, die in den inkre-

mentellen Übersetzungsvorgang eingebunden sind. Die Kernfunktionalität

solcher Plattformen ist die Koordination der Ausführung statischer Analy-

sen, welche in Module mit wohl definierten Schnittstellen eingekapselt sind.

Die Schnittstellen spezifizieren im Hinblick auf die verarbeiteten Daten, was

die Analysen benötigen und zur Verfügung stellen. Für Werkzeuge, die auf

diesen Plattformen aufsetzen, ist es ausreichend zu spezifizieren welche Daten

benötigt werden. Die Plattform kann dann die Menge der Analysen und ihre

Ausführungsreihenfolge bestimmen, um die Anforderungen der Werkzeuge

zu erfüllen.

v

vi ZUSAMMENFASSUNG

Die Modellierung der Analysen als modulare Produzenten-Konsumenten-

Einheiten ermöglicht die gleichzeitige Integration mehrerer Werkzeuge in den

inkrementellen Übersetzungsprozess moderner IDEs. Verglichen mit der Nut-

zung mehrerer unabhängiger Werkzeuge sind die Speicheranforderungen auf-

grund der gemeinsamen Nutzung des Softwaremodells reduziert. Das Soft-

waremodell wird während der Ausführung der Analysen abgeleitet und von

allen auf der Plattform aufsetzenden Werkzeugen genutzt. Weiterhin wird

die Gesamtanalysezeit dadurch reduziert, dass jede Analyse höchstens ein-

mal ausgeführt wird — insbesondere auch dann, wenn die abgeleitete Infor-

mation von mehreren Werkzeugen benötigt wird. Darüber hinaus wird die

Gesamtanalysezeit minimiert durch die parallele Ausführung von Analysen,

die verschiedene Daten verarbeiten.

Die Realisierbarkeit des vorgeschlagenen Ansatzes wird durch Magellan

demonstriert. Magellan ist eine offene statische Analyseplattform, die eng

in den inkrementellen Übersetzungsprozess der Eclipse IDE integriert ist.

Diese Integration verwandelt Eclipse in eine Integrierte Entwicklungs- und

Analyseumgebung. Die Menge der Module, die statische Analysen implemen-

tieren, ist frei erweiterbar und das Datenmodell ist offen für Ergänzungen.

Ein offenes Datenmodell ist unabdingbar, um neue Analysen zu unterstützen,

die abgeleitete Information für nachfolgende Analysen zwischenspeichern müs-

sen.

Neben der Unterstützung eines vollständig flexiblen Analysestapels unter-

stützt Magellan auch das Einbetten von Abfragesprachen. Die Unterstüt-

zung der Ausführung von Abfragen ist unverzichtbar, um Endanwendern

die Spezifikation von anwendungsspezifischen Analysen zu ermöglichen. Die

Fähigkeit Abfragen auszuführen ist auch notwendig, um die Implementierung

von Werkzeugen zum Softwareverständnis zu ermöglichen. Die Tragfähigkeit

des Konzeptes wird durch die beispielhafte Einbettung eines Prolog Systems

und eines XQuery Prozessors in Magellan gezeigt. Beide Ansätze wer-

den im Hinblick auf ihre Eignung zur Ausführung von Abfragen als Teil

des inkrementellen Übersetzungsvorgangs bewertet. Der XQuery Prozessor

wird zudem bezüglich seiner Verwendung in Softwareverständniswerkzeugen

evaluiert — als ein Ansatz um dem Endbenutzer die Definition von neuen

Abfragen zur Navigation durch den Code zu ermöglichen.

Die Plattform wird validiert durch vier auf der Plattform aufsetzende

Werkzeuge. Dies sind ein Werkzeug zur Exploration von Software, ein Werk-

zeug zur Berechnung von Metriken, ein optionales Typsystem und eine Menge

von leichtgewichtigen statischen Analysen, die strukturelle Eigenschaften des

Quellcodes überprüfen.

Contents

I Introduction 1

1 Overview 3

1.1 This Thesis in a Nutshell . 3

1.2 Contributions of this Thesis 8

1.3 Structure of this Thesis . 10

2 Requirements on Open Static Analysis Platforms 13

2.1 Applicability . 17

2.2 Scalability . 24

2.3 Usability . 26

2.4 Conclusions . 32

II Magellan: an Open Static Analysis Platform 35

3 An Approach to Decoupling Analyses 37

3.1 Introduction . 37

3.2 The Analysis Data Model . 40

3.3 Specifications of Analysis Dependencies 44

3.4 Scheduling Analyses . 48

3.4.1 Processing the Analyses Specifications 48

3.4.2 Generating the Constraint System 49

3.4.3 Example . 53

3.4.4 Performance . 54

3.5 Evaluation of the Approach 56

3.6 Summary . 59

4 Architecture of Magellan 61

4.1 Building Blocks . 61

4.2 Program Flow . 64

4.3 Evaluation . 68

vii

viii CONTENTS

4.4 Conclusions . 71

5 Embedding Query Engines 73

5.1 Embedding an XQuery Engine 74

5.1.1 Introduction to XQuery 74

5.1.2 Integrating the Saxon XQuery Processor 77

5.1.3 Evaluation . 81

5.2 Embedding a Prolog System 82

5.2.1 Writing Analyses using Prolog 83

5.2.2 Automatic Incrementalization of Analyses 87

5.2.3 Integrating XSB Prolog 90

5.2.4 Evaluation . 92

5.3 Conclusions . 92

III Applications of Magellan 95

6 Lightweight Static Analyses 97

6.1 Introduction . 97

6.2 Checking Code using the Bytecode Analysis Toolkit (BAT) . . 99

6.2.1 Implemented Analyses 101

6.2.2 Performance Evaluation 103

6.3 Checking Structural Properties using XQuery 107

6.3.1 Defining Implementation Restrictions 108

6.3.2 Magellan Integration 111

6.3.3 Evaluation . 112

6.4 Conclusions . 116

7 Software Comprehension 119

7.1 Introduction . 119

7.2 Requirements on Tools for Software Exploration 120

7.3 Code Exploration and Navigation with Sextant 123

7.3.1 Architecture . 124

7.3.2 Evaluation . 128

7.3.3 Related Work . 134

7.4 Conclusions . 136

8 Assessing the Quality of Code 139

8.1 Introduction . 139

8.2 QScope: an Extensible Metrics Framework 140

CONTENTS ix

8.2.1 Calculating Metrics using XQuery 141

8.2.2 Architecture . 146

8.2.3 Using QScope . 148

8.2.4 Extending QScope . 148

8.2.5 Evaluation . 149

8.2.6 Related Work . 151

8.3 Conclusions . 154

9 Advanced Type Systems 157

9.1 Introduction . 157

9.2 Confined Types as an Optional Type System 159

9.2.1 Introduction . 159

9.2.2 Implementation . 164

9.2.3 Evaluation . 169

9.2.4 Related Work . 172

9.3 Conclusions . 175

IV Summary 177

10 Conclusions 179

11 Future Work 183

V Appendix 185

BAT Based Checkers 187

BAT2XML: an XML Representation of Java Bytecode 195

Coping with XML Related Scalability Issues 201

Scientific Career 205

List of Figures

2.1 Pruning of impossible control-flow paths 18

3.1 Combined class diagram of the WPDB and BAT 40

3.2 The LSV of the WPDB . 42

3.3 Semantics of the dependencies between LSV entities 43

3.4 The ASL grammar . 45

3.5 Example of an LSV-access-tree 49

3.6 Constraint system for calculating an analysis schedule 51

3.7 Times for calculating analysis schedules 55

4.1 Overall architecture of Magellan 62

4.2 The Magellan properties dialog. 64

4.3 Program flows leading to full builds 65

4.4 Program flow for incremental builds 67

4.5 The analysis process . 68

4.6 Overall program flow of Magellan 69

5.1 Call graph for Visitor example 89

6.1 A Java method and its quadruples representation 100

6.2 Eclipse showing checker generated error reports 102

7.1 Conceptual Model of Sextant 124

7.2 Visualization of cross-artifact based relations 126

7.3 Visualization options provided by Sextant 127

7.4 Weaving control flow of Steamloom before refactorings 131

7.5 Weaving control flow of Steamloom after refactorings 132

8.1 The Lack of Cohesion in Methods (LCOM) metric 145

8.2 Architectural overview of QScope 146

8.3 Screenshot of QScope . 148

8.4 Query evaluation times for QScope’s metrics 152

x

LIST OF FIGURES xi

9.1 Screenshot of Eclipse when using confined types 164

11.1 Control-flow graph of abs . 200

11.2 Memory requirements when using XML representations 202

List of Tables

2.1 Requirements on open static analysis platforms 32

3.1 Sample analyses and the data they depend on 39

3.2 Example analysis schedule . 53

6.1 Performance figures of BAT based analyses 106

6.2 Evaluation times of queries . 116

7.1 Requirements on software exploration tools 123

8.1 Metrics implemented in QScope 150

9.1 Constraints for confined types 163

9.2 Constraints for anonymous methods 163

9.3 Code changes made to evaluate confined types 171

9.4 Confined types analysis times 172

xii

List of Listings

2.1 Implicit declaration of a method call protocol 21

3.1 Analyses that make base information available 44

3.2 Base analyses that read, create and transform the source model 45

3.3 Analyses that just read the database (Checkers) 46

5.1 XML representation of a simple Java class file 74

5.2 A variable definition in XQuery 76

5.3 A function definition in XQuery 76

5.4 XQuery where the result is a marked up XML document . . . 76

5.5 The root element of the XML database 78

5.6 Excerpt of the XML database 79

5.7 Interface of the embedded XML database 80

5.8 Sample implementation of the Visitor design pattern 83

5.9 Encoding of source code as Prolog database 84

5.10 Query to check implementations of the Visitor design pattern . 85

5.11 The self reference this may be returned (Java) 85

5.12 The self reference this may be returned (Prolog encoding) . . . 86

5.13 Prolog based analysis to detect methods that return this . . . 86

5.14 The reflexive and transitive closure of all variable initializations 87

5.15 The self reference this is not returned 87

6.1 Return value is ignored . 100

6.2 An annotated class . 107

6.3 Checking for Entity beans that are declared final 108

6.4 Checking dependencies between annotations 109

6.5 Checking that no thread synchronization primitives are used . 109

6.6 Context defining query (all EJBs) 110

6.7 Context dependent query (EJBs must not implement finalize) . 111

6.8 Java wrapper for the “select all EJBs” query 111

6.9 ASL file of the “select all EJBs” qzuery 111

6.10 Java wrapper for the “no finalize methods” query 112

6.11 ASL file for the “no finalize methods” query 112

xiii

xiv LIST OF LISTINGS

7.1 XML representation of a Java method’s signature 127

7.2 XQuery to get the Java class given a bean’s name 130

8.1 XQuery for calculating the metric Number of Methods 141

8.2 XML representation of demo.HelloBean 142

8.3 Result of calculating number of methods for demo.HelloBean . . 142

8.4 Abbreviated EJB deployment descriptor for demo.HelloBean . 143

8.5 Methods with declaratively specified transaction attributes . . 144

8.6 XQuery for calculating the Lack of Cohesion in Methods 145

8.7 XQuery to get the methods accessing a specific field 145

9.1 JDK1.1 implementation of Class.getSigners() 160

9.2 Class.getSigners() using Confined Types 161

9.3 Indirect violation of confinement constraints 164

11.1 Usage of the @Restrict annotation. 188

11.2 Example of an if statement where the expression is constant . 190

11.3 Appending one character to a String 191

11.4 A method where the return value must not be ignored 192

11.5 Unnecessary instanceof operator 193

11.6 Useless control-flow statement. 193

11.7 Java bytecode of “HelloWorld” 195

11.8 XML representation of “HelloWorld”. 196

11.9 XML representation of jump instructions 198

11.10XML representation of Java bytecode subroutines 198

11.11Definition of an abs function 199

11.12XML representation of abs . 199

Preface

Already when I was a student in my first semesters, I knew that I wanted to

pursue a doctorate. But, back then I had no idea what it actually means to

do it and how challenging it was going to be. Though I usually prefer to work

on my own, I soon realized - after completing my studies and starting my

doctorate - that doing serious research completely on one’s own is not going

to work. Of course, finally wrapping up the thesis is something you have to

do on your own, but everything before it, that is, carrying out the necessary

research, requires intensive support by many. Besides that, I realized that my

studies had not sufficiently prepared me for a career in research — writing

a diploma thesis and writing a scientific paper are two completely different

things; in particular if english is not your mother tongue. However, the

language barrier was only a minor problem. You first have to identify a

target area in which you want to do research; you have to become confident

in identifying related work and it is also necessary to learn how to judge the

quality of related work, how to communicate your ideas, how to structure a

paper and how to guide and supervise other students that are supposed to

support your work as part of their diploma theses. Due to Prof. Dr. Mira

Mezini’s support — my supervisor — I was able to quickly overcome these

obstacles and after I published my first papers she continued to support me

and helped me to further improve my writing and to further clear up my

ideas. Thank you very much, without your support this thesis would not

have been possible.

Besides Prof. Mezini, I would also like to thank my co-supervisor Prof.

Oege de Moor. He provided a very appreciated second view on my thesis.

His view of my thesis removed my remaining doubts.

Additionally, I would like to thank everyone who contributed to this

thesis, by helping me to write papers or by implementing parts of the re-

search prototypes developed as part of this thesis. I would like to thank

(in alphabetical order): Christoph Bockisch, Sinisa Dukanovic, Daniel Ger-

manus, Michael Haupt, Matthias Kahl, Sven Kloppenburg, Karl Klose, Lukas

xv

xvi LIST OF LISTINGS

Mrokon, Klaus Ostermann, Benjamin Rank, Thorsten Schäfer, Tobias Schuh,

Mario Vekic and all those I forgot to mention.

Furthermore, I would like to thank Gudrun Jörs, my parents Christel and

Werner Eichberg, and my partner Alice Müller. They all supported me in

one way or the other. Due to their support, I was able to stay focused on my

doctorate and to bring the biggest project of my life (so far) to a successful

end.

This work was partially supported by a scholarship of the Deutsche For-

schungsgemeinschaft (DFG) as part of the Graduiertenkolleg 492 “Infras-

truktur für den elektronischen Markt”.

Part I

Introduction

1

Chapter 1

Overview

There is nothing more difficult to take in hand,

more perilous to conduct or more uncertain in its

success than to take the lead in the introduction

of a new order of things.

Niccolo Machiavelli

This thesis discusses the design, implementation and evalua-

tion of analysis platforms that facilitate the integration of static

analysis based tools with an incremental build process, particu-

larly as offered by modern software development environments.

Enabling the simultaneous integration of different code analysis

tools promises to further improve (a) the quality of the software

and (b) the productivity of developers.

1.1 This Thesis in a Nutshell

Modern software development projects are getting larger and larger, are be-

ing developed using different languages, and make use of many third-party

libraries as well as frameworks. After the initial deployment the applications

need to be maintained over years. Hence, to help developers coping with the

complexity of software development, tool support is required: for software

comprehension, for checking that libraries and frameworks are correctly used,

and to ensure that the design does not degrade over time.

3

4 1. Overview

To provide support for the mentioned tasks numerous tools have already

been developed [DDL99, HP04, JD03, Fav02, HVdM06, LL05]. But, these

tools are usually highly specialized and their extensibility — if at all — is

often limited to the particular domain of the tool. For example, Findbugs

[HP04] is limited to finding bug patterns and checking structural properties;

the detection of errors that, e.g., require whole program data-flow analyses

is not supported. Saber [RSS+04b] is delivered with a fixed set of templates

that can be parameterized to detect a set of common types of errors, in

particular errors related to method call protocols; other types of analyses are

not supported. The software visualization tool CodeCrawler [Lan03] provides

a metrics based visualization of the structure of an application, but does not

support an exploration of the program’s control flow.

Hence, developers that want to analyze their projects have to use a mul-

titude of tools. This clearly hinders the adoption of code analysis tools, as

also identified in [Vol06]. An approach is lacking that facilitates the devel-

opment and integration of a wide range of code analysis tools and software

comprehension tools.

Besides lacking inter-tool integration, many current tools are still not

integrated with modern IDEs. This lack of integration between software

engineering tools, and in particular the lack of IDE integration was identified

as one of the main reasons why software engineering tools are not widely

adopted [FES03].

IDE integration and in particular an integration with the incremental

build process offered by modern IDEs promises to further improve the pro-

ductivity of developers:

• IDE integration reduces the effort of using software comprehension and

static code analysis tools; IDE integration enables the effective use of

these tools:

– If tools for finding and preventing errors are integrated into an

IDE, the developer can directly navigate to the source code and

fix the bug given the error message. It is no longer necessary to

manually navigate to the errors identified by the (external) tool.

– If software comprehension tools are IDE integrated, the developer

can directly use the gained knowledge to maintain and evolve the

code. It is not necessary to switch between different tools.

Further, if multiple software comprehension tools are integrated

into the IDE, an integration between the different provided views

1.1. This Thesis in a Nutshell 5

is possible. Being able to navigate between different views was

identified as very useful in a study related to software visualization

tools carried out by Bassil and Keller [BK01].

• A tight integration with an IDE’s incremental build process enables

keeping the source model, which underlies code analysis and compre-

hension tools, always up-to-date. This makes it is possible to give the

developer timely information that helps to asses the effect of the current

change [GYF06]:

– Errors that are immediately reported when they occur are often

easier to comprehend and fix. A small change to the type hierar-

chy of an object-oriented program may cause dozens of cascading

errors. Without immediate feedback the developer will continue

editing the source code to be confronted with dozens of errors only

after the next build or analysis of the project. Tracing the root

of the error messages and judging their relevance is time consum-

ing; immediate feedback is much more effective and improves the

productivity.

Further, by executing analyses that complement the compiler’s

analyses it is possible to detect more errors earlier and, hence, to

reduce the development costs [McC93].

– Software comprehension tools can always immediately be used. It

is no longer necessary for developers to wait until the model is

updated and the developers’ productivity will be increased.

Examples are tools to visualize and explore the control flow of an

application [RSK00, SCHC99] or tools to analyze the mutability1

of fields [PBKM00].

However, a näıve integration, where each tool implements all functional-

ity — from parsing the code to displaying the errors — on its own, is not

feasible. If each tool parses the code and maintains its own source model,

the memory and the time required to maintain the models would be too

excessive to run several independent tools along with the incremental build

process. Furthermore, common functionality is implemented over and over

again, e.g., the code that provides the build process integration, the parsers

1A field is considered mutable if the field’s value is ever updated after the initial ini-
tialization.

6 1. Overview

which derive and maintain the source model during incremental builds, and

the code to visualize error reports. Hence, engineering effort is wasted.

To enable the simultaneous build process integration of tools that use

code analysis and to reduce the engineering efforts of building such tools this

thesis proposes Open Static Analysis Platforms. The core idea is to consider

code analysis tools as fine-grained modular systems where each analysis is a

module with a well-defined interface. The interfaces specify what the analyses

require and provide. These specifications are used by the platform to control

the interaction between the analyses. Hence, open static analysis platforms

are basically coordinators of sets of modularized analyses.

For example, a tool to detect violations of implementation restrictions re-

lated to Enterprise JavaBeans [EJB03] could be modularized as follows: one

analysis parses the Java source files and extracts the source model, a sec-

ond analysis derives the call graph by analyzing the source model provided

by the first analysis, and a third analysis analyzes the XML deployment de-

scriptors of the components to determine the method’s transaction attributes.

The information derived by these three analyses is subsequently used by the

analyses that actually detect the violations.

Given the analyses’ interface specifications the platform will be able to

determine a proper schedule for running the analyses. A proper schedule is

one that starts each analysis only after the data it requires is available. A

schedule for the given example would be to first execute the analysis which

parses the Java code. Next the analysis to derive the call graph and the

analysis of the XML deployment descriptors can run in parallel. In the

last step, the analyses that detect the errors are executed. The schedule

is calculated by solving an integer optimization problem. To do so, each

analysis is associated with an integer variable that determines the point in

time at which to execute the analysis. Further, an analysis’ requirements

are represented as a set of constraints that ensures that the analysis is only

executed when all its requirements are satisfied.

Modeling analyses as modular producer-consumer units facilitates the

simultaneous integration of several tools into the incremental build process:

• Analyses are executed at most once, even if the derived information is

required by more than one tool.

• The source model derived by executed analyses is shared among all

tools.

Hence, the overall processing time as well as the memory requirements are

reduced. The engineering effort necessary to develop new tools is also reduced

1.1. This Thesis in a Nutshell 7

as it is possible to reuse exactly those analyses that are required for the

problem at hand.

Besides minimizing the analysis time and memory requirements when

running static analyses, the proposed model also facilitates the integration

of engines for querying information about software derived by static analyses.

Supporting query engines is indispensable for static analysis platforms. When

compared with analyses implemented using procedural or object-oriented

programming languages, analyses developed using a declarative language are

typically more concise and can be developed in less time, because the devel-

oper just has to specify what needs to be computed and not how [Mit03]. An

additional benefit of developing analyses using languages such as Prolog or

Datalog is that these analyses are often easier to comprehend and maintain.

Enabling the evaluation of queries facilitates:

• the development of static code analyses [Cre97, MLL05, HVdM06,

Cop06, HCXE02].

• the development of software comprehension tools as demonstrated, e.g.,

by JQuery [JD03] or the Searchable Bookshelf [SCHC99].

• end-user extensible tools, i.e., tools where additional analyses (queries)

can be defined to customize the tool to the specifics of a project. For ex-

ample, the software exploration tool JQuery [JD03] uses Prolog queries

for the exploration of the project, the visualization tool Searchable

Bookshelf [SCHC99] uses a tool specific language called GCL, and the

static analysis tool CodeQuest [HVdM06] uses Datalog.

In general, tools that make use of query engines employ a two step process.

First, the initial source model is derived by analyses that are typically imple-

mented in procedural or object-oriented languages such as C, C++, C# or

Java. These base analyses store their results in a database. E.g., CodeQuest

[HVdM06] uses an SQL database; JQuery [JD03] uses a tool specific inter-

nal database. After that, the declarative queries are evaluated against the

database. In the proposed approach in this thesis base analyses are modeled

as modularized units which specify to maintain the data stored in a database.

A tool that wants to make use of a specific query engine then specifies a de-

pendency on the database — to make sure the information stored in the

database is maintained — and uses the query engine to evaluate the queries.

8 1. Overview

1.2 Contributions of this Thesis

The major contributions of this thesis w.r.t. the design, implementation and

evaluation of open static code analysis platforms are listed in the following.

• Requirements on open static analysis platforms are identified. Plat-

forms that fulfil the requirements will facilitate the development of

software comprehension tools as well as static code analysis tools for

finding and preventing errors (Chapter 2).

• An approach to modularizing static analyses is proposed and imple-

mented (Chapter 3). The proposed approach supports analyses that

(a) derive new information, (b) update information during incremen-

tal builds, and (c) transform information, e.g., one code representation

into another code representation.

Furthermore, the proposed approach minimizes the number of executed

analyses to those which directly or indirectly derive information re-

quired by the analyses explicitly chosen by the end-user. As part of

scheduling the analyses, those analyses are identified that can be exe-

cuted in parallel.

Based upon the implementation of the proposed approach it is shown

that the development of open static analysis platforms is feasible.

• The scalability of open static analysis platforms w.r.t. the number of

additional analyses that can be executed along with an incremental

build process is evaluated (Chapter 6).

• The benefits of open static analysis platforms when designing and build-

ing software engineering tools on top of them are identified. The ben-

efits are further demonstrated by prototypical implementations of:

– lightweight static code analyses (Chapter 6)

– a software exploration tool (Chapter 7)

– a metrics tool (Chapter 8)

– a pluggable type systems (Chapter 9)

• The simultaneous integration of different query engines into an open

static analysis platform is demonstrated (Chapter 5).

1.2. Contributions of this Thesis 9

The following contributions, which are related to the development of soft-

ware engineering tools in general and which are not specific to static analysis

platforms, are also worth mentioning.

• It is shown that the use of the declarative query language XQuery

facilitates the development of software engineering tools (Sextant in

Chapter 7 and QScope in Chapter 8).

• It is shown that automatically incrementalized Prolog based analyses

are sufficiently fast to be executed along with an incremental build pro-

cess. This the first application of automatically incrementalized Prolog

queries for the implementation of whole program analyses integrated

into an IDE (Chapter 9).

In the framework of the research done in this thesis, the following papers

have been published:

1. M. Eichberg, M. Kahl, D. Saha, M. Mezini, and K. Ostermann. Au-

tomatic Incrementalization of Prolog Based Static Analyses. In Pro-

ceedings of the Ninth International Symposium on Practical Aspects

of Declarative Languages (PADL), Volume 4354 of Lecture Notes in

Computer Science, pp. 109–123. Springer, 2007.

2. M. Eichberg, M. Mezini, S. Kloppenburg, K. Ostermann, and B. Rank.

Integrating and Scheduling an Open Set of Static Analyses. In Proceed-

ings of the 21st IEEE/ACM International Conference on Automated

Software Engineering (ASE), pp. 113–122. IEEE Computer Society,

2006.

3. T. Schäfer, M. Eichberg, M. Haupt, and M. Mezini. The Sextant Soft-

ware Exploration Tool. IEEE Transactions on Software Engineering,

vol. 32 (no. 9), pp. 753–768, 2006.

4. M. Eichberg, D. Germanus, M. Mezini, L. Mrokon, and T. Schäfer.

Qscope: an Open, Extensible Framework for Measuring Software Projects.

In Proceedings of 10th European Conference on Software Mainte- nance

and Reengineering (CSMR), pp. 111–120. IEEE Computer Society,

2006.

5. M. Eichberg, S. Kloppenburg, M. Mezini, and T. Schuh. Incremen-

tal Confined Types Analysis. In Proceedings of the Sixth Workshop

10 1. Overview

on Language Descriptions, Tools and Applications (LDTA), Electronic

Notes in Theoretical Computer Science, pp. 81–96. Elsevier, 2006.

6. M. Eichberg, M. Haupt, M. Mezini, and T. Schäfer. Comprehensive

Software Understanding with Sextant. In Proceedings of the 21st IEEE

International Conference on Software Maintenance (ICSM), pp. 315–

324. IEEE Computer Society, 2005.

7. M. Eichberg, T. Schäfer, and M. Mezini. Using Annotations to Check

Structural Properties of Classes. In Proceedings of Fundamental Ap-

proaches to Software Engineering: 8th International Conference (FASE),

Volume 3442 of Lecture Notes in Computer Science, pp. 237–252. Springer,

2005.

8. M. Eichberg. BAT2XML: Xml-based Java Bytecode Representation. In

Proceedings of the First Workshop on Bytecode Semantics, Verifica-

tion, Analysis and Transformation (Bytecode), Volume 141 of Elec-

tronic Notes in Theoretical Computer Science, pp. 93–107. Elsevier,

2005.

9. M. Eichberg, M. Mezini, K. Ostermann, and T. Schäfer. Xirc: A kernel

for cross-artifact information engineering in software development en-

vironments. In Proceedings of the 11th Working Conference on Reverse

Engineering (WCRE), pp. 182–191. IEEE Computer Society, 2004.

10. M. Eichberg, M. Mezini, and K. Ostermann. Pointcuts as functional

queries. In Proceedings of Programming Languages and Systems: Sec-

ond Asian Symposium (APLAS), Volume 3302 of Lecture Notes in

Computer Science, pp. 366–381. Springer, 2004.

11. M. Eichberg, M. Mezini, T. Schäfer, C. Beringer, and K.-M. Hamel.

Enforcing System-wide Properties. In Proceedings of the 2004 Aus-

tralian Software Engineering Conference (ASWEC), pp. 158–167. IEEE

Computer Society, 2004.

1.3 Structure of this Thesis

This thesis is comprised of four parts: an introductory part (I.), two main

parts (II. and III.) and a part (IV.) which summarizes the thesis.

1.3. Structure of this Thesis 11

I. The introductory part is comprised of this chapter and Chapter 2. This

part introduces open static analysis platforms by discussing the moti-

vation behind them, the problem they address and the requirements

imposed on them.

Chapter 2 particularly discusses those requirements that are relevant for

facilitating the incremental build process integration of software com-

prehension and static code analysis tools.

II. This part consists of three chapters that describe the foundations as

well as the design and implementation of the prototypical platform

Magellan. As we will see, all major requirements identified in Chap-

ter 2 are met by Magellan.

The first chapter (Chapter 3) proposes an approach to modularizing

static analyses such that explicit coupling between them is avoided.

This is a prerequisite for open static analysis platforms.

The architecture of Magellan is presented in Chapter 4. Magellan

is an open static analysis platform tightly integrated with the incre-

mental build process of the Eclipse IDE. Magellan implements the

approach proposed in Chapter 3.

Chapter 5 discusses how to embed query engines into Magellan. Two

concrete examples will be presented: the embedding of an XQuery en-

gine and a Prolog system.

III. In the second part, several applications of Magellan are presented.

This part evaluates various aspects of Magellan. In particular ques-

tions related to the feasibility, versatility and the performance of the

platform will be answered.2 Furthermore, the advantages of building

different tools on top of a common platform will be emphasized.

The implementation of Java and XQuery based analyses is discussed in

Chapter 6. In particular analyses of structural properties and checkers

using intra-procedural control-flow and data-flow information are con-

sidered. Based on the performance measurements taken while running

the analyses, the overall performance of the platform will be assessed.

Furthermore, an estimation of the number of static analyses that can be

executed along with the incremental build process is made. Finally, the

performance of analyses implemented in XQuery and Java is compared.

2The chapters of this part (chapters 6–9) are self-contained and can be read in any
order.

12 1. Overview

The software exploration tool Sextant is presented in Chapter 7.

Sextant enables the user to navigate along different relations between

software elements, such as, classes, fields or methods. Sextant uses

the XQuery interface and, hence, enables an assessment of its use in

interactive environments. Furthermore, Sextant demonstrates that

Magellan facilitates the development of software exploration (com-

prehension) tools.

Chapter 8 discusses the metrics tool QScope. As Sextant, QScope

also uses the XQuery interface. But, unlike Sextant, the queries (to

calculate the metrics) usually analyze all or nearly all project artifacts.

Hence, QScope enables an assessment of the suitability of the XQuery

engine for analyzing large data sets.

Chapter 9 discusses the implementation of advanced type systems using

(a) Java and (b) Prolog. In particular, the implementation of confined

types using both technologies is presented. By comparing both imple-

mentations the advantages and disadvantages of both approaches are

evaluated.

IV. The last part concludes this thesis by summarizing its major contribu-

tions and by giving an outlook to future work.

Chapter 2

Requirements on Open Static

Analysis Platforms

Jackson and Rinard [JR00] foresee a bright future for (a) sound and com-

plete analyses as well as (b) unsound and incomplete analyses. Sound means

that every true error is reported and complete that no false positives are

reported. An example of a tool of the first category is Java PathFinder

[HP00]. Examples of tools of the second category are JLint [KARW04],

CoffeStrainer [Bok99], IRC [EMS+04], or the tools described in [Cop06,

ECCH01, EGHT94, EL02, FLL+02, HP04, Joh79, RSS+04a, GYF06].

The advantage of using sound and complete analyses, i.e., software verifi-

cation, is that software can be proven to be error free w.r.t. specific properties,

such as, stack overflow errors or synchronization errors. The disadvantage

of verification is that a formal specification is needed that requires specially

trained experts. Moreover, verification tools can often only be applied to code

that adheres to severe restrictions; e.g., Java PathFinder [HP00] requires that

the state space must be finite and tractable.

Due to these limitations, verification is (currently) only used for mission-

critical software and not for enterprise applications. Furthermore, verification

introduces another level of complexity in the software development process

and does not primarily aim to improve a developer’s productivity, which is

a target of this thesis. Hence, verification tools are not further considered in

the following.

When using unsound and incomplete tools no correctness guarantees can

be given and, hence, these tools can also be ineffective. In general, tools

that use static analysis are ineffective if the number of false positives is too

high, too many errors are not identified, the quality of the error reports is

13

14 2. Requirements on Open Static Analysis Platforms

low (e.g., when it is hard to decide if a report is a false positive or not), the

analyses take too much time, or the effort for using the tool is too high. For

example, the authors of ESC/Java [FLL+02], where annotations can be used

to support the checking process, admit that the effort of annotating a certain

application was not justified; annotating the project took three weeks, but

only half a dozen errors were found.

Nevertheless, tools that use static analysis are often effective in prac-

tice, i.e., capable of detecting a reasonable number of problems in a limited

amount of time without requiring the user to have knowledge in static anal-

ysis. Hence, these tools can help to improve the quality of the software when

applied on a regularly basis. In the following, the term lightweight static anal-lightweight static analy-
ses yses is used to refer to unsound and incomplete analyses as well as analyses

that target structural properties.

Besides lightweight static analysis based tools, which support developers

in their day-to-day work by detecting and preventing errors, software com-

prehension tools also aim to improve the productivity of developers. Com-

prehension tools foster the understanding of program code by visualizing the

system or by providing means to explore the software.

Both categories of tools, i.e., software comprehension tools and static code

analysis tools, require the same core functionality such as source code parsers

for a variety of different languages, class hierarchy analyses, call graph anal-

yses or query engines. Hence, the development of a common platform is

promising to lead to a cross-fertilization between those tools. Base function-

ality developed as part of a specific project can be reused in other projects.

For example, software exploration tools often only implement very basic

analyses because the focus of the tools (researchers) is on providing innova-

tive user interfaces and visualizations. Nevertheless, these tools could profit

from more advanced base analyses to provide end-users with richer sets of

exploration and visualization possibilities, e.g., to enable the user to navigate

to those places in code where a field is potentially initialized. If an explo-

ration tool is built on top of a common platform, its developer can reuse

advanced analyses while staying focused on the exploration layer.

A study covering existing tools was carried out to determine the require-

ments on platforms that should simultaneously serve as a foundation for both

categories of tools. The requirements are the result of:

• a comprehensive study of tools that are used to statically find and

prevent errors: CoffeStrainer [Bok99], PMD [Cop06, Har05], AspectJ

[Lad03, SY02], ESC/Java [FLL+02], Xgcc [ECCH01, AE02, HCXE02],

15

RacerX [EA03], Saber [RSS+04a, RSS+04b], SLAM [BR02], SPLint

[EL02], CodeQuest [HVdM06], PQL [LL05, MLL05], Checklipse [Liv05],

CheckJ2EE [Liv04], Findbugs [HP04], JLint [KARW04, AH04], PRE-

fast [Mir04], PREFix [BPS00], Hammurapi[Vla06].

• an analysis of the static analysis platform Aristotle [HR97].

• the aspects of software visualization tools that were identified in the

survey by Bassil and Keller [BK01].

• an analysis of well-known software comprehension tools (SCTs): Code-

Crawler [DDL99], SHriMP [SWFM97], Searchable Bookshelf [SCHC99],

Spool [RSK00], JQuery[JD03], Rigi [MTW93], GSEE [Fav01], HY+

[MS95], Dali [KC98], Ciao [CFKW95], FEAT [RM02], TkSee [SLVA97],

and Class Blueprint [DL05]

A result of the evaluation of these comprehension tools was that all

tools follow the overall architecture described in [Lan03]. That is, the

tools have either a two or three layered architecture; in case of a two

layered architecture the bottom and middle layers are merged. The

bottom layer (metamodel) stores the information about the software to

be analyzed and provides querying capabilities. The middle layer (core)

defines the tool’s domain model and implements the core functionality.

The top layer (visualization layer) provides the visualization.

W.r.t. the identified architecture of software comprehension tools only

requirements related to the metamodel were taken into consideration.

This layer’s functionality is independent of the tool’s specific compre-

hension features and, hence, can be provided by a generic platform;

as argued by Lanza [Lan03]: “The metamodel can be developed by

someone else ... the [software comprehension] tool provider should not

have to write a parser by himslef.” For example, tools as diverse as

SHriMP [SM95] and CodeCrawler [DDL99] could be implemented us-

ing the same metamodel. Both tools require the same type of infor-

mation about source elements and their dependencies, e.g., subtypes,

supertypes, callers and callees. The provided visualizations, neverthe-

less, vary widely: SHriMP uses nested graph based visualizations for

documenting software structures. CodeCrawler uses metrics based vi-

sualizations to foster program understanding.

The features and limitations of the presented tools were identified to

derive the requirements on a platform that (a) can serve as a foundation

16 2. Requirements on Open Static Analysis Platforms

for code analysis and code comprehension tools, and (b) provides services

commonly required by software engineering tools. That is, a platform that

fulfills the identified requirements will have to either implement the necessary

functionality on its own or at least provide services that facilitate the im-

plementation of the requirements. Hence, when compared to implementing

comprehension and analysis tools from scratch, such a platform promises to

reduce the necessary effort.

In the following, analyses that (a) check that a specific property holds, (b)checkers

do not derive information used by subsequent analyses, and (c) do not modify

the database are called checkers. For example, an analysis that checks that

the return value of Java’s String.concat(...) method is not ignored is called a

checker. Analyses that derive information meant to be used by subsequentbase analyses

analyses (or checkers) are called base analyses. Examples of base analyses

are control-flow and data-flow analyses. The information derived by these

analyses is, by itself, rarely interesting for the user.1 The term analysis isanalysis

used to refer to checkers as well as base analyses.

The identified requirements are grouped in three categories:

Applicability

These requirements are concerned with the applicability of the platform

for different purposes, such as, using it as a foundation for lightweight

static analyses or software exploration and visualization tools. If one

of these requirements is not met, the platform is limited in the types

of tools that can be built on top of it.

Scalability

These requirements are concerned with the scalability of the platform

and its support for implementing scalable analyses. In case that re-

quirements of this category are not fulfilled, the size of projects that

can be analyzed will be smaller.

Usability

These requirements are related to usability issues. For example, if the

platform is integrated into an IDE, many tool adoption issues [FES03],

such as, “the developer has to learn to use yet another tool”, can be

avoided.

1A similar distinction is also made by Jia and Skevoulis in [JS99]. They distinguish
between generic analyses, i.e. base analysis, and specialized analyses, i.e. checkers.

2.1. Applicability 17

In the following, each identified requirement will first be explained and

then work related to the particular requirement is discussed.

2.1 Applicability

To serve as a foundation for a wide range of different software engineering

tools, a platform has to fulfill the following five requirements.

OSAP-R1 Extensible base analyses stack

In this thesis, an analysis stack (a) determines the set of analyses that are

executed when analyzing a software, and (b) also determines the order of

execution of those analyses. If it is extensible, it is possible to remove or

replace existing analyses or to add further analyses.

For example, the analysis stack could be comprised of an analysis which

reads in Java class files and a second analysis which is executed thereafter

that calculates the intra-procedural control flow graphs (CFG). If the stack

is extensible, it is then possible to add a new analysis that calculates data-

flow information using the CFG. The provided data-flow information can

subsequently be used by checkers to pinpoint developers to issues found in

the code.

The implication of a platform that does not provide an extensible base

analysis stack is that the set of possible analyses is restricted by the rich-

ness of the platform’s built-in base model. For example, if the base model

does not store information about the call graph, each analysis has to derive

this information on its own, if possible at all.2 Even if each analysis can

derive the necessary data, it is still more efficient to implement and to run a

corresponding analysis exactly once.

Related Work

In [SLVA97] Singer et al. examined software engineering work practices

related to software exploration tools. As part of this work they identified

the requirement that platforms should have extensible analysis stacks to en-

able the integration of special-purpose analysis tools. The program-analysis

platform Aristotle [HR97] features an extensible base analysis stack, which

2Some tools only support the definition of new checkers in a tool specific language that
does not facilitate the definition of arbitrary analyses, e.g. [LL05].

18 2. Requirements on Open Static Analysis Platforms

facilitates the addition of new analyses. In Aristotle new analyses are imple-

mented in C and can use information stored in Aristotle’s database. Analyses

can also store new information in the database.

In FindBugs [HP04] the object graph generated by the BCEL bytecode

toolkit [BCE06] is used as the base representation for detecting bug pat-

terns. This representation is close to a one-to-one representation of Java

bytecode and sufficient for the implementation of many bug pattern detec-

tors. However, an analysis that requires higher-level information, such as

data-flow information, has to derive the information on its own. If several

analyses require the same kind of information, it is either derived again and

again by each analysis or additional functionality — unrelated to the anal-

ysis problem at hand — need to be developed by developers of analyses to

control the interaction between the analyses. Both solutions are inefficient

and not scalable. The same reasoning applies to PMD [Cop06, Har05] and

CoffeeStrainer [Bok99], both tools support the programmatic specification of

new analyses, but provide no explicit mechanism to control the interaction

between mutually dependent checkers.

Hammurapi [Vla06] features an extensible base analysis stack. New checks

are defined as Java rules that are evaluated using a forward chaining rules

engine. The results of the evaluation of a rule (checker) can be used by

subsequent rules (checkers).

OSAP-R2 Support for open base representations

The term base representation is used to refer to the source model derived

by base analyses. The base representation is used by checkers and code

comprehension tools to derive information relevant for end-users.

A platform supports open base representations if analyses are allowed

to extend and — in particular — to modify the representation derived by

previously executed analyses. For illustration, consider the code shown in

Figure 2.1. A control flow analysis of the code results in the control flow

if (b)

{...} else {...}

...

{false}{true} {false}Pruning

Figure 2.1: Pruning of impossible control-flow paths

2.1. Applicability 19

graph (CFG) shown in the middle of the figure. This CFG might be accurate

enough for many analyses, but a more precise CFG may be useful, e.g., to

reduce the number of false positives. Using a data-flow analysis it might be

possible to find out that b is always false and, thus, to prune the left (true)

path of the CFG as wells as the corresponding code. This results in the

control flow graph on the right-hand side.

After that, however, it is useless to execute an analysis that reports dead

code to the developer — no error report will ever be generated. It might

even be misleading if the analysis is executed and no errors are reported.

The developer would probably get the wrong impression that there is no

dead code. A platform that supports open base representations has to be

able to identify and handle such cases; it has to detect analyses that are

incompatible or that need to be scheduled in a very specific order. In the

given example, it has to execute the dead code checker before the analysis

that removes the dead code. 3

Related Work

Open base representations, which enable analyses to transform (modify)

the results of previous analyses, are generally not supported by existing tools.

However, the need for open base representations can be derived from the

observations made in [AH04, ECCH01, EL02].

In these papers the authors write that the requirements on the base anal-

yses may rise during the development of checkers and — more important —

that it is often impossible to determine upfront the exact kind of analyses

needed to effectively check code until the checkers are actually run and their

results are evaluated.

For example, in [ECCH01] the authors write that they could reduce the

number of false warnings by ∼18% by just pruning simple, impossible paths.

But, before actually using their checkers they were not aware of this fact.

In general, support of open base representations is required to handle the

3This requirement is meaningless for platforms that do not fulfill the extensible base
analysis stack requirement (OSAP-R1) since analyses that contribute to the base represen-
tation are not supported at all. However, platforms that have an extensible base analysis
stack must not necessarily support open base representations. Such platforms can specify
that additional base analyses are only allowed to derive additional information and that
the analyses are not allowed to manipulate the information derived by previous analyses.
Such platforms are, however, not scalable as keeping all information is prohibitive in terms
of memory usage. Hammurapi [Vla06] is an example of a static analysis platform that has
an extensible base analysis stack, but which does not have an open base representation.

20 2. Requirements on Open Static Analysis Platforms

conflicting requirements, between analyses that depend on a specific code

representation and other analyses that depend on a transformed variant of

the representation.

OSAP-R3 Enabling cross-artifact reasoning

Enabling cross-artifact reasoning means that analyses can take different kinds

of resources into consideration, e.g., Java source code, properties files and

XML documents.

The semantic of todays software is often not determined by program

code alone. Information defined in other artifacts of a software development

project, such as XML deployment descriptors, also determine the runtime

semantics of the application. Hence, when analyzing a project’s resources it

is not sufficient to consider the code only. For example, in Enterprise Java

Beans [EJB03] projects, the transactional behavior of the application can

be defined programmatically in Java code, or declaratively in the descriptor

of the bean. Both artifact types have to be taken into consideration when

checking that the transactional behavior of the application is well-defined.

Related Work

Facilitating cross-artifact reasoning is generally recognized as important.

Kazman and Carriere [KC98] explicity mention that tools for understanding

software architectures require an open approach to information extraction.

For example, the software exploration tool GSEE [Fav02, Fav01] explicitly

supports multi-source exploration. GSEE’s exploration environment is inde-

pendent of the source of data and virtually any kind of structured data is

supported. For each type of resource, a so-called backpacker needs to be im-

plemented, a small component with a standardized interface that facilitates

the exploration of a specific type of resources.

The program-analysis platform Aristotle [HR97] supports multiple pro-

gramming languages to facilitate cross-language analyses. Saber [RSS+04a,

RSS+04b] is an example of a static code analysis tool that also analyzes a

fixed set of different types of resources, namely Java source code and Java

Server Pages (JSPs).

OSAP-R4 Support for parameterized checkers

2.1. Applicability 21

Parameterized checkers can be instantiated by end-users to define application

/ project / company specific checks.

Though, it is possible to develop and build into a platform a variety

of project independent checkers that can be used out of the box to check

large parts of many projects, these checks are not sufficient. In case of

modern software projects additional support is needed, e.g., for checking and

enforcing restrictions concerning the project specific use of methods, fields

and types.

Such checkers, however, cannot be provided in a ready-to-use way. Fur-

thermore, it is also not reasonable to expect enterprise applications develop-

ers to implement checkers directly on top of the base representation using

a low-level API. Instead, it is necessary to enable the definition of project-

specific analyses as instantiations of predefined templates to make the speci-

fication of new checkers as easy as possible. As written in [Bok99], requiring

a user to implement checkers at the programming language level is adequate

only for the most complex checkers.

A typical example of a project dependent analysis is one that reasons

about method call protocols. Given the following class it is desirable to

check that terminate and close are only called after open was called and that

a closed or terminated connection is not reopened.

1 class Connection {

2 /∗∗ Opens a connection, reopening connections is not possible. ∗/

3 public void open() {...}

4

5 /∗∗ Sends all remaining data and then closes the connection. ∗/

6 public void close() {...}

7

8 /∗∗ Immediately closes the connection. ∗/

9 public void terminate() {...}

10 }

Listing 2.1: Implicit declaration of a method call protocol

Related Work

For recurring patterns Saber [RSS+04a, RSS+04b] implements a fixed set

of rules which need to be parameterized before being used. A rule in Saber

is, e.g., “Must call X after Y”; after specifying concrete values for X and Y,

the code can be analyzed to detect corresponding violations. At this level,

22 2. Requirements on Open Static Analysis Platforms

only minimal knowledge is required to derive customized analyses. RacerX

[EA03], FCL [HHR04], and the tool described in [ECCH01] all demonstrate

that a large number of useful analyses can be defined at a high-level by

instantiating predefined analysis.

OSAP-R5 Enabling the embedding of query engines

Query engines facilitate the declarative specification of analyses, e.g., using

Prolog. They are an indispensable prerequisite when developing software

comprehension tools or end-user extensible tools.

Since parameterized checkers (OSAP-R4) can only be defined for the

most common cases, it is necessary to provide means for the declarative

specification of analyses to enable users less familiar with static analysis

to define new analyses. As discussed in [HCXE02], the definition of many

application specific analyses can be simplified when compared with directly

using the API of the platform.

When using query languages the user has to specify “what to check” and

not “how to check”. However, the choice of the query language is extremely

important as pointed out in [JD03]: “...the logic language was hard to use

for complex queries. This is true even for developers reasonably familiar with

the query language.” Hence, it is important to enable the embedding of a

variety of different engines.

The following requirements on query engines were identified:

Semantic queries enable to search for semantic elements and not only for

the occurrence of a specific string in a set of artifacts. A prototypical

example is: “Find all classes which inherit Serializable.”

Search tools such as grep, which just search for character sequences,

are not sufficient [SCHC99].

Query chaining means that the result(s) of a query can be used as the

starting point for subsequent queries. For example, after executing a

query that returns all methods that access a specific field, it should be

possible to execute a second query that returns the set of the declar-

ing classes of those previously identified methods. Query chaining is

particularly required by software exploration tools to implement a step-

by-step exploration process.

2.1. Applicability 23

Query filtering refers to the ability to filter those queries that are not

applicable in a specific context. Support for binding queries to specific

types of elements for which the query can be executed is required. E.g.,

the context of the query: “Get all declared fields” are classes. Hence,

the platform should provide a mechanism to determine whether a query

can be evaluated in a given context.

Automatic incrementalization of queries means that after a change to a

subset of the project’s artifacts the result of a query is updated and

that the query is not reevaluated for the whole program. Given the

source model before the change and a description of the latest changes,

only those parts of the source model are (re)analyzed that are related to

the changes. Supporting automatic incrementalization is indispensable

for queries that are executed as part of the incremental build process.

Related Work

In general, declarative (query) languages are widely used by software

engineering tools for the definition of new analyses. For example, PMD

[Cop06] enables the user to define new analyses using XPath, in PQL [LL05]

the user defines a pattern that is transformed into Datalog, and in [LRY+04]

parametric regular path queries are proposed. Logic query languages are

used by ASTLOG [Cre97], JQuery [JD03] and CodeQuest [HVdM06]. In

Xgcc the code is analyzed and

In the context of software comprehension tools, the need for semantic

based browsing facilities (semantic queries) was identified by Singer et al.

in [SLVA97]. They require that support for browsing the full spectrum of

semantic items is necessary. A semantic item is each character sequence that

has special semantics w.r.t. the type of artifact and the local context in which

the sequence occurs. Examples of semantic items are the names of classes

and methods, or an EJB’s remote interface name. This requirement was also

identified by Sim et al. [SCHC99], they write that “a search facility for a

software architecture must be able to specify searches for meaningful elements

in the source code such as functions and variables”.

Query chaining is pioneered by software exploration tools, such as, JQuery

[JD03] and Ciao [CFKW95]. In Ciao [CFKW95], the result of executing a

query is a virtual database on top of which so-called operators and views

operate. An operator provides means to create more complex abstractions

and the result is again a virtual database. Ciao filters queries by restricting

24 2. Requirements on Open Static Analysis Platforms

the set of operators that the user can execute to those that are legal given

the database on top of which the operator should operate.

The automatic incrementalization of Prolog based queries and its appli-

cation to static analysis is discussed in [SR06].

2.2 Scalability

Regarding scalability, the following three requirements were identified.4

OSAP-R6 Execution of required analyses only

Given a set of analyses, the platform should be able to automatically de-

termine those analyses that need to be carried out and those analyses that

are not required given the current configuration. This serves to reduce the

overhead caused by the analyses. E.g., if none of the user configured analy-

ses requires control-dependence information, a corresponding analysis should

not be carried out, even if installed.

Related Work

Most static analysis based tools enable the user to configure the set of

checkers that should be executed [HP04, Int06a]. But, the internal base

analyses are always run independently of the user-selected checkers. How-

ever, given that most existing tools are domain-specific, e.g., detecting race

conditions and deadlocks [EA03, AH04], or security vulnerabilites [LL05],

running all analyses is not a concern; the results of all base analyses are re-

quired as soon as a single checker is used. That is, this requirement is unique

to open static analysis platforms.

OSAP-R7 Support for incremental analyses

4A general requirement, such as, ”Support for the analysis of large programs” is mean-
ingless as it is impossible to determine when such a requirement is fulfilled. In [RSS+04a]
a program of 8770 classes — ∼ 2 million lines of code (LOC), with roughly 250 LOC
per class in average — is considered to be large. In [EA03] a program of 500K LOC is
considered to be large, and in [KARW04] applications are considered to be large that have
around 100.000 LOC. Finally, in [Liv04] a suite of multiple applications with together
130.000 LOC is said to be a suite of large applications.

2.2. Scalability 25

If analyses should be executed as part of the incremental build process, it

is important that the implementation of incremental analyses is supported.

That is, the platform should provide the base representation of the program

and the set of changes such that the analyses can determine the impact of

the changes on the representation and maintain the information derived by

them.

Related Work

This requirement is derived from the observation that most tools that

analyze a project as a whole, require too much time to let them run regularly

as part of the incremental build process. For instance, Saber [RSS+04a] and

PQL [LL05] both require several seconds or even minutes to analyze a project.

The most recent release of the IDEA IDE [Int06a] features a set of non-

trivial incremental analyses that detect bugs and bug patterns related to

violations of inter-class relations.

CodeQuest [HVdM06] is a code querying tool for Java programs. It is

tightly integrated with the Eclipse IDE’s incremental build process and incre-

mentally updates its underlying SQL database. However, the evaluation of

analyses (SQL queries) does not happen as part of the build process. Rather,

they are evaluated on explicit user demand between two builds.

OSAP-R8 Support for meta-analyses

Meta-analyses enable the efficient execution of several analyses at once. They

do not modify the base representation or generate any other output them-

selves. Instead of having each individual analysis traverse the base repre-

sentation, a meta-analysis traverses the structure once and calls back the

other analyses whenever necessary, basically following the visitor design pat-

tern [GHJV95] with analyses as visitors. This way, meta-analyses enable the

efficient execution of larger numbers of analyses.

For example, the Enterprise JavaBeans specification [EJB03] defines a

large number of implementation restrictions, which have to be followed by en-

terprise components. Many of these restrictions basically require that the im-

plementing classes have specific structural properties, e.g., “Enterprise bean

classes must be defined as public...”. The checkers of these properties have

to analyze the same elements, i.e., class, method and field declarations. By

grouping these checkers by means of a meta-analysis redundant traversals of

the same data structure can be avoided. Concerning such checkers, meta-

26 2. Requirements on Open Static Analysis Platforms

analyses are an enabling technique that makes it possible to execute a larger

number of them as part of an incremental build process.

Enabling the time efficient execution of checkers that detect violations

that affect the application start-up is of particular importance. The sole

incentive to use such checkers is to prevent the failing of a lengthy application

start-up during testing. The same applies to analyses that detect errors that

prevent the successful deployment of components.

Related Work

Meta-analyses are used in: CoffeeStrainer [Bok99], FindBugs [HP04],

Xgcc [HCXE02], PMD [Cop06] and PREfast [Mir04]. All these tools use

a visitor like approach to improve the analysis time of groups of similar

checkers; i.e., the tools traverse their underlying source models and call back

the checkers when needed.

2.3 Usability

Regarding the usability of open static analysis platforms, the following re-

quirements were identified.

OSAP-R9 Integrated into an IDE

Todays software projects are usually developed using sophisticated integrated

software development environments (IDEs) such as IDEA [Int06a] or Eclipse

[Ecl06]. IDEs support developers in coping with the complexity of software

projects by providing functionality to compile, debug and browse a project’s

artifacts. Hence, platforms for static analyses should be integrated with IDEs

to leverage the existing infrastructure and to provide the most benefit for

developers. IDE integration enables developers to put the results of analyses

(error messages and visualizations) directly into relation with the project’s

artifacts and, thus, facilitates reasoning about the project.

As written in [AH04], being able to put the results of checkers into relation

with the project artifacts is essential for understanding the cause of a bug

report. In case of checkers an integration enables developers to navigate from

bug reports to the source document(s) and possibly to further documents to

comprehend the bug report.

Concerning IDE integration two aspects were identified:

2.3. Usability 27

Support for compile-time and on-demand analyses

Compile-time analyses run continuously on-the-fly as part of the incre-

mental build process offered by modern IDEs; on-demand analyses are

performed as an explicit step initiated by the developer.

For compile-time analyses, there is no need for the developer to explic-

itly start the analysis process — the latter is automatically triggered

when a developer makes changes to a project’s artifacts. Though con-

tinuous checking is generally desirable, it is only applicable for reason-

ably fast analyses. For example, many checkers that enforce structural

properties fall into this category [HP04].

To enable users to execute analyses that are too slow to run them regu-

larly as part of the incremental build process, the execution of analyses

on demand has to be supported. On-demand analyses also have to be

supported to make the development of software comprehension tools

possible. A comprehension tool’s analyses are executed when requested

by the user.

Supporting on-demand analyses requires that tools developed on top

of the platform can specify the type of information to be available

between two builds. For example, if a comprehension tool specifies that

it requires a representation of Java classes using the bytecode toolkit

BAT [BAT06], then the platform (a) has to schedule the necessary

analyses that make the corresponding representation available and (b)

has to make sure that no other subsequently executed analysis modifies

or transforms the representation such that it no longer satisfies the

requirements of the tool.

Configuration sharing

This requirement concerns team support. It is important that the con-

figuration of checkers including project-dependent ones can be shared

among developers. This enables, e.g., a project lead to setup and share

the configuration of the analyses that have to be passed before code

can be checked in a version control system.

28 2. Requirements on Open Static Analysis Platforms

Related Work

The need for IDE integrated browsing facilities was identified by Singer

et al. in [SLVA97]. They require that IDEs should support browsing a

project’s sources. Basically they demand an IDE integration of software

comprehension tools.

Most modern static code analysis tools are now integrated into IDEs

and enable the evaluation of checkers on-demand, e.g., FindBugs [HP04],

Checklipse [Liv05], PMD [Cop06] and Saber [RSS+04a].

However, an integration with the incremental build process is usually

lacking. AspectJ [Asp06], which facilitates the definition of simple checkers

by means of declare warning and declare error statements, is an exception.

AspectJ supports incremental compilation and, hence, the corresponding de-

clare warnings and error messages are also incrementally evaluated. However,

AspectJ is not a static analysis tool and the set of errors and warnings that

can be defined is rather limited.

Though FindBugs [HP04] is also integrated into the incremental build

process, it does not correctly update error reports where the underlying anal-

ysis depends on inter-class information, e.g., type hierarchy related informa-

tion. Findbugs lacks a mechanism that determines the effect of a source code

change on inter-class relations. The current release of the IDEA IDE [Int06a]

features analyses that can be evaluated as part of the IDE’s incremental build

process.

OSAP-R10 Configurable set of base analyses

The set of required base analyses depends not only on the needs of the check-

ers, but also on the requirements of a user on the precision of the analyses. In

some cases a trade-off between a more precise analysis and a faster analysis

is possible. In these cases the user should be able to choose the base analyses

most appropriate for the checking task at hand.

For example, the user should be able to choose between a context-sensitive

and a context-insensitive points-to analysis. If a user is willing or able to

spend more time for the analysis to get better results this should be possible.

Related Work

This requirement is derived from the observation that it is impossible to

2.3. Usability 29

(automatically) predict the effect of certain base analyses on the quality of

a checker. As pointed out in [Mir04]: “ ... variations in coding styles also

cause variations in what is reported.” Hence, given a specific coding style,

some base analyses might be ineffective. In this context, effective refers to

the ratio between the additional overhead caused by the more precise base

analysis and the number of false warnings not generated by checkers later

on. In other words, an analysis that runs a long time, but which suppresses

only a very small number of false warnings is ineffective and the user should

be able to choose a less precise analysis.

OSAP-R11 Error report management

Some analyses tend to produce large numbers of false warnings. For in-

stance, in [AH04] 198 false positives for a program with 7500 lines of code

were identified and in [AB01] “several thousand” false warnings were identi-

fied. In case of Safe [GYF06], one checker even had a false positive rate of

nearly 100% for a specific project.

This problem can be addressed by running more sophisticated analyses

that do not report so many false warnings. For instance, PREFix [BPS00]

has only a false warning rate between 10% and 25% of all generated warn-

ings. However, highly sophisticated analyses are often much slower and can

require several minutes or even hours. This is a serious limiting factor for

the integration of analyses’ into an incremental build process. Hence, it can

be more efficient to combine a fast and more error prone analysis with an

effective error management than to run an analysis only irregularly.

With respect to handling error reports the following requirements were iden-

tified:

Error reports with predefined severity levels

For checkers that do not generate false positives, it is sufficient to as-

sociate a simple severity level with each message, e.g.: error, warning

or info. A category of checkers for which predefined severity levels

are often well suited are those that check for violations of structural

properties. These checkers do not produce false positives [HP04].

This simple mechanism is also sufficient for checkers which produce false

positives, but where each false positive is an indicative of at least a se-

rious violation of a best practice. Consider a checker to find violations

of the rule: “The finalize method should always call super.finalize()”.

30 2. Requirements on Open Static Analysis Platforms

Let’s assume that the checker finds a finalize method that does not

call super.finalize() and where no superclass (except of java.lang.Object)

implements the method. A report of this finding would be a false warn-

ing, because the finalize method of java.lang.Object does not perform

any special action. So, not calling the super method does not lead

to any problem. However, it is serious enough to always generate a

warning message: If a superclass later on implements finalize, e.g., to

dispose some system resources, this method will not be called, eventu-

ally resulting in a resource leak.

Dynamic ranking of error reports

The platform should support dynamic ranking of errors based on the

properties of each report. Dynamic ranking means that the order in

which messages are presented to the user is not predefined; it is rather

determined based on the properties of each report. The goal of the

ranking is to direct the user to those reports which most likely describe

real errors. This requirement basically concerns checkers with a high

likelihood of reporting false warnings.

For example, checkers to find deadlocks and data races are prone to

generate false warnings. For these checkers it is possible to use the

length of the call chain that would lead to the error as the basis for

calculating the rank. The reasoning is that the underlying analyses

have only limited precision and, hence, the likeliness of a false positive

increases with the number of involved analysis steps. A report of a

possible deadlock that results from the analysis of a long call chain

with multiple threads involved is more likely to be a false positive than

a report based on a very short path.

Management of the history of error reports

One possibility to suppress false warnings is to manually identify a

warning as a false positive once and to use this knowledge to suppress

the generation of the message in the future. For example, it is possible

to store the kind of error and its relative source location in a method to

get robust information that can be used to suppress the error message

in the future.

Filtering of error reports

Filters provide an effective means to suppress large numbers of false

warnings. For example, domain knowledge or the location of an error

can be used to filter false positives. An example of the latter case are

2.3. Usability 31

errors related to code defined in an API or framework not relevant for

the current application.

Graphical error reports

To facilitate comprehension of complex errors, e.g., as identified by

tools that detect race conditions and deadlocks, developers often need

additional control- and data-flow information. For example, compre-

hending a deadlock warning without giving a detailed call graph is hard

for many non-trivial examples. Hence, it is necessary that checkers can

generate reports which include control-flow and data-flow information

and that the platform provides appropriate means to visualize this in-

formation.

Related Work

Static ranking of error reports is widely used [Vla06, HP04, Lad03, SY02].

Dynamic ranking of errors is used by RacerX [EA03] and xgcc [HCXE02].

Engler and Ashcraft [EA03] propose to use the length of the call chain that

would lead to the error as the basis for calculating the rank.

A history of warning reports is used by xgcc [HCXE02] to suppress false

warnings. Xgcc stores for each false warning the file name, the name of the

function, and the name of the variables involved; this information is used to

suppress the corresponding warning in the future.

Sophisticated filtering mechanisms, beyond simple filters to suppress all

messages of a specific checker or set of checkers, are provided by Saber

[RSS+04b]. E.g., in [RSS+04a] warnings related to a class DriverManager

are filtered, because the erroneous code is related to the graphical user in-

terface (GUI) and will never be executed as part of the analyzed server side

application.

As identified in [AH04, EA03, HP00], reports related to complex errors,

such as, race conditions or deadlocks, require that the data- and control-

flow information that led to the report are presented to the user. Without

these information comprehending the report is hard for many non-trivial

examples. The path relevant for a warning is reported by SLAM [BR02].

Saber [RSS+04a] and PREFix[BPS00] also represent data-flow information.

32 2. Requirements on Open Static Analysis Platforms

Applicability

OSAP-R1 Extensible base analyses stack

OSAP-R2 Support for open base representations

OSAP-R3 Enabling cross-artifact reasoning

OSAP-R4 Support for parameterized checkers

OSAP-R5 Enabling the embedding of query engines

Scalability

OSAP-R6 Execution of required analyses only

OSAP-R7 Support for incremental analyses

OSAP-R8 Support for meta-analyses

Usability

OSAP-R9 Integrated into an IDE

OSAP-R10 Configurable set of base analyses

OSAP-R11 Error report management

Table 2.1: Requirements on open static analysis platforms

2.4 Conclusions

In this chapter, requirements on open static analysis platforms were dis-

cussed. The requirements are the result of an analysis of existing code

analysis and code comprehension tools with regard to the development of

a common platform that supports both types of tools.

During the study, it became evident that the requirements of static code

analysis tools on a common platform are more homogenous than those of code

comprehension tools. Nevertheless, the requirements of comprehension tools

on the back-end are comparable and, thus, by fulfilling those requirements it

is still possible to significantly support comprehension tools. In case of code

comprehension tools the user interfaces, however, differ widely, whereas the

user interfaces of code analysis tools are basically identical. Hence, providing

comprehensive support for static code analysis tools is easier than supporting

code comprehension tools.

Overall, the eleven requirements summarized in Table 2.1 were identified.

The requirements: “support for parameterized checkers‘”, “support for meta-

2.4. Conclusions 33

analyses” and “error report management” are primarily the result of the

analysis of static code analysis tools that detect issues in the source code. The

requirements to support query filtering and query chaining — both part of

the “enabling the embedding of query engines” requirement — were identified

while analyzing code comprehension / code exploration tools.

In the following part of this thesis, concepts and techniques will be pre-

sented that enable the development of platforms that fulfill the identified

requirements.

Part II

Magellan: an Open Static

Analysis Platform

35

Chapter 3

An Approach to Decoupling

Analyses

Any problem in computer science can be solved

with another layer of indirection.

David Wheeler

Part of the material in this chapter is published in: Integrating and Scheduling

an Open Set of Static Analyses [EMK+06].

3.1 Introduction

To a varying degree static analyses are used in the back-ends of tools for find-

ing errors [RSS+04a, FLL+02, Joh79], type checkers [EKMS06, FL03], and for

visualizing [DDL99, MS95] as well as exploring [SWFM97, SCHC99, JD03]

software systems. Traditionally, these tools are developed independently as

standalone tools. But, to further improve the productivity of the develop-

ment process more and more of these tools are now integrated into IDEs

[HP04, RSS+04a, Mir04] and a few tools are even integrated with the incre-

mental build process [HP04, Int06a, HVdM06].

If, however, multiple independent tools are integrated with the incremen-

tal build process valuable time and memory is wasted. Each tool maintains

its own source model, even though, the requirements of the tools on the

37

38 3. An Approach to Decoupling Analyses

source model overlap widely and large parts of the source model could be

shared. Besides being an engineering issue — the same functionality for

parsing and analyzing code is developed over and over again — this waste

of processing time and main memory limits the number of tools that can be

used simultaneously and the size of the projects that can be analyzed.

To address these issues an approach is proposed that facilitates an efficient

integration and scheduling of an open set of static analyses. The individ-

ual analyses are decoupled and the execution of the analyses is coordinated

such that the overall time and space consumption is minimized. As part of

the minimization of the overall analysis time, the approach also identifies

possibilities for the automatic parallelization of analyses. Parallelization is

necessary to make efficient use of modern multi-core / multi-processor archi-

tectures. Further, the approach enables the user to select those analyses that

are needed in the context of the developer’s project. Only the selected anal-

yses as well as any analysis that provides information required by a selected

one is run as part of the incremental build process.

To facilitate the decoupling of analyses, the effect of an analysis is speci-

fied w.r.t. an open data model. Each analysis specifies the data it reads and

contributes to the source model. This, in turn, requires means of coordina-

tion between analyses that write and read the data model. E.g., a call graph

analysis would specify that it reads a specific source code representation

(provided by another analysis) and that it derives the call graph.

Before continuing the discussion of the platform, the statements made

in the pervious paragraphs are reconsidered in terms of the sample analyses

shown in Table 3.1, along with the data they depend on. Though this dis-

cussion focusses on analyses for finding programming errors and bad smells,

it equally applies to analyses used by software comprehension tools.

Table 3.1 illustrates that static analyses differ widely in the data they

require, but they also share subsets of data. For example, both the SA and

the CFT analysis require data flow information. Each analysis could of course

compute all the data it requires from the raw source code or from a generic

representation of the project. However, implementing and running several

instances of an algorithm for data flow analysis wastes both engineering effort

and computational resources. Furthermore, it is a waste of resources to reify

a generic representation of the entire software when the analyses consume

only information about a part of the project. For example, the EH analysis

requires only information about the interfaces of Java classes; method bodies

or other artifacts such as deployment descriptors are irrelevant.

To cope with the issues stated in the previous paragraph, analyses are

3.1. Introduction 39

ID Description Required Data

NSF Searches for finalize methods
that do not call super. finalize.

control flow graph (CFG)

EH Searches for Java classes over-
riding either equals(Object) or
hashCode(), but not both.

interfaces of Java classes

SA Searches calls of String.append
where the return value is ig-
nored.

data flow information (method
implementation)

CTAV Searches for Enterprise Java
Beans that use declarative and
programmatic transaction de-
marcation [EJB03].

type hierarchy, method imple-
mentation, EJB deployment de-
scriptors

CFT Realization of Confined Types
[EKMS06] based on Java anno-
tations.

type hierarchy, type hierarchy
changes, data flow information,
public interfaces of libraries

Table 3.1: Sample analyses and the data they depend on

divided into small modular producer-consumer units. Analyses such as SA

and CFT can share the results produced by a base analysis for data flow

information; similarly, EH can consume the results of an analysis that pro-

duces information about the interfaces of Java classes only. This requires that

analyses are run in a well-defined order to satisfy their dependency relations.

These relations cannot, however, be expressed by a total order, since the

set of analyses is open. It is also desirable to automatically select and run

only analyses that produce information consumed by those analyses directly

selected by the user. A base analysis, e.g., for getting the type hierarchy,

should only run if its result is needed by a user selected analysis.

The dependencies cannot be represented by a partial order graph either.

For better performance, analyses should be able to transform and modify

existing analysis data instead of generating new data. Furthermore, several

analyses that generate the same information can co-exist within the platform

and it should be ensured that at most one of them is run. Both cases are not

expressible by a partial order.

To coordinate the execution of a set of analyses their dependencies are

mapped to a constraint system. By solving the constraint system, an or-

der in which the analyses can be executed is determined. The coordination

40 3. An Approach to Decoupling Analyses

Classdiagram of BAT

WPDB

<<interface>>

IFact

<<interface>>

ITemporaryFact

<<interface>>

IWholeProgramFact

Method

Instruction

prev : Instruction

next : Instruction

Classdiagram of the WPDB

Code

ByteCode

Field

ClassFile <<interface>>

Attribute

DocumentFact

file : IFile

QuadruplesCode

0..*

0..*

Figure 3.1: Combined class diagram of the WPDB and BAT

unit, which is called the scheduler, treats analyses as modules that write,

read or maintain the source model. Each analysis describes its properties

and dependencies in a special analysis specification language (ASL). These

specifications are mapped onto a constraint system which is fed to a con-

straint solver. Adding an objective function to the set of constraints allows

to calculate a schedule that is optimal with regard to the number of analyses

to run.

The rest of this chapter is structured as follows: In Section 3.2 the data

model is described. After that, it is shown how to specify an analysis’ depen-

dencies in Section 3.3 and how to calculate a schedule in Section 3.4. Section

3.5 makes an assessment of the approach w.r.t. the requirements identified

in Chapter 2. Section 3.6 concludes this chapter by summarizing the model

and its properties.

3.2 The Analysis Data Model

The analysis data in our platform is stored in the whole-program databasewhole-program database
(WPDB) (WPDB). The WPDB is an object graph built-up cooperatively by the exe-

cuted analyses. The WPDB has a set of designated root objects which are

3.2. The Analysis Data Model 41

called facts. The architecture of the fact objects is shown within the box on

the left hand side of Figure 3.1, entitled “Class diagram of the WPDB”. The

WPDB aggregates three types of facts:

Document Facts: For each resource (file) in the project an object of class

DocumentFact (see Figure 3.1) is created. The document fact always

keeps a reference to the underlying file. A document fact enables anal-

yses to attach derived information by means of classes that implement

the IFact interface. For example, a representation of a Java class file is

a fact that is typically attached to a document fact. If the Java Byte-

code Analysis Toolkit BAT [BAT06] is used to represent Java class files,

instances of the class ClassFile — within the box in the right-hand side

of Figure 3.1 — are created to store information about the individual

Java class files.

A ClassFile object stores the name of the class, the class’s modifiers, in-

formation about declared annotations and the implemented interfaces.

Furthermore, a ClassFile object keeps references to the set of declared

methods and the set of declared fields. Each field is represented by a

Field object and each method is represented by a Method object (see

Figure 3.1). A method’s implementation is either represented using a

byte code based representation ByteCode or using a higher-level quadru-

ples based representation QuadruplesCode.

A document fact is automatically created, added to, and removed from

the database corresponding to the type of action on the underlying

file. Further, the set of all document facts that are added, created or

removed from the database in a build is also directly made available to

the analyses. This enables analyses which can work incrementally per

document to process only the delta to the previous build.

Whole Program Facts: Information that cannot directly be associated

with specific documents is stored in the database using whole program

facts. A whole program fact always needs to be maintained by the anal-

ysis that creates it. After a full build, the analysis has to re-create the

whole program fact; after an incremental build, the analysis has to bring

the information up-to-date to reflect the current project’s state. For

example, an analysis that makes the type hierarchy information avail-

able has to update the type hierarchy whenever the developer makes a

change that affects the type hierarchy.

42 3. An Approach to Decoupling Analyses

Temporary Facts: Information that is only valid during a build step is

stored in temporary facts. All temporary facts are automatically deleted

before each build. For example, a type hierarchy analysis could also

generate information about the changes to the type hierarchy for the

benefit of subsequent analyses. However, this information is only valid

for the current build.

Classdiagram of BAT

WPDB

<<interface>>

IFact

<<interface>>

ITemporaryFact

<<interface>>

IWholeProgramFact

Method

Instruction

prev : Instruction

next : Instruction

Classdiagram of the WPDB

Code

Field

BCode

ByteCode

Field

CF

ClassFile

Method

<<interface>>

Attribute

QCode

Document

DocumentFact

file : IFile

QuadruplesCode

0..*

0..*

WPDB

Document CF

Field

Method QCode

BCode

Logical Structure View (LSV)

Figure 3.2: The LSV of the WPDB

Data dependencies in the WPDB are expressed in the logical structurelogical
structure view (LSV) view (LSV) — a directed acyclic graph. Every node in the LSV stands for a

group of WPDB elements. A group can be a selection of objects or a selection

of (primitive) field values of the objects in the WPDB. We call nodes in theentities

LSV entities. The lower part of Figure 3.2 shows an extract of the LSV.

Also, its mapping to the corresponding parts of the WPDB is shown by the

boxes around elements of the WPDB and BAT class diagrams.

Consider for an example the box labeled “Method” surrounding the class

Method and Attribute in the upper right corner of the BAT class diagram.

3.2. The Analysis Data Model 43

This boxing states that a LSV method entity is mapped to a WPDB method

and all its attributes.

We refer to entities in the LSV by using paths starting at the WPDB

vertex (Figure 3.2). The WPDB vertex is, however, never used in path

expressions, it is always implicitly assumed. For instance, to refer to the

BCode entity we write: Document/CF/Method/BCode.

Edges in the LSV express data dependencies as defined in Figure 3.3. For

Let v be an arbitrary LSV entity and w an entity that is dependent
on v, i.e., a path from w to v exists in the LSV.

• If a WPDB element is changed that is represented by v then
every other element that is affected by this change is repre-
sented either by v or by w. Hence, WPDB elements that are
affected by a change have to be represented by the same LSV
entity as the changed element (v) or by an LSV entity (w) that
is dependent on the LSV entity of the changed element (v).

• Declaring an entity w as dependent on an entity v implies that
there are no conflicts between an analysis that changes the data
associated to w or any of its dependent entities and those that
just read the data associated to v.

• Analyses that access siblings do not conflict.

Figure 3.3: Semantics of the dependencies between LSV entities

example, Field and Method are declared as dependent entities of CF. Hence,

an invalidation of the information on a class entity automatically invalidates

information on its fields and methods. But, there are no conflicts between

analyses that process Field and Method entities respectively.

The properties of the LSV are leveraged by the scheduler to parallelize

analysis executions.

The part of the LSV that is relevant for scheduling the analyses is recon-

structed from the set of analysis specifications, as detailed in Section 3.4.

However, there is a trade-off to be considered when designing the LSV: A

fine-grained LSV increases the possibilities for parallelization, but decreases

the ease of describing and understanding the dependencies among elements

in the database.

The mapping between the WPDB and the LSV is specified as part of

the libraries that are used to represent the data in the WPDB. E.g., the

44 3. An Approach to Decoupling Analyses

mapping of WPDB elements to the LSV is specified in an extra document

delivered with the part of the BAT library that manages the information

about Java class files (see Figure 3.1).1 All analyses that make use of a

specific library (e.g., BAT) then have to adhere to the library’s specification

of the LSV to the WPDB mapping, i.e., the analyses must use the specified

LSV entities and the same path statements to refer to the entities. When

creating the mapping all dependencies between LSV entities have to have

the semantic as defined in Figure 3.3. The mapping specification also defines

which information is represented by an entity w.r.t. the project’s artifacts.

For example, as part of the definition of the CF fact it is stated that for

each class file of the project an instance of a ClassFile object exists. This

instance is associated with the DocumentFact that represents the “.class” file

(cf. Figure 3.2).

To extend the LSV and WPDB, for example to make the intra-procedural

control-dependence graphs (CDG) of methods available, the user first needs

to determine where to store the information in the physical model. BAT’s

representation of class files, for example, enables to attach arbitrary informa-

tion to Method and Code objects by means of Attributes (see Figure 3.2). An

attribute is a simple container object to store further information. Hence,

after calculating the CDG of a method, the CDG could be stored as an at-

tribute of the analyzed Code element. Further, a new LSV entity CDG is

declared that is dependent on, e.g., the BCode entity. This new entity can

then be used by analyses to declare their dependencies.

3.3 Specifications of Analysis Dependencies

The analysis specification language (ASL) is used to declare the data required

and provided by each analysis in terms of the logical structure view described

in the previous section.

The ASL supports six types of dependencies as shown in the ASL gram-

mar in Figure 3.4. Listing 3.1-3.3 illustrate the specification of the sample

analyses from Table 3.1.

1 analysis CFP (∗ creates class file representation ∗)

2 writes Document/CF, Document/CF/Field, Document/CF/Method,

Document/CF/Method/BCode

1Though, this mapping is specified informally, an approach that would use Java anno-
tations or a similar technique and would then enable a semi-automatic derivation of the
LSV is easily imaginable.

3.3. Specifications of Analysis Dependencies 45

ASL ::= analysis ID STATEMENT*

STATEMENT ::= DEPENDENCY PATH*

DEPENDENCY ::= reads-global | reads | writes | invalidates |
maintains | writes-temporary

PATH ::= ID [/ PATH]

Figure 3.4: The ASL grammar

3

4 analysis DDP (∗ creates EJB deployment descriptor representation ∗)

5 writes Document/EJBDD

Listing 3.1: Analyses that make base information available

1 analysis BCFG (∗ creates the control−flow graph (CFG) ∗)

2 writes Document/CF/Method/BCode/CFG

3

4 analysis BtoQ (∗ transforms the bytecode in 3−address SSA form ∗)

5 invalidates Document/CF/Method/BCode

6 writes Document/CF/Method/QCode

7

8 analysis LIB (∗ maintains the repository of used library classes ∗)

9 reads Document/CF/Method/BCode

10 reads−global Document/CF

11 maintains Library/CF/Field NON PRIVATE, Library/CF/

Method NON PRIVATE

12

13 analysis TH (∗ maintains the type hierarchy ∗)

14 reads−global Document/CF, Library/CF

15 writes−temporary TypeHierarchyChange

16 maintains TypeHierarchy

17

18 analysis CTA1 (∗ prog. and decl. transaction demarcation is used ∗)

19 reads Document/EJBDD

20 reads−global TypeHierarchy, Document/CF/Method/BCode

21 writes CTAViolations

22

23 analysis CTA2 (∗ alternative CTA analysis ∗)

24 reads Document/EJBDD

25 reads−global TypeHierarchy, Document/CF/Method/QCode

26 writes CTAViolations

46 3. An Approach to Decoupling Analyses

Listing 3.2: Base analyses that read, create and transform the source model

1 analysis NSF (∗ finalize does not call super.finalize() ∗)

2 reads Document/CF/Method/QCode/CFG

3

4 analysis EH (∗ equals and hashcode have to be implemented pairwise ∗)

5 reads Document/CF/Method

6

7 analysis SA (∗ String.concat() must not be ignored ∗)

8 reads Document/CF/Method/QCode

9

10 analysis CFT (∗ realizes Confined Types ∗)

11 reads TypeHierarchyChange

12 reads−global TypeHierarchy, Document/CF/Method/QCode,Library/CF/

Method NON PRIVATE

13

14 analysis CTAV (∗ wraps CTA and CTA2 ∗)

15 reads CTAViolations

Listing 3.3: Analyses that just read the database (Checkers)

A reads dependency on some LSV entities means that the analysis works

incrementally on the specified input data. For example, the EH checker

(Listing 3.3, Line 4) specifies that it reads the entities referred to by the

path expression Document/CF/Method. A reads−global dependency, on the

other hand, means that the analysis needs data of the specified kind for all

documents, not just those processed in the current build. The current imple-

mentation of the type hierarchy analysis, e.g., needs access to all class files,

not just those changed; hence, the corresponding reads−global dependency

in Listing 3.2, Line 14.

A writes dependency specifies that the analysis provides data of the spec-

ified type for documents that are changed in the current build step only. For

example, the DDP analysis (Listing 3.1, Line 5) specifies that it writes the

EJBDD entity and implicitly reads the preceding entities, i.e. the Document

entity. In general, a write dependency writes e1/e2/../en−1/en specifies that

the entities ei,∀i = 1..n − 1 are read and that only the entity en is writ-

ten. If an analysis specifies a writes dependency with multiple paths, e.g., as

the CFP analysis shown in Listing 3.1, then only those elements are treated

3.3. Specifications of Analysis Dependencies 47

as read that are not declared to be written by any path. Hence, only the

Document entity is read by CFP.

A writes−temporary dependency is used for data that is automatically

invalidated (and hence removed by the platform) before the next build. For

example, the type hierarchy analysis (Listing 3.2, Line 13) also provides

information about changes to the type hierarchy between the current and

the previous build. Since this information is only valid for one specific build

step, it is declared using writes−temporary. As in case of writes, only the last

entity of the path is written and the previous entities are read.

The invalidates dependency specifies that after executing the analysis the

last entity referred to by the given path expression as well as all entities

depending on it are no longer valid. This is usually the case if an analysis

provides its result by transforming existing data in the WPDB. For example,

the analysis which transforms a method’s bytecode representation into the

3-address based representation (Listing 3.2, Line 4) changes the existing data

in the WPDB. Hence, it specifies that the BCode entity will become invalid

when the analysis is executed.

Finally, maintains is used by an analysis to declare that it creates an entity

and updates it during the following builds. For example, the type hierarchy

analysis declares to maintain (Listing 3.2, Line 16) the TypeHierarchy entity.

Again, only the last entity is considered to be maintained.

Analyses may overlap in both their input and output data. If multiple

analyses produce the same data, the scheduler decides which of these anal-

yses will be executed. There can also be multiple analysis specifications for

the same analysis to express that an analysis can use different data as input.

For example, the checker for detecting conflicting transaction demarcations

(CTAV - Listing 3.3, Line 14) needs either the byte code (BCode - Listing 3.2,

Line 18) or the SSA-transformed code (QCode - Listing 3.2, Line 23), hence

there are two specifications for this analysis. Such alternatives give the sched-

uler more leeway in scheduling an analysis.

An analysis specification also serves as a contract on what the analysis

implementation is allowed to do with the WPDB. The result of an analysis

may only depend on data in the WPDB whose entity in the LSV is read.

The analysis must not add any data to WPDB entities which are not marked

as writes or writes−temporary nor change any data that is not marked as

invalidates or maintains, respectively.

48 3. An Approach to Decoupling Analyses

3.4 Scheduling Analyses

3.4.1 Processing the Analyses Specifications

To calculate an execution schedule for a set of analyses, their ASL specifi-

cations are mapped onto a constraint system, which is solved by means of

integer programming.

The first step towards this mapping is to reconstruct the logical structure

view from ASL specifications. For this purpose, each ASL statement is parsed

and a new entity is created for each path element that is not yet represented in

the LSV. The special entity for Document is included by default. Moreover,

each entity is directly connected with its parent entity. For example, for the

path statement Document/CF/Method two additional entities are generated:

one for CF and one for Method; the entity for Method is made a dependent

entity of the CF entity.

Once the LSV is generated, it is recorded for each entity which analyses

access it and how. This information is needed for the generation of the

constraint system. The following six sets are recorded, whereby A denotes

the set of all (installed) analyses a, and E denotes the set of all entities e in

the LSV:

• R denotes the set of analyses that read the entity. It includes any

analysis that explicitly states to do so. An analysis is also added to

the set R for each entity on paths of its writes or invalidates statements

except of the last entities.

• W denotes the set of analyses that specify writes or writes−temporary

statements for the entity. In case of writes−temporary, the entity is

marked as temporary and it is checked that all dependent entities are

also marked as temporary. At runtime temporary entities will auto-

matically be deleted before an incremental build.

• I denotes the set of analyses that directly invalidate an entity. An

analysis a invalidates an entity e in two cases: (1) a explicitly declares

e in an invalidates statement, (2) a reads e and directly invalidates some

other entity, on which e depends.

• IP denotes the set of analyses that implicitly invalidate the entity e.

An analysis a implicitly invalidates an entity e, if a neither reads nor

directly invalidates e, but declares to invalidate an entity, on which e

directly or indirectly depends.

3.4. Scheduling Analyses 49

• RG denotes the set of analyses that specify a reads−global statement

for the entity; i.e., the analysis requires access to the currently added

documents as well as documents that have been processed in an earlier

build.

• M denotes the set of analyses that maintain the information of the

entity.

In Figure 3.5, an example of an LSV is depicted that shows which analyses

access an entity and how they access it. The LSV is the result of analyzing the

ASLs of the previously discussed analyses: CFP (Listing 3.1), BCFG (Listing

3.2) and BtoQ (Listing 3.2).

CF

w={CFP}
r={BCFG,BtoQ}

Field

w={CFP}

Method

w={CFP}
r={BCFG,BtoQ}

QCode

w={BtoQ}

BCode

w={CFP}
r={BCFG}
i={BtoQ}Document

CFG

w={BCFG}
ip={BtoQ}

Figure 3.5: Example of an LSV-access-tree

The CFP analysis, which processes Java class files and provides an ini-

tial representation of the bytecode, writes the entities CF, Field, Method and

BCode. The BCFG analysis, which processes a method’s byte code to cal-

culate the CFG specifies a reads dependency on CF, Method and BCode en-

tities and a writes dependency on the CFG entity. The Field or QCode en-

tities are, however, not accessed. The BtoQ analysis which transforms a

method’s bytecode representation into a quadruples code representation ex-

plicitly invalidates the BCode entity and writes the QCode entity. Since the

analysis does not read the dependent CFG entity, the CFG entity is implic-

itly invalidated; i.e. if the CFG is available before the execution of the BtoQ

analysis it is no longer available afterwards.

3.4.2 Generating the Constraint System

Based on the LSV-access-tree, the constraint system is generated to calculate

the schedule. The constraint system ensures that every calculated schedule

50 3. An Approach to Decoupling Analyses

is valid — in fact, the constraint system can be seen as a declarative specifi-

cation of the semantics of the ASL. A schedule is valid if all requirements of

all analyses are met:

• The entities an analysis specifies to read were made available in a pre-

vious step and are not (yet) invalidated.

• A dependent entity is available only if the parent is also available.

• Every entity is made available at most once.

• Every entity is explicitly invalidated at most once.

The constraints ensure that an analysis that writes an entity is guaranteed

to have exclusive access to the entity and race conditions cannot occur. If

the constraints have no solution, an error is reported.

In the following, the process of generating the constraint system is pre-

sented. In doing so, the following variables are used:

• T S
a , a ∈ A denotes the point in time (execution step) in a schedule

S, at which an analysis a is executed. T S
a = 0 means that a is not

scheduled.

• V S
e , e ∈ E denotes the point in time at which e becomes valid. V S

e = 0

means that e will never be available.

• IS
e , e ∈ E denotes the point in time at which e becomes invalid. V S

e >

0 ∧ IS
e = 0 means that e is available during the next build.

The generated constraints make use of the following definitions: For any

entity e the functions w(e), m(e), r(e), rg(e), i(e), ip(e) return the sets W, M,

R, RG, I, and IP of the entity e respectively. Given an entity e, the predicate

isTemporary(e) returns true if e is marked as temporary and false otherwise.

The range of the variables must be bound in order to solve the constraint

system using integer programming, e.g., using ZIMPL [Koc04] / lp solve

[BEN05]. The domain of the variables T S
a , V S

e and IS
e is [0, ...,MAX] where

MAX is 2 ∗m + n (m = |E| being the number of entities and n = |A| being

the number of installed analyses). MAX defines the theoretical maximum

value of the variables T S
a , V S

e , and IS
e . To schedule n analyses that process m

entities, we need at most 2 ∗m+n time slots. 2 ∗m, because each entity e is

associated with two time slots: V S
e and IS

e . This covers the worst-case where

all analyses are executed sequentially, all analyses create only one entity, the

analyses do not conflict and entities are also invalidated.

3.4. Scheduling Analyses 51

V S
Doc = 1 ∧ IS

Doc = 0(3.1)

Availability (validation) of entities:

for each e ∈ (E − {Doc}) :

V S
e > 0⇒

∑

a∈(w(e)∪m(e))

TS
a > 0,(3.2)

for each e ∈ E :

∀a ∈ (w(e) ∪m(e)), TS
a > 0⇒

∑

x∈(w(e)∪m(e))

TS
x = TS

a(3.3)

∀a ∈ (w(e) ∪m(e)), TS
a > 0⇒TS

a + 1 = V S
e(3.4)

∀a ∈ (r(e) ∪ rg(e)), TS
a > 0⇒0 < V S

e < TS
a(3.5)

Invalidation of entities:

for each e ∈ E :

∀a ∈ (rg(e) ∪m(e)), TS
a > 0⇒IS

e = 0(3.6)

isTemporary(e)⇒V S
e ≤ IS

e(3.7)

IS
e > 0⇒0 < V S

e < IS
e(3.8)

∀a ∈ i(e), TS
a > 0⇒IS

e = TS
a ∧

∑

x∈i(e)

TS
x = TS

a(3.9)

∀a ∈ ip(e), TS
a > 0 ∧ V S

e > 0⇒0 < IS
e < TS

a(3.10)

∀a ∈ (r(e)− i(e)), TS
a > 0 ∧ IS

e > 0⇒TS
a < IS

e(3.11)

Objective function:

minimize

(

∑

a∈A

TS
a +

∑

e∈E

V S
e

)

(3.12)

Figure 3.6: Constraint system for calculating an analysis schedule

52 3. An Approach to Decoupling Analyses

The constraints are shown in Figure 3.6 and their purpose is explained in

the following.

V S
Doc and IS

Doc (Equation 3.1) are the variables for the special Document

entity. The Document entity is — by definition — available at the very

beginning of the schedule (V S
Doc = 1) and must not be invalidated (IS

Doc = 0).

Implication (3.2) requires that — except for the document entity which is

provided by the framework — every entity that becomes available during the

analysis process is actually created by an analysis. The constraint ensures

that at least one analysis is scheduled that writes e. The implication (3.3)

ensures that an entity is created at most once. Implication (3.4) defines that

a specific entity e is available in the step immediately following an analysis

that writes e and (3.5) specifies that an entity e is available before an analysis

is executed that reads e. Hence, (3.4) and (3.5) ensure the correct order

between analyses that write and read an entity.

Implication (3.6) enforces that entities that will be (re-)read or main-

tained during the following build are not invalidated. For an entity that is

marked as temporary, constraint (3.7) ensures, that a point in time can be

determined at which the entity can become invalid.

Constraint (3.8) ensures that only entities are invalidated that were cre-

ated previously. Constraint (3.9) enforces that only one analysis explicitly

invalidates an entity. Furthermore, the entity is invalidated in the same step

as the analysis that invalidates the entity, to make sure that no other analyses

are executed in parallel that read the entity.

Constraint (3.10) states the relation between the execution time of an

analysis a and the invalidation time of entities that are implicitly invalidated

by a. If an entity e that is implicitly invalidated by a is valid (V S
e > 0), then

it is just required that e is no longer valid after the execution of the analysis.

It is, however, not required that an implicitly invalidated entity is explicitly

invalidate by a. This allows another analysis executed before a to explicitly

invalidate e.

Constraint (3.11) specifies that an analysis need to be executed before

any entities become invalid that are read by the analysis.

The objective function (3.12) is the minimum of the sum of all analysis

times and the availability times of entities. Minimizing the sum of the anal-

yses times is equivalent to finding a schedule that executes only necessary

analyses as early as possible. By including the points in time at which entities

become available it is ensured that those analyses are scheduled that create

the minimum number of entities necessary for satisfying all constraints.

3.4. Scheduling Analyses 53

If we directly solve the constraint system in Figure 3.6, no analysis is

scheduled; the T S
a values for all analyses will be zero as this minimizes the

objective function. To calculate a schedule, for any user selected analysis a

we add the constraint:

T S
a > 0(3.13)

In addition to analyses that are automatically executed as part of each

incremental build, support for tools is required that run analyses on-demand

of the user, i.e., between two incremental builds. To support on-demand

analyses the Magellan scheduler provides an interface that can be used

to specify the entities that need to be available between two incremental

builds. For example, a software comprehension tool that operates on BAT’s

code representations would call the scheduler and specify a dependency to the

Document/CF/Field and Document/CF/Method entities. To enforce the inter-

build availability of a specific entity e, the scheduler just adds the following

constraint to the constraint system:

V S
e > 0 ∧ IS

e = 0(3.14)

This constraint ensures that the corresponding entity is available between

two builds and that the tool’s analyses will not fail due to missing data.

3.4.3 Example

Step

1 2 3 4 5 6 7 8 9 10 11

VDoc TCFP VCF

VF

VM

VBC

TBCFG

TLIB

TEH

VCFG

VL

VLCF

VLF

VLM

TNSF

TTH

VTHC

VTHF

ICFG

TBtoQ

IBC

VQC TNSF

TCFT

ITHC

Table 3.2: Example analysis schedule

Table 3.2 shows an example schedule that is calculated when the user se-

lects all analyses in Listing 3.1-3.3, except for the CTAV analysis (Listing 3.3).

For each step, the schedule shows the analysis which has to be executed and

the entities which become valid, respectively invalid:

54 3. An Approach to Decoupling Analyses

1. the Document (Doc) entity becomes valid.

2. the CFP analysis is executed.

3. with the beginning of step 3 the CF, Field (F), Method (M) and, BCode

(BC) entities are available.

4. the BCFG analysis can run in parallel with the LIB and the EH analysis.

5. with the beginning of step 5 the CFGs of methods are available. Fur-

thermore, the information about the used libraries (library L, library

class file LCF, public fields in the library LF and public methods of the

library LM) is also available.

6. the TH and NSF analyses can run in parallel.

7. with the beginning of step 7, the type hierarchy (THF) and the infor-

mation about type hierarchy changes (THC) are available. Further, the

CFG entity is invalidated and, hence, no longer available.

8. the analysis that transforms the method bodies in the 3-address based

representation (BtoQ) is executed which directly invalidates the BCode

entity (BC).

9. the 3-address based code representation (QC) is available.

10. the CFT analysis and the NSF checker is executed.

11. the type hierarchy change information (THC) can become invalid (it

was marked as temporary).

The values of all other variables, i.e., the variables not shown in the schedule,

such as e.g., TCTAV, ICF, IF, etc. are zero.

3.4.4 Performance

The performance of the scheduling process is briefly evaluated in terms of the

number of analyses that can be scheduled in reasonable time. The constraint

systems is realized using ZIMPL [Koc04] as the mathematical programming

language and lp solve [BEN05] for solving it. The set of analyses used for

the evaluation includes:

• analyses defined in Listing 3.1 – 3.3

3.4. Scheduling Analyses 55

• 20 other analyses that check the use of the standard Java API (cf.

Appendix V)

• an incremental inter-procedural call-graph analysis, similar to the one

described in [SP01]

Including helper analyses defined by the checkers, 66 different analyses are

used for the evaluation.

Figure 3.7: Times for calculating analysis schedules

If all checkers are activated, more than 40 analyses will be scheduled; i.e.,

the value of the T S
a variables of more than 40 analyses will be larger than 0.

This schedule is calculated in less than 10 seconds on a P4/3GHz as shown in

Figure 3.7. Using a commercial grade integer programming solver [CPL06]

the schedule is even calculated in less than 0.5 seconds and there is only a

slight increase in the time to calculate the schedule when more analyses are

installed. Hence, the calculation of the schedule is not a limiting factor.2

2The time for analyzing a project rises along with the project’s size, the time for
calculating the schedule is, however, independent of the project’s size and just depends on
the number of installed and selected analyses.

56 3. An Approach to Decoupling Analyses

3.5 Evaluation of the Approach

In the following, the proposed approach is evaluated w.r.t. the requirements

on open static analysis platforms identified in Chapter 2:

Extensible base analyses stack

At the core of the proposed approach is the modularization and decou-

pling of analyses to enable an extensible base analyses stack. As the

discussed examples throughout this chapters show, this goal is achieved.

Further, the approach also handles incompatible analyses as well as

analyses that (partly) derive the same information. Hence, the ap-

proach also facilitates the integration of independently developed anal-

yses that might have conflicting requirements.

Support for open base representation

The proposed approach features a lightweight extensible data-model.

Only a small core of the data model is predefined. The predefined part

includes:

• the types of facts that can be stored in the database: whole pro-

gram facts, resource based facts and temporary facts.

• how the project’s resources are reflected in the database: each

resource is represented by exactly one resource based fact.

Other than this predefined part, the data model is open and analyses

can read, write and invalidate the data stored in the database.

The approach also enables to specify the data that needs to be available

between two incremental builds. Hence, tools that analyze the data

stored in the WPDB between two builds are directly supported.

Enabling cross-artifact reasoning

Two features of the data model enable cross-artifact reasoning: (a) the

base representation is open, (b) the data model is language neutral.

For example, to analyze relations between different types of artifacts

one can write two different analyses, one for each type. The analyses

store the respective representations in the WPDB. Any other analysis

can then declare corresponding reads dependencies and reason about

the relations defined between the different types of artifacts (cf. the

CTAV analysis from Listing 3.3).

3.5. Evaluation of the Approach 57

Support for parameterized checkers

At the core level no special provisions need to be taken to support

parameterized checkers.3 To schedule a checker with different instan-

tiations it is sufficient to schedule a dummy checker which has the

same requirements as the parameterized checkers. After calculating

the schedule the dummy is then replaced by the concrete parameter-

ized instantiations of the checker.

Hence, given the proposed approach supporting parameterized check-

ers is basically an issue of providing a user interface for instantiating

checkers.

Execution of required analyses only

In the presented approach, a schedule is calculated by solving an op-

timization problem. The objective function minimizes the sum of the

number of scheduled analyses and created entities. Hence, base analy-

ses that only derive entities that are neither directly nor indirectly used

will never be executed at runtime.

Support for incremental analyses

Incremental analyses are supported at the model level and the imple-

mentation level:

Model Level: The effect of each analysis on the underlying database

is specified using the primitives of the analysis specification lan-

guage: reads, writes, maintains, invalidates and reads−global. Since

these primitives were explicitly designed to enable the specification

of incremental analyses, they are supported at the model level.

Implementation Level: At execution time an analysis can always

access the information which documents were added, removed or

changed in the current build. For documents that are removed

or changed in the current build the data associated with the old

documents is still accessible in the same build step.

Support for meta-analyses

At the model level no special provisions need to be taken to support

meta-analyses; only implementation level support is required. Regard-

ing the scheduling process, checkers executed by meta-analyses are

treated in the same way as checkers that do not use meta-analyses.

3Recall that checkers never modify data stored in the database

58 3. An Approach to Decoupling Analyses

The meta-analyses themselves are not scheduled. After calculating the

schedule, checkers that use meta-analyses are removed and replaced

by their meta-analyses. If checkers that use the same meta-analysis

are scheduled at different points in time, a new instance of the meta-

analysis is added to the schedule for each of the checker’s points in time.

After that, the removed checkers are registered with the instance of the

meta-analysis that is scheduled at the same point in time. At execution

time the meta-analyses will then execute the registered checkers.

For example, assuming that we have three checkers A, B and C that

declare that they need to be executed by a meta-analysis M .4 Further,

let’s assume that the result of calculating the schedule is that A and B

are scheduled in step x and C in step y (x 6= y). Given this schedule the

checkers A, B and C are removed from the schedule and two instances

of the meta-analysis M are scheduled instead: Mx in step x and My

in step y. After that, the analyses A and B are registered with the

instance Mx and C with My. At execution time the meta-analyses then

execute the analyses A,B and C. Such a schedule, where the same meta-

analysis is scheduled several times, can result when the requirements of

the analyses, e.g., of A,B and C, differ. If the checkers that declare to

use a specific meta-analysis are identical, then they will be scheduled at

the same point in time and will be executed by the same meta-analysis.

Configurable set of base analyses

In the proposed approach, users can select base analyses in the same

way as checkers (3.13). For illustration, assume that different analyses

are available that derive the same kind of information, e.g., a program’s

call graph [GC01]. Unless the user selects a specific algorithm the

current scheduler will chose arbitrarily between the analyses. But, if

the user has selected a specific analysis, this one will be selected by the

scheduler.

However, imagine a checker that is less likely to generate false warnings

if dead code is eliminated, but which can also process code containing

dead code. Given that the user has selected the dead code analysis,

it would be meaningful to execute the checker after the removal of

the dead code. But, this is not supported by the model. A checker

(analyses) is always scheduled as early as possible and since the checker

4How a checker specifies to be executed by a meta-analysis is unrelated to the concept.
However, it is imaginable that such information is specified along with a checker’s meta-
information.

3.6. Summary 59

can process code containing dead code, it will be scheduled before the

dead code analysis.

Hence, configurable (base) analyses are only partly supported by the

current model.

3.6 Summary

In this chapter, an approach that enables the integration of an open set

of static analyses into the incremental build process was proposed. The

approach considers analyses as data producers, transformers and consumers.

This view enables a decoupling of analyses and facilitates an integration of

independently developed analyses.

To determine the order in which to execute a set of analyses, the effect

of an analysis on the whole program database is specified, i.e., it is specified

which data is added, removed and changed by the analysis in case of incre-

mental builds.5 An analysis’ effect is specified w.r.t. a high-level view on top

of the underlying database. The high-level view is a directed acyclic graph

that models dependencies in the underlying database such that two parts of

the database are independent if no path between the nodes that represent

the different parts exist. Two analyses that process independent parts of the

database will never conflict.

The specified dependencies are used to derive a constraint system that —

when solved — determines the order in which the analyses can be executed.

As part of solving the constraint system opportunities for parallelizing analy-

ses are detected. This reduces the overall processing time required to execute

all analyses later on.

As discussed in this chapter, platforms implementing the proposed ap-

proach can fulfill the requirements regarding the execution of analyses iden-

tified in Chapter 2. Also calculating a schedule given a set of analyses will

not be a limiting factor as the performance evaluation of the scheduler has

shown. Furthermore, the approach enables to detect analyses that can run in

parallel and, hence, a more efficient use of computational resources is poten-

tially possible when running on multi-core CPUs or multi-processor systems.

Hence, from a theoretical point of view such platforms meet the prerequisites

to enable the simultaneous integration of different static analyses along with

the incremental build process.

5A full build is an incremental build in which all documents are considered changed.

60 3. An Approach to Decoupling Analyses

However, it remains to be shown that such a platform is actually feasible

and does enable the integration of several analyses along with the incremental

build process, in particular the following open issues can be identified:

• With respect to the scalability:

– What is the overhead caused by the platform during incremental

builds?

– What are the memory requirements for keeping the whole program

database in memory?

– How many analyses can be run as part of the incremental build

process?

– What is the performance gain due to the automatic parallelization

of analyses?

• Does such a platform reduce the engineering efforts for developing new

static code analyses and software comprehension tools or does the effort

for specifying the dependencies and understanding the model overcom-

pensate the gained advantage of not having to implement everything

from scratch?

These questions are answered in the following chapters.

Chapter 4

Architecture of Magellan

In this chapter, an overview of the architecture of the open static analysis

platform Magellan is given. Magellan implements the approach pro-

posed in Chapter 3 and is tightly integrated with the Eclipse IDE’s [Ecl06]

incremental build process.

In Section 4.1, the building blocks of Magellan’s architecture are pre-

sented. The program flow is described in Section 4.2. In Section 4.3, the

architecture is evaluated w.r.t. to the requirements identified in Chapter 2.

Section 4.4 concludes this chapter by summarizing what is achieved and what

needs to be done.

4.1 Building Blocks

The overall architecture of Magellan is depicted in Figure 4.1. The five

main building blocks of Magellan (AnalysisRegistry, Scheduler, Dispatcher,

UI, WPDB) and their dependencies are explained next.

AnalysisRegistry

The AnalysisRegistry is the central unit where all analyses are registered

and managed.

An analysis is registered by using Magellan’s registry extension point.

An extension point is Eclipse’s mechanism to enable a plug-in to spec-

ify where other plug-ins may contribute functionality to the plug-in

[DFK+04]. Hence, analyses are also implemented as Eclipse plug-ins.

But, except from using the extension point mechanism no further de-

pendencies between analyses implemented for Magellan and Eclipse

are necessary.

61

62 4. Architecture of Magellan

Figure 4.1: Overall architecture of Magellan

To register, e.g., an analysis x.y.Z the analysis’ plugin descriptor is as

follows:

<plugin>

<extension point=”de.tud.magellan.analysis”>

<analysis class=”x.y.Z”/>

</extension>

</plugin>

The descriptor specifies that it extends the extension point de.tud.

magellan.analysis and that the “analysis” is implemented by the class

x.y.Z. This class, however, must not implement the analysis on its own;

it can also be a wrapper around a query, e.g., written in XQuery or

Prolog, that actually implements the analysis. In this case, the class

x.y.Z would just provide the Magellan integration.

During startup of the IDE the analysis’ plugin descriptor is parsed by

Eclipse and then the analysis is registered with Magellan’s Analysis-

Registry.

The location of an analysis’ specification is specified using Magellan’s

@ASL annotation as shown in the following listing:

4.1. Building Blocks 63

@ASL(”Z.asl”)

public class Z extends IAnalysis {...}

When an instance of an analysis is registered with the registry, Java

reflection is used to extract the ASL annotation specifying the location

of the ASL file.

Scheduler

The scheduler is responsible for calculating the schedule. To do so, it

uses the AnalysisRegistry to get information about the configured anal-

yses and their specifications. The calculated schedule is then passed to

the dispatcher.

The constraint system is generated using the mathematical program-

ming language ZIMPL [Koc04] and solved using lp solve [BEN05], as

described in Chapter 3.

Dispatcher

The dispatcher executes the schedules. It registers itself with the

Eclipse build system. After that, Eclipse will always call the dispatcher

when the project or parts of the project have changed and the project

needs to be build.

Whole Program Database (WPDB)

The WPDB stores the source model as derived by the executed anal-

yses. The WPDB’s implementation is not further detailed as it is a

one-to-one implementation of the model proposed in Chapter 3 (cf.

Figure 3.1).

MagellanUI

The user interface of Magellan is shown in Figure 4.2. It enables the

user to configure the base analyses and the checkers that should be exe-

cuted as part of the incremental build process. As shown in Figure 4.2,

analyses can be grouped in different categories (e.g., “Base Analyses”

or “Java API Based Checkers”). The grouping mechanism facilitates

comprehension of the purpose of the analyses. Moreover, for each anal-

ysis a short description is presented. After activating Magellan for

an Eclipse project the project’s configuration page is extended to en-

able the configuration of Magellan. When the user has changed the

configuration and presses the Apply or Ok button the scheduler is called

to calculate a new schedule. After that, the project is analyzed.

64 4. Architecture of Magellan

Figure 4.2: The Magellan properties dialog.

Besides providing functionality related to configuring, scheduling and exe-

cuting an open set of static analyses, no further functionality is implemented

as part of Magellan. For example, the checkers that were developed to

evaluate Magellan reuse Eclipse’s problems view to show the detected vi-

olations and errors.

4.2 Program Flow

In the following, the program flow of full builds and incremental builds is

explained. A full build is executed if either all project resources have changed,

the user explicitly requests it, or if the whole project need to be reanalyzed.

An incremental build is executed if a subset of the project’s resources has

changed. Immediately after activating Magellan for a project, a full build

is executed. Hence, a full build always precedes incremental builds. For this

reason, full builds are discussed first.

4.2. Program Flow 65

load-time
activation

clean build

generation of the constraint system

calculating schedule

isValid

full build

 true

false

loading schedule

configuration of analyses

project builders

analysis process

user activation

user interaction
(can be a start point)

start- /
endpoint

subprocess

decision
node

processing step

 Legend

2

1

4

3

Figure 4.3: Program flows leading to full builds

Full Builds

To facilitate the comprehension of the Eclipse integration of Magellan, two

types of full builds are distinguished in the following discussion.

• A clean build is a full build triggered by Eclipse. A clean build is clean build

executed in the following two cases (marked 1 and 2 in Figure 4.3):

1. When the user activates the Magellan plug-in for an Eclipse

project Magellan registers a builder to hook into the build pro-

cess. During this initial build Magellan only collects informa-

tion about the names and locations of the project’s artifacts. Since

no analyses are configured yet, the schedule is empty and no anal-

yses are executed.

2. When explicitly requested by the user, using Eclipse’s “clean build”

menu item, or when a large number of the project’s resources has

66 4. Architecture of Magellan

changed. For example, after a CVS update a clean build might be

triggered.

During clean builds Magellan will be invoked by Eclipse when all

other project specific builders have finished. Builders are Eclipse plug-

ins that process the project’s resources and often generate further re-

sources. For example, compilers and parser generators, such as ANTLR

[Par06], are realized as builders. By executing Magellan after all

builders it is possible to analyze generated resources, e.g., Java class

files.

• A simulated full build is a Magellan internal full build, that is exe-simulated full build

cuted when all resources need to be (re)analyzed.

A simulated full build is executed in two cases (marked 3 and 4 in

Figure 4.3):

3. When the configuration of the analyses that should be executed

as part of the incremental build process changes. A full build is

required to make sure that the WPDB contains the source model

as derived by the resulting analysis configuration.

When the user has finished the configuration, the constraint sys-

tem is created and solved. If a schedule can be calculated, a new

full build is triggered, otherwise an error is shown to the user and

the user is taken back to the configuration.1

4. When the Eclipse IDE is started a simulated full build is exe-

cuted for projects for which Magellan was previously activated.

This build serves to (re)initialize the whole program databases

(WPDB). Before executing the full build the last calculated sched-

ule is restored.

Incremental Build

The program flow for incremental builds is depicted in Figure 4.4. When

the user has edited and saved a project’s resource, Eclipse first invokes all

project builders. After that, Magellan is called with the information about

all resources that have changed. This includes not only user edited resources,

but also all resources generated by the builders.

1Recall that a schedule can not be calculated if the selected analyses or analyses on
which selected ones depend have conflicting requirements.

4.2. Program Flow 67

incremental build

project builders

editing &
saving resources

analysis process

Figure 4.4: Program flow for incremental builds

Analysis Process

The input to the analysis process consists of the resources to be (re)analyzed

(called changed resources in Figure 4.5); no distinctions concerning the build

type are made. The scheduled analyses are executed in the same way whether

the current build is an incremental build or a full build. However, the infor-

mation about the current build type is made available to the analyses. This

enables analyses to implement two different code paths: one optimized for

full builds and one for incremental builds.

To execute the analyses, Magellan iterates over all steps of the sched-

ule and tries to execute the step’s analyses in parallel. To parallelize the

execution of the analyses Magellan uses number of processors+1 threads.

Preliminary experiments have shown that this number leads to the greatest

average reduction of the overall analysis time. Static code analyses are CPU

intensive once the source code is parsed; starting more threads to analyze

the code is ineffective as a CPU is typically 100% utilized while executing

one analysis.

Overall Program Flow

The overall program flow is presented in Figure 4.6. The figure shows how

the full build, incremental build and the analysis process are related to each

other. When the analysis process has finished (the
⊕

node in Figure 4.6),

the user can change the configuration of the analyses, trigger a clean build,

68 4. Architecture of Magellan

step := 0

step++

step =< max

execute analyses
of current step

in parallel

 true

changed resources

false
end

Figure 4.5: The analysis process

or can continue editing and saving the project’s resources. Furthermore, on-

demand analyses can be executed (the black node in Figure 4.6), e.g., to

support software comprehension tools.2

However, after each action the project’s resources are analyzed and as

soon as the analysis process has finished the user can continue with the next

action.

4.3 Evaluation

In the following, Magellan is evaluated w.r.t. the requirements identified

in Chapter 2.

Since it is a direct implementation of the approach proposed in Chapter

3, Magellan fulfills the requirements: “Extensible base analyses stack”

2The execution of on-demand analyses that would require a different or an extended
source model is currently not supported. However, supporting on-demand analyses that
require a source model different to the current model is a mere engineering issue. To
do so it would be necessary to: First, persist the current schedule. Second, to calculate
a schedule that satisfies the requirements of the selected on-demand analysis. Third, to
execute the analysis. Forth, to restore the old schedule and the corresponding whole
program database.

4.3. Evaluation 69

load-time
activation

clean build

generation of the constraint system

calculating schedule

isValid

full build

 true

false

loading schedule

configuration of analyses

project builders

analysis process

user activation

incremental build

project builders

editing &
saving resources

analysis process

step := 0

step++

step =< max

execute analyses
of current step

in parallel

 true

changed resources

analysis process

false
end

on-demand
analysis

Figure 4.6: Overall program flow of Magellan

70 4. Architecture of Magellan

(OSAP-R1), “Support for open base representations” (OSAP-R2), “Enabling

cross-artifact reasoning” (OSAP-R3) and “Execution of required analyses

only” (OSAP-R6).

Furthermore, being integrated with Eclipse and its incremental build pro-

cess, Magellan fulfills the requirement “Integrated into an IDE” (OSAP-

R9); it is possible to execute analyses as part of the build process and to

execute analyses on-demand. However, team support, i.e. the sharing of the

configuration of the analyses, is currently not supported. The configuration

is managed internally by Eclipse. This is, however, not a conceptual issue

and implementing team support is just an open engineering issue.

Magellan fulfills the requirement: “Support for incremental analyses”

(OSAP-R7): Magellan is tightly integrated with the IDE’s incremental

build process and detailed information about the resources that have changed

since the last build are made available. Hence, the implementation and

execution of incremental analyses is supported.

The requirement “Configurable set of base analyses” (OSAP-R10) is ful-

filled by Magellan within the limits of the approach as discussed in Section

3.5. That is, Magellan enables the user to configure the set of base anal-

yses, but context dependent scheduling of (base) analyses is not supported.

E.g., a base analysis, such as a dead code analysis, will be executed after a

checker (analysis) whose requirements are already satisfied before the execu-

tion of the base analysis. This is (cf. Section 3.5) not always advantageous.

Though the requirement “Support for parameterized checkers” (OSAP-

R4) is supported by the Magellan core, a user interface to parameterize

checkers is lacking. This is not a severe restriction as a user interface could

also be developed as part of a tool which builds upon Magellan. The tool

could then use the core’s functionality related to parameterized checkers.

Meta-analyses (OSAP-R8) are not supported by Magellan, i.e., it is

currently not possible to use meta analyses to drive the analysis process of

checkers. However, support for meta analyses can be easily implemented as

described in Section 3.5.

Magellan itself does not provide error report management related func-

tionality (OSAP-R11). But, being integrated into Eclipse, analyses that re-

quire error report management can use Eclipse’s problem view to show errors

to the user. Unfortunately, the problem’s view functionality is rather lim-

ited. Filtering of error reports is limited to filtering reports of a specific

type and it is not possible to filter reports based on an error’s source loca-

tions. The dynamic ranking of errors based on an error’s likelihood of being

a false warning is also not supported. Furthermore, error reports are limited

4.4. Conclusions 71

to a short descriptive text. Complex reports, e.g., reports containing the

call chain leading to a potential dead lock, are not supported. Hence, this

requirement is only partly fulfilled.

The last remaining requirement: “Enabling the embedding of query en-

gines” (OSAP-R5) is supported by Magellan as we will see in the following

chapter; to fulfill this requirement no special functionality in the Magellan

core is required.

4.4 Conclusions

As discussed in the previous section, Magellan does fulfill those require-

ments that are crucial for evaluating the feasibility of open static analysis

platforms. That is, using Magellan it is possible to execute an open set of

static analyses as part of Eclipse’s incremental build process. The remain-

ing engineering issues identified in the previous section are not conceptual

and are primarily related to the platform’s usability. Hence, Magellan en-

ables a throughout assessment of the feasibility and scalability of open static

analysis platforms.

Chapter 5

Embedding Query Engines

Part of the material in this chapter is published in: XIRC: A Kernel for Cross-

Artifact Information Engineering in Software Development Environments [EMOS04],

Automatic Incrementalization of Prolog Based Static Analyses [EKS+07], and in

Pointcuts as functional queries [EMO04]

As identified by requirement OSAP-R5, enabling the integration of query

engines is indispensable for open static analysis platforms. To evaluate

Magellan in this regard two different query engines were integrated: an

XQuery engine as well as a Prolog system.

These query languages were chosen because they are applicable for a wide

range of different purposes when compared with domain specific query lan-

guages. The latter have the potential to facilitate complex analyses within

a particular domain [Wuy98, HHR04, Cre97, MLL05, Vol06], but can hardly

be used for different types of analyses or for analyzing code in different lan-

guages.

PQL [LL05], for example, can be used to query for security vulnerabilities

based on tainted objects. In the background, sophisticated inter-procedural

data-flow analyses are performed. However, analyses of structural properties

or cross-artifact analyses are not in focus of PQL and are not supported.

Hence, to support a wide range of analyses it would be necessary to embed

a large number of special purpose query engines.

XQuery — XML’s native query language — and Prolog on the other

side are already used for a wide range of different purposes such as, e.g.,

calculating metrics, exploring software systems or implementing analyses to

detect errors. Furthermore, these query languages are neutral w.r.t. the

language in which the analyzed code is written.

73

74 5. Embedding Query Engines

Supporting XQuery is particularly advantageous because XML is already

widely used by software engineering tools [CCS04, HSvG03, MC04, MCK04,

GK02, MW04, MMFA04] and a large number of mappings between code

in different programming languages and XML is readily available [CMM02,

Bad00, MK00, MCM02, FvG03, MMN02, HSvGF03, HWS00, AEK05, ST03].

Prolog was chosen because it is also well known, mature, and highly opti-

mizing Prolog engines are freely available. The query optimizations done by

the Prolog systems promise to offer the performance necessary to make an

integration with the incremental build process possible.

The XQuery queries are directly evaluated on top of an incrementally

maintained XML view of the program representation. The Prolog queries

are evaluated using a standard Prolog system. The facts are stored in an

external database which is incrementally maintained.

The integration of both query engines is described in detail in the fol-

lowing sections. At the end of each section the embedded query engine is

evaluated w.r.t. its support for the features identified as part of the require-

ment OSAP-R5.

5.1 Embedding an XQuery Engine

Before the integration of the query engine into Magellan is described, a

short overview of XQuery is given. Only those features of XQuery are elabo-

rated on that are necessary for understanding the examples in the following

chapters.

5.1.1 Introduction to XQuery

XQuery [BCF+05] is a functional, declarative, Turing-complete [Kep04] query

language designed for querying XML data sources. XQuery consists of several

kinds of expressions that can be nested and composed with full generality.

The most important among them is the notion of path expressions.1 In a

nutshell, a path expression selects nodes in an XML tree. For illustration,

consider the XML document in Listing 5.1 representing the bytecode of a sim-

ple session bean class named SimpleBean (Line 1) with a default constructor:

the method named <init> in Line 6.

1 <class name=”de.tud.SimpleBean” visibility=”public”>

2 <inherits>

1This subset of XQuery is a separate standard called XPath [CD99].

5.1. Embedding an XQuery Engine 75

3 <class name=”java.lang.Object”/>

4 <interface name=”javax.ejb.SessionBean”/>

5 </inherits>

6 <method name=”<init>” visibility=”public”>

7 <signature>

8 <returns type=”void”/>

9 </signature>

10 <code>

11 <load index=”0” />

12 <invoke declaringClassName=”java.lang.Object”

13 methodName=”<init>”>

14 <signature> <returns type=”void”/> </signature>

15 </invoke>

16 <return />

17 </code>

18 </method>

19 ...

20 </class>

Listing 5.1: XML representation of a simple Java class file

This document can be parsed by accessing the top-level document node

(class) of the corresponding tree. Then the path expression /class/method/

code/invoke selects all invoke nodes, resulting in the node spanning Line 12

to Line 15 in Listing 5.1.

In general, a path expression consists of a series of steps, separated by

the slash character. The previous path expression has three steps, namely

the child steps method, code, and invoke. The result of each path expression

is a sequence of nodes. XQuery supports different directions in navigating

through a tree, called axes. In the path expression above, we have seen the

child axis. Other axes that are relevant are the descendant axis (denoted

by “//”), the parent axis (denoted by “..”), the ancestor axis (denoted by

“ancestor::”), and the attribute axis (denoted by “@”). Using the descen-

dants/ancestor axis rather than the child/parent axis means that one step

may traverse multiple levels of the hierarchy. For example, the above query

could be rewritten as: //invoke.

The attribute axis selects an attribute of the given node, whereas the par-

ent axis selects the parent of a given node. For example, the path expression

//code/../@name selects all name attributes of all method nodes that have

a code child, i.e., which are not abstract methods. Another important fea-

76 5. Embedding Query Engines

ture of XQuery is its notion of predicates — boolean expressions, enclosed in

square brackets, used to filter a sequence of values. For instance, the query

//method[@name=”main”] selects all methods with the name main.

One can bind query results to variables, which in XQuery are marked

with the $ character, by means of a let expression, as illustrated in Listing

5.2.

1 let $concreteMethods := //code/..

2 return $concreteMethods/[@name = ”main”]

Listing 5.2: A variable definition in XQuery

The for construct has the same syntax as let, but it iterates over all values

of the sequence returned by the query.

XQuery also offers a number of operators to combine sequences of nodes,

namely union, intersect, and except. The operators have the usual set-theoretic

denotation, except that the result is again a sequence with a specific order.

XQuery also supports function definitions. For illustration, the function

diff shown in Listing 5.3, being passed two sets $m1 and $m2 of method

elements (the * in as element()* stands for “zero to many”), returns the

result of the set subtraction operation applied to them.2

1 declare function diff ($m1 as element()∗, $m2 as element()∗)

2 as element()∗

3 {

4 $m1/.. except $m2/..

5 }

Listing 5.3: A function definition in XQuery

The last relevant feature is that XQuery also provides XML like construc-

tors to create XML structures within a query, as illustrated by the query

shown in Listing 5.4.

1 <entries> for $c in //class return

2 <entry name=”{$c/@name}”/>

2XQuery also has a sophisticated type system based on XML Schema [FW04]. With
this type system it would be possible to make the types more specific, e.g., we could use
the type method* instead of element()* for $m1 and $m2 in Listing 5.3, whereby method

would be defined in the corresponding schema definition. This would make queries safer
and more robust against programming errors and enables some XQuery engines to optimize
the query execution. However, we have not used this feature as the embedded XQuery
engine does not support it.

5.1. Embedding an XQuery Engine 77

3 </entries>

Listing 5.4: XQuery where the result is a marked up XML document

The result of evaluating the query shown in Listing 5.4 for the XML document

shown in Listing 5.1 is:

<entries> <entry name=”de.tud.SimpleBean”/> </entries>

5.1.2 Integrating the Saxon XQuery Processor

5.1.2.1 Overview

To enable XQuery-based analyses, a pseudo-analysis was implemented that

stores an object of type XMLDB in Magellan’s database. An instance XML database

of XMLDB manages an XML tree and provides functionality to execute

XQuery queries. The class XMLDB implements the IWholeProgramFact inter-

face (cf. Figure 3.1). The instance of the class XMLDB stored in Magellan’s

database is referred to as the XML database in the following.

The XML database is populated and maintained by subsequently exe-

cuted analyses which are free to store arbitrary XML data in the database

— in particular XML representations of project artifacts. Tools that want

to query specific information just declare a dependency on the LSV entity

representing the required XML data. Magellan will then execute a cor-

responding analysis as part of the build process to make the information

available. Given the populated XML database, a query is executed by pass-

ing the XQuery to the XML database object.

In the following sections, the various aspects of the integration are ex-

plained in further detail.

5.1.2.2 The XML Database

The data stored in the database is a large object graph that represents one

XML document. The object graph is constructed using the JDOM [HM06]

XML library. Initially, the database only contains the root element — the

db:all element shown in Listing 5.5.

The ASL file of the analysis that creates the empty database is shown next

and specifies that a single LSV entity (the empty database) is maintained.

Since the analysis does not analyze any project artifacts and does not have pseudo-analysis

any direct or indirect dependencies on project artifacts it is called a pseudo-

analysis.

78 5. Embedding Query Engines

1 <db:all>
2 ...
3 </db:all>

Listing 5.5: The root element of the XML database

analysis EmbedXMLDB

maintains XMLDB

A maintains dependency is specified to make sure that the entity is never

invalidated by any other analysis, i.e., that the database represented by the

LSV entity is never deleted.

In case of a full build, a new instance of XMLDB is created, in case of an

incremental build no specific action is performed by the analysis.

An analysis that wants to store data in the database declares a reads de-

pendency on the XMLDB entity to make sure that the database is available

when required. Furthermore, to enable other analyses or software compre-

hension tools to use the information stored in the database it is necessary

to specify an LSV entity that represents the added XML data. Using the

declared LSV entity other analyses can then specify a dependency on the

XML data. Since the data is stored in the database, the new LSV entity has

to be declared as dependent on the XMLDB entity.

For example, the XML representation of Java class files created using

BAT2XML (cf. Appendix V) is represented by the entity CF XML which di-

rectly depends on the entity XMLDB. The complete specification of BAT2XML

is as follows:

analysis BAT2XML

reads Document/CF/Method/BCode/CFG, Document/CF/Field

reads−global Document/CF

maintains XMLDB/CF XML

The first reads dependency states that the analysis reads the bytecode based

representation (BCode) of class files. Further, the control flow graph (CFG)

is also required. This information is only required for currently changed or

added documents (reads). The second dependency (reads−global) specifies

that information about the class’s interface needs to be available also for

class files that were processed during a previous build step (reads−global

). The information about the class file interface is required by BAT2XML

5.1. Embedding an XQuery Engine 79

to maintain the database, in particular, to remove XML representations of

outdated class files. Finally, the maintains dependency states that BAT2XML

keeps the set of XML representations of Java class files up-to-date.

The effect of executing BAT2XML as part of the incremental build pro-

cess is: For each class file that is added in the current build step, an XML

representation is created and added to the database. For changed class files,

the representation is updated and for removed class files the corresponding

XML representation is also removed.

If BAT2XML is executed along with the build process, the structure of

the XML database will be as depicted in Listing 5.6. The two exemplary

children of the db:all element represent corresponding class files and were

added by BAT2XML.3

1 <db:all>
2 <bat:class name=”x.y.Z” visibility=”public” ...>
3 ...
4 </bat:class>
5 < bat:class name=”u.v.W” visibility=”public” ...>
6 ...
7 </bat:class>
8 </db:all>

Listing 5.6: Excerpt of the XML database

5.1.2.3 Evaluating XQueries

The interface of the XMLDB class, which is the root class of the database,

is shown in Listing 5.7. Additionally to enabling analyses to add and re-

move XML elements (Listing 5.7, Line 4–6), functionality to evaluate queries

(Listing 5.7, Line 9–16) is also provided.

The query support builds upon the Saxon XQuery processor [Kay05a].

Saxon was chosen because it is a standard conforming implementation, oper-

ates completely in memory, and was implemented in Java.4 As shown in the

3The namespaces (db and bat) are used to keep the database extensible.
4Before Saxon was chosen a large number of (XML) databases with XQuery support

were evaluated. eXist[Mei05] was premature and crashed several times. Further, an update
of the database took multiple seconds even for small documents. Tamino [Sof05] supported
only an outdated version of XQuery with a severely restricted set of features. The same
applies to Sedna [MOD05]: crucial functionality such as function definitions were not

80 5. Embedding Query Engines

1 public class XMLDB extends IWholeProgramFact {
2

3 // methods required by analyses which maintain (add / remove) facts
4 void addElement(Element element);
5 void removeElement(Element element);
6 Enumeration<Element> getElements(Namespace namespace);
7

8 // querying related methods
9 XQueryExpression compileQuery(String query, String baseURI) ...

10 SequenceIterator executeQuery(XQueryExpression exp) ...
11 SequenceIterator executeQuery(
12 XQueryExpression exp,
13 NodeInfo context)...
14 SequenceIterator executeQuery(
15 XQueryExpression exp,
16 SequenceIterator contexts) ...
17 }

Listing 5.7: Interface of the embedded XML database

following, being implemented in Java made it easier to provide some of the

functionality identified as part of the query engines requirement (OSAP-R5).

• The executeQuery method shown in Listing 5.7 Line 10 supports queries

that search the entire database, e.g., to find a type definition, or a

method declaration. These queries return direct references to the nodes

of the XML database that match the selection criteria. This type of

query can be used to implement search features of software comprehen-

sion tools, or to search for violations of best practices and implemen-

tation restrictions.

For example, given the XML database shown in Listing 5.5, the result

of the following search query is a reference to the second child element

(Listing 5.5, Line 5) of the XMLDB’s root element: db:all (Listing 5.5

Line 1)

/db:all/bat:class[@name=”de.tud.SaxonWrapper”]

supported. In case of Berkely DB XML [Sle06] the evaluation time of queries was not
acceptable when the indexing functionality was turned off. But, if indexing was turned on
the time required to maintain the database was not acceptable.

5.1. Embedding an XQuery Engine 81

• The executeQuery methods shown in Listing 5.7 Line 11 and Line 14

support queries that are defined with respect to a previously selected

node, i.e., queries that need a specific context to be evaluated. These

types of queries enable to browse through a software project.

For example, the result of a search query that returns a node which

wraps a class declaration can be set as the context for a query to get

all sub- or supertypes.

The SequenceIterators returned by the executeQuery methods iterate over

sequences of Nodes. A node is either some derived information, e.g., a value

that represents the depth of inheritance tree for a specific class, or a Java

wrapper around an element of the XML database.

Each query to be executed as part of the build process is wrapped into

its own whole program analysis by mean of a Java wrapper. During an

incremental build this wrapper just passes the query on to the database for

evaluation and then processes the result, e.g., shows warning messages.

5.1.3 Evaluation

The features of the embedded XQuery engine are evaluated w.r.t. the OSAP-

R5 requirement.

Semantic queries are supported provided that the data stored in the database

is appropriately marked-up, i.e., each semantic item, such as a field’s

name, the modifiers or the declaring class, has to be marked-up. Given

a representation with a fine-grained markup it is then possible to write

queries such as: “Get all accessed fields of method X”, “Get the declar-

ing class of method Y” or “Get the superclass of Z”.

Well suited representations are generated, for example, by JavaML

[Bad00], srcML [MCM02] or BAT2XML (cf. Appendix V).

Query chaining is supported. If a query’s result is some information di-

rectly stored in the database, e.g., an element representing a class dec-

laration, the result can be used as the context for the evaluation of the

next query, e.g., to navigate to the superclass.

Query filtering is not directly supported, i.e., no functionality is provided

that can be used to filter those queries that are not applicable to a

82 5. Embedding Query Engines

specific database element.5

However, using the query chaining feature implementing query filter-

ing is straight forward as shown in the following. Given a database

element, it is possible to write a tool specific query that “types” the

element. For example, given a db:all/bat:class (cf. Listing 5.5) element

the query could analyze the element’s path and could return the type:

ClassDeclaration.

Assuming the queries declare meta-data about the supported types of

elements, it is then possible to present the user only those queries that

are meaningful given the current context. For the current example, to

show a query to get the superclass and to omit a query that returns

the declared exceptions (of a method). This approach is for example

used by the Sextant software exploration tool (cf. Chapter 7).

Automatic incrementalization is not supported; i.e., to get the updated

result of an XQuery after an incremental change the query need to be

re-evaluated w.r.t. the entire database.

In short, the embedded XQuery engine directly supports semantic queries

and query chaining. Though, query filtering is not directly supported, the

provided functionality at least facilitates tool specific filtering of queries.

Automatic incrementalization is not supported.

5.2 Embedding a Prolog System

In this section, the integration of an extended version of XSB Prolog [XSB06]

in Magellan is presented. Compared to the original XSB prolog engine,

support for incremental tabled evaluation was integrated [SR06], i.e., the

result of a query is incrementally updated when the fact base changes. The

incremental evaluation feature is particularly promising to enable a tight

build process integration of analyses written in Prolog.

First, an overview of implementing static analyses using Prolog is pro-

vided before the automatic incrementalization of analyses is discussed. The

integration of XSB in Magellan is presented afterwards.

5Using Saxon, it is possible to evaluate every XQuery w.r.t. every possible element of
the XML database. However, depending on the query the result set might be empty or
even worse contain unexpected elements.

5.2. Embedding a Prolog System 83

5.2.1 Writing Analyses using Prolog

Two example analyses are presented to illustrate the approach to specify-

ing static analyses as Prolog queries. The first example analyzes a class’

interface to detect violations of a best practice in applying the visitor de-

sign pattern [GHJV95]. The second example performs an intra-procedural

data-flow analysis to control the creation of aliases.

Example I

When implementing the visitor design pattern it is a best practice to imple-

ment a special visit method for each type in the visited hierarchy.

For illustration, consider the Java code in Listing 5.8. The classes Node

(Line 3) and StructureVisitor (Line 12) are defined together at some point in

time. Later on, the class SubNode (Line 7) is added to the code base. This,

however, violates the best practice mentioned above: StructureVisitor does

not implement a visit method for SubNode. Nevertheless, the compiler will

not generate any warning. In the following, a Prolog-based static analysis

for detecting such a violation is presented.

1 package bat;

2

3 public class Node{

4 void accept(Visitor visitor){visitor.visit(this);}

5 }

6

7 public class SubNode extends Node{

8 /∗ empty ∗/

9 }

10

11 @Visitor(Node.class)

12 public class StructureVisitor{

13 public void visit(Node node){...}

14 }

Listing 5.8: Sample implementation of the Visitor design pattern

Listing 5.9 shows the Prolog encoding of the source code. A class fact

(Line 5, 8, or 12) consists of the package, the fully-qualified class name,

the visibility, boolean values denoting whether the class is final or abstract,

and the superclass. The first value in method facts (e.g., 4 in Line 6) is

a generated unique identifier for a method; after that, the declaring class is

84 5. Embedding Query Engines

1 %%class(PackageName,ClassName,AccessSpecifier,IsAbstract,IsFinal,ParentClass)
2 %%classAnn(Class,Annotation)
3 %%method(Id,DeclaringClassName,Name,AccessSpecifier,...,ReturnType,

ListofParam,ListofAnnotations)
4

5 class(’bat’,ref(’bat.Node’),public,false,false,ref(’java.lang.Object’)).
6 method(4,ref(’bat.Node’),’accept’,default,...,void,[parameter(ref(’bat.Visitor’),[])

],[]).
7

8 class(’bat’,ref(’bat.StructureVisitor’),public,false,false,ref(’java.lang.Object’)).
9 classAnn(ref(’bat.StructureVisitor’),annotation(type(’Visitor’),value(ref(’bat.Node’

)))).
10 method(2,ref(’bat.StructureVisitor’),’visit’,public,...,void,[parameter(ref(’bat.Node

’),[])],[]).
11

12 class(’bat’,ref(’bat.SubNode’),public,false,false,ref(’bat.Node’)).

Listing 5.9: Encoding of source code as Prolog database

specified, followed by the method’s name, its visibility (default is the assumed

visibility in Java when no visibility is explicitly specified), an encoding of the

method’s modifiers using boolean values (omitted for brevity), the return

type, the parameter types along with parameter annotations and the list of

declared exceptions.6

The analysis is specified as the visitor(Class) query in Listing 5.10 Line

13. The query identifies visitor classes declared as such via the @Visitor(Type)

annotation that do not implement a visit method for every subtype of the

annotation parameter: For doing so, the query first selects classes with the

@Visitor annotation to get the root of the visited hierarchy: Node in our

example. Next, it applies the rule transinvinherits/2 to find all classes which

extend Node; for any such class, the query verifies that the Visitor has a

corresponding visit method and if not, the class is bound to the variable

Class. As the result of evaluating the query, warnings are generated for each

answer to the query, i.e., for each binding of the variable Class. Each such

class violates the best practice of the visitor design pattern.

Example II

6In Prolog, angular brackets [...] are list constructors; variables start with an upper-
case; the special character denotes anonymous variables.

5.2. Embedding a Prolog System 85

1 % the subtype relation is computed by invinherits and transinvinherits
2 invinherits(Interface,Class):− classInterfaces(Class,Interface).
3 invinherits(ParentClass,Class):− class(,Class, , , ,ParentClass).
4 invinherits(X,Y):− interfaces(Y,X).
5

6 :− table transinvinherits/2.
7 % transitive reflexive hull of invinherits
8 transinvinherits(X,Y) :− invinherits(X,Y).
9 transinvinherits(X,X).

10 transinvinherits(X,Y) :− invinherits(X,Z), transinvinherits(Z,Y).
11

12 :− table visitor/1.
13 visitor(Class):− classAnn(Visitor,annotation(type(’Visitor’),value(Node))),
14 transinvinherits(Node,Class),
15 not(hasmethod(Visitor,’visit’,[Class])).

Listing 5.10: Query to check implementations of the Visitor design pattern

This analysis checks that a method does not return the self reference (this).

Such a check is, e.g., required when implementing confined types [VB01].

This analysis is based upon the prolog encoding of the 3-address based code

representation [Sco00] in static single assignment form [CFR+91] that is pro-

vided by BAT [BAT06]. In this representation data-flow information is made

explicit and, thus, implementing data flow analyses is simplified.

A violation of the constraint that this is never returned is shown in Line

5 of Listing 5.11: this is assigned to the variable o which may be returned by

the method later on without being assigned a new value in-between.

1 /∗@Confined∗/ class C {

2 public Object violate(){

3 Object o;

4 if (...)

5 o = this;

6 else

7 o = null;

8 return o;

9 } }

Listing 5.11: The self reference this may be returned (Java)

86 5. Embedding Query Engines

1 method(4,ref(’C’),’violate’,public,...).
2 if(4,2,4,...,operator,...,1).
3 label(4,3,4).
4 goto(4,4,4,2).
5 label(4,5,1).
6 label(4,7,2).
7 phi(4,8,8,p7,[phiElem(thisValue,4),phiElem(nullType,1)]).
8 return(4,9,8,p7).

Listing 5.12: The self reference this may be returned (Prolog encoding)

Listing 5.12 shows the prolog encoding of the method shown in Listing

5.11. The first value of each method implementation fact (Line 2–8) is the id

of the method (Line 1, first value) and the second one is the number of the

instruction. The third value is the line number of the corresponding source

code, except for labels (Line 3,5,6) where the value is a method-wide unique

id. The last values of if (Line 2) and goto (Line 4) statements are the id’s of

labels that are the jump targets. Besides being used as the targets of jump

instructions, labels are also defined for each basic block of the control flow

graph. The phi statement (Line 7) is a result of the transformation into static

single assignment form and states that the value of the (helper) variable p7

(line 7) is control flow dependent: If the id of the basic block of the last

executed instruction is 4 the value of p7 will be this (phiElem(thisValue,4)).

If the basic block’s id is 1 the value will be null.

The query to detect the violation is shown in Listing 5.13. initialized-

WithThis (Line 1–3) is a helper predicate that binds its second argument to

variables directly initialized with thisValue or to thisValue itself. The analysis

is defined in Line 5 – 7. Line 6 binds RetVal to variables that are directly or

indirectly initialized with thisValue. Line 7 succeeds for those methods that

return such a value.

1 initializedWithThis(MethodID, Variable) :−

2 def(MethodID, , , ,Variable,thisValue) |

3 (phi(MethodID, , ,Variable,Phis) , member(phiElem(this,),Phis)).

4 initializedWithThis(, thisValue).

5

6 returnsThis(MethodID) :−

7 initializedWithThis(MethodID, Val), propagate(Val, RetVal),

8 return(MethodID, , ,RetVal).

5.2. Embedding a Prolog System 87

Listing 5.13: Prolog based analysis to detect methods that return this

The predicate propagate/2 (Listing 5.14) is the reflexive and transitive

closure of all initializations of a variable. dpropagate (Line 1) implements the

initialization relation.

1 dpropagate(V1, V2) :− phi(, , ,V2,Phis), member(phiElem(V1,), Phis).

2 propagate(V,V).

3 propagate(V1,V2) :− dpropagate(V1,V2).

4 propagate(V1,V2) :− dpropagate(V1,V3), propagate(V3,V2).

Listing 5.14: The reflexive and transitive closure of all variable initializations

As shown by the propagate predicate, analyzing the data-flow is simplified

as each variable is initialized exactly once and the data-flow is explicitly

encoded in the phi facts.

To further illustrate the advantage of the chosen code representation con-

sider the code shown in Listing 5.15. In this case, the constraint that this

is never returned is not violated as the initialization of o with this (Line 2)

will never reach the return statement (Line 8). Since the use-def chains are

explicitly encoded, an analysis of return o (Line 8) immediately reveals that

o is always assigned a new instance of an Object (Line 9) and that the as-

signment of this in Line 2 is not relevant. Hence, an analysis of a method’s

control flow graph is superfluous.

1 public Object noViolation(){

2 Object o = this;

3 try {

4 do something ;

5 } finally {

6 o = new Object();

7 }

8 return o;

9 }

Listing 5.15: The self reference this is not returned

5.2.2 Automatic Incrementalization of Analyses

Since tabled evaluation of Prolog programs is the foundation for the auto-

matic incrementalization, it is explained first.

88 5. Embedding Query Engines

5.2.2.1 Tabled Evaluation

Tabled logic programs declare certain predicates as tabled. Recursive pred-

icates (for ensuring termination) and predicates that are re-used multiple

times are good candidates for tabled predicates. Tabled resolution systems

evaluate programs by memoizing subgoals of tabled predicates (referred to as

calls) and their provable instances (referred to as answers) in a set of tables.

Calls are stored in a call table and all answers corresponding to a call

are stored in a corresponding answer table. During resolution, if a subgoal

is present in the call table, then it is resolved against the answers recorded

in the corresponding answer table (answer clause resolution); otherwise, the

subgoal is entered in the call table, its answers are computed by resolving the

subgoal against program clauses (program clause resolution), and are entered

in the answer table.

The principles of tabling are exemplified using the visitor example. As

shown in Listing 5.10 Line 6, the recursive predicate transinvinherits/2 is de-

clared as tabled. Also the top-level predicate visitor/1 is declared as tabled

(Line 12); a query visitor(Class) can be resolved by looking up the visi-

tor(Class)’s answer table if the latter is non-empty. When visitor(Class) is

executed for the first time, tabling creates an entry visitor(Class) in the call

table and uses the rule for the visitor predicate to find answers.

Resolving the first subgoal of the visitor predicate binds the variables

Node and Visitor to ref(’bat.Node’) and ref(’bat.StructureVisitor’) respectively.

The transinvinherits predicate is evaluated with the call transinvinherits(ref(

’bat.Node’),Class), which is stored in the call table. The answers Class=ref(

’bat.Node’) and Class=ref(’bat.Subnode’) of this call are obtained by resolu-

tion of the second clause of transinvinherits, and by resolution of the first

clause of transinvinherits and invinherits, respectively. These answers are

stored in the answer table of the transinvinherits(ref(’bat.Node’),Class) call.

The resolution of the last subgoal in the body of the visitor predicate gener-

ates only the answer Class=ref(’bat.Subnode’) for the call visitor(Class), as the

last subgoal fails for the substitution Class=ref(’bat.Node’). Since visitor/1 is

tabled any subsequent visitor(X) call will be resolved from its answer table.

5.2.2.2 Incremental Evaluation

Any change to the Java program causes the addition and deletion of facts to

the Prolog fact base. Changes in the fact base can, in turn, render already

evaluated tables stale: They may not have all the answers or the answers in

the tables may be incorrect. The non-incremental approach to this problem

5.2. Embedding a Prolog System 89

interface(_,ref(’bat.SubNode’))
class(_,_,_,_,_,ref(’bat.SubNode’))

classInterfaces(_,ref(’bat.SubNode’))

visitor(_)

transinvinherits(ref(’bat.Node’),_)

classAnn(_,annotation(type(’Visitor’),value(_)))

transinvinherits(ref(’bat.SubNode’),_)

interface(_,ref(’bat.Node’))
class(_,_,_,_,_,ref(’bat.Node’))

classInterfaces(_,ref(’bat.Node’))

method(_,ref(’bat.StructureVisitor’),’visit’,_,_,_,[parameter(ref(’bat.Node’),[]),_)

method(_,ref(’bat.StructureVisitor’),’visit’,_,_,_,[parameter(ref(’bat.SubNode’),[]),_)

Figure 5.1: Call graph for Visitor example

is to abolish all the call and answer tables, and reissue the query. This is

often wasteful, specially when the effect of the changes to the fact base is

small. On the contrary, the incremental evaluation algorithm tries to identify

the calls that are changed and re-issues only these calls. The algorithm is

presented in [SR06] and is shortly described in the following.

A call is deemed changed iff the set of answers corresponding to the call

before the change differs from that after the change. However, it is not

possible to identify the set of changed calls before re-evaluating any calls.

Thus the incremental algorithm over-approximates the set of changed calls

by the set of affected calls, which are calls that can be potentially changed.

To determine the set of affected calls, the incremental algorithm maintains

a data structure which keeps the dependency between calls and facts that can

be changed (known as volatile facts). The data structure, known as called-by

graph, is central to the incremental algorithm and is described below using

the visitor example.

Informally, the called-by graph is a directed graph whose nodes consist

of calls and subgoals that unify with the volatile predicates. A path from

a node c1 to node c2 indicates that c1 is a tabled subgoal (or a call to a

volatile predicate) that was called while resolving the tabled subgoal c2. Each

edge describes the immediate dependency between calls. The graph captures

the dependencies between tabled calls and calls to volatile predicates. It

is first generated in the initial (non-incremental) run, and maintained over

subsequent incremental runs.

The called-by graph for visitor(Class) is given in Figure 5.1. The edges

from the nodes clsAnn(,annotation(type(’Visitor’),value())), transinvinherits(

ref(‘bat.Node’),), and the two method nodes to node visitor() correspond to

the first, second and two calls to the third subgoal in the body of clause

visitor(Class), respectively.

90 5. Embedding Query Engines

The incremental algorithm works in two phases: an invalidation phase

and a re-evaluation phase. The invalidation phase finds affected calls by

bottom-up traversing the called-by graph starting from the vertices that unify

with added or deleted facts. Edges in the called-by graph are directed from

callee to caller which enables to compute the affected calls by traversing

the called-by graph. For an illustration, consider the addition of a Struc-

tureVisitor.visit(bat.SubNode) method. This adds a fact similar to the one

in Line 10 of Listing 5.9, which instead of bat.Node refers to bat.SubNode.

The invalidation phase determines the visitor() call as affected, because the

added fact unifies with the method node of the called-by graph that has

ref(’bat.SubNode’) as a parameter, which, in turn, has a path to node visi-

tor().

If an added/deleted fact does not unify with any leaf of the called-by

graph, none of the calls are affected, i.e., the change has no effect to the

present set of calls and answers. For example, if we add a class bat.Foo which

does not affect the class hierarchy of bat.Node, none of the existing leafs will

unify with the added class fact for bat.Foo. Hence, none of the existing calls

are affected and re-evaluated. On the contrary, a non-incremental evaluation

will re-evaluate all existing calls.

5.2.3 Integrating XSB Prolog

The integration of Prolog into Magellan is comparable to the integration

of the XQuery engine and, therefore, only briefly described in the following.

As with the embedded XQuery engine, a pseudo-analysis stores a whole

program fact — PrologDB — in Magellan’s database. In case of a full

build a new instance of the database is created; during incremental builds

no special action is performed. The PrologDB fact provides the interface to

interact with the Prolog database7 including methods to:

• assert and retract facts (e.g. as shown in Listing 5.12, 5.13)

• consult prolog rules (e.g., to consult the file with the definitions of the

Prolog rules shown in Listing 5.14)

• evaluate queries (e.g., visitor(Class))

7Unlike the XQuery engine, the Prolog system is executed in an external process and
the communication between Magellan and Prolog is based on exchanging messages using
TCP/IP.

5.2. Embedding a Prolog System 91

The database is populated by subsequently executed analyses. Analyses

that store data in the database have to declare a dependency on the database

and have to specify LSV entities that represent the added data.

For example, the prototypical analysis that transforms BAT’s 3-address

based representation of Java class files into a Prolog encoding (cf. Section

5.2.1) has the following specification:

analysis BAT2Prolog

reads Document/CF/Method/QCode, Document/CF/Field

reads−global Document/CF

maintains PrologDB/CF pl

Using the assert and retract functionality the analysis maintains the set of

Prolog representations of the project’s class files represented by the LSV

entity CF pl (Line 4 of the above listing).

Furthermore, common rules used by other queries, e.g., transinvinherits in

Listing 5.10 and propagate in Listing 5.14, are made available for subsequent

analyses by using (pseudo-)analyses that consult the rules in case of a full

build. To consult rules means to load a prolog file with a set of (commonly

used) rule definitions. After loading, the rules can be used by other queries

or rule definitions. Consulting rules only when required is necessary to avoid

the maintenance of tables associated with rules that no user selected analysis

uses. For example, maintaining the table for transinvinherits (Listing 5.10,

Line 6) would waste memory and processing time, if transinvinherits is not

required by any subsequently executed query.

The analysis that consults the rules for propagate and transinvinherits has

the following specification:

analysis BAT2CommonRules

maintains PrologDB/propagate, PrologDB/transinvinherits

Analyses that want to make use of the predefined rules just have to declare a

dependency on the LSV entities (e.g. propagate) produced by corresponding

pseudo-analyses.

Each query is wrapped by a small Java class that is called by Magellan

during the build process. When invoked, the Java class passes the query to

the Prolog system for evaluation and then processes the result, e.g., shows

warning messages.

92 5. Embedding Query Engines

5.2.4 Evaluation

The features of the embedded Prolog system are evaluated w.r.t. the OSAP-

R5 requirement.

Semantic queries are supported. Data stored in the Prolog database is

well structured and enables a distinction between different semantic

items, such as, the name of a class, a method or a field.

Query chaining is not directly supported. The result of the evaluation of

a Prolog query is a set of String objects without any further meta-data

about the kind of information encoded by them. It is even not possible

to distinguish between derived information, such as the depth of the

inheritance tree and information related to facts stored in the database,

such as the name of a class. Hence, a query’s result cannot directly be

used as the context for evaluating another query.

Query filtering is not directly supported. Since the result of a query is a

plain sequence of characters, no context information is directly available

that could be used to decide which other queries are applicable.

Automatic incrementalization is supported, i.e., to use automatic incre-

mentalization for queries it is sufficient to mark them as tabled. After

that, the query’s results are maintained incrementally whenever the

fact base changes. On a change, only the subset of the database is

(re)analyzed that is necessary to update the query’s results.

The Prolog system’s support for automatic incrementalization is promis-

ing to enable the integration of analyses with the incremental build process.

However, due to the lack of direct support for query chaining and query filter-

ing the Prolog system is less well suited as a back-end for software exploration

tools. More effort would be required to implement exploration functionality

when compared to using the embedded XQuery engine.

5.3 Conclusions

As discussed in this chapter, Magellan facilitates the embedding of in-

process query engines (XQuery) as well as query engines that are executed in

an external process (Prolog System). Magellan’s architecture has proven

to be flexible enough to enable the seamless integration of query engines.

5.3. Conclusions 93

Since the embedding of the query engines did not require any explicit support

in the core, other query engines can be integrated when needed.

Further, no special functionality need to be implemented to support the

evaluation of queries on demand of the user or as part of the incremental build

process. Whether an analysis is triggered by the user or automatically by

Eclipse is fully transparent for the query engine. However, since the Prolog

system supports the automatic incrementalization of static analyses, it is

potentially better suited to enable the execution of queries along the build

process. The XQuery engine can not automatically incrementalize queries,

but directly supports query chaining, which is not supported by the Prolog

system. Hence, the XQuery engine is potentially better suited as the back-

end of software comprehension tools that provide means to navigate / explore

the project.

To sum up: Currently, none of the embedded query engines supports all

functionality identified as part of requirement OSAP-R5. But, taken together

all features are met.

Nevertheless, open questions remain:

• What are the performance (memory and analysis time) characteristics

when using the query engines? Which size of projects can be analyzed?

• How much faster are automatically incrementalized queries when com-

pared with queries that are not incrementalized? Is the performance of

automatically incrementalized queries sufficient to enable the simulta-

neous evaluation of several queries along with the build process?

• Is the assumption that the embedded XQuery engine is better suited

for software comprehension tools and that the Prolog system is better

suited for build process integrated static analyses correct?

These questions are answered in the following chapters where applications of

Magellan are presented that make use of the query engines.

Part III

Applications of Magellan

95

Chapter 6

Lightweight Static Analyses

This chapter shares some material with: Using Annotations to Check Structural

Properties of Classes [ESM05] and Enforcing System-Wide Properties [EMS+04]

6.1 Introduction

Static program analysis is becoming increasingly used to detect problems

before software is deployed. Traditionally, problems that may occur across

application domain and project boundaries have been the target of static

analysis, e.g., array index out of bounds, null-pointer dereferences, buffer

overflows or memory leaks. More recently, the target is moving toward

domain and project specific problems. Examples are problems related to

multi-threaded applications [EA03, AB01], to Web and EJB applications

[RSS+04a, RSS+04b, Liv04], to the usage of specific APIs [Liv05, BR02], to

the violation of security constrains [MLL05], or to detecting language specific

bug patterns [HP04].

Unfortunately, the built-in support of current IDEs for error detection

is limited to the possibilities offered by syntax checking and type checking.

Examples of checks that modern IDEs, such as Eclipse [Ecl06] and NetBeans

[Net06], can perform beyond syntax checking or type checking are: the de-

tection of the bug pattern “accidental boolean assignment”; i.e., when a

developer writes if (a = b)... instead of if (a == b)..., and a check for the

best practice that “Serializable classes should define a field serialVersionUID”.

Other analyses, such as, null-pointer dereference checks and array bounds

checks [JS99], let alone domain specific checks are not supported.

The limitations of the built-in bug checking capabilities of IDEs have led

97

98 6. Lightweight Static Analyses

to the development of a multitude of plug-ins by third parties [EMS+04,

Har05, HP04, Liv04, Liv05, RSS+04a, TAT06] to check for violations of im-

plementation restrictions or for common bug patterns.1 However, with re-

spect to these plug-ins the following problems can be identified:

No Tight Integration

Some of the plug-ins are not tightly integrated into the IDEs [Liv05,

RSS+04a]; only the tool’s user interface (UI) is integrated, but there is

no integration of these tools with the incremental build process. Hence,

these tools must explicitly be started and will then perform the analysis

as if they were invoked from the command line.

If analyses are not integrated into the incremental build and analysis

process it is not possible to provide immediate feedback in case of an

error. But, immediate feedback is of particular importance in case of

cascading errors when a small (accidental) change, e.g., to the type

hierarchy, causes dozens of errors to appear. Without immediate feed-

back, the developers will continue editing the source code. It is only

after the next build of the project, that they are confronted with dozens

of errors. Having to figure out which change caused the error messages

and which error message is the relevant one will certainly take a larger

fraction of time, when compared to using an IDE with immediate feed-

back.

Limited or No Extensibility

Most tools are tailored for one specific application domain and are only

extensible with respect to this particular domain, if at all. E.g., Saber

[RSS+04a] analyzes J2EE projects to detect method calls that do not

adhere to the protocol specified in the J2EE specification and FindBugs

[HP04] detects bug patterns in Java projects. Since the source model

of these tools is fixed, it is hardly possible to extend them to detect

other kinds of errors and or violations of specifications.

Hence, it would be necessary to install a multitude of different tools to

be able to detect a wide range of bugs. This increases the complexity

of the development process since it is unreasonable to expect from a

developer to use a multitude of different tools for a similar purpose.

1In case of IntelliJ’s IDEA IDE [Int06a] a former plug-in for static code analysis is now
integrated with the platform.

6.2. Checking Code using the Bytecode Analysis Toolkit (BAT) 99

In the following, Magellan is used as a foundation for the development

of analyses that are integrated into the build process. This enables an assess-

ment of Magellan’s potential for eliminating the need for different static

analysis tools.

The definitions of the terms: “checker” and “base analysis”, which are

used in the following, are shortly repeated here for the reader’s convenience

(cf. Chapter 1). Analyses that check that a specific property holds, e.g. that

the return value of the String.concat(...) method is not ignored, are called

checkers. All other analyses that derive (intermediate) information required

by checkers are called base analyses. The term analysis is used to refer to

checkers and base analyses.

This chapter is structured as follows. In Section 6.2 the implementation of

checkers using the Bytecode Analysis Toolkit (BAT) is discussed. Section 6.3

discusses the implementation of analyses using XQuery. Section 6.4 concludes

this chapter.

6.2 Checking Code using the Bytecode Anal-

ysis Toolkit (BAT)

The Bytecode Analysis Toolkit (BAT) is a library explicitly targeting the

implementation of static analyses. BAT facilitates intra-procedural control-

and data-flow analyses by providing a 3-address based representation [Sco00]

of Java bytecode in static single assignment form [CFR+91]. This repre-

sentation is heap-based and each local variable is initialized exactly once.

Further, the use sites of a local variable are also made available, i.e., the

local variables’ definition-use chains are made explicit. Taken together these

features significantly ease the development of checkers that require data flow

information — as we will see in the following. Furthermore, to improve the

memory footprint and to improve the performance and accuracy of analyses

using BAT’s representation, intra-procedural constant propagation and dead

code elimination is also performed. This representation is referred to as the quadruples representa-
tionquadruples representation [Sco00] in the following.2

To foster comprehension of the quadruples representation, a Java method

and its quadruples representation are depicted side-by-side in Figure 6.1. The

2Higher level representations have many more applications than finding program-
ming errors, e.g., the representation called Jimple, generated by the Soot framework
[VRGH+00], is used by the Bandera tool suite [CDH+00] in the context of model checking.
However, discussing these applications is not in the scope of this thesis.

100 6. Lightweight Static Analyses

Java method is shown on the left and the quadruples representation is shown

on the right.

1 int doIt(){
2 int i = 5;
3 System.out.print(4);
4

5 if(...) ...;
6 factorial(i);
7 return i;
8 }

Java Representation

int doIt(){

java.io.PrintStream p1 = java.lang.System.out
/∗java.io.PrintStream∗/p1.print(4)
if(...) ...
/∗int p2 =∗/Math.factorial(5)
return 5
}

Quadruples Representation

Figure 6.1: A Java method and its quadruples representation

Given the quadruples representation it is, e.g., immediately evident that

the value “5” is passed to the method factorial (Line 6) and that the return

value is constant and is also “5” (Line 7). No data-flow analyses are nec-

essary. Furthermore, compound statements (expressions) are split up into

sequences of primitive statements (expressions) to facilitate code traversal.

For example, the statement out.print(4) is split into two primitive statements:

1. The statement that reads java.lang.System’s out field and assigns it to

the local variable p1 (Line 3).

2. The invocation of the method print (Line 4).

Further, using the definition-use information it is, e.g., trivial to detect

calls to methods where the return value is ignored; ignoring the return value

is an error in many cases (cf. Chapter V). The analysis that detects that

the return value of the factorial function is ignored is shown in Listing 6.1.

1 checkMethod(...,QuadruplesCode code,...) {

2 Quadruple q = code.getFirstQuadruple();

3 while (q != null) {

4 if (q instanceof Def) {

5 Def def = (Def) q;

6 if (def.getExpression() instanceof InvokeFunction) {

7 if (def.getUseSites().length == 0) {

8 // generate error: the return value of a method call is ignored

9 } } }

10 q = q.getNextQuadruple();

6.2. Checking Code using the Bytecode Analysis Toolkit (BAT) 101

11 } }

Listing 6.1: Return value is ignored

The analysis iterates over the linked-list of all statements (quadruples) of

a method’s implementation (Lines 2, 3 and 10). An error is reported (Line

8) for all local variables (Line 4) that have no use sites (Line 7) and that

were initialized by the return value of a method (Line 6).

Finally, to illustrate the advantage of the static single assignment form

consider the code shown in the following example.

1 Object violate(){

2 Object o;

3 if (VALUE)

4 o = this;

5 else

6 o = null;

7 return o;

8 }

Object violate(){

boolean p1 = VALUE

if(p1 == 0) goto 5

goto 6

/∗ nop ∗/

p2 = φ(this [←4],null [←5])

return p2

}

Now, let’s assume that we want to determine if the self reference this is

returned by the method, e.g., to make sure that no aliases are generated.

Using the quadruples representation this analysis is particularly easy to im-

plement. It is sufficient to navigate from return statements (e.g., as shown

in Line 7) to the definition of the returned local variables (e.g., p2 in Line

6) and to check if the variables are initialized with this. In this case, p2 is

initialized by a so-called phi statement (Line 6), meaning that the value of

p2 is control-flow dependent: p2 is this if the phi statement is reached coming

from Line 4 and null if coming from Line 5. However, the information which

value is returned in which case can be ignored, as it is sufficient to check

that p2 is not initialized with this. Hence, without any further control- /

data-flow analysis it can be concluded that this might be returned.

6.2.1 Implemented Analyses

Overview

To evaluate Magellan as a platform for developing and executing lightweight

static analyses, 5 checkers that analyze only a class’s interface and 25 dif-

ferent checkers that perform intra-procedural analyses were developed (cf.

Appendix V).

102 6. Lightweight Static Analyses

F
igu

re
6.2:

E
clip

se
sh

ow
in

g
ch

ecker
gen

erated
error

rep
orts

6.2. Checking Code using the Bytecode Analysis Toolkit (BAT) 103

A screenshot with errors reported by the checkers is shown in Figure 6.2.

The errors are listed in the problems view at the bottom. By clicking on

an error report it is possible to navigate to the corresponding source code.

Hence, from an end-user perspective it is not distinguishable if an error report

is generated by the Eclipse compiler or by one of the additional checkers.

The type of violations detected by the checkers are described in detail

in Appendix V. A more detailed discussion of the implementation of the

analyses is omitted since all checkers use the same representation and are

widely comparable.

Embedding into Magellan

All checkers are Java classes that implement Magellan’s interface for anal-

yses. This interface defines a run method that is called by Magellan (cf.

Section 4.2) to start the analysis. When calling the run method Magellan

passes the WPDB to the analysis. To specify the analysis’ dependencies the

class is annotated using the @ASL annotation (cf. Section 4.1) which specifies

the location of the ASL file.

The prototypical ASL file of the 5 class-interface related checkers is shown

next. It specifies that method signatures and field declarations of class files

are read (analyzed).

reads Document/CF/Method

reads Document/CF/Field

The checkers that analyze method implementations either operate on the

bytecode based representation (e.g., the checker which reports redundant

calls to the toString method of String objects), or use the quadruples code

representation if data-flow information is required (e.g., the checker to ensure

that the InputStream must be closed).

The ASL files of checkers in this category are basically the same except

that some specify to read the BCode entity while the others specify to read

the QCode entity, as shown in the next example.

reads Document/CF/Method/QCode

6.2.2 Performance Evaluation

To assess the suitability of Magellan for executing static analyses along

with the incremental build process, a comprehensive performance study was

carried out.

104 6. Lightweight Static Analyses

For this performance evaluation all 30 checkers were executed as part

of the incremental build process. Including base analyses, 47 analyses were

executed altogether. The times required by the checkers — including the

time required by the base analyses — were measured while editing the BAT

project. The BAT library consists of approximately 800 classes.

The time required by the analysis was measured while editing the source

code as described in Table 6.1. These use cases resemble typical actions of

developers when evolving and maintaining a software system. The use cases

were chosen to cover:3

• changes that directly affect only a single source file, e.g., if a comment

is changed.

• changes where only one source file is changed, but which requires to

reanalyze multiple resources, e.g., when the type hierarchy changes.

• changes to multiple source files, e.g., when the developer performs “re-

name method” refactorings.

To help understand the effect of an action on the project’s resources the third

column of the table lists the number of resources that have changed. This

includes the changed source files (e.g., the “.java” files) as well as generated

files (e.g., the “.class” files) that were updated or created.

For example, if a method body is commented out, it’s obvious that the

Java source file changes. However, the class file also changes as the source

file is immediately recompiled by Eclipse’s Java compiler. Furthermore, if

the class that is recompiled also includes inner class definitions, multiple

class files are updated, since each inner class is compiled into its own “.class”

file. Hence, editing a single Java source file might affect a larger number of

resources.

The performance evaluation was made on a 3 GHz Dual Core Pentium D

with 2 GB of RAM running Windows XP, Java 5 and Eclipse 3.2 RC4. To

assess the effect of the automatic parallelization on the overall analysis time

the analyses were executed twice: once with both cores of the CUP enabled

(column 5 of Table 6.1) and once with only one core enabled (column 4 of

Table 6.1). The relative performance gain when using two cores is shown in

column six.

3Recall that in Magellan the unit of change is whole document. Hence, the entire
document is reported as changed when, e.g., a field is added or a method is removed.

6.2. Checking Code using the Bytecode Analysis Toolkit (BAT) 105

Description

added

/

removed

facts

msecs.

one

CPU

msecs.

two

CPUs

%

1 full build after Magellan

startup

1624/0 9077 6847 24.57

2 the method body of a

method which declares to

return a value is commented

out

6/6 162 120 25.93

3 the previous change is un-

done

6/6 99 88 11.11

4 the method body is com-

mented out again

6/6 97 84 13.40

5 the previous change is un-

done

6/6 98 89 9.18

6 an interface used by more

than 250 classes is renamed

540/540 3818 2946 22.78

7 previous change is undone 540/540 3845 3002 21.92

8 a method is added to a inter-

face

6/6 1030 391 62.04

9 the previous change is un-

done

6/6 792 409 48.36

10 a new package is added 0/0 14 18 -28.57

11 a new class that extends Ex-

ception is created

2/0 138 17 87.68

12 a method that overrides an-

other method is implemented

2/2 19 14 26.32

13 a new class is created 2/2 161 16 90.06

14 a method is added to the

newly created class

2/2 17 14 17.65

... continued ...

106 6. Lightweight Static Analyses

Description

added

/

removed

facts

msecs.

one

CPU

msecs.

two

CPUs

%

15 the type hierarchy of the

class which extends Exception

is changed (extend Runtime-

Exception)

2/2 115 87 24.35

16 a method’s throws declara-

tion is removed

2/2 24 13 45.83

17 the superclass of the newly

created class is changed to

(again) Exception

3/3 120 90 25.00

18 the superclass of the class

created in step 11 is changed

to Throwable

2/2 17 13 23.56

19 the superclass of the class

changed in the previous step

is changed to RuntimeExcep-

tion

3/3 116 89 23.28

20 the superclass of the class

changed in the previous step

is changed to IllegalStateEx-

ception

2/2 15 13 13.33

21 the complete package created

in step 10 is deleted

0/4 126 123 2.38

average benefit 28.10

Table 6.1: Performance figures of BAT based analyses

As the performance figures show, the time required by the analyses during

an incremental build is always less than one second on a dual core CPU

system. Even if only a single core is available the execution time is at most

one second. The change performed in step 6 represents a major refactoring

that affects approximately one third of all classes of the project. Hence, this

action represents an editing action that is not executed frequently and for

6.3. Checking Structural Properties using XQuery 107

which developers are likely to accept longer build and analysis times.

Furthermore, the figures show that the automatic parallelization is effec-

tive. On a dual core system the overall execution time of the analyses is in

average 28% shorter when compared to a single core system.

6.3 Checking Structural Properties using X-

Query

In the following, the use of XQuery for checking structural properties is

evaluated.4

The focus is on using (Java) annotations as hooks for binding the analyses.

Annotations are becoming more and more widespread and already do change

the way enterprise applications are built. All major Java standards such as

EJB 3.0 [EJB05], Java Web Services [Web05], or JDBC 4.0 [JDB06] (will)

use annotations. Further, a set of annotations is currently under develop-

ment that applies across a variety of individual J2SE and J2EE technologies

[Ann06]. It is expected that the use of annotations will make the develop-

ment process of components more lightweight and will flatten the learning

curve of the technologies.

A Java annotation is a modifier, such as public, static and final, that can

be used as part of package, type, constructor, method, field, parameter, and

local variable declarations. An annotation has a type and defines zero or more

member-value pairs, each of which associates a value with a different member

of the annotation type [GJSB05]. E.g., in the following EJB related example

the declaration of the class Category is annotated with the annotation @Entity,

whose member access is set to AccessType.FIELD; i.e., the container should

access the entity’s state using direct field access:

1 @Entity(access = AccessType.FIELD)

2 public class Category {...}

Listing 6.2: An annotated class

The use of such annotations often imposes certain implementation re-

strictions on the decorated program constructs. Consider, e.g., the java.lang.

Override annotation of Java 5, which can be used to annotate non-abstract

methods to state that they must override a method in a superclass. Since

4It is assumed that the reader is familiar with XQuery (cf. Section 5.1) and the XML
representation of Java bytecode as generated by BAT2XML (cf. Appendix V).

108 6. Lightweight Static Analyses

the Override annotation is defined as part of the language, the implied im-

plementation restriction is enforced by Java compilers.

This is, however, not true for user-defined annotations. An example are

the annotations defined by the EJB 3.0 specification. In EJB 3.0, compo-

nents are Java classes annotated with the specified EJB annotations. Based

on these annotations, the container will generate corresponding home and

remote interfaces and extract the configuration information it needs.

However, the effect of annotating a bean with, e.g., Entity should go

beyond driving the generation of its interfaces and providing configuration

information to the container. It should also mean that implementation re-

strictions implied by the annotation, as explicitly stated in the specification,

should be checked for. An example of such a restriction on an entity bean

is: ”An enterprise bean must not use thread synchronization primitives...”.

As in the EJB example, annotated program elements often have to fol-

low constraints beyond those defined by the language’s semantics. But, un-

fortunately these constraints are currently not checked at all or only to a

very limited extent. Hence, a violation can remain undetected and result

in deployment-time or even subtle run-time errors. Means to detect such

violations using XQuery queries are discussed in the following.

6.3.1 Defining Implementation Restrictions

To illustrate the use of XQuery for the detection of violations of implemen-

tation restrictions, three analyses are discussed in the following.

Basically, each query just selects those elements which violate a restric-

tion. Let us consider a simple check first. In section 6.1 of the EJB 3.0

specification [EJB05] [Requirements on the Entity Bean Class] it is stated

that:

The entity bean class must not be final. No methods of the entity

bean class may be final.

A possible query to detect corresponding violations is shown in Listing

6.3. The first line selects all classes that have the javax.ejb.Entity annotation

and stores the result in the variable $ebs. The variable $xirc:project-files is

the set of all classes that are not defined in a library (in a “.jar” file). After

that, the second line determines for all entity beans ($ebs) the set of classes

and methods that are declared final.

1 let $ebs := $xirc:project−files/class[./annotations//@type =”javax.ejb.Entity”]

2 return $ebs[@final = ”true”] union $ebs/method[@final =”true”]

6.3. Checking Structural Properties using XQuery 109

Listing 6.3: Checking for Entity beans that are declared final

A second example concerns the dependency between annotations. Cer-

tain annotations can only be used in combination [CM04]. E.g., annotating a

method with javax.jws.WebMethod requires that the class is annotated with

javax.jws.WebService [Web05]. To check this dependency the query shown in

Listing 6.4 first selects all classes that declare a method with the WebMethod

annotation (Line 1) and then subtracts (Line 2) all classes that are anno-

tated with the WebService annotation (Line 3). The set of classes that have

WebMethods, but do not declare to be a WebService is returned.

1 $xirc:project−files/class[.//annotations//@type =”javax.jws.WebMethod”]

2 except

3 $xirc:project−files/class[./annotations//@type =”javax.jws.WebService”]

Listing 6.4: Checking dependencies between annotations

The queries discussed so far only analyze a class’s interface, i.e., the class

declaration itself and the declared methods. The analysis shown in Listing

6.5 also analyzes method implementations. The EJB 2.1 specification (which

is referenced by EJB 3.0) states:

An enterprise bean must not use thread synchronization primi-

tives to synchronize execution of multiple instances.

The query to detect violations of this restriction checks that:

• no method is synchronized (Line 3)

• the synchronize statement is not used (Line 4) — synchronize state-

ment manifests in monitorenter and monitorexist instructions at

Java bytecode level

• none of the wait or notify methods is called (Line 5 – 8)

1 let $c := $xirc:enterprise−beans()

2 return

3 $c/method[@synchronized=”true”]

4 union $c/method/code//monitorenter

5 union $c/method/code//invoke [

6 @declaringClassName=”java.lang.Object”

110 6. Lightweight Static Analyses

7 and (@methodName=”wait” or

8 @methodName=”notify” or @methodName=”notifyAll”)

9]

Listing 6.5: Checking that no thread synchronization primitives are used

The queries discussed so far are self-containing, i.e., given the database

the queries can directly be executed. However, many queries have identical

parts when structural properties of classes are checked. For example, the

queries to check an Entity bean’s implementation restriction nearly always

start with a path expression to determine all classes that are entity beans:

let $ebs := $xirc:project−files/class[./annotations//@type =”javax.ejb.Entity”]

These common parts can require a significant amount of a query’s evaluation

time: In case of a simple query up to 80–90% (as we will see in the evalua-

tion). Hence, by factoring out the common part and executing it only once

significant performance gains can be achieved.

Given Magellan’s extensible analysis stack and its open data model,

and given the query chaining feature of the embedded XQuery engine (cf.

Section 5.1.2 for details), the evaluation of queries in several steps is directly

supported. For example, it is possible to execute a query that selects all EJBs

(Listing 6.6) in a first step and to store the result in a fact, e.g., AllEJBs.

Such queries, i.e., queries that determine the context for the evaluation ofcontext defining query

subsequent queries are called context defining queries in the following.

1 /db:all/db:document[@type = ”source”]

2 /class[

3 ./annotations//@type = ”javax.ejb.Stateless”

4 or ./annotations//@type = ”javax.ejb.Stateful”

5 or ./annotations//@type = ”javax.ejb.Entity”

6 or ./annotations//@type = ”javax.ejb.MessageDriven”

7]

Listing 6.6: Context defining query (all EJBs)

A query that checks that a specific property holds, e.g., that no finalize

method is implemented by an EJB (Listing 6.7), then declares a dependency

on the AllEJBs fact and uses the information as the context for its own

execution. The query refers to the (external) context using XQuery’s “.”context dependent
query notation. This type of query is called a context dependent query in the

following.

6.3. Checking Structural Properties using XQuery 111

1 ./method[@name=”finalize”’ and empty(./signature/parameter)]

Listing 6.7: Context dependent query (EJBs must not implement finalize)

6.3.2 Magellan Integration

As described in Section 5.1, each query is wrapped into a small Java wrapper

that passes the XQuery to the query engine and post-processes the result(s).

Context-defining queries are directly executed against the database and

the result — sets of references to elements in the database — are stored in

a fact. A context dependent query is executed using the result of a previous

context defining query as its evaluation context. The result of context depen-

dent queries, e.g., violations of implementation restrictions, is then reported

to the user.

For example, the Java wrapper of the query that selects all EJBs is shown

in Listing 6.8. The wrapper extends the class ContextDefiningQuery (Line 2)

and specifies the ASL file (Line 1) which defines the analysis’ dependencies

(cf. Listing 6.9). The class ContextDefiningQuery provides the Magellan

integration and manages the interaction with the embedded XQuery engine.

In particular, Magellan’s interface for analyses that should be executed

along with the incremental build process is implemented. Further, the result

of a query is automatically stored in the specified facts. In case of Listing

6.8, the query defined in the file SelectEJBs.xq (Line 4) will be executed and

the result will be stored in the fact: AllEJBsFact (Line 4).

1 @ASL{”SelectEJBs.asl”}

2 public SelectEJBsQuery extends ContextDefiningQuery{

3 public SelectEJBsChecker(){

4 super(AllEJBsFact.getId(),”SelectEJBs.xq”);

5 } }

Listing 6.8: Java wrapper for the “select all EJBs” query

The ASL file of the “select all EJBs” query is shown in Listing 6.9. It

specifies that the XML representation of the Java bytecode (CF XML, Line

2) has to be available and that the analysis maintains the LSV entity AllEJBs

(Line 3).

1 analysis SelectAllEJBs

2 reads XMLDB/CF XML

112 6. Lightweight Static Analyses

3 maintains XMLDB/CF XML/AllEJBs

Listing 6.9: ASL file of the “select all EJBs” qzuery

In Listing 6.10, an example of a checker that is implemented as a context

dependent query is shown. The wrapper is identical to the previously dis-

cussed wrapper except that the class ContextDependentChecker is extended.

As in the previous case, the class takes care of the Magellan integration

and the interaction with the query engine. However, instead of storing the

results in a fact, error messages are generated for each result. Furthermore,

the information stored in a fact by a previous analysis (Line 4) is set as the

context for the query execution.

1 @ASL{”NoFinalizeMethods.asl”}

2 public NoFinalizeMethodsChecker extends ContextDependentChecker{

3 public NoFinalizeMethodsChecker(){

4 super(AllEJBsFact.getId(),”NoFinalizeMethods.xq”);

5 } }

Listing 6.10: Java wrapper for the “no finalize methods” query

The ASL file of the “no finalize methods” checker is straight forward: It just

specifies that the XML based representation of the Java bytecode is read as

well as the fact which keeps references to all EJBs (Line 2).

1 analysis NoFinalizeMethods

2 reads XMLDB/CF XML/AllEJBs

Listing 6.11: ASL file for the “no finalize methods” query

Due to the specified dependencies in the ASL files, Magellan will first

schedule the context-defining query and then the context-dependent query.

6.3.3 Evaluation

The use of XQuery for implementing checks of structural properties is as-

sessed based on queries that check the constraints defined in the EJB 3.0

specification [EJB05]. The structural properties that are checked by the

queries are described in Table 6.2. The queries were evaluated against a

demo release of the xPetstore project [BKT+04] that was ported to EJB 3.0.

The project consists of 46 classes.

6.3. Checking Structural Properties using XQuery 113

The measurements were taken on an Intel Celeron 2.40 GHz system with

504 MB RAM running Windows XP, J2SE 5.0, Saxon 8.1 and Eclipse 3.1M2

as the underlying platform. Since the embedded XQuery engine (Saxon) is

not thread safe the queries were executed sequentially and no performance

evaluation on a dual processor system / dual core system was made.

The XML database had 2833 class entries, which consists of the classes

belonging to the xPetstore project and all public classes and interfaces of all

Java APIs delivered with Java 5. Classes in the javax.swing.*, java.awt.*, and

in the com.* packages were exempt, as no classes defined in these packages

were used. Additionally, all necessary JARs to compile the xPetstore project

were included.

The evaluation of the original xPetstore project, which run without any

error being signaled, required 1.97 seconds. To make the evaluation more

realistic, we injected some problems into the project code. The evaluation of

all 48 queries against the messed project code generated correctly 53 messages

and was executed in 3.56 seconds. In both cases, the time required by Eclipse

to recompile the source file and to update the Magellan database should be

added, which amounts to another 1-2 seconds. To keep the XML data in

memory approximately 40 MB are required.

Detailed execution times for each query are shown in Table 6.2. The table

lists the times required by the queries that check properties related to:

• all types of EJBs (CommonEJB)

• session beans (SessionEJB)

• entity beans (EntityEJB)

• message driven beans (MessageEJB)

Furthermore, for each of these categories the total evaluation time and the

time of the context defining query is depicted.

Short Description Seconds

CommonEJB
∑

0.643225

context defining query 0.023961

an EJB must not start threads 0.017519

the signature of the call back method is invalid 0.069257

EJBs must be public and must not be final or abstract 0.004002

... continued ...

114 6. Lightweight Static Analyses

Short Description Seconds

the chosen transaction attribute cannot be used 0.011743

an EJB must have a no-arg constructor 0.010397

a business method must not start with “ejb” 0.012741

an instance that starts a transaction must complete the

transaction before it starts a new transaction

0.385770

an EJB with bean-managed transaction demarcation

must not use (get/set)RollbackOnly

0.007356

(get/set)RollbackOnly should be called only in bean

methods that execute in the context of a transaction

0.044467

UserTransaction is unavailable to EJBs with container-

managed transaction demarcation

0.011552

a TransactionAttribute can only be specified with

container-managed transaction demarcation

0.012814

the finalize() method must not be defined 0.004736

EJBs should not handle concurrent access on their own 0.013553

a transient field must not have the specified type 0.004410

SessionEJB
∑

0.831755

context defining query 0.204696

business methods must be declared as public and must

not be final or static

0.000767

the name of Session beans should have the suffix

“EJB”, “Impl” or “Bean”, if the business interface

should automatically be derived

0.000576

for update / delete operations a transaction context is

required

0.047968

argument and return types must be legal types for

RMI/IIOP

0.476183

argument and return types must be legal types for JAX-

RPC

0.027315

Timers cannot be created for stateful session beans 0.000693

multiple business interfaces should be annotated as

Local or Remote

0.046658

... continued ...

6.3. Checking Structural Properties using XQuery 115

Short Description Seconds

for a stateless session beans web service endpoint inter-

face, only the Required, RequiresNew, Supports, Never

and NotSupported attributes may be used

0.001131

this SessionContext’s method cannot be called 0.024672

EntityEJB
∑

1.928637

context defining query 0.147486

the persistent field’s type is invalid 0.463888

the JoinColumn annotation is needed, if the primary

key values of the source and target entity are different

0.001352

every entity must have a primary key and the primary

key must correspond to only one field or property of

the entity bean class

0.006029

persistent properties with @Basic may not be an entity

association

0.016634

a one-to-many association must be bidirectional; the

target entity must have a matching many-to-one asso-

ciation

0.001210

invalid dependent class 0.159400

every entity bean must have a primary key 0.003133

a protected field is to be accessed by the defining class

only

0.032637

an entity bean that is a subclass of another entity bean

must have the same primary key

0.155760

entity beans must have getter/setter-methods for per-

sistent fieds

0.099020

the methods of the entity bean class must not be final 0.003987

collection-valued persistent properties must have type

java.util.Collection or java.util.Set

0.737543

invalid type for primary key 0.080830

MessageDrivenEJB
∑

0.015559

context defining query 0.011637

... continued ...

116 6. Lightweight Static Analyses

Short Description Seconds

for a message-driven bean’s message listener interface,

only the Required and NotSupported transaction at-

tributes may be used

0.003602

message driven beans must implement the message lis-

tener interface of the messaging type

0.000319

Table 6.2: Evaluation times of queries

As the performance figures show, splitting the checking of structural prop-

erties in two steps leads to a significant performance improvement; without

the two step process the time required by the context defining query would

have to be added to each query. This would double the overall analysis

time (≈ 7secs.). Nevertheless, the result of this evaluation shows that the

analysis time is significant considering the project’s size — approx. 3.5 sec-

onds when checking all implementation restrictions. Hence, running XQuery

based checkers regularly along with the incremental build process is only fea-

sible for very small projects. However, the analysis time is reasonable fast to

execute the XQuery based analyses on-demand. In this case analysis times

of multiple seconds or even a few minutes are acceptable.

6.4 Conclusions

Based on the evaluation of Magellan for developing static analyses, the

following conclusions can be drawn:

• The developed analyses and checkers demonstrates that Magellan

enables the definition of a wide range of different analyses. Analyses

are supported that — at least — range from simple analyses of struc-

tural properties up to sophisticated intra-procedural data- and control-

flow analyses. Based on these promising results it is expected that

Magellan also supports inter-procedural analyses. However, whether

it is possible to implement sophisticated inter-procedural analyses such

that they can be executed along with the incremental build process

remains an open issue. Exploring this issue is left for future work, be-

cause it is mainly related to the performance of the analyses and it is

not related to the concept of open static analysis platforms as such.

6.4. Conclusions 117

• The performance evaluation shows that Magellan enables running

a larger number of analyses along with the incremental build process.

Executing all 30 BAT based checkers does not cause an overhead that

can be perceived by a developer when editing its source code (≈ 100

milliseconds). Only if multiple resources (classes) are affected, e.g., in

case of refactorings, the analysis time may be perceivable. Since such

changes are not performed frequently, a small overhead of only a few

seconds is acceptable.

• The automatic parallelization of the analyses as done by Magellan

is effective. Without fine-tuning of Magellan’s implementation a

28% performance improvement on a dual core system compared to

a single core system is achieved. Furthermore, the parallelization is

fully transparent for developers of analyses and checkers. Hence, the

development of checkers is simplified since a manual parallelization of

analyses is not necessary.

• XQuery has proven to be well suited for the development of checks of

structural properties; a large number of different checkers were easily

implemented. However, for non-trivial programs the performance of

the XQuery based checkers is not sufficient for running them as part of

the incremental build process.

The insufficient query performance is due to the lack of any support

for incremental query evaluation. To determine the result of a query

the query engine always evaluates queries w.r.t. the whole database.

The query engine does not reuse a query’s result and a description of

the latest changes to update the result of the query. However, the

XQuery based checkers are fast enough to be executed on-demand or,

e.g., automatically when the user wants to check in source code into a

version control system.

• Domain specific annotations, e.g., the EJB annotations, are well suited

as hooks for checkers of structural properties. All implementation re-

strictions defined in the EJB specification are directly related to anno-

tated elements. Hence, if a standard for open static analysis platforms

would exist, libraries and frameworks can be envisioned that are de-

livered with checkers for the libraries’ implementation restrictions. If

the user then makes use of the library and uses the library’s annota-

tions the corresponding checks would automatically be executed and

pinpoint the developers to violations.

118 6. Lightweight Static Analyses

• The approach underlying Magellan has proven to be very flexible.

E.g., supporting the evaluation of XQuery based queries in two steps

did not require any changes in Magellan or in the embedded XQuery

engine. The evaluation process is implemented leveraging Magellan’s

open data model and the support for the definition of dependencies

between analyses.

To sum up, Magellan has proven to be very flexible and to enable

the definition of lightweight static analyses using different techniques. Fur-

thermore, it was shown that the performance that can be achieved using

Magellan is sufficient for day-to-day work when several checkers are exe-

cuted regularly.

Chapter 7

Software Comprehension

This chapter shares some material with: Comprehensive Software Understanding

with Sextant [EHMS05].

A detailed study of the software exploration capabilities of Sextant is published

in The Sextant Software Exploration Tool [SEHM06].

7.1 Introduction

To maintain and extend software systems developers need to understand a

software’s internal structure to ensure that changes do not break the intended

behavior of the system [vGB02]. Unfortunately, appropriate documentation

of the system’s structure is often missing or outdated; even when accurate

documentation is available, tool support for software comprehension is indis-

pensable, given the complexity of today’s software systems.

In general, tools for software comprehension can be classified in two

groups. First, software visualization tools providing visualization techniques

for a software system [DDL99, KC98, MTW93, SM95, LD01, SWFM97], e.g.,

CodeCrawler [DDL99], or SHriMP [SM95]. Second, software exploration tools

that provide means to navigate along a software system [CFKW95, Fav01,

JD03, RSK00, SCHC99, SLVA97], such as tksee [SLVA97] or JQuery [JD03].

In the following, the focus is on software exploration tools since studies in-

dicate that the navigational aspects are very important in software compre-

hension tools [BK01].

To comprehend a given application developers search for elements in a

software system over and over again and navigate through their relations.

During this exploration process, also called Just in Time Comprehension

119

120 7. Software Comprehension

[SLVA97], the developer constructs a mental map of the visualized informa-

tion. This process is supported by comprehension tools by providing explicit

means to explore the relations between different source elements. For exam-

ple, given a class the developer can directly navigate to the declared methods

and continue its exploration by navigating to the callers, callees or accessed

fields.

To support code comprehension and to make an initial assessment of

Magellan as a platform for building software comprehension tools, the

Sextant code exploration and navigation tool was developed. In Section 7.2,

general requirements on software exploration tools are discussed. After that,

in Section 7.3, the Sextant tool is presented and evaluated w.r.t. the identi-

fied requirements. This chapter concludes with an assessment of Magellan

as a generic platform for building software comprehension tools. The as-

sessment is based on the experiences gained while implementing Sextant’s

functionality related to the identified requirements.

7.2 Requirements on Tools for Software Ex-

ploration

The following requirements were derived based on the analysis of well known

software comprehension and exploration tools as well as related literature,

e.g. [DDL99, KC98, MTW93, SM95, LD01, SWFM97, CFKW95, Fav01,

JD03, RSK00, SCHC99, SLVA97, BK01, SWM00, Bro83, vMV95, LPLS87].

The requirements are summarized in Table 7.1 at the end of this section.

SET-R1 Integrated comprehension

Three basic software comprehension strategies have been described in

[SWM00]: Bottom-up, top-down, and mixed strategies. Developers using a

bottom-up approach achieve a high-level software comprehension by starting

to read the low-level source code and stepwise abstracting from it. Software

engineers following the top-down approach [Bro83] use their general domain

knowledge to formulate an initial hypothesis about the software. The initial

model is then refined by trying to verify it and by searching for corresponding

structures in the code. Mixed strategies assume that developers are capable

of using both aforementioned strategies [LPLS87, SLL+88]. Von Mayrhauser

et al. [vMV95] present the integrated model of software comprehension, a

7.2. Requirements on Tools for Software Exploration 121

refined mixed strategy, in which developers use bottom-up and top-down ap-

proaches at different abstraction levels, frequently switching between them.

Following on this work, it is required that software comprehension tools sup-

port an integrated comprehension subsuming both, the bottom-up and top-

down approach.

SET-R2 Cross-artifact support

Modern tools, such as persistence frameworks and component technolo-

gies, e.g., Enterprise Java Beans (EJB) [EJB03], aim at better mastering

the software complexity, ironically also causing a new kind of complexity to

emerge. The developer using such technologies is forced to work with a mul-

titude of different kinds of artifacts: Besides source code, a large number of

external libraries is often used and information that affects the runtime be-

havior is stored in XML or properties files. As a consequence, it is no longer

possible to analyze and comprehend a software project without considering

and aggregating information contained in all kinds of artifacts.

Recently, the industry becomes aware of the additional complexity caused

by using different artefacts for specifying an application’s runtime behavior

and tries to remedy the situation by using meta-data specified along with the

source code. The meta-data is meant to replace the usage of XML and prop-

erties file. For example, the Enterprise Java Beans specification 3.0 [EJB05]

advocates the usage of Java 5 annotations to specify — amongst others —

the type of a bean, the transaction attributes and security attributes. How-

ever, a large number of applications that make use of very different artifacts

already exists and need to be extended and maintained for many years to

come. Further, many other frameworks will continue using XML and related

files for configuring runtime environments. In the context of service-oriented

architectures, e.g. when developing WebServices, XML is inevitable any-

way. Hence, exploration tools need to enable software comprehension across

artifact borders.

SET-R3 Explicit representation and referential integrity

To support the creation of a mental map of the software all of its ele-

ments and the relations between those should be visualized explicitly and

the referential integrity among them should be maintained as the navigation

process unfolds. Unfortunately, this is not the case in many mainstream

122 7. Software Comprehension

IDEs. For instance, in Eclipse [Ecl06] it is possible to use hyperlinks to get

from one software element to another: One can navigate from a class to all

its methods and from each method to all of its callees, and so on. The path

followed by such an exploration is, however, not visible, making it hard to

build the mental map [JD03]. By using specialized views such as the call

hierarchy view, it is possible to see the path for a single kind of relationship.

But, switching to a different kind of relationship requires switching the view

and thus can cause disorientation [SFM97].

Furthermore, the navigation often lacks referential integrity in the sense

that the same element may appear several times potentially in different views

of the IDE. For instance, assume a method m1 is called by two other methods

m2 and m3. In Eclipse, one can use hyperlinks to navigate from m2 and m3

to m1. However, in this process m1 will appear twice in two apparently

unrelated views – the list of methods called by m2, respectively by m3. The

referential integrity of m1 is not maintained during the exploration and it is

hard to discover that m2 and m3 are related by the property of calling m1.

SET-R4 Extensibility

Software exploration often involves navigating to common software el-

ements and along common relations. For instance, common elements one

would like to navigate to while exploring a Java application include classes,

methods, and fields; common relations frequently used to navigate along are

inheritance and call relationships. In addition to such common elements

and relations, specific application domains or specific libraries in use may

require to navigate to new kinds of elements and along new kinds of relation-

ships. In, for example, an EJB project technology specific relations between

a class, its corresponding public interfaces and related elements in deploy-

ment descriptors become relevant relations to navigate along. However, tool

developers cannot foresee all contexts in which an exploration tool is used.

Hence, software exploration tools should be extensible to accommodate for

domain-specific navigation elements and relationships as needed.

SET-R5 Traceability

In most cases, comprehension is not an independent software development

task. Rather, we use exploration to understand a system to continue with

a modification, which is done at the code level. Hence, the ability to switch

7.3. Code Exploration and Navigation with Sextant 123

instantly and seamlessly between the graphical notation and the correspond-

ing source code is essential for practical use [BK01]. Furthermore, often the

exploration process might only give us hints; the actual understanding or

the validation of our hypotheses may require switching to the source code

representation of the system.

Requirement Description

SET-R1 Integrated compre-
hension

Integrated and simultaneous support
for bottom-up and top-down software
comprehension strategies.

SET-R2 Cross-artifact support Navigation across different types of ar-
tifacts.

SET-R3 Explicit representa-
tion and referential
integrity

Explicit visualization of the navigation
path and referential integrity between
explored entities.

SET-R4 Extensibility Support for user-defined queries.

SET-R5 Traceability Navigate between the graphical model
and the code.

Table 7.1: Requirements on software exploration tools

7.3 Code Exploration and Navigation with

Sextant

Sextant is a cross-artifact software exploration tool that enables developers

to browse a project’s sources using predefined queries as well as user defined

queries. The results of all queries are integrated into one graph that repre-

sents all explored elements and the relations between them. The graph is

automatically layed out and shown to the user.

Sextant extensively uses Magellan’s XQuery interface for searching

program elements and browsing along different kinds of relations. These

two navigational styles support bottom-up and top-down comprehension.

The integrated comprehension model is enabled by an integrated view: The

elements discovered in any search or browsing activity are visualized as nodes

in a graph, while relationships between elements are depicted as edges of the

graph, whereby, all elements and relationships are explicitly represented. By

124 7. Software Comprehension

Figure 7.1: Conceptual Model of Sextant

building upon Magellan, Sextant offers functionality to switch between

the graphical notation and the source code representation. Furthermore,

Sextant is extensible with new node types, and user-defined relations.

7.3.1 Architecture

Sextant has the three-tier architecture shown in Figure 7.1, comparable

to the proposal described by Lanza [Lan03]. The metamodel provides the

raw data and means to extract information. The metamodel is realized by

Magellan and the XQuery interface is used to extract the information. The

integration layer uses the information of the executed queries to construct a

graph which represents the relations between the program elements explored

by the user. The graph is visualized by the visualization layer.

7.3.1.1 Metamodel

As its datamodel, Sextant uses the XML database of embedded XQuery

engine, i.e., it uses BAT2XML’s (cf. AppendixV) representation of Java class

files as well as the result of an analysis that adds all “.xml” documents of a

7.3. Code Exploration and Navigation with Sextant 125

project to the XML database. To extract information, Sextant uses both

types of queries supported by Magellan’s XQuery interface (cf. Section

5.1):

• Queries to search the entire database are used, for example, to find type

definitions, methods, or declarations of Enterprise JavaBeans (EJBs).

These queries provide the search capabilities.

• Context dependent queries; i.e., queries which are defined with respect

to an XML node in the database, are used to enable the project’s ex-

ploration. For example, the context of a query to get all fields accessed

by a method is a reference to a method node in the XML database.

The results are only those fields accessed by the particular method.

The result of both types of queries — search queries or context-dependent

queries – can be either references to other nodes of the XML database or

derived information, i.e., any information that is not directly stored in the

database. For example, a query that calculates the depth-of-inheritance met-

ric returns derived information.

7.3.1.2 Integration Layer

The integration layer builds a graph from the results of the executed queries.

A node of the graph is the representation of a software element or a

derived information returned by previously executed queries. Each node

that does not represent derived information has a reference to the element

it represents; this reference is used to ensure that each element of the model

is represented by at most one node in the graph, even if the same element is

selected by multiple queries.

In general, the result of search or context-dependent queries are either

XML elements or XML attributes. But, to enable context dependent queries

that are only defined w.r.t. specific nodes or to enable different visualizations

of the graph’s nodes later on, the XML elements are categorized. Exam-

ple categories are: MethodDeclaration, FieldDeclaration, or EJBDeployment-

Descriptor. For categorizing elements a query is executed where the node’s

underlying XML element is set as the context. The result of the query is

the element’s category, also referred to as the node’s type in the following.

Basically, a node’s type is just a simple unique name used to identify nodes

which represent similar elements. The query which types the elements can

be extended to handle new kinds of XML elements.

126 7. Software Comprehension

The node’s type is in particular used to support context dependent queries

which are only defined with respect to a well-defined set of node types. In

this case, a node can be used as the context of a query, if and only if the

query explicitly supports the type of the node. While each node has exactly

one type, a query can be defined with respect to multiple node types, e.g., a

query to get the declaring class is well-defined for method declarations and

field declarations.

An edge of the graph represents a relation between two nodes exposed by

executing a query; hence, the semantics of an edge is solely determined by

the query. An edge always points from the node that was set as the context

for the query evaluation (the source node) to the nodes that were returned

by the evaluation (the target nodes).

7.3.1.3 Visualization Layer

Figure 7.2: Visualization of cross-artifact based relations

The visualization layer visualizes the graph constructed by the integration

layer and enables navigation through the software project. It is based on

TwoMore [DEO+05], a tool originally designed for the manipulation and

visualization of topic maps. Software is represented by a graph with source

elements as nodes and relations as directed edges between the nodes. For

instance, in Figure 7.2 the class de.tud.CartBean and the method getText() are

elements of the software and they are related by means of the TA-Required

relationship. Given a net of nodes shown on the screen, selecting a node

will show up a menu with the list of all applicable queries. The user can

then choose the query for the further exploration. The result of evaluating a

selected query will be integrated into the existing net.

The visualization layer can be adjusted in various ways. For instance, it

is possible to choose between different layout algorithms. E.g., a hierarchical

layout orders elements in a tree-like structure, the spring force layout instead

7.3. Code Exploration and Navigation with Sextant 127

automatically places related elements in a concentric circle around the source

node. To keep parts of the graph structure fixed, one can explicitly assign

a fixed place to one or more nodes. Fixed nodes have the advantage that

they will not be rearranged when additional nodes are added to the net and

therefore ease the comprehension.

Information about the visual appearance of an edge is specified in a

query’s meta-data. For instance, it is possible to set the color and the de-

scription of an edge.

The visual appearance of a node is determined by the node’s type and

it is possible to specify the color and icon that is to be used. Available

visualization options are shown in Figure 7.3.

Figure 7.3: Visualization options provided by Sextant

In the first case, the type of the node is indicated by an icon and the edge

is explicitly labeled. In the second case, a spike is used instead of an arrow: If

the relation between two nodes is obvious this representation is more concise.

The third case is the most compact one and is particularly useful if the nodes

have the same type and a large net is to be explored, as we will see in the

evaluation section. The last case is the most elaborate version: The type,

color and icon of the node are explicitly shown. Visualizing the type of a node

proved helpful for comprehending the structure and the types of relations.

The node’s description, e.g., “helloworld.HelloWorld”, is determined by

executing another query that is dependent on the node’s type and where

the underlying element is set as the context. For instance, given the XML

snippet shown in Listing 7.1 the query will return “int hashCode()”.

1 <method name=’hashCode’>

2 <signature>

128 7. Software Comprehension

3 <return type=’int’/>

4 </signature>

5 </method>

Listing 7.1: XML representation of a Java method’s signature

7.3.2 Evaluation

The following two case studies demonstrate how Sextant was used to under-

stand the source of a bug, respectively to discover overly complex structures

which led to refactorings.

In the first case study, a small EJB project is explored to demonstrate

the need for the integrated comprehension strategy (SET-R1). Furthermore,

this case study also illustrates the need for cross-artifact support (SET-R2)

and extensibility (SET-R4). In the second case study, Sextant is applied to

understand parts of a complex application, namely the Steamloom Java vir-

tual machine [BHMO04]. The goal is to analyze the dynamic weaving control

flow and to derive refactorings from the visual representation. This second

case study will demonstrate how the explicit representation of all elements

and relations (SET-R3) as well as links between the graphical representation

and the corresponding source elements (SET-R5) are crucial for our needs.

7.3.2.1 Exploring an EJB Project

As an introductory example, the usage of Sextant to explore a small EJB

project is presented. Consider a scenario in which a developer receives a

bug report for an EJB component with the ejb-name CartBean, indicating

problems with the transaction handling. Using this component resulted in

the exception: TransactionNotSupportedException. Given this information,

the developer assumes that the problem is related to the CartBean and starts

searching for the class that implements the bean with the specified name

using a corresponding query. The result is the class de.tud.CartBean, repre-

sented by the left-most node in Figure 7.2.

Next, the developer executes a query on this node to get all methods

defined by the class that have the transaction attribute NotSupported. This

query returns the node representing the getValue method. A further query

to get all methods called by getValue does not return any further results.

After going back to the node of the CartBean class and executing another

query to get all methods with the transaction attribute Required, the getText

7.3. Code Exploration and Navigation with Sextant 129

method is returned. Again, the developer wants to further explore the call

graph and executes the called methods query on this node, which returns the

toString method. After executing the same query once again for the toString

method, the developer discovers that the getValue method gets called from

within toString, hence, finding a circle in the call graph. At this point, the

developer spots a severe problem: A method that always runs in a transaction

context calls a method that does not support transactions.

Based on the given example, we now discuss the importance of the pro-

posed requirements for software exploration tools.

SET-R1 This example illustrates the usefulness of a seamless integration

of top-down and bottom-up comprehension. The basic top-down and

bottom-up comprehension approaches are supported by means of the

searching, respectively browsing facilities of Sextant.

Combining the two navigational approaches and switching between

them is facilitated in that a single graph-based visualization is used

to represent the results of a search as well as the elements a devel-

oper browses to. In the example, first a search query to find the im-

plementation classes of beans with a certain ejb-name was executed;

subsequently, the exploration continued by browsing the result of the

search.

Furthermore, different views resulting from different queries and rep-

resenting the system at different levels of abstraction, are visualized in

a single graphical representation. For instance, the search query re-

vealed the implementation of an EJB component while another query

built the call graph for a method. Because those different views pro-

vide complementary information, developers need to be able to navigate

among them to completely understand an architecture [KC98]. With

Sextant, it is possible to fuse different views by using different kinds

of relationships in each step of the navigation.

SET-R2 The EJB nature of the sample project illustrates the need for nav-

igating across different kinds of artifacts. In the example, the queries

used information from Java class files as well as from XML based de-

ployment descriptors. Without an explicit support by software explo-

ration tools, those kinds of relations have to be established manually.

First, this can be very time-consuming. Second, it runs contrary to

the comprehension process, because not all elements and relations are

visualized and one can easily get lost during the exploration [JD03].

130 7. Software Comprehension

SET-R4 Last but not least, this case study also demonstrates the need for

extensibility. To explore the discussed EJB project, domain specific

queries were required. Given Sextant’s generic Java related queries

it was not possible to successfully explore the Project; cross-artifact

reasoning is required and the semantics of an EJB deployment descrip-

tor’s elements needs to be understood. Hence, extensibility is crucial

for defining project and domain specific queries.

For illustration, consider how this feature was used in the case study:

For exploring the EJB application, a new query was written. The query

is shown below and determines the implementation class for a bean

(with its name stored in the variable $ejb-name). In natural language

this query reads as follows: First, save the name of the implementation

class in the variable $class-name. Then return the class with this name.

1 let $class−name := //ejb−jar/enterprise−beans/

2 (session|entity)[./ejb−name = $ejb−name]/ejb−class/text()

3 return //bat:class[@name = $class−name]

Listing 7.2: XQuery to get the Java class given a bean’s name

7.3.2.2 Analyzing a Java VM

Steamloom [BHMO04] is a Java virtual machine with native support for

aspect-oriented programming [KLM+97] implemented as an extension of the

Jikes Research Virtual Machine (Jikes RVM for short). Steamloom consists

of roughly 200,000 lines of Java code, about 150,000 of which belong to the

underlying Jikes RVM and other 30,000 belong to the bytecode toolkit used

for implementing the weaving functionality.

One of the features that Steamloom adds to the Jikes RVM is dynamic

aspect weaving capabilities. The control flow inside the weaving component

is complex; to understand it, several queries were applied to the control

flow that is initiated by the VM AspectUnitRegistry.weaveIn() method. This

method is responsible for weaving aspect functionality into one particular

point in the application code. It calls one of three entry points of the Code-

Generator class: (a) generateCode(...), (b) generateAfterExecutionCode(...), or

(c) generateAfterCallCode(...). The entire subsequent code generation control

flow takes place inside the CodeGenerator class, by invoking several private

methods. The calls to methods outside the CodeGenerator have been filtered

7.3. Code Exploration and Navigation with Sextant 131

out using a dedicated query. This facilitates to keep focused on the intra-class

control flow.

By evaluating a query to find the called methods several times, the entire

weaving control flow within CodeGenerator was visualized (see Figure 7.4).

By observing certain patterns in the visual representation of the control flow,

it was possible to spot places in the weaving logic under exploration that had

bad smells [Fow99]. Some of these observations led to refactorings. After per-

forming the refactorings the evaluation was repeated using the same queries

to rebuild the modified control flow graph for weaving. The result is shown

in Figure 7.5: The number of method calls has obviously decreased, and the

overall control flow is more clear. In the following, the discovered bad smell

is described and the refactorings that were conducted. The various places in

which refactorings were applied are marked by indexes in the two figures. In-

dexes in Figure 7.5 mark the results of refactorings applied to the respective

locations in Figure 7.4.

Figure 7.4: Weaving control flow of Steamloom before refactorings

One of the visual patterns can be seen at Index 1 in Figure 7.4. The node

representing the method generateNormalCode(...) has only one incoming and

outgoing arrow, i.e., it is called from one method only and calls only one

132 7. Software Comprehension

Figure 7.5: Weaving control flow of Steamloom after refactorings

method, namely another version of generateNormalCode(...) with one more

parameter. Switching to the source code reveals that this method merely

forwards a default value to the called method. Since these methods are

private, the control flow can be simplified by deleting the forwarding version of

generateNormalCode(...) and directly passing the default value of the second

parameter from the actual call site.

The method generateJumpInstruction(...) (Index 2) also has only one in-

coming arrow, meaning that it is only called from one site. Given that the

method is rather trivial, it was inlined at that call site.

Another method, removeNOP(...) (Index 3), is called from each of the

three entry point methods. Since it has no outgoing calls to other CodeGen-

erator methods, one might suspect that this method is used as a mere service

provider that does not further contribute to the actual control flow. Indeed,

by taking a closer look at the source code, it was observed that the method

was invoked exactly once from each of the entry points. This invocation

took place just before a list of instruction objects was returned to the caller,

namely the weaveIn() method. Since removeNOP(...) was rather trivial, this

functionality was inlined in weaveIn(), right after the invocation of one of the

three CodeGenerator entry points.

The initialize() method (Index 4) is called by several generate*() methods.

Given that initialize() does not accept any parameters and some of the calling

methods invoke each other as well, this looked like a good opportunity for

clarifying control flow. Indeed, initialize() is a simple set-up method that

assigns initial values to some state variables of the CodeGenerator. It was

easily possible to move the call to initialize() to the weaveIn() method before

the actual code generation control flow is entered. Each of the methods with

indices 4, 5 and 6 is called from exactly one other method and could therefore

7.3. Code Exploration and Navigation with Sextant 133

be inlined at the respective call site.

As in case of the previous case-study, the following paragraphs discuss

the importance of the proposed requirements with respect to this study.

SET-R3 This case study illustrates how an integrated view for searching

and browsing avoids the need to switch between different tools and

views, which often causes disorientation. Integrated views can help to

create and retain the mental map and navigate through the system

without getting lost. Furthermore, the case study demonstrates how

the graph-based visualization of Sextant directly represents the de-

veloper’s exploration path with all elements and relations discovered in

the exploration, whereby preserving referential integrity.

In fact, Sextant extends the notion of not getting lost as introduced

by Janzen and de Volder [JD03]. By using a graph for the visualization

instead of a tree structure as in [JD03], complex relationships between

different information sources become apparent. For example, brows-

ing to the callees from the nodes representing the entry point methods

during the exploration of the weaving control flow in Figure 7.4 results

in the method initialize() in all three cases. Using a tree-based visual-

ization, the method would appear in three different subtrees and the

developer has to establish the relationship manually by matching the

names.

On the contrary, with the graph-based visualization of Sextant, the

node for the initialize method appears only once in the exploration graph

with incoming edges from all three entry points of the weaving process.

Thus, graph-based visualizations can improve the comprehension of a

software’s inner structure by making relationships among single ele-

ments explicitly visible. This explicit representation was crucial for

understanding the control flow and ultimately led to refactorings and

simplifications in the code.

SET-R5 Further, this case study motivates the requirement SET-R5 from

the introduction, concerning traceability between the graphical rep-

resentation and the corresponding source code. The graphical repre-

sentation was well-suited to detect visual patterns indicating possible

structural code smells. However, to judge whether a refactoring is ap-

propriate, one needs to look into the source code.

For instance, when looking at the graph it can be seen that the method

generateNormalCode calls a homonymous method with one more param-

134 7. Software Comprehension

eter, but to pinpoint the method as a forwarder it is necessary to look

into the code. Due to Sextants code link feature, one can synchronize

the graphical representation with the code editor. Just after selecting

any program element, the editor shows up the corresponding location

in the source code. This enables to switch quickly between the different

representations and further improves the comprehension, because one

can also see low-level implementation details.

7.3.3 Related Work

Many tools have been developed to support the understanding of software

systems. One category of software comprehension tools focus on the visual-

ization facilities [DDL99, KC98, MTW93, SM95, SWFM97]. Two well-known

examples are Rigi [MTW93] and SHriMP [SM95]. Rigi is a system for re-

verse engineering, primarily capable of the identification of subsystems by

certain criteria, e.g., file containment or element names. The results of the

identification are then visualized. All subsystems form a hierarchy, which is

displayed in an overview window, but the details of a subsystem, i.e., the

contained elements, are represented in their own window. Thus, Rigi fol-

lows a multi-window approach. SHriMP, a tool based on Rigi, provides an

alternative visualization. All subsystems are represented in a single view us-

ing nested graphs. Along those, developers can navigate down to the source

code. Besides this, well-known visualization techniques such as fisheye-view

or pan and zoom are also available.

In contrast to Sextant with its lightweight visualization, both tools pro-

vide more complex visualization techniques. But, recent studies revealed that

developers are often swamped with too many elements [Lan03, SWFM97] and

too complex visualizations [SWM97]. For example, the existence of multiple,

non-integrated views can cause disorientation as in case of Rigi, whereas the

SHriMP visualization can result in an information overload. The proposed

approach differs in such that not the whole system is visualized, but the

developer explores software elements of interest step by step. Though, Rigi

and SHriMP provide support for source code navigation using hyperlinks

and for context navigation, the browsing capabilities are limited due to a

small number of queries and the absence of means to add new queries or to

customize existing ones. Sextant is fully extensible and tightly integrated

with Eclipse and enables developers to switch seamlessly to the source code.

Other tools aim at combining the two navigational styles searching and

browsing — a prerequisite to support the integrated model of software com-

7.3. Code Exploration and Navigation with Sextant 135

prehension. Examples of those tools are Hy+ [MS95], Ciao [CFKW95], The

Searchable Bookshelf [SCHC99], and SPOOL [RSK00]. All these tools have

in common that they are based on a kind of repository, e.g., a fact base or

a database, and provide advanced query mechanisms allowing a developer

to extend the tool by defining new queries. Although this enables to search

or browse along diverse relationships, one cannot fuse different views. If a

developer uses for instance SPOOL and starts its exploration with a query,

it is common that the next step will be the further evaluation of the results.

Even though it is possible to make the results of the former query starting

points for a new query, one looses the exploration path which is essential to

build up a mental map of the software system.

On the contrary, Sextant presents the results of a complete exploration

in a single view. This results in an explicit representation of the exploration

path, preventing developers from getting lost during the exploration.

Feat [RM02] is a tool to create and manipulate representations of con-

cerns. Developers can browse along different semantic relationships between

program elements and add elements of interest to a concern. All concern

elements and their interrelations are abstracted in a concern graph repre-

sentation. Sextant’s capabilities to search, browse, and visualize program

elements are more advanced compared to Feat with its fixed program model.

Sextant provides means to search and browse along different semantic re-

lations and in different kinds of artifacts. Furthermore, the graph-based

visualization is more appropriate for understanding interrelations between

program elements than a tree-based one. However, the main contribution of

Feat is a mean to make concern descriptions explicit using concern graphs.

The tool most similar to Sextant is JQuery [JD03]. It combines the

advantages of query-based tools and hierarchical browser tools. Queries pro-

vide means to search for elements in the system on the one hand, and to

explore code in terms of different kinds of relationships on the other hand.

The results are visualized in a tree-based, hierarchical representation. Each

resulting element can be used as the source for a new query. The results of

this query form a subtree of the source element. Thus, the whole tree is an

explicit representation of the exploration path. However, due to the hier-

archical nature of JQuery’s visualization, a single element can occur several

times in different subtrees of the exploration. Each occurrence symbolizes a

relationship between the element itself and its parents. However, to see all

relationships of the elements the developer has to derive this knowledge man-

ually by searching for all its occurrences in the tree. Another shortcoming

is that JQuery is only capable to explore the Java structures in a software

136 7. Software Comprehension

system. The tool is not intended to integrate other kinds of artifacts, which

restricts the applicability in modern software projects.

In contrast to JQuery, Sextant uses a graph-based representation which

improves the comprehension of the relationships between the systems ele-

ments. Each program element occurs at most once in the view. When a new

element is discovered and there are relations to other elements in the view,

they get automatically visualized so that each relation is made explicitly visi-

ble. Furthermore, Magellan is used as the data layer. This enables to store

and query different kinds of artifacts in a uniform way. Those cross-artifact

query capabilities broaden the scope of possible applications and enable de-

velopers to write domain- or technology-specific queries even if not only Java

source code is used.

A different approach of software exploration, namely back-packing ex-

ploration, is described by Favre [Fav02]. The work is similar to Sextant

by providing means to explore different kinds of artifacts. While Sextant

uses Magellan’s XQuery interface for queries, the GSEE back-packing frame-

work provides a generic successor interface with a single method returning

all related elements for a given one. This enables the integration of various

information sources. For instance, one can use the interface to integrate an

object-oriented database or one could create an implementation of it using

Java introspection to find related elements for a Java class. The simplicity of

this interface facilitates the usage of existing libraries as new kinds of infor-

mation sources with almost no preparation efforts. Hence, the meta-model

can be elaborated during the actual exploration by integrating new source

components interactively, which promotes the discovery of new concepts on-

the-fly.

7.4 Conclusions

From the evaluation follows that Magellan facilitates the development of

first-class software comprehension tools. In particular, building comprehen-

sion tools on top of Magellan has the following advantages:

• Magellan enables researchers and developers who build software com-

prehension tools to focus on the integration and visualization layers,

i.e., to focus on the functionality which distinguishes the comprehen-

sion tool from other tools. Functionality to parse the code and to main-

tain a model of the software is provided by Magellan or by the set of

7.4. Conclusions 137

analyses already delivered with Magellan. Hence, w.r.t. the architec-

ture proposed for software visualization tools in [Lan03], Magellan

can be regarded as a first-class implementation of the metamodel. The

XML view on the project’s artefacts and the integrated XQuery in-

terface which operates on top of the view provide the metamodel’s

functionality.

• The integrated XQuery interface supports the types of queries required

by software comprehension and exploration tools: First, queries to

search the data base. Second, queries that are defined w.r.t. a spe-

cific context element and which use the result of a former query as the

starting point. Taken together these types of queries support bottom-

up and top-down comprehension strategies. Hence, except from a user

interface, the core functionality necessary to support integrated com-

prehension (requirement SET-R1) is available.

• The feature of the XQuery engine that queries return direct references

to nodes in the database makes it particularly easy for software com-

prehension tools to satisfy the referential integrity requirement (part of

SET-R3). To identify previously explored elements a simple reference

comparison is sufficient.

• Since the embedded XQuery engine can execute any valid query that

is passed in as a String object, the extensibility requirement (SET-R4)

is also well supported. Software comprehension tools built on top of

Magellan just need to provide a user interface to support user defined

(ad-hoc) queries; the core functionality is already provided.

• Base functionality for handling different types of artifacts is already

included in Magellan and is leveraged by the embedded XQuery en-

gine to explicitly support cross-artifact queries (requirement SET-R2).

To extend the set of artifacts that can be queried, it is sufficient to add

analyses that map the artifacts to corresponding XML representations.

After that it is immediately possible to execute cross-artifact queries.

• Efficient querying capabilities are readily available. The performance of

Magellan and in particular of the provided XQuery interface is suffi-

cient to explore — at least — reasonable sized projects (≈ 200.000 lines

of code in the second case study). In all cases the queries are evaluated

in less than one second and, hence, are fast enough for interactive ex-

plorations. Further, the time required to maintain the database along

138 7. Software Comprehension

with the incremental build process is negligible and does not lead to an

overhead perceived by the IDE’s users. To keep the database in main

memory ≈ 100MB were required, which is still reasonable — given the

configuration of current developer systems.

• Since Magellan and the tools build upon it are tightly integrated into

Eclipse, the developers can directly use the gained knowledge to adapt,

correct or extend the source code of the system. After performing the

change the underlying database is automatically brought up-to-date

and the user can immediately continue the exploration.

• By building comprehension tools upon Magellan the end user’s effort

to create an initial configuration for the code comprehension tool will be

minimal when compared to other tools. E.g., as reported in [DDL99],

some reverse engineering tools require an initial configuration that re-

quires up to two days before the tool can correctly parse the project’s

source code and eventually build up the model of the software. Due to

Magellan’s Eclipse integration this overhead is avoided.

• The end-user can use multiple software comprehension tools simulta-

neously as the time required during incremental builds to maintain the

source model is independent of the number of used software compre-

hension tools. In case that all tools have the same requirements the

build time overhead is identical to using one tool only. In case of differ-

ing requirements Magellan still reduces the overall overhead as those

analyses that are executed to satisfy the overlapping requirements will

be executed only once. Hence, it is at least more likely that multiple

tools can be used.

Chapter 8

Assessing the Quality of Code

This chapter shares some material with: QScope: an Open, Extensible Framework

for Measuring Software Projects [EGM+06]

8.1 Introduction

Assessing the quality of code is important to answer questions such as: “Is it

necessary to refactor the project to keep the system maintainable?”, “Where

is it most beneficial to start a refactoring?”, or “Does the quality of a third-

party library / application meets our requirements?”. Further, as Fenton

and Pfleeger [FP97] write, “measurement is needed at least for assessing the

status of your projects”.

To measure code, a large number of metrics is defined for all kinds of

software systems, e.g., a well known set of metrics for object-oriented pro-

grams is defined by Chidamber and Kemerer [CK94] or discussed by Briand,

Daly and Wüst [BDW98]. These metrics, as well as other metrics, are then

used as changeability indicators [KKL01], to guide refactorings [SSL01], to

try to estimate the quality of software projects [BBM96, BWDP00, BD02],

to predict faulty classes [EMM01], to estimate the fault proneness in gen-

eral [YSM02, FN01], or to determine those classes that need to be tested

intensively [MSA+03]. Besides proposing new metrics, a large number of pa-

pers deal with the validation of metrics in general [EBGR99, FN99, Sch92,

TCSD04, MSCM02], that is, finding correlations between metrics or finding

the “best metric” for a specific task.

But, due to an ever changing software development process, new metrics

need to be defined to measure modern software development projects in order

139

140 8. Assessing the Quality of Code

to support the development tasks discussed in the previous paragraph. In

particular, being able to measure software projects beyond classical object-

oriented and procedural systems is necessary. Modern software systems, such

as Service Oriented Software Systems (SOSS), use different kinds of artifacts

in the implementation of the system. In case of SOSS, a variety of XML

dialects and files as well as conventional source code is used. In contrast to

the previous use of XML files, these files are no longer mere configuration

files. Instead, these XML documents, e.g., BPEL files [BPE05], implement

important functionality of the system. Hence, it is necessary to be able to

measure all documents and also to take the relations between different types

of documents into account, when making an overall assessment.

The necessity to be able to consider relationships across different types

of artifacts was the motivation for building a metrics framework on top of

Magellan. Using Magellan and the embedded XQuery engine, it is

immediately possible to implement and test new (cross-artifact) metrics.

Section 8.2 presents the prototypical metrics framework QScope and

gives an overview of the architecture of QScope. Furthermore, work related

to metrics frameworks is discussed and an evaluation of QScope as an ex-

tensible metrics framework is provided. Section 8.3 concludes this chapter

with an evaluation of building a tool for code assessment upon Magellan.

8.2 QScope: an Extensible Metrics Frame-

work

Currently, defining, implementing and testing metrics is labor-intensive. First,

a meaningful metric has to be defined and after that, the metric needs to

be implemented and measured for a number of real world projects in order

to validate the metric. Though, it is practically impossible to support the

first step since it usually requires creativity, the second step can be tool sup-

ported. Unfortunately, many metrics tools are not explicitly extensible or

they are extensible, but are limited with respect to the set of different types

of artifacts that can be taken into account. Hence, implementing metrics

that need to analyze different types of artifacts to draw a conclusion is not

yet explicitly supported by current tools.

The XQuery interface provided by Magellan is promising to make the

development of new metrics easier. Using XQuery a uniform mechanism ex-

ists to calculate metrics for software systems where it is necessary to take

multiple different types of artifacts into account. To evaluate the approach

8.2. QScope: an Extensible Metrics Framework 141

a prototype called QScope was implemented. QScope offers the standard

functionality expected from a metrics tool, that is, handling of metrics, vi-

sualization of a metric’s result, aggregation of metric values, filtering metric

values and exporting the results of calculated metrics. Further, an explicit

mechanism to plug in new metrics is provided and a framework for develop-

ing and testing new metrics is also included. By relying on Magellan as

the underlying platform, QScope is automatically open with respect to the

types of artifacts that can be taken into account when measuring a software

project.

8.2.1 Calculating Metrics using XQuery

In this subsection, the implementation of three different metrics using XQuery

is shown. All queries use the XML representation of Java bytecode as gen-

erated by BAT2XML. The first query calculates the basic metric Number of

Methods. The second query is a cross-artifact metric that calculates the Num-

ber of Methods with Declaratively Specified Transaction Attributes and the third

one analyzes a method’s implementation to calculate the Lack of Cohesion in

Methods.1

8.2.1.1 Number of Methods

In Listing 8.1 we see a complete example of a query to calculate the metric

Number of Methods.

1 <metric> {

2 for $class in $db:prj−files/bat:∗[@name = $param]

3 let $fqn := $class/@name

4 return

5 <entity

6 package=”{helper:packageName($fqn)}”

7 class=”{helper:simpleName($fqn)}”>

8 { fn:count(java:allMethods($class)) }

9 </entity>

10 } </metric>

Listing 8.1: XQuery for calculating the metric Number of Methods

1This section assumes that the reader has a basic understanding of XQuery (cf. Section
5.1).

142 8. Assessing the Quality of Code

The query first creates a new XML root element metric (Line 1). After

that, all classes are selected where the class’ name is matched by any item

in the sequence $param (Line 2). The variable $param is an external variable

that is initialized by QScope with the set of class names for which this

metric is to be calculated. For each $class the fully-qualified name of the

class is assigned to the local variable $fqn (Line 3) and a child element entity

(Line 6) is created. The content of the entity element is the value of the

metric (Line 8); i.e., the number of method declarations of the current class.

The constructed XML elements (metric in Line 1 and entity in Line 6) are

required to enable QScope to put a calculated value in relation to a resource;

in this case, to a specific class.

The variable $db:prj-files (Line 2) as well as the functions helper: package-

Name (Line 6), helper:simpleName (Line 7) and java:allMethods (Line 8) are

predefined by Magellan; the function fn:count is a standard XQuery function

to count the number of elements.

Evaluating the query for the class demo.HelloBean shown in Listing 8.2

yields the result shown in Listing 8.3.

1 <bat:class name=”demo.HelloBean”>

2 <bat:inherits>

3 <bat:class name=”java.lang.Object” />

4 <bat:interface name=”javax.ejb.SessionBean” />

5 </bat:inherits>

6 <bat:method name=”getText” ...>

7 <bat:signature>

8 <bat:returns type=”java.lang.String” />

9 </bat:signature>

10 <bat:code>...</bat:code>

11 </bat:method>

12 <bat:method name=”getValue” ...>

13 ... similar to getText

14 </bat:method>

15 </bat:class>

Listing 8.2: XML representation of demo.HelloBean

1 <metric>

2 <entity package=”demo” class=”HelloBean”>

3 2

4 </entity>

5 </metric>

8.2. QScope: an Extensible Metrics Framework 143

Listing 8.3: Result of calculating number of methods for demo.HelloBean

The result (Listing 8.3) of every XQuery which calculates a metric has to

be an XML document with <metric> as the root element and one <entity>

element per calculated value as shown in Listing 8.3, Line 2 and Line 3.

Along with the entity element additional information (Line 2) is specified to

enable switching from a metric’s result to the code; e.g., in this case the value

is the name of the class for which the metric was calculated.

8.2.1.2 Number of Methods with Declaratively Specified Trans-

action Attributes

To demonstrate how to use QScope to measure a project that makes use of

different types of artifacts, we will see a metric that calculates the number of

methods of an Enterprise JavaBean (EJB) [EJB03] class with declaratively

specified transaction attributes. That is, those methods where the transac-

tion attributes are specified in an XML deployment descriptor (see Listing

8.4) and not in source code. The motivation behind such a metric could

be to measure hidden complexity in EJB projects. Though the transaction

attributes are not specified in source code, it is in practice often not possible

to implement an EJB without taking the transaction attributes into account.

Hence, the complexity is hidden when analyzing the source code only.

Given the class shown in Listing 8.2 and the deployment descriptor (DD)

shown in Listing 8.4, a function is defined (Listing 8.5) to determine those

methods that have declaratively specified transaction attributes.

1 <ejb−jar>

2 <enterprise−beans><session>

3 <ejb−name>HelloBean</ejb−name>...

4 <ejb−class>demo.HelloBean</ejb−class>...

5 </session></enterprise−beans>

6 <assembly−descriptor><container−transaction>

7 <method>

8 <ejb−name>HelloBean</ejb−name>

9 <method−name>getText</method−name>

10 </method>...

11 </container−transaction></assembly−descriptor>

12 </ejb−jar>

Listing 8.4: Abbreviated EJB deployment descriptor for demo.HelloBean

144 8. Assessing the Quality of Code

1 declare function ejb:methodsWithDeclTransAttrs($class) {

2 let $ejb−name := $ejb:ejb−jars/enterprise−beans/∗[./ejb−class/text() =

$class/@name]/ejb−name

3 let $method−names := $ejb:ejb−jars//container−transaction/∗[./ejb−name =

$ejb−name]/method−name/text()

4 return $class/bat:method[@name = $method−names]

5 };

Listing 8.5: Methods with declaratively specified transaction attributes

The function first determines the ejb-name of the given class (Line 2) by

searching for the class’ name in the EJB deployment descriptor (Line 4 in

Listing 8.4). Having the ejb-name, the query then (Line 3) selects the names

of all methods with declaratively specified container transactions (Line 9 in

Listing 8.4). At last, the methods of the class with matching names are

selected (Line 4).

Given the function defined in Listing 8.5, calculating the metric for a

specific class is straightforward. We pass the class (by means of a variable

$class) to the function and count the number of (method) nodes returned:

1 {fn:count(ejb:methodsWithDeclTransAttrs($class))}

The complete result of evaluating the query is then:

1 <metric><entity class=”HelloBean” package=”demo”>1</entity></metric>

8.2.1.3 Lack of Cohesion in Methods

Even for metrics that analyze a method’s implementation, a query definition

close to the mathematical definition is possible. For example, LCOM mea-

sures the cohesion of a class, i.e. how methods and variables of a class relate

to each other. The precise definition is shown in Figure 8.1: A is the class

for which we want to calculate the lack of cohesion, k is the number of fields

declared by A, n is the number of methods of A, and vi is one specific field.

Hence, P (vi) is the percentage of methods that access the field vi.

The query to calculate the metric is shown in Listing 8.6. The for loop

in Line 1 iterates over all classes passed to the query. For a specific class $A,

Line 2 to 5 determine the set of fields and methods and the sets’ sizes. After

that, Line 7 to 18 calculate the metric. In Line 7 and 8 the special case that

the class defines either no fields or no methods is handled. In all other cases,

the metric is computed in the lines 10 to 17 as specified in Figure 8.1.

8.2. QScope: an Extensible Metrics Framework 145

LCOM(A) = 100%− (
1

k

k
∑

j=1

P (vj)),

where P (vi) =
Number of methods accessing vi

n
100%

Figure 8.1: The Lack of Cohesion in Methods (LCOM) metric

1 for $A in $db:prj−files/bat:class[@name=$param]

2 let $methods := java:all−methods($A)

3 let $n := fn:count($methods)

4 let $fields := java:all−declared−fields($A)

5 let $k := fn:count($fields)

6 return

7 if ($k = 0) then 0

8 else if ($n = 0) then 100

9 else (

10 (1−

11 fn:sum(

12 for $v in $fields

13 return fn:count(

14 java:accessors($v, $methods)

15) div $n

16) div $k

17) ∗ 100

18)

Listing 8.6: XQuery for calculating the Lack of Cohesion in Methods

Listing 8.7 shows the function to determine those methods, among a set

of given methods ($methods), that access a specific field (used in Listing 8.6,

Line 14). The query in Listing 8.7 returns a method m, if the set of put and

get instructions that access the given field $v is not empty — put and get

represent the field write and read access instructions.

1 declare function java:accessors($v, $methods) as element()∗ {

2 $methods[not(empty(.//(bat:put | bat:get)

3 [./@declaringClassName=$v/../@name

4 and ./@fieldName=$v/@name]))]

5 };

146 8. Assessing the Quality of Code

Listing 8.7: XQuery to get the methods accessing a specific field

8.2.2 Architecture

QScope is comprised of the four building blocks shown in Figure 8.2.

Figure 8.2: Architectural overview of QScope

Magellan

QScope builds upon Magellan and uses the provided XQuery inter-

face for the calculation of metrics.

Manager

The central component of QScope is the Manager. It is written as

an Eclipse plug-in and serves as a connector between (a) the metrics

plug-ins, (b) the views, and (c) Magellan. The interaction between

the Manager and the other components is discussed next. To achieve

extensibility, the Manager plug-in provides two Eclipse extension points

that enable developers to extend QScope with new views and metrics,

respectively.

Metrics

Each metric is defined as a so called snap-in. Snap-ins contain the

8.2. QScope: an Extensible Metrics Framework 147

metric’s declaration together with an XML descriptor for the metric.

The latter includes the meta-information of the metric: the name of

the metric, a short description, documentation, and a reference to the

XQuery file. Furthermore, each metric descriptor contains a scope el-

ement that enables to limit the metric evaluation to certain entities,

i.e., packages, classes, interfaces, methods or fields. For instance, the

scope of the metric Depth of Inheritance Tree (DIT) is class. Hence, it

is not possible to calculate the metric for a method or a field, but it is

possible to calculate the DIT for a package. In this case, the metric is

calculated for all classes within the selected package and the result is

aggregated according to the user-defined aggregation setting (e.g., the

mean value or deviation).

To register new metrics, developers create a metrics plug-in that ag-

gregates metric snap-ins that belong together, e.g., metrics for object-

oriented programs or metrics for J2EE application. The metrics plug-in

then uses the extension point defined by the Manager. When QScope

is loaded by Eclipse the extension point is used to discover all metrics

plug-ins and to automatically register the contained snap-ins.

Views

Users can interact with QScope using views, i.e., select and visualize

metrics. Currently, two different views are available: a spreadsheet

like TableView (bottom part of Figure 8.3) and a graphical ChartView

(central part of Figure 8.3). Both views contain a configuration pane

that is used to select the metrics of interest. Furthermore, one can

setup the aggregation level for the metrics to a higher-level entity and

define filters.

Depending on the concrete view, it is also possible to define the sorting

order (for the TableView) or to specify a diagram type and turning the

diagram’s legend on and off (ChartView).

The TableView facilitates to see the exact results of metrics, as well as

to quickly find the minimum or maximum value by ordering the results

correspondingly. Furthermore, the results can be exported to an XML

file. The ChartView can be used to visualize the results with various

diagram types. Currently, six diagram types are implemented: bar

chart, bubble chart (seen in Figure 8.3), histogram, pie chart, scatter

plot, and waterfall chart. The graphical view allows to quickly perceive

the distribution of metric values as well as mavericks. For example, in

148 8. Assessing the Quality of Code

Figure 8.3: Screenshot of QScope

Figure 8.3 the ChartView shows a bubble chart which visualizes three

metrics: Coupling Between Objects (CBO), the Depth of Inheritance Tree

(DIT), and the Lines of Code (LoC). Each bubble represents one class in

the system where the center of the bubble is determined by the CBO

(x-axis) and the DIT (y-axis) values of a class; the diameter of the

bubble corresponds to the number of Lines of Code.

8.2.3 Using QScope

To calculate metrics, the user selects the entities for which the metrics should

be calculated, e.g., the whole system, some packages, or some classes. Then

the metrics of interest have to be selected and the aggregation level at which

the metrics should be calculated. This information is passed to the Manager

component. The Manager then loads the metrics’ queries and evaluates them

using Magellan. For each query Magellan returns an XML document

containing the results. The Manager then forwards the results to the view.

Finally, the view visualizes the results.

8.2.4 Extending QScope

To plug-in a new metric in QScope it is necessary to:

8.2. QScope: an Extensible Metrics Framework 149

1. To develop a new metric snap-in that consists of the query to cal-

culate the metric and the XML descriptor with the necessary meta-

information. Both artifacts are saved in the metrics directory and are

then available.

2. To optionally test the newly developed metric. Metrics for modern

programming languages have to cope with a number of special cases.

For instance, sometimes one has to consider the inheritance hierarchy

and for some metrics interfaces and classes are handled differently. To

ensure that the metric calculates the right results in all cases, testing

becomes a major concern. QScope offers a test framework for unit

testing queries to provide developers an appropriate environment for

assessing a metric’s correctness. A prerequisite for effective unit testing

of metrics is a test project that contains XML documents that reflect all

cases that should be tested. One either has to create such a project or

use an existing one, e.g., one of the test projects shipped with QScope.

The only requirement is that the project has to be a plug-in project

and that Magellan is enabled.

After implementing the metric and defining the meta-information, de-

velopers have to manually specify the expected values for the entities

they are interested in. These values correspond to the expected values

in a JUnit test method and are stored in an extra XML file. Then, the

developer creates a metric unit test class by inheriting from the pro-

vided class MetricTestCase and specifies the metric descriptor as well

as the XML file with the expected values. The metric tests are then

executed as an Eclipse plug-in unit test.

3. After the snap-in has been developed and tested, developers can add it

to an existing metrics plug-in or create a new one. The plug-in is the

deployable unit and enables other users to integrate the metric inside

their IDE.

8.2.5 Evaluation

To evaluate QScope and the applicability of XQuery for defining metrics,

a set of 18 metrics was implemented. Most of them were developed using

the definitions given in [YSM02] and are shown in Table 8.1. In general,

the implementation of the metrics was straightforward and, as discussed in

section 8.2.1, even metrics as complex as Lack of Cohesion in Methods can be

150 8. Assessing the Quality of Code

Name Description

1. Coupling Between Objects
(CBO)

the number of other classes to which
a class is coupled [YSM02]

2. Coupling within an inheritance
hierarchy (CBOin)

CBO that are in a subclass-superclass
relationship [YSM02]

3. Coupling across inheritance hi-
erarchies (CBOout)

CBOout = CBO-CBOin [YSM02]

4. Depth of Inheritance Tree
(DIT)

the longest path from a given class to
a root class / interface within the in-
heritance hierarchy [YSM02]

5. DITcls DIT without considering interfaces

6. Lack of Cohesion (LCOM) see discussion

7. Number of Ancestor Interfaces
(NAI)

number of directly and indirectly in-
herited interfaces

8. Number of Ancestors (NoA) number of distinct supertypes

9. Number of Fields (NoF) number of fields of a given class

10. Number of Children (NOC) number of immediate subtypes
[YSM02]

11. Number of Classes (NCP) /
12. Interfaces in a Package (NIP)

number of classes / interfaces in a
package

13. Number of Methods (NMC) /
14. Constructors per Class (NCC)

number of methods / constructors per
class [YSM02]

15. Number of Parents (NoP) number of immediate supertypes

16. Response For a Class (RFC) number of distinct methods called by
a given class, but where the methods
are defined in other classes [YSM02]

17. RFCin RFC, but limited to those methods
defined in a superclass [YSM02]

18. RFCout RFCout = RFC - RFCin [YSM02]

Table 8.1: Metrics implemented in QScope

8.2. QScope: an Extensible Metrics Framework 151

implemented close to the mathematical definition.

The performance of QScope is evaluated based on calculating all 18

metrics for the LimeWire[Lim06] project. LimeWire is an open source client

on the Gnutella network and consists of 1387 classes and interfaces. For each

metric, the runtime was measured twice: First, using the open source Sax-

onB [Kay05a] XQuery processor and, second, using the commercial variant

SaxonSA [Kay05b]. Since both variants use the same interfaces exchanging

the open-source against the commercial variant just required to replace the

corresponding jar archives.

The results are depicted in Figure 8.4; please note that the Y-axis uses a

logarithmic scale (log 10). In case of the measurements taken using SaxonSA,

additionally to exchanging the XQuery processor, slow queries were rewritten

to make use of an indexing function only available with SaxonSA. Basically,

the created index enables a direct jump to an XML class element given a class’

name. Using the index traversing the type hierarchy is extremely fast as it is

no longer necessary to search the entire database for a super-/subclass. After

figuring out how to improve the performance, the rewrite took in average 10

minutes per query. The depicted execution times include the time required

for generating the index. Besides using the indexing function, no explicit use

of any further features available with SaxonSA was made; in particular no

use of the processor’s feature to optimize a query based on the XML schema

was made. Using this feature would require an XML schema definition for

the entire database which is currently not available.

The performance measurements were made on a Windows XP Pentium

M 1,6 GHz notebook with 2 GB of main memory. As the performance figures

show, using QScope and SaxonSA with manually created indexes leads to

competitive runtime performance in all cases; the slowest query takes about

12 seconds when evaluated for the whole project. In average evaluating a

query requires 3.94 seconds. However, using the open source SaxonB query

processor half of the queries are too slow for practical purposes; in particular

those queries that need to traverse the inheritance hierarchy. Hence, using

QScope with the open source SaxonB XQuery processor is only possible

for small projects; measuring larger projects with several hundreds of classes

requires to use the commercial SaxonSA XQuery processor.

8.2.6 Related Work

A large number of tools for calculating metrics exists, e.g., Borland To-

gether Control Center [Tog05], the Code Analysis Plug-in (CAP) [CAP05],

152 8. Assessing the Quality of Code

F
igu

re
8.4:

Q
u
ery

evalu
ation

tim
es

for
Q

S
c
o
p
e
’s

m
etrics

8.2. QScope: an Extensible Metrics Framework 153

EclipsePro Audit [Ecl05], JMetric [JMe99], Metrics [Met05] and SDMetrics

[SDM06]. However, most of these tools either provide only a fixed set of

built-in metrics or enable the user to extend the built-in set of metrics, but

do require to implement the metrics in a standard programming language,

such as, Java or C#. Furthermore, most tools only enable to write queries

for applications written in a programming language directly supported by

the tool. Taking other documents into consideration, e.g., XML deployment

descriptors to setup the runtime environments for components, is non-trivial.

QScope is not limited to particular types of artifacts, because it uses the

generic query language XQuery for calculating metrics and is built upon

Magellan.

A metrics tool that targets user extensibility is OOMeter [ARK05]. OOMe-

ter extracts elementary information about Java and C# source code as well

as XMI files and stores the information in a repository. The repository is

then used for the calculation of higher-level metrics, e.g., coupling and co-

hesion metrics. OOMeter can be extended by implementing new metrics

as Java classes that implement a specific interface and that operate on the

repository. Hence, compared with QScope the set of new metrics that can

be defined using OOMeter is limited to metrics that can be defined on top of

the elementary information stored in the repository, while QScope provides

full access to all documents of the application. When compared to OOMeter,

QScope makes the development of new metrics easier by providing a set of

predefined, reusable queries for extracting common information instead of

preprocessing the source files.

The Moose [DT03] reengineering environment uses a similar approach

as OOMeter: the source code is analyzed and the extracted information is

stored in a repository with the FAMIX meta-model, which was designed with

respect to the features commonly found in object-oriented programming lan-

guages. Moose’s meta-model is extensible and provides support for language

specific features. Even though Moose provides support for the definition

and calculation of metrics by means of an API, Moose does not provide a

declarative query language for the definition of new metrics.

Lewerentz and Simon [LS97, LS98] describe the metrics tool Crocodile,

which also uses a declarative SQL-like query language to calculate metrics.

Further, similar to QScope Crocodile is also integrated in an IDE and ex-

ecutes the queries against the program database that is maintained by the

IDE. However, compared to QScope Crocodile is limited in several ways.

First, the database only contains information about the high-level elements

of object-oriented programs, such as, classes, methods and fields. Second, the

154 8. Assessing the Quality of Code

query language’s capabilities were designed with respect to the elements that

are possibly contained in the database and is not general purpose. Hence,

even though Crocodile is language independent, it cannot be used to calculate

metrics beyond metrics for object-oriented source code.

Marinescu et al. [MMG05] identify a set of five key mechanisms that

are the building blocks for the implementation of structural analyses; e.g.,

for metrics. The key mechanisms are: navigation (e.g., given a class go to

the declared methods), filtering (e.g., get only the methods with return type

integer), selection (e.g., select the name of a method), set arithmetic (e.g.,

compute the union of two sets of selected methods) and property comput-

ing analyses (e.g., count the number of items in a set). Since QScope uses

XQuery as the language for the implementation of the metrics the identi-

fied key mechanisms are well supported; XQuery already provides built-in

support for all five mechanisms. However, compared with the prototype lan-

guage SAIL [MMG05], a standard language is used and it is not necessary to

mix imperative programming and a query mechanism to calculate the met-

rics as in case of SAIL; solely using XQuery proved to be sufficient in all

cases.

8.3 Conclusions

In this chapter, the metrics platform QScope was presented. The open-

ness of QScope is directly due to the openness of the underlying platform

Magellan and enables to extend the set of artifacts that can be taken

into account when running queries against the code base. To be extensible

QScope defines Eclipse extension points to plug-in new metrics written in

XQuery.

To assess if it is possible to use XQuery for calculating metrics for larger

projects 18 well known metrics were implemented and the evaluation times

for a reasonable sized project were measured. The result of the evaluation

shows that QScope is a good platform for developing and prototyping new

metrics and that using QScope/Magellan/XQuery facilitates the defini-

tion of complex metrics. As the performance figures have shown, using a

commercial XQuery processor the execution times of the queries are fast

enough for projects with several hundred classes and other artifacts.

We have also seen that XQuery can be used to calculate metrics for soft-

ware systems where relevant information is defined across different types of

artifacts. In the given example, the metric analyses Java code in conjunction

8.3. Conclusions 155

with XML based deployment descriptors.

The following list summarizes the advantages of building a metrics framework

on top of Magellan:

• For all types of artifacts for which an XML mapping is available it

is immediately possible to implement metrics. No functionality is re-

quired to build up and maintain a database which stores the current

software’s model. Hence, by using Magellan it is possible to focus

on the business functionality of a metrics framework : implementing

and visualizing metrics, providing functionality to filter and aggregate

metric values and to export results.

• As soon as the set of artifacts with an XML mapping is extended, it is

immediately possible to write (new) metrics which take the information

into account. Since other tools, such as software comprehension tools

(cf. Section 7.3) and tools for checking structural properties (cf. Section

6.3), can also use the same representation, adding support for new types

of artifacts is very beneficial and more likely to happen.

• Since Magellan’s meta-model of the XML database is extremely

lightweight and facilitates the integration of all types of documents,

QScope is not restricted to a particular programming language or

paradigm, such as, object-oriented, functional, or procedural program-

ming.

• The (X)query interface provided by Magellan enables a concise def-

inition of new metrics and enables the rapid development of a metrics

suite.

• When implementing new metrics performance issues are not a major

concern — when using a commercial grade XQuery processor. That is,

it is possible to write a Query as close to the mathematical definition

as possible and it is not necessary to do extensive manual performance

tuning. Nevertheless, since XQuery is a rather new standard the per-

formance of the query engines will certainly improve and will probably

diminish the need for manual optimizations at all.

• The seamless integration with horizontal tools that metrics tools have

to provide, as argued by Auer et al. [AGB03], is readily available

when using Magellan. Eclipse is (becoming) a universal tool platform

156 8. Assessing the Quality of Code

which is going to support the whole life cycle of an application — from

design over implementation to maintenance and Magellan is tightly

integrated into Eclipse.

Chapter 9

Advanced Type Systems

This chapter shares some material with: Incremental Confined Types Analysis

[EKMS06]

9.1 Introduction

Type systems represent formal methods to prove the absence of certain (erro-

neous) program behaviors by calculating a kind of static approximation of the

run-time behavior [Pie02]. Being static, the approximations are conversative

and, hence, sometimes otherwise valid programs will be rejected. However,

when using a type system it is in particular possible to detect errors early

and to pinpoint to the source of the error. For example, type systems for

object-oriented languages prevent the sending of messages to objects that

do not have corresponding methods. With type systems these errors can

be detected statically and, hence, it can be guaranteed that corresponding

runtime errors will never occur [Bru02].

The advantages most often outweigh the disadvantage of rejected pro-

grams and the additional effort required for making the type information

explicit in the source code. Other advantages of type systems mentioned in

the literature are: they help to name and organize concepts [Mit03], they

serve program comprehension when reading programs [Pie02], or they are

used by compilers to generate more efficient code [Pie02].

The benefits of type systems have been recognized by many researchers

and have led to the development of various advanced type systems. For

example, type systems to prevent deadlocks and data races [BLR02, BR01],

to control aliasing [NVP98, VB01], or to support non-null types [FL03] to

157

158 9. Advanced Type Systems

name just a few.

Unfortunately, the use of these advanced type systems is not widespread.

Most implementations are proofs of concept and fall short with respect to the

integration with standard software development tools and processes. This

lack of integration was one motivation for the work on implementing ad-

vanced type systems using Magellan. Since Magellan is integrated with

the incremental build process of Eclipse, integration issues are no longer

a concern. Further, many tool adoption issues [BJL+03, FES03] are also

avoided. The user will, after activation, perceive no difference between the

analyses carried out by the standard Java compiler and the activated anal-

yses. This flattens the learning curve as it is not necessary to learn how to

use different tools. Additionally, since we (re)use the standard Eclipse views

to visualize errors no user interface related issues arise.

A second motivation was to test how well suited Magellan is for imple-

menting pluggable type systems [Bra04]. Pluggable type systems are optional

type systems that are selected based on a project’s needs and which are

plugged in to the compilation process. Though, optional type system are

neither syntactically nor semantically required they can still provide most of

the benefits of mandatory, compiler built-in type systems listed above. The

only exception is that optional type systems are not used by the compiler as

a source of information for optimizations. Reasons for making a type system

pluggable instead of mandatory are:

• It is not possible to integrate every conceivable type system into a

programming language as this would make the programming language

overly complex and restrictive. As stated by Nobel et al. [NVP98]:

“The success and acceptance of a type system in practice depends on

the extent to which it supports or constraints idiomatic programming

style.”

• Enforcing specific typing rules is not always advantageous. As written

in [NVP98] “... it is demonstrably the case that these [aliasing] problems

do not manifest themselves in the vast majority of programs”. Hence,

forcing the developer to add the necessary type annotations (to control

aliasing) to every program would waste time and effort in most cases.

Using a type system, e.g., for alias control is only useful for security

related parts of an application.

• When developing new type systems it is first necessary to collect ex-

periences and to evaluate different variants. For example, as written

9.2. Confined Types as an Optional Type System 159

by Zaho et al. [ZPV03]: “... before settling on one particular notion

of confinement and incorporating that in a new language design, it is

necessary to get first-hand experience with the benefits and costs of de-

veloping large software with these new constructs.”

A prerequisite for pluggable type systems is a generic mechanism at the

language level that facilitates adding type annotations to the source code.

Though, the metadata facilities of current languages, such as e.g., Java an-

notations and C# attributes, were not designed for pluggable type systems,

they are at least sufficient for the type systems considered in this thesis.1

Using metadata facilities for adding type annotations has the advantage that

compatibility with existing tools is guaranteed. The major disadvantage of

using the metadata facilities is that the compiler is not aware of the addi-

tional type system and, hence, typing errors are only reported if the optional

type system’s analyses are carried out additionally to those of the compiler.

That is, source code that can successfully be compiled is not guaranteed to

be error free with respect to the optional type system. However, this is not

considered to be a major problem in the context of open static analysis plat-

forms. By sharing the project’s analysis configuration a project leader can

enforce that specific analyses are activated.

In the following section, an implementation of confined types on top of

Magellan is presented. The type system’s analyses are implemented in

Java and in Prolog to enable a comparison of both approaches. For the type

annotations, both implementations rely on the same set of standard Java 5

annotations. Section 9.3 concludes this chapter with a discussion of realizing

optional type systems on top of Magellan. Further, it is reasoned about

implementing analyses in Java and in Prolog.

9.2 Confined Types as an Optional Type Sys-

tem

9.2.1 Introduction

Aliasing is pervasive in object-oriented programming and can cause many

kinds of problems, if unintended. However, in the majority of cases aliasing

is benign and is not a source of programming errors [NVP98]. Neverthe-

1In the following, the term annotations is used to refer to Java annotations and not to
refer to type annotations.

160 9. Advanced Type Systems

less, aliasing hampers modular reasoning, as it is hard to analyze the effect

of updating an object when it is unknown which other objects also keep

references.

Besides making program comprehension harder, unintended aliasing can

also lead to subtle errors. For example, an Enterprise Java Beans (EJB) con-

tainer needs to have full control over the whole life cycle of all its beans for the

correct operation of its services, such as, pooling and persistence. To ensure

the necessary control, an EJB is not allowed to directly pass its self-reference

(this) to other beans to avoid creating aliases that are not controlled by the

container. The following sequence, for example, might cause an erroneous be-

havior of the application: An entity bean passes its this reference to a session

bean, then the container’s persistence service persists the entity bean and

sets all references to it to null to make it garbage collectable. But, since the

session bean still holds a reference to the entity bean the garbage collection

will fail; the container’s memory management functionality is circumvented.

Further, since the state of the entity bean is no longer synchronized with the

database by the container the application’s result is unpredictable when the

bean is subsequently used.

Besides being a source of programming errors that can be detected when

testing an application, unintended aliasing can also lead to security errors,

which are hard to detect using standard development techniques. For exam-

ple, when a reference to an object is passed to another object and, hence,

an alias is created for the first object, then the alias can later on be used

to update the first object in an unanticipated manner. In [VB01] a security

breach caused by a reference leaking bug in the JDK 1.1 is discussed (shown

in Listing 9.1).

1 public class Class {

2 private Identity[] signers;

3 public Identity[] getSigners() {

4 return signers;

5 }

6 }

Listing 9.1: JDK1.1 implementation of Class.getSigners()

In the JDK’s implementation, each instance of a Java Class object holds an

array of signers (line 2) that represents the principals under which the class

acts. The problem is that the getSigners method returns a reference to the

original signers array (line 4). Hence, the attackers can freely update the

9.2. Confined Types as an Optional Type System 161

signatures based on their needs.

To solve the problems related to the creation of unintended aliases, means

are needed to enforce that important data structures cannot escape the scope

of a well-defined protection domain. For example, to assure that the reference

to the original signers array does not escape the declaring class. A naive

solution to avoid the breach shown in Listing 9.1 is a programming style that

encourages the developers of classes with sensitive information to return a

reference to a copy of the sensitive data, in our case a copy of the signers

array. But, programming styles cannot be enforced. Using an appropriate

type system, it is possible to ensure that none of the key data structures used

in code signing escape the scope of their defining package.

To restrict aliasing to certain protection domains, i.e., to prevent leaks

of sensitive object references, Vitek and Bokowski [VB01] propose confined

types.

Confinement ensures that objects of a confined type can only be accessed

within a certain protection domain. A type is confined to a domain if all

references to objects of that type originate from within the domain. Code

outside the protection domain is never allowed to manipulate confined ob-

jects directly. For this purpose, types whose instances should not leave their

defining package are marked as confined. In contrast to existing access con-

trol mechanisms in Java (such as the Java private keyword), confinement

constrains access to object references rather than classes.

In contrast to the original proposal Java 5 annotations are used for con-

fined types instead of defining new modifiers. The modifiers: confined and

anon used in [VB01] are replaced with the annotation types: @confined and

@anon.

Listing 9.2 shows, how the code from Listing 9.1 can be rewritten using

confined types. The annotation @confined is used with a class, whose objects

should be confined to the containing package. In Listing 9.2 annotating Se-

cureIdentity as @confined (line 3) enforces references to SecureIdentity objects

to be confined to the package java.security. Thus, code outside this package

can never access instances of type SecureIdentity. Renaming the old Iden-

tity class to SecureIdentity and introducing a new Identity class (line 4 – 8)

preserves the functionality of the original interface.

1 package java.security;

2 abstract class AbstractIdentity { @anon equals(){...}; }

3 @confined class SecureIdentity extends AbstractIdentity { ... }

4 public class Identity {

5 SecureIdentity target;

162 9. Advanced Type Systems

6 Identity(SecureIdentity t) { target = t; }

7 ... // public operations on identities;

8 }

9 public class Class {

10 private SecureIdentity[] signers;

11 public Identity[] getSigners() {

12 Identity[] pub = new Identity[signers.length];

13 for (int i = 0; i < signers.length; i++)

14 pub[i] = new Identity(signers[i]);

15 return pub;

16 }

17 }

Listing 9.2: Class.getSigners() using Confined Types

The @anon annotation enables confined types to safely use methods from

unconfined types. Methods that do not reveal the current object’s identity

are marked as anonymous by annotating them with @anon. This annotation

serves two purposes: to document the method’s intention and to make this

property machine checkable. In Listing 9.2, the method equals in line 2

is marked with @anon to show that it never reveals the current instance’s

identity (this). Therefore, SecureIdentity can safely extend AbstractIdentity

and call equals on this.

The constraints in Table 9.1 and 9.2 define the semantics of @confined

and @anon. Constraints in Table 9.1 restrict class and interface declarations

(C1, C2), prevent widening (C3), hidden widening (C4, C5), and transfers

from inside (C6) and outside (C7, C8) the protection domain. The rules

defined in Table 9.2 constrain the usage of the self-reference this in method

implementations, so that this is not revealed to code outside the method.

The constraints C2’ and A2’ defined in Table 9.1 and 9.2 are slightly

modified when compared to the original definition of C2 [VB01]: “Subtypes

of a confined type must be confined as well.” and A2: “Anonymity of meth-

ods and constructors must be preserved in subtypes.” These modifications

reduce the number of classes that need to be type checked in case of an incre-

mental change. These modifications do not affect the semantics of confined

types: A program satisfies all the constraints from Table 9.1 and Table 9.2

if and only if it satisfies them with C2’ and A2’ replaced by C2 and A2.

Using confined types as an extension to the Java type system, the pro-

gramming style of returning only copies of sensitive data can be supported in

such a way that once a type is marked as @confined, the safety of the program

9.2. Confined Types as an Optional Type System 163

C1 A confined class or interface must not be declared public and must not
belong to the unnamed global package.

C2’ If a direct super-type of a type t is confined, t must be confined as well.

C3 Widening of references from a confined type to an unconfined type is
forbidden in assignments, method call arguments, return statements, and
explicit casts.

C4 Methods invoked on a confined object must either be non-native methods
defined in a confined class or be anonymous methods.

C5 Constructors called from the constructor of a confined class must either
be defined by a confined class or be anonymous constructors.

C6 Subtypes of java.lang.Throwable and java.lang.Thread may not be confined.

C7 The declared type of public and protected fields in unconfined types may
not be confined.

C8 The return type of public and protected methods in unconfined types may
not be confined.

Table 9.1: Constraints for confined types

A1 The reference this can only be used for accessing fields and calling anony-
mous methods of the current instance or for object reference comparisons.

A2’ If a method m directly overrides an anonymous method, m must be
anonymous as well.

A3 Constructors called from an anonymous constructor must be anonymous.

A4 Native methods may not be declared anonymous.

Table 9.2: Constraints for anonymous methods

164 9. Advanced Type Systems

with respect to avoiding unintended reference leaking can be guaranteed.

Figure 9.1 shows a violation of a confined types rule. To report the

error the standard Eclipse Problem View is used and, hence, the user cannot

distinguish this error report from other compiler generated error reports.

Figure 9.1: Screenshot of Eclipse when using confined types

9.2.2 Implementation

As stated in [VB01], checking the confinement rules is modular in the sense

that each class can be analyzed separately. However, in addition to modular-

ity and dynamic loading, it is also necessary to support continuous checking

of confinement constraints during a programming task. In such a setting,

checking all constraints on all classes after every change is obviously pro-

hibitive in terms of incremental build performance. However, determining

which classes have to be reanalyzed after a set of arbitrary changes to the

project’s source code is non-trivial. For an example of how a small change

can impact the confinement rules at seemingly unrelated locations consider

Listing 9.3.

1 package x;

2 public class X1 {

9.2. Confined Types as an Optional Type System 165

3 @anon public void m() { /∗ ... ∗/ }

4 }

5 public class X2 {

6 public void m() { /∗ ... ∗/ }

7 }

8

9 package y;

10 public class Y extends X1 { } /∗ change: ... extends X2 ∗/

11

12 package z;

13 @confined class Z extends Y { /∗ ... ∗/ }

14 class W {

15 public void foo() {

16 Z z = new Z();

17 z.m(); /∗ will violate C4 after change ∗/

18 }

19 }

Listing 9.3: Indirect violation of confinement constraints

The example consists of Java classes in three different packages. Class W

calls a method m on a confined class Z. C4 is satisfied because Z inherits m

from class X1 where it is declared anonymous. Now, let us assume that Y is

changed to inherit from X2 instead of X1. Since X2 does not declare m as

anonymous, the method call in line 17 now violates constraint C4. Hence,

a change in package y (which does not contain any confined or anonymous

declarations) yields a confinement error in a class in package z that is neither

a subtype nor a supertype of the changed class Y.

The example shows that when a class changes, it is not sufficient to only

check classes in the same package / protection domain or all super-types and

subtypes of the changed class.

9.2.2.1 Java Based

In the following, a systematic approach to develop an incremental algorithm

for checking the confinement rules is presented.

The checking algorithm is designed in two steps. First, given a list of

classes that have been changed a set of classes is identified that must be

reanalyzed to discover any new constraint violation and to remove any error

message for constraints that are no longer violated. Next, the constraint rules

are checked for all classes returned by the first step. Whenever a check fails

166 9. Advanced Type Systems

an error report is created and presented to the user (see Figure 9.1). Hence,

after editing a source file, the developer is immediately informed about all

current constraint violations.

All constraints from Table 9.1 and Table 9.2 are regarded as predicates

over classes, respectively over methods. For any class c, Ci(c) is true, if and

only if c satisfies Ci. For any method m, Ai(m) is true only if m satisfies

the constraint Ai. Each predicate can be evaluated on its own since the

definitions of the constraints do not depend on each other. For example, for

a class c to satisfy constraint C4 it suffices that methods called on confined

types within c are declared as anonymous. Whether these methods, in turn,

satisfy the constraints for anonymous methods is irrelevant for C4, though.

The reason is that error messages are directly related to predicates that are

not fulfilled. Violations of the constraints for anonymous methods will be

displayed as separate errors when analyzing the respective methods.

Now the problem can be stated as follows: Given a program, the set of

changed classes, and the predicate values for all classes and methods, update

the predicate values such that they reflect the program changes. This update

process should be correct in the sense that it produces the same results as a

whole-program analysis.

In the following, for each constraint the information it depends on is

determined; the constraint has to be reevaluated only if this information

changes.

First, the rules for anonymous methods as defined in Table 9.2 are inves-

tigated.

• A1(m) depends on the anonymous attribute of all methods called on

this inside m. These methods have been declared either in m’s class

or in a supertype of the latter. Hence, for any changed class c, A1(m)

must be reevaluated for any m in c or any of its subtypes.

• A2′(m) depends on the anonymous attribute of the method overridden

by m. Since such a method must be declared in a supertype of m’s

class, the same invalidation strategy as for A1 applies.

• Since calls to constructors from within a constructor can be seen as a

special kind of method calls on this, we can treat A3 in the same way

as A1.

• A4 does not depend on any non-local information. Thus, it suffices to

reevaluate A4 on all methods of a changed class.

9.2. Confined Types as an Optional Type System 167

This leads to the following incremental algorithm for checking the con-

straints from Table 9.2. Whenever a type t changes, the constraints A1–A3

have to be reevaluated on all subtypes of t (including t itself). Constraint

A4 only has to be reevaluated for types that have been changed.

Next, the constraints in Table 9.1 are analyzed in the same way.

• C1(c) only depends on information from the class c. Thus, for every c,

which has changed, C1(c) must be reevaluated.

• C2′(c) depends on the confined attribute of all direct supertypes of c.

Thus, we have to reevaluate C2′(c) for any c that is a direct subtype

of a changed class c′.

• C3(c) depends on the confined attribute of the types used in widenings

inside one of c’s methods. The value of C3(c) can change only if either c

is changed (so that the list of widenings performed inside c has changed)

or if the confined attribute of a type t that is used in a widening changes.

For each such t, the following holds: t has been confined at some point

(i.e., before or after the change), hence, t is defined within the same

package as c. Therefore, for each class c whose confined attribute has

changed C3 needs to be reevaluated for any class in the same package

as a class c.

• C4(c) depends on method calls in c where the static type of the receiver

is confined. More specifically, it depends on the confined attribute of

the method’s declaring type and the method’s anonymous attribute.

Since the static receiver type is confined, it must be in the same package

as the class that contains the method call. Thus, whenever the confined

attribute of a type t changes, C4(c) must be reevaluated for any class

c in the same package as t to recheck all relevant method calls on t.

Additionally, C4 has to be reevaluated when the anonymous attribute

of the called method changes. This can happen indirectly as shown in

the example from Listing 9.3. Thus, whenever a type t is changed all

classes have to be determined that call a method on a confined subtype

t′ of t. Since a confined type can only be package visible, such a class

must be in the same package as t′. For every confined subclass t′ of t

we check C4(c) for all classes c in t′’s package.

• The constraint C5(c) considers constructor calls in constructors of con-

fined classes. Since constructors are not inherited in Java, they have

168 9. Advanced Type Systems

to be in the same class or in the direct superclass (can be called via

super(...)). This implies that C5 depends only on the class itself and

its superclass. When a class c is changed, C5 is reevaluated for c and

all direct subtypes.

• C6(c) depends on all super-classes of c. Thus, it suffices to reevaluate

C6 for all subclasses of c whenever c is changed. As an optimization,

changes to c can be ignored that do not change c’s supertypes.

• C7(c) can change whenever the confined attribute of a type used in

a public or protected field declaration of c changes. Since such a field

type either was confined before the change or has become confined after

the change, it has to be in the same package as c. Thus, whenever a

type t changes C7 needs to be reevaluated for all classes in the same

package as t.

• The constraint C8(c) checks return types of methods that are declared

as public or protected. The strategy for evaluating C8 is the same as

for C7.

For a given set of files that have been changed every constraint is pro-

cessed separately. For every changed class the set of classes that have to

be reanalyzed is computed and then the constraint is reevaluated against

all classes in this set. This process is correct even if multiple changes have

been performed, because it analyzes the same classes that would have been

analyzed if an incremental analysis had been performed after every change.

By definition, the rules for computing the set of classes to be checked

after a change guarantee that a constraint is reevaluated if any information

it depends on has been invalidated. Hence, the value of all predicates is the

same as if they had been evaluated by performing a whole-program analysis.

Thus, our incremental algorithm is correct. Regarding its efficiency, with the

current rules a constraint often has to be reevaluated for all subtypes of some

type. Obviously, this may be a very big set. Suppose, for example, that the

class Object is changed somehow. Now, constraints A1–A3 for example have

to be reevaluated for all subtypes of Object which essentially is every type.

A possible optimization is to use a call-graph analysis to reduce the reeval-

uations of constraints A1 and C4. It is then possible to determine all method

call statements that are affected by a given change. For the change from List-

ing 9.3, for example, the call-graph analysis would contain the information

that the method called in line 17 has changed and it is possible to reevaluate

9.2. Confined Types as an Optional Type System 169

C4 for this location. This avoids having to check constraints A1 and C4 for

all classes in a package. The challenge, of course, is to make the call-graph

analysis incremental as the cost would be prohibitive otherwise and to make

it fast enough to pay off compared to our current algorithm.

9.2.2.2 Prolog based

The Prolog based implementation of the type checking rules for confined type

is a straight forward implementation of the constraints defined in Table 9.2

and in Table 9.1.

To achieve an acceptable performance the implementation relies on the

automatic incrementalization feature of the underlying Prolog engine [SR06].

Hence, when compared with the Java based implementation, no explicit in-

crementalization of the analyses was necessary and it was immediately pos-

sible to start implementing the algorithms.

9.2.3 Evaluation

BAT is used as the base project for evaluating the performance of both

implementations. The 790 classes of BAT are supplemented by 17 classes in

three packages which implement a small part of a public key infrastructure.

Initially, confined types were used in two of the three additional packages.

Further, 12 anonymous methods were defined across the packages.

To assess and compare the incremental analysis times of both implemen-

tations 15 different source code changes were performed. The changes are

described in Table 9.3 and resemble typical actions done by software engi-

neers when developing and maintaining software. During the changes the

classes in the third supplemented package were also made confined. The

third column of Table 9.3 shows the number of violations that were intro-

duced (+) or resolved (−) by a change; e.g., +C8 means that this change

leads to one new violation of the C8 rule, −3∗C6 means that three violations

of the C6 rule are resolved.

No. Description Violations

1 Generated a public getter method for a confined

field.

+C8

170 9. Advanced Type Systems

No. Description Violations

2 A small class is made confined. −A2,

−A4,

+C1,

+C4, +C5

3 Refactoring ”Extract method..” in a medium-

sized class.

(does not affect confined classes)

4 A small public class is declared confined. −C2,

+C1,

+C2,

+C6.

5 A new native method is created and declared

anonymous.

+A4

6 A class with multiple subtypes is made confined. +C1,

+12 ∗ C2,

+4 ∗ C5

7 A comment is updated.

8 A call to a method that is not anonymous is made

from within an anonymous method.

+A1

9 The type hierarchy is refactored (a class is no

longer extended, instead an interface is imple-

mented).

−3 ∗ C6,

−C4

10 Refactoring of a class’s name.

(does not affect confined classes)

11 A new abstract class implementing two construc-

tors of the extended class is created.

12 The abstract class created in the previous step is

made confined and used to replace a non-confined

class.

−12 ∗ C2

13 Deleted two no longer used classes. −C4

14 A class’s confined annotation is removed; in-

stead four methods of the same class are declared

anonymous.

−C1,

−C5, −C7

9.2. Confined Types as an Optional Type System 171

No. Description Violations

15 A class high up in the hierarchy does no longer

implement a small interface.

(does not affect confined classes)

Table 9.3: Code changes made to evaluate confined types

The performance measurements were made on an AMD Athlon XP 2600

notebook with 1024 MB RAM, Sun JDK 5 and SuSE Linux 9.3. Table

9.4 shows the result of the measurements. Since both analyses require the

quadruples based representation of Java code the time to create the repre-

sentation is shown in its own column. The time needs to be added to the

analyses times to get the complete analysis time.2

The Prolog figures shown in Table 9.4 (column three) depict the raw per-

formance figures of XSB to update its tables and to (re)run the queries to get

the typing errors. The figures do not include the time required to create the

Prolog encoding of the quadruples representation and — in particular — the

time required by the Interprolog API [Int06b] to enable the communication

between XSB and Magellan. Currently, the API is at its early stages and

supports only a string based communication between the engine and client;

i.e., to add a fact to the database the fact is encoded as a string, then the

string is passed to the Prolog engine and decoded before being added to

the Prolog database. The communication is further slowed down by using

TCP/IP. The overhead caused by the current interface is approximately two

seconds for our test cases.

Hence, using this interface it is currently not possible to run Prolog based

analyses along with the incremental build process. However, the figures sug-

gest that it is possible to use Prolog and to still get satisfactory performance.

The analysis times are in general less than one second. The problems related

to the communication are mainly engineering issues and can be solved by a

tight integration of a Prolog engine with Magellan.

2To assess the performance gain provided by the automatic incrementalization feature
the performance was also measured without tabling. Further, the time was measured
with tabling, but without incremental maintenance of the tables. As can be expected,
the evaluation times when using no tabling are practically constant and only depend on
the number of packages with confined classes. However, even if only one small package
contains a confined class the evaluation time is much too slow to run the analyses along
with the incremental build process (larger than two seconds). Using tabling the evaluation
times drop significantly, but are still between 3 and 10 times slower than the evaluation
times of the incrementalized Prolog engine.

172 9. Advanced Type Systems

No. 3-address represen-
tation (msecs.)

Prolog
(msecs.)

Java
(msecs.)

Factor

1 7 176 3 59

2 8 195 5 39

3 36 171 2 86

4 6 168 6 28

5 8 194 2 97

6 12 555 124 4

7 36 210 3 70

8 14 348 4 87

9 11 291 4 73

10 211 663 81 8

11 121 144 1 144

12 11 297 84 4

13 3 216 7 31

14 16 230 3 77

15 26 552 3 184

Table 9.4: Confined types analysis times

A comparison of the analyses times of the Prolog and the Java based im-

plementation shows that the performance of the Java based implementation

is by far superior to the Prolog variant. However, implementing the analyses

in Prolog took approximately two days work, while the Java implementation

took roughly 3 weeks. Further, since the analyses are automatically incre-

mentalized when using Prolog, it was not necessary to develop an incremental

algorithm and reason about its correctness.

9.2.4 Related Work

When dealing with aliasing, four categories of work are considered [HLW+92]:

detection, prevention, control and advertisement of aliasing. Confined types

mostly fall under the category of prevention and control.

The notion of alias protection for object-oriented languages was intro-

duced by Hogg [Hog91] in order to enable modular reasoning for groups of

classes. These groups are called islands and ensure the restriction of alias-

9.2. Confined Types as an Optional Type System 173

ing to classes on the island. Hogg differentiates between static and dynamic

aliases. Static aliases are aliases via instance variables and dynamic aliases

are those via parameters or local variables. Static aliasing can lead to unde-

sired side effects in later invocations of the aliased object. Dynamic aliases

were seen as unproblematic, because they disappear at the end of the ex-

ecution of the method in which they are defined. Means to control static

aliasing were introduced with islands. Islands are the transitive closure of

a set of objects accessible from a bridge object. A bridge object is the sole

access point to a set of instances that make up an island.

To ensure that no static aliases are created from outside the island to

objects on the island, the methods of the bridge object are restricted. Only

methods with parameters and return values that either do not modify the

state of the system, or have only parameters and return values that have

at most one static alias are allowed. This avoids the creation of unwanted

aliases. For example, a return value of a method can be tagged with unique

to state that exactly one reference to its value exists. The value can only be

assigned to other variables, if the original reference is released.

The full encapsulation of aliases of this approach is too restrictive for

many common design idioms used in OO programming. For example, no

object could be a member of two collections simultaneously if either collection

was fully protected against aliases. In this case, one collection would be an

island, prohibiting that references to its members show up outside the island.

In [NVP98] Noble et al. present a more flexible approach to control alias-

ing when compared with islands. The taken approach is to enable aliasing

by introducing explicit aliasing modes. The authors differentiate between

the representation of an object, which corresponds to its fields, and argu-

ments, which are parameters to methods of the object. The representation

of objects should only be accessible via the object’s interface. In Java, for

example, fields would have to be marked as private and aliases to them should

not be returned via getter methods. The state of the object should only de-

pend on arguments with an immutable state. If the state of the object was

dependent on the mutable part of arguments to its methods, the state of the

object could be changed by changing the state of the arguments long after

the call, bypassing the object’s interface. The approach uses tags to annotate

types and enables the compiler to enforce the restrictions mentioned on the

creation of aliases. A formalization of this model is discussed by Clarke et

al. [CPN98]. Even though both approaches enable flexible alias control, they

are designed for a language without inheritance or subtyping.

A variant of ownership types is used by Boyapati et al. [BLR02] to prevent

174 9. Advanced Type Systems

data races and deadlocks by partitioning locks into a fixed number of equiv-

alence classes and specifying a partial order among these equivalence classes.

The type checker then statically verifies that whenever a thread holds more

than one lock, the thread acquires the locks in descending order. Ownership

types are used to ensure that the locks that protect an object also protect

its encapsulated objects.

The approach of Clarke et al. [CRN03] implements a confinement checker

for Java to solve the domain specific problem of passing a this reference from

one Enterprise Java Bean component to another component, as discussed

in the introduction. While confined types are a generic solution to control

aliasing, Clarke et al.’s approach solves an EJB specific problem.

The work of Fong [Fon04] describes how to translate the notion of confine-

ment, which is formulated for static analysis of Java source code, to dynamic

analysis of Java Bytecode. The approach retains the confinement annotations

made in the source code at bytecode level. This enables link time checks of

confinement rules. It also describes a form of secure cooperation between

mutually suspicious code units, where, for example, a resource object can

be shared between two untrusting modules while ensuring its confinement

to a given domain. The implementation extends the runtime of the Plug-

gable Verification Modules of the Aegis Research JVM. Our approach uses

static analysis to ensure the confinement properties at compile time and to

immediately inform the user of confinement violations.

In [ZPV03], the notion of confined types is formalized in the context

of Featherweight Java (FJ). In FJ, confined types are extended to confined

instantiations of generic classes.

Reverse engineering approaches to the detection of aliasing are described

in [GPV01, PNB04]. Kacheck/J [GPV01] is a tool to infer confinement in

Java code and was used to test the thesis that all package-scoped classes

in Java programs should be confined. About 25% of the package scoped

classes of their benchmark suite were confined anyway and 45% could be

refactored to be confined just by changing visibility modifiers. These numbers

are supported by the findings of Potanin et al. [PNB04]. They presented

metrics of uniqueness, ownership and confinement by analysing snapshots

of Java program’s object graphs and found that a third of all objects were

strongly confined.

9.3. Conclusions 175

9.3 Conclusions

This chapter discussed using Magellan for implementing optional type sys-

tems. The first part discussed the integration of advanced type systems with

existing languages. Following the discussion, a Java as well as a Prolog based

implementation of confined types as a pluggable type system was presented.

Both approaches were then thoroughly evaluated.

Based on the evaluation, we can draw the conclusion that Magellan

is well suited for the implementation of new type systems. In particular,

Magellan supports: (a) rapid prototyping new type systems and (b) im-

plementations with strict performance requirements.

A detailed discussion of the advantages is given in the following:

• The Prolog integration provided by Magellan is particularly well

suited for testing new language concepts. As shown by the evaluation,

the Prolog interface and the SSA representation of the code facilitates

the rapid prototyping of type checkers. Enabling researchers to focus on

the correct definition of the typing rules and by freeing them from im-

plementation issues, which are prevalent when using Java, many tedious

and error prone activities are avoided. When using Prolog, e.g., it is not

necessary to reason about the correctness of the incrementalization as

this is done automatically. Further, the performance is sufficiently fast

to analyze mid-sized projects in reasonable time. Hence, using Prolog

it is also possible to make preliminary assessments of type checking

algorithms w.r.t. to their scalability and performance characteristics.

• Using Java it is possible to build high-performance implementations of

(pluggable) type systems on top of Magellan. Even analyses that re-

quire precise intra-procedural data- and control-flow information take

no more than 150 milliseconds for analyzing ≈ 900 methods and con-

structors. Hence, it is possible to always run these analyses along with

the incremental build process.

• Magellan is already delivered with sophisticated static analyses, which

are often required to implement type checkers; in particular intra-

procedural data- and control-flow analyses are readily available.

• Using Magellan the user can activate multiple optional type systems

simultaneously as the overhead caused by each additional type system

is small. For example, the type system proposed by Fähndrich and

176 9. Advanced Type Systems

Leino [FL03] for non-null types is orthogonal to confined types and it

is reasonable to assume that both (optional) type systems are used in

the same project. Since, both type systems require the same intra-

procedural data flow information they will probably use the same code

representation, e.g., BAT’s SSA form based representation. As the es-

timated effort for type checking non-null types is similar to the effort

necessary for checking confined types, the additional amount of time

required when both type systems are active will be small. The expen-

sive analyses to create the SSA form are executed only once and the

results are used by both analyses.

Being able to run multiple optional type systems in parallel can also be

used during the design and implementation of new type systems. For

example, to test if a Prolog based implementation and a Java based

implementation of the same type system both report the same errors;

i.e., both analyses are run in parallel and the results are compared.

• By implementing advanced type systems on top of Magellan it is pos-

sible to avoid bloated compilers and to ensure that the type systems

required by the applications can be introduced when needed. E.g., a

type system to enable safe concurrent programming [BLR02] or to pre-

vent data races [BR01] is only required for multi-threaded applications.

Moreover, in most cases several different variants to solve a similar

problem exist, e.g., to control aliasing. In this case, the most well

suited variant can be chosen and it might even be possible to use mul-

tiple type systems for a similar purpose in different parts of the same

application. For example, using flexible alias protection [NVP98] for

implementing container classes (e.g. Set, List, or Map) and using con-

fined types [VB01] for implementing, e.g., a component container.

Hence, Magellan provides a foundation on top of which modular

languages [Bra04] which enable a customization of a core language to

a project’s needs can be built.

• By building upon Magellan it is possible to focus on the implemen-

tation of the programming language concept. It is not necessary to

take care of the integration with the incremental build process, to ex-

ecute the required base analyses, to enable a navigation between error

messages and the corresponding source code, or to take care of the

visualization of the error messages.

Part IV

Summary

177

Chapter 10

Conclusions

Don’t fear failure so much that you refuse to try

new things. The saddest summary of a life con-

tains three descriptions: could have, might have,

and should have.

Louis E. Boone

The goal of this thesis was to develop concepts and techniques for open

integrated software development and analysis environments to improve (a)

the productivity of developers and (b) the quality of software. After an

investigation of the current landscape of software comprehension and analysis

tools, it became evident that a large number of successful tools already exists

and that the most immanent problem was lack of integration.

Specifically, inter-tool integration, integration into IDEs and, most im-

portant, integration with the incremental build process of modern IDEs was

broadly missing. Hence, the potential of a tight tool integration with an IDE

and its build process — providing developers with timely information — was

not leveraged.

Especially, a fundamental approach to the integration of several tools

with an incremental build process was missing; a direct integration of several

independent tools with the incremental build process is not feasible since

the memory requirements and the overall analysis time required by the tools

would be prohibitive.

To enable the simultaneous integration of several software engineering

tools into an incremental build process this thesis developed the concept of

179

180 10. Conclusions

an open static analysis platform integrated into the build process. Such a

platform coordinates the execution of an open set of analyses such that a

source model is specifically derived for the needs of tools executed on top of

the platform. The novel concept is that tools share the same source model

and that the data model of the software to analyze is not fixed, but rather

derived from the needs specified by individual analyses to run. An open data

model facilitates the addition of new base analyses and, hence, is indispens-

able for an open platform. By sharing the source model the overall analysis

time and the amount of required memory can be reduced.

As demonstrated by the prototypical platform Magellan and the tools

built on top of it, the proposed concept is feasible and does facilitate the si-

multaneous integration of several analyses into the incremental build process.

Hence, the goal of this thesis is achieved: Compared to using plain IDEs it

is possible to provide developers with a much wider range of timely informa-

tion. The vision of Open Integrated Development and Analysis Environments

is prototypically realized.

Based on the experience gained while implementing the tools for evaluating

the platform, the following additional conclusions can be drawn:

• Magellan and the tools built on top of it validate the study that

lead to the identification of the requirements on open static analysis

platforms (Chapter 2).

The study analyzed software comprehension and analysis tools to deter-

mine the requirements on platforms that should serve as a foundation

for both categories of tools. It is certain that all important require-

ment were identified since it was demonstrated that a wide range of

comprehension and analysis tools can be developed on top of a plat-

form (Magellan) that fulfills a subset of the identified requirements

and does not provide additional functionality.

• The LSV and the ASL language (Chapter 3) enables reasoning about

the source model at an abstract level. This makes it possible to use the

platform even if some data is actually stored in an external database,

e.g., in a Prolog database.

• The high-level automatic parallelization of analyses that process dis-

junct data sets, already leads to significant performance gains.

• Magellan demonstrates that it is possible to develop a platform that

is flexible enough to support a wide range of different tools without

181

sacrificing performance. This is an indispensable prerequisite to enable

a tight integration with the incremental build process.

It was demonstrated that executing more than 40 analyses — including

analyses which perform intra-procedural data- and control-flow analy-

ses — does not lead to a prolongation of the build process that can be

perceived by developers in day-to-day work.

• Query engines that do not evaluate queries incrementally do not provide

the performance necessary to enable the regular execution of queries as

part of the build process.

The performance evaluation of the XQuery engine has shown that it

takes too long to evaluate non-incremental XQuery queries regularly as

part of the incremental build process. However, the automatic incre-

mentalization of Prolog based queries as performed by the embedded

Prolog system is effective and enables the evaluation of Prolog queries

along with the incremental build process.

• Even if the performance of a query engine is not sufficient to enable

build process integration, the performance requirements of on-demand

analyses are less strict and, hence, embedding such engines is useful as

it provides developers with more opportunities.

• Query engines that support query chaining are the first choice for

the implementation of software comprehension tools where results of

queries are reused as input for the execution of subsequent queries.

• The prototypes built on top of Magellan: QScope [EGM+06], Sextant

[EHMS05], the annotation based Checkers [ESM05], and the Confined

Types type system [EKMS06] demonstrate that open static analysis

platforms facilitate research. Platforms such as Magellan are an

ideal testbed for the development of all kinds of new analyses, new

type systems or completely new categories of tools, e.g., for analyzing

the interaction between aspects [FT06, SSF06]. Such platforms can also

serve as a foundation for an incremental model checker, as outlined in

[CNDE05].1

1Model checking a program is typically done in a multi-step process where the first steps
are usually transformation of the source code in some form of higher level intermediate
representation.

182 10. Conclusions

• By building tools upon analysis environments it is possible to focus on

the tool’s distinguishing functionality; base functionality, such as, the

integration with the build process, source code parsers and querying

support, can be reused. Hence, such platforms improve the productiv-

ity of developers and researchers building software engineering tools.

The possibility to reuse base components is also an incentive for engi-

neers to develop towards such a platform. It is conceivable that such a

platform can lead to a community where some researchers and devel-

opers contribute (base-)analyses and others (re)use them to build more

advanced software engineering tools.

• Analysis environments enable a strict separation between compilers and

analyses. It is no longer necessary to build analyses into compilers to

provide developers with more information about possible issues in the

source code. Hence, bloated compilers can be avoided and analyses

required by the applications can be introduced when needed.

• Query engines facilitate prototyping new analyses. Compared to im-

plementations using imperative languages, analyses implemented as

queries are more concise and can be developed and tested in a shorter

time. Prototypical implementations of analyses as queries make a first

assessment of analyses w.r.t. to their usefulness and scalability possible.

Furthermore, analysis environments can make the development of an

optimized (imperative) implementation of an analysis easier if a query

based implementation of the same analysis is available. In this case, it is

directly possible to compare the generated error warnings and messages

of both approaches, and to test and compare the effect of (incremental)

changes on the analyses. Testing if the result of two implementations is

identical can easily be implemented and then the first implementation

can be used as a testbed for the second implementation.

• The integration of analysis and development tools into one environ-

ment enables users to directly use the gained knowledge to maintain

and evolve their code. The technological gap between these tools is

removed.

Chapter 11

Future Work

The best way to predict the future is to invent

it.

Alan Kay

As demonstrated in this thesis, the logical structure view (LSV) and

the analysis specification language (ASL) provide sufficient expressiveness

for specifying the effect of many analyses. Nevertheless, some use cases are

not well supported at the moment. For example, assuming that there are

two analyses that both specify to transform annotations, i.e., both specify

to invalidate an entity Annons. In this case, the scheduler will schedule at

most one of these two analyses, as they have conflicting requirements. But,

if the analyses actually transform two different annotations @X → @X ′

and @Y → @Y ′ then the analyses are not conflicting. Supporting analyses

that depend on the same type of information (e.g., annotations), but always

operate on different (object) instances (e.g., disjunct sets of annotations), is

left for future work.

As also shown in this thesis, the automatic parallelization of analyses

is effective and leads to an improvement of 28% in average. Nevertheless,

further improvements can be achieved by dropping the requirement that each

analysis is strictly executed in one particular time slot. For example, given

three analyses A, B, and C, where A is a long running analysis without any

dependencies, B is a short running analysis also without any dependencies

and C is an analysis that depends on B. In this situation the scheduler would

determine that A and B can be executed in parallel and would assign the

183

184 11. Future Work

same slot to A and B. The analysis C would be scheduled for a later execution

slot. At runtime — assuming that we have a multi-core / multi-CPU system

— the analyses A and B would be executed in parallel. But, when analysis

B finishes the dispatcher will not immediately start with analysis C, even

though all specified dependencies are fulfilled. Instead, the dispatcher will

wait on the completion of analysis A before C is started. Hence, an area

of future work is to improve the flexibility of the scheduler to increase the

parallelization.

Another area of future work concerns resource usage. The amount of

memory required to represent the source model of a software system is lim-

iting the size of programs that can be analyzed. Hence, research on compact

program representations is important to enable the analysis of ever grow-

ing programs. In this context, research on compact representations of XML

information is of particular importance. XML is already widely used by

software engineering tools and, more important, many developers are famil-

iar with XML technologies. Hence, supporting XML is important for tool

adoption. Some preliminary results w.r.t. limiting the amount of required

memory when using XML are outlined in Appendix V, but further research

is necessary to achieve scalability to very large programs.

The embedded Prolog system has shown that automatic incrementaliza-

tion of queries is effective and that significant performance gains can be

achieved. The achieved performance is even sufficient to always execute such

queries along with the incremental build process. However, the performance

is far from being up to par with manually incrementalized analyses and,

hence, only a much smaller number of queries can be executed as part of the

incremental build process. Thus, an area of future work is to further improve

the automatic incrementalization of queries. One possibility could be to in-

vestigate if it is possible to decide — by statically analyzing queries — if a

change to the fact base might have any effect on any query or not. For exam-

ple, if a developer adds the volatile modifier to a Java field the corresponding

fact changes. But, if no query analyzes the corresponding argument of field

facts, it is useless to reevaluate any query — including those that analyze

fields.

Part V

Appendix

185

BAT Based Checkers

The checkers presented in this chapter were implemented as part of the eval-

uation of Magellan.1

Class Interface Related Checkers

The following checkers use the code representation generated by BAT [BAT06].

Covariant compareTo() method defined

Searches for classes that implement the interface Comparable and that

define a compareTo method with a formal parameter different from

java.lang.Object.

This may lead to unexpected results when an instance of the class is

put into a sorted collection (e.g., a SortedSet). In this case, the entries

are still sorted using the compareTo(Object) method; the newly defined

method does not override the superclass’s compareTo method.

Covariant equals() method defined

Searches for classes that define an equals method with a formal param-

eter different from java.lang.Object.

If an instance of such a class is put into a set (e.g., a HashSet) the result

might not be as expected, as the method does not override the original

equals method defined by java.lang.Object and, hence, is not used by

the collections API.

Field shadows field in superclass

Searches for fields that shadow field declarations in superclasses. Such

field definitions hinder software evolution and maintenance; even when

both fields are private it might confuse developers.

1The author would like to thank Benjamin Rank for implementing the checkers as part
of his Diploma Thesis.

187

188 11. BAT Based Checkers

Violation of Object’s equals()-hashCode() contract

Checks that the methods boolean equals(Object) and int hashCode()

are implemented pairwise.

If only one of these methods is implemented the corresponding contract

defined by java.lang.Object is violated. It might happen that two objects

have different hash codes even though both equals methods return true.

In this case, data structures, such as a HashMap, which rely on the

contract will have an unpredictable behavior.

Non private field has getter or setter

Searches for non-final fields that are not private and that can also be

accessed by getter or setter methods. This leads to ambiguities how to

access the field.

Method Implementation Related Checkers

The following checkers use the 3-address based code representation in static

single assignment form generated by BAT [BAT06].

Violation of call restriction

It is checked that methods annotated with the @Restrict annotation are

only called by classes with fully qualified names matching the regular

expression specified by the annotation.2

For example, the method shown in Listing 11.1 may only be called from

within classes matching the regular expression. This means that only

classes within the package de.tud.bat.io. or any subpackage are allowed

to call the method.

1 @Restrict(value = ”de\.tud\.bat\.io\.\\.∗”)

2 public void restricted() { ... }

Listing 11.1: Usage of the @Restrict annotation.

Sometimes it is necessary to make a method public or protected visible,

though the method is not meant to be part of the public interface

of the class. In these cases the @Restrict annotation can be used to

communicate and enforce the intended design.

2The checker also checks that only non-private methods are annotated using @Restrict
as it is useless to annotate private methods.

189

Comparison of two strings by reference

Searches for String comparisons using “==” or “!=”. This checker is

similar to the generic reference comparison checker. The only differ-

ence is its focus on String objects and that String constants are also

considered.

Comparison of two different types using Object.equals()

Searches for calls to equals where the object passed as the argument

has a different type than the receiver of the call. This is a bug pattern

in most cases as the result is most probably always false.

Explicit invocation of Object.finalize()

Searches for explicit calls to the finalize() method. It is a best practice

not to explicitly call this method, as it is supposed to be called only by

the garbage collector.

Exceptions must be made explicit

Checks that a method explicitly declares all exceptions that it might

throw — in particular RuntimeExceptions.

By design the compiler does not enforce that RuntimeExceptions are

handled or declared. But, to support comprehension of a method listing

all potential exceptions is advantageous.

Field should be accessed using its getter or setter

Searches for (private) fields that are directly accessed despite being

accessible using getter or setter methods. Consistently accessing a field

fosters software evolution and maintenance.

To avoid too many false positives it is checked that the setter and

getter methods are “trivial”; i.e., the getter just returns the field’s

value and the setter just updates the field’s value. In case of non-

trivial getter/setter methods directly accessing the field is usually a

deliberate choice and no warning is not reported.

The finalize() method does not call super.finalize()

Searches for finalize() methods that do not call super.finalize() for every

possible control flow path. In such a case the finalization of the object

might be incomplete.

Invocation of hasNext() inside next()

Searches for classes which invoke a next() method from within a boolean

190 11. BAT Based Checkers

hasNext() method. This violates a best practice, as the developer usu-

ally expects that calling hasNext() does not change the state of the

iterator.

If is constant

Searches for if statements where the result of the comparison is stat-

ically known to be constant (either true or false). Such cases often

indicate bugs or a lack of understanding Java. An example of a hard

to detect instance of this bug pattern is presented in Listing 11.2.

1 Object o = null;

2 try {

3 o = System.in.read();

4 } catch (Exception e) {

5 if (o != null)

6 System.out.println(o);

7 }

Listing 11.2: Example of an if statement where the expression is constant

The expression o != null in Line 5 will always be false, because o is null in

case that an exception is thrown by System.in.read(). If System.in.read()

does not throw an exception the assignment of the method call’s return

value to o (Line 3) will never throw an exception. Hence, if the catch

block is reached o is null.

InputStream must be closed

Checks that a newly opened InputStream (or one of its subclasses) is

closed on all subsequent control-flow paths.

This checker only analyzes the intra-procedural control flow graph, i.e.

if the stream is passed to another method and closed in that method

this checker will report a false error. However, it is also a best practice

to open and close streams in the same method. False errors can be

considered as hints for further refactorings.

Result of integer division casted to double

Searches for integer divisions where the resulting value is immediately

casted to a double value. In most cases the developer intended to

perform a double division. For example, if a is 1 and b is 2 then the

value of d, given the statement double d = a / b, is 0.0d. In case of the

statement double d = (double) a / b the value is 0.5d.

191

Result of Math.random() casted to int

Searches for calls to Math.random() where the return value is immedi-

ately casted to int. In this case, the value will be zero as the function

always returns a value between 0.0d and 1.0d.

Never invoke Object.wait(...) outside a loop

Checks that the Object.wait(...) methods are always invoked inside a

loop. This idiom is described in detail in Effective Java [Blo01] and is

also briefly described in the Javadoc comments of the wait methods.

One character appended as String

Searches for strings that have only one character and that are concate-

nated with other strings. It is more efficient to concatenate a single

character instead. E.g. the code generated and executed in case of

Line 2 of Listing 11.3 is more efficient than the code shown in Line 1.

1 String result = ”Hello” + name + ”!”;

2 String result = ”Hello” + name + ’!’;

Listing 11.3: Appending one character to a String

Redundant call to String.toString()

Searches for calls of toString() on instances of java.lang.String; these

calls are superfluous.

Reference comparison

Searches for comparison of objects using == or !=. In these cases

reference identity is used for the comparison which is often a cause of

bugs, as exemplified in the following listing.

1 Integer i1 = new Integer(1);

2 Integer i2 = new Integer(1);

3 if (i1 == i2) {

4 System.out.println(”i1 and i2 represent the same value”); // not reached

5 }

Return value ignored

Searches for calls to methods where the method’s return value is ig-

nored. In some cases ignoring the return value makes the whole method

call useless. For example, the method String.concat(String) does not

change the String object that is the receiver of the call. Instead, a new

192 11. BAT Based Checkers

String object is created which stored the concatenated String. Hence,

if the return value is ignored the method invocation has no effect.

Return value must not be ignored

Finds calls to methods where the return value is ignored and where the

called method is annotated using the @ReturnValueMustNotBeIgnored

annotation. This checker is similar to the “Return Value ignored”

checker, but does not produce false warnings as only explicitly anno-

tated methods are checked.

For example, if the return value of the method in Listing 11.4 is ignored,

an error message is generated.

1 @ReturnValueMustNotBeIgnored(”The concatenated value is returned; the

state of this class is not changed. ”)

2 public int concat(String s) {

3 return this.toString()+s;

4 }

Listing 11.4: A method where the return value must not be ignored

String concatenation in StringBuilder.append()

Searches for Strings that are concatenated using “+” and which are

then passed to StringBuilder.append(String), e.g., <StringBuilder>.ap-

pend(”abc”+”def”) This is highly inefficient, using the existing String-

Builder would be more efficient.

String.substring(0) returns whole string

Finds calls to the String.substring(int) method where the parameter

value is 0. In this case the whole String is returned so that the in-

vocation is not necessary. This checker performs an intra-procedural

analysis only.

Comparison of floating point values using == or !=

Finds comparisons of floating point values using == or !=. These

types of comparisons are known to be error prone; due to the limited

precision of floating point values often false is returned even if true

would be mathematically correct. For example, given float m = 0.01f,

n = 0.1f; m *= 10.0f; the result of the comparison m == n is false;

which is not expected by most programmers.

193

Unnecessary type check using instanceof

This is an intra-procedural analysis that searches for unnecessary type

comparisons using the instanceof operator. For example, in Listing 11.5

it can statically be determined that o is of type Integer in Line 3. This

analysis performs an intra-procedural analysis only.

1 Object o = new Integer(1);

2 ... // instructions not changing ‘‘o’’

3 if (o instanceof Integer) {

4 System.out.println(”Integer”);

5 }

Listing 11.5: Unnecessary instanceof operator

Uninitialized private field

Searches for private fields that are not explicitly initialized within their

declaring classes. This case most often indicates a bug.

Passing a String object to String’s constructor

Searches for the creation of new String objects that are initialized with

a String object. Such calls are useless because String objects are im-

mutable and, hence, it is sufficient to continue using the “old” String.

Useless control-flow in method

Searches for control flow statements branching to the same instruction

in all cases. For example, the misplaced semicolon after the condition

in Listing 11.6 makes the if statement useless.

1 if (a);

2 ...;

Listing 11.6: Useless control-flow statement.

BAT2XML: an XML

Representation of Java

Bytecode

Part of the material in this chapter is published in: BAT2XML: XML-based Java

Bytecode Representation [Eic05].

BAT2XML is a library to create XML representations of Java class files.

The library is used by several of the tools developed on top of Magellan.

BAT2XML enables the creation, transformation and querying of Java byte-

code [LY99].3 The transformation and creation related features of BAT2XML

are, however, not presented in this section as they are not relevant for devel-

oping analyses on top of the representation.

The XML representation is close to a one-to-one representation of the

corresponding Java bytecode and is readily comprehensible by developers

familiar with bytecode. For example, the code shown in Listing 11.7, which

simply prints “HelloWorld” to System.out, has the XML representation shown

in Listing 11.8.

1 public class HelloWorld extends java.lang.Object

2

3 public static void main(java.lang.String[]);

4 0: getstatic // java/lang/System.out:Ljava/io/PrintStream;

5 3: ldc // String HelloWorld

6 5: invokevirtual // java/io/PrintStream.println:(Ljava/lang/String;)V

7 8: return

8 }

3Besides being used in the context of Magellan, BAT2XMLwas also used in the
context of aspect-oriented programming [KLM+97] to implement, so-called, aspect weavers
[EMO04, EM05].

195

196 11. BAT2XML: an XML Representation of Java Bytecode

Listing 11.7: Java bytecode of “HelloWorld”

The XML representation abstracts from some details of Java bytecode, for

example:

• bytecode offsets (shown in Listing 11.7, Lines 4–7) are omitted.

• bytecode instructions that operate on multiple types are replaced by

sets of instructions where each instruction is specialized for one specific

type. For example, the generic ldc (load constant) instruction shown

in Listing 11.7, Line 5 is replaced by a stringconst instruction as shown

in Listing 11.8, Line 8.

• the type information is represented in fully qualified form as used in

Java source code (e.g. as shown in Listing 11.8, Lines 4,7,11).

Besides from these minor differences each bytecode instruction is represented

by a corresponding XML element.

1 <class name=”HelloWorld” sourcefile=”HelloWorld.java” visibility=”public”>

2 <inherits><class name=”java.lang.Object” /></inherits>

3 <method name=”main” visibility=”public” static=”true” >

4 <signature><parameter type=”java.lang.String[]” /></signature>

5 <code>

6 <get declaringClassName=”java.lang.System” fieldName=”out”

7 staticField=”true” type=”java.io.PrintStream”/>

8 <stringconst><value>HelloWorld</value></stringconst>

9 <invoke declaringClassName=”java.io.PrintStream”

10 methodName=”println” >

11 <signature><parameter type=”java.lang.String” /></signature>

12 </invoke>

13 <return />

14 </code>

15 </method>

16 </class>

Listing 11.8: XML representation of “HelloWorld”.

As illustrated in the example, the XML representation abstracts from

some details of Java bytecode. The chosen abstractions support compre-

hension of the representation by developers not familiar with Java bytecode

197

and ease the development of analyses. The differences are described in the

following.

• In BAT2XML all information is resolved, that is, the Java bytecode

constant pool is completely hidden. Further, all types are represented

using the same form as used in Java source code, e.g.,java.lang.Object

and not java/lang/Object as used in Java class files.

• In BAT2XML the overall number of instructions is reduced.

For example, the Java bytecode defines three different instructions to

create new arrays: newarray, anewarray, multianewarray, and, to make

the situation even worse, the multianewarray instruction can also be

used to create one-dimensional arrays; the (a)newarray instruction just

exists for optimized runtime performance.

Another example are the different instructions that can be used to

push the int value “0” onto the stack. The Java bytecode provides

the specialized instruction iconst 0 and the generic iload instruction

where the value is explicitly specified. In BAT2XML both cases are

represented using intconst with the value as a parameter.

In general, BAT2XML abstracts from the differences between closely

related instructions by providing only a representation of the most

generic instruction. Specialized instructions are always represented as

parametrizations of generic instructions.

• In BAT2XML each instruction serves exactly one purpose. For exam-

ple, instead of having one generic ldc instruction to put different types

of constant values onto the stack, a specialized instruction is defined

for each type. E.g., for string values a stringconst instruction is defined.

• The distinction made in the Java bytecode between values that occupy

one (e.g., int, short, or address value) or two stack items (double, long)

is not made in BAT2XML.

This concerns the dup and pop bytecode instructions which duplicate

or pop a specific number of stack items; a stack item is always 4 Bytes

while a value has either 4 or 8 bytes. In BAT2XML these instructions

are replaced by dup and pop instructions that directly specify the num-

ber of values that are duplicated or popped. For example, the Java

bytecode instruction dup2 duplicates only one value if the type of the

top most value on the stack is long or double and duplicates two values

198 11. BAT2XML: an XML Representation of Java Bytecode

in all other cases. In BAT2XML the first case is represented by a dup

instruction where the value of the attribute that specifies the number

of duplicated values is 1, respectively 2 in the second case.

• The target of the jump instructions goto, switch and if is specified by

referring to the id of the target instruction and not by using bytecode

addresses and relative offsets. E.g., an if-else structure is represented

as shown in Listing 11.9. The target of the if instruction is either the

get instruction, which has the id m2i0, or the instruction immediately

following the if instruction, if the condition is not satisfied. The target

of the goto instruction is the return instruction. In short, an id attribute

is used to mark a jump target and an idref attribute is used to reference

it.

1 <if operator=”ne” idref=”m2i0” />

2 ...

3 <goto idref=”m2i1” />

4 <get ... id=”m2i0” />

5 ...

6 <return id=”m2i1” />

Listing 11.9: XML representation of jump instructions

• BAT2XML performs a control flow analysis to make an analysis of

(intra-method) subroutines easier. BAT2XML determines the jump

target of a subroutine’s ret instruction in relation to the jump to sub-

routine (jsr) instruction. For example, in Listing 11.10 the ret instruc-

tion (Line 9) lists all jump targets in relation to the jsr instruction

which called the subroutine (Line 10, 11). If the subroutine was called

by the jsr instruction with the id JSR1 (Line 1) the target of the ret

instruction (Line 9) is the instruction with the id i0 (Line 2).

1 <jsr id=”JSR1” idref=”i3” />

2 <invoke ... id=”i0” />

3 ...

4 <jsr id=”JSR2” idref=”i3” />

5 <get ... id=”i2” />

6 ...

7 <store ... id=”i3” />

8 ...

9 <ret index=”...”>

199

10 <path><caller idref=”JSR1” /> <target idref=”i0” /></path>

11 <path><caller idref=”JSR2” /> <target idref=”i2” /></path>

12 </ret>

Listing 11.10: XML representation of Java bytecode subroutines

• Additionally to the information defined in Java class files, the control

flow graph of a method is explicitly represented to make code analysis

easier.4

The control flow graph for the method abs shown in Listing 11.11 is

depicted in Figure 11.1. The XML representation of the method is

given in Listing 11.12.

1 public int abs(int value){

2 if (value < 0)

3 return −value;

4 else

5 return value;

6 }

Listing 11.11: Definition of an abs function

1 <load index=”1” fg:bb idref=”m2bb0” />

2 <if operator=”ge” fg:bb idref=”m2bb0” idref=”m2i0” />

3 <load index=”1” fg:bb idref=”m2bb1” />

4 <neg fg:bb idref=”m2bb1” />

5 <return fg:bb idref=”m2bb1” />

6 <load index=”1” id=”m2i0” fg:bb idref=”m2bb2” />

7 <return fg:bb idref=”m2bb2” />

8

9 <fg:flow graph>

10 <fg:bb fg:id=”m2bb2”> <fg:pre fg:idref=”m2bb0” /> </fg:bb>

11 <fg:bb fg:id=”m2bb0”> <fg:succ fg:idref=”m2bb2” />

12 <fg:succ fg:idref=”m2bb1” /> </fg:bb>

13 <fg:bb fg:id=”m2bb1”> <fg:pre fg:idref=”m2bb0” /> </fg:bb>

14 </fg:flow graph>

Listing 11.12: XML representation of abs

4The control flow graph visualizations were generated with a small stylesheet which
transforms the XML representation of the graph in a DOT [GKN02] file for generating the
visualizations.

200 11. BAT2XML: an XML Representation of Java Bytecode

Figure 11.1: Control-flow graph of abs

The control flow graph is encoded by explicitly specifying the prede-

cessors (Line 10 and 13) and successors (Line 11 and 12) for each block

(Listing 11.12, Lines 9–14). Further, every instruction (Listing 11.12,

Lines 1–7) is associated with the id (bb-idref) of its block.

Coping with XML Related

Scalability Issues

One of the major issues when using XML is the memory required for keeping

XML data in memory. Initially, using a standard Java API (such as JDOM

[HM06]) the memory requirements for keeping the complete XML representa-

tions of a few hundred class in memory was prohibitive. Additionally, many

analyses (queries) also require information about classes in the Java runtime

library which made the situation even worse.

To tackle the “memory requirements problem”, the following optimizations

were carried out:

1. Details about the method implementations of library classes were omit-

ted. Though, analyses which would require a complete representation

of library classes are no longer supported, this is not considered a se-

vere restriction: The XML representation is primarily used by software

comprehension tools that usually do not analyze the implementation

of library classes.

2. An optimized version of the JDOM [HM06] library, which is used for

keeping the XML data in memory, was developed. The optimized li-

brary is called JDOMopt in the following.5 Compared with the original

library two important changes were made:

• The names of all XML elements are internalized, i.e., the String

objects which represent the names of the XML elements and at-

tributes are cached and a reference to a String object in the cache

is used if the String is already in the cache, otherwise the new

String object is put into the cache for later usage.

5JDOMopt is 100% interface compatible with JDOM. Hence, to make use of the opti-
mizations it is sufficient to exchange the libraries.

201

202 11. Coping with XML Related Scalability Issues

• The structural properties of BAT2XML generated XML docu-

ments were used to control the initial size of each element’s lists

(java.util.ArrayList) that keep references to child elements and at-

tributes. The XML elements of documents created by BAT2XML

have ≈4 attributes and the generated tree is flat. Furthermore,

few elements have large numbers of children and most elements

are leaf nodes; basically all elements that represent bytecode in-

structions are leaf nodes. Hence, it is evident that the initial size

of “10” for the lists which store an element’s attributes and child

elements, is either too large or much too small. Extensive experi-

ments showed that setting the initial size to “0” provides the best

trade-off between reducing the memory requirements and the loss

in performance due to the more frequent resizing of the lists.

Taken together these changes led to a ≈ 50% reduction of the required

memory. As shown by the bars in Figure 11.2, using JDOM requires

approximately twice as much memory as JDOMopt. For comparison,

the memory requirements when using the XML library XOM [Har06] as

well as using BAT’s own internal representation are also shown. BATopt

is a variant of BAT where all information is stored using arrays instead

of ArrayLists.

As shown by the graph in Figure 11.2, when using JDOMopt the time

to read in the classes is increased by ≈ 40% compared to JDOM. In

the context of Magellan, the increase in the processing time is less

important, because a typical incremental build only affects a very small

number of classes: most often just one or two classes.

14

0

2

4

6

8

10

12

100

200

300

400

0

500

BATBATopt JDOMopt XOM JDOM

m
ill

is
ec

o
n
d
s

p
er

 c
la

ss

M
B

yt
e

Figure 11.2: Memory requirements when using XML representations

203

Even though the memory requirements using JDOMopt are much better

than those of JDOM and enable to analyze projects with several hundred

classes, analyzing projects with more than ≈ 1000 classes is hardly possible.

To further reduce the memory requirements of the XML database and to

reduce the processing time, preliminary experiments using a thin wrapper

layer were made. For each class of BATopt a wrapper class was implemented

that implements the org.w3c.dom.Element interface. The wrapper object uses

the underlying BAT object as its data store and hardcodes the type of the

element. For example, for the BAT class Method a wrapper class MethodW

was implemented that always represents <method> elements. In case that

a query requires the name of a method, the wrapper then lazily creates a

specialized XML attribute that represents the name of the method.

Due to the implementation of the standard W3C interface it is possible

to use standard conform XML libraries for transformation6 and querying.

Even though the implementation is not complete — no wrapper classes for

bytecode instructions were developed — the preliminary results are encourag-

ing. A first estimation shows that keeping a BATopt object and its wrappers

in memory requires at most 60% of the memory needed by JDOMopt. These

60% also represent the worst case, because the wrapper objects are created

lazily and many elements and attributes are never queried. The additional

time required to create the wrapper objects is ≈1,72 milliseconds per class,

i.e., creating the BATopt representation and all wrappers is ≈45% faster when

compared with the fastest XML solution (using XOM).

The implementation of the wrappers was, however, not completed as

the implementation is extremely cumbersome. The W3C’s Element interface

defines more than 50 methods. In future work we are going to investigate

how to automatically generate the wrapper class.

6A transformation using XSLT always creates a new transformed XML document, the
original document is not changed; i.e., XSLT does not perform in-place transformations.

Scientific Career

05/2005-05/2007

Darmstadt University of Technology

PhD student in the Software Technology Group of Prof. Mira

Mezini

04/2002-04/2005

Darmstadt University of Technology

PhD student in the PhD Program Enabling Technologies for Elec-

tronic Commerce

10/1996-03/2002

Darmstadt University of Technology

Studies in Computer Science and Business Administration. Grad-

uated as Diplom-Wirtschaftsinformatiker

(compareable to a joint master degree in computer science and business ad-

ministration)

205

Bibliography

[AB01] Cyrille Artho and Armin Biere. Applying static analysis to

large-scale, multi-threaded java programs. In Proceedings of the

13th Australian Software Engineering Conference (ASWEC).

IEEE Computer Society, 2001.

[AE02] Ken Ashcraft and Dawson Engler. Using programmer-written

compiler extensions to catch security holes. In Proceedings of

the 2002 IEEE Symposium on Security and Privacy. IEEE Com-

puter Society, 2002.

[AEK05] Raihan Al-Ekram and Kostas Kontogiannis. An xml-based

framework for language neutral program representation and

generic analysis. In Proceedings of the Ninth European Con-

ference on Software Maintenance and Reengineering (CSMR).

IEEE Computer Society, 2005.

[AGB03] Martin Auer, Bernhard Graser, and Stefan Biffl. A survey on the

fitness of commercial software metric tools for service in hetero-

geneous environments: Common pitfalls. In Proceedings of the

Ninth International Software Metrics Symposium (METRICS).

IEEE Computer Society, 2003.

[AH04] Cyrille Artho and Klaus Havelund. Applying jlint to space ex-

ploration software. In Proceedings of Verification, Model Check-

ing, and Abstract Interpretation: 5th International Conference,

volume 2937 of Lecture Notes in Computer Science. Springer,

2004.

[Ann06] Sun Microsystems. Common Annotations for the Java Platform,

2006. Specification Lead: Rajiv Mordani.

207

208 BIBLIOGRAPHY

[ARK05] Jarallah S. Alghamdi, Raimi A. Rufai, and Sohel M. Khan.

OOMeter: A software quality assurance tool. In Proceedings of

the Ninth European Conference on Software Maintenance and

Reengineering (CSMR). IEEE Computer Society, 2005.

[Asp06] Aspectj. http://www.eclipse.org/aspectj/, 2006.

[Bad00] Greg J. Badros. Javaml: a markup language for java source

code. In Proceedings of the 9th international World Wide Web

conference on Computer networks : the international journal

of computer and telecommunications networking. North-Holland

Publishing Co., 2000.

[BAT06] The bytecode analysis toolkit (bat). http://www.st.

informatik.tu-darmstadt.de/BAT, 2006.

[BBM96] Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A val-

idation of object-oriented design metrics as quality indicators.

IEEE Transactions on Software Engineering, 22(10), 1996.

[BCE06] The bytecode engineering library (bcel). http://jakarta.

apache.org/bcel/manual.html, 2006.

[BCF+05] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Flo-

rescu, Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An

XML query language. Candidate recommendation, W3C, 2005.

www.w3.org/TR/xquery/.

[BD02] Jagdish Bansiya and Carl G. Davis. A hierarchical model for

object-oriented design quality assessment. IEEE Transactions

on Software Engineering, 28(1), 2002.

[BDW98] Lionel C. Briand, John W. Daly, and Jürgen Wüst. A uni-

fied framework for cohesion measurement in object-oriented sys-

tems. Empirical Software Engineering, 3(1), 1998.

[BEN05] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. lp solve,

version 5.5.0.6; open source (mixed-integer) linear programming

system. http://lpsolve.sourceforge.net/5.5/, 2005.

[BHMO04] Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus

Ostermann. Virtual machine support for dynamic join points.

BIBLIOGRAPHY 209

In Proceedings of the 3rd international conference on Aspect-

oriented software development (AOSD). ACM Press, 2004.

[BJL+03] Robert Balzer, Jens Jahnke, Marin Litoiu, Hausi A. Müller,

Dennis B. Smith, Margaret-Anne Storey, Scott R. Tilley, and

Ken Wong. 3rd international workshop on adoption-centric soft-

ware engineering (acse). In Proceedings of 25th International

Conference on Software Engineering (ICSE). IEEE Computer

Society, 2003.

[BK01] Sarita Bassil and Rudolf K. Keller. Software visualization tools:

Survey and analysis. In Proceedings of the 9th International

Workshop on Program Comprehension (IWPC). IEEE Com-

puter Society, 2001.

[BKT+04] Bill Burke, Gavin King, Herve Tchepannou,

Brian McSweeney, and James Cooley. xpetstore.

http://xpetstore.sourceforge.net/, 2004.

[Blo01] Joshua Bloch. Effective Java Programming Language Guide.

Addison-Wesley, 2001.

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard.

Ownership types for safe programming: preventing data races

and deadlocks. In Proceedings of the 17th ACM SIGPLAN con-

ference on Object-oriented programming, systems, languages,

and applications (OOPSLA). ACM Press, 2002.

[Bok99] Boris Bokowski. Coffeestrainer: statically-checked constraints

on the definition and use of types in java. In Proceedings of the

7th European software engineering conference (ESEC), volume

1687 of Lecture Notes in Computer Science. Springer, 1999.

[BPE05] OASIS. Web Services Business Process Execution Language

Version 2.0, 2005. Committee Draft, 21th December.

[BPS00] William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A

static analyzer for finding dynamic programming errors. Soft-

ware Practice and Experience, 30(7), 2000.

[BR01] Chandrasekhar Boyapati and Martin Rinard. A parameterized

type system for race-free java programs. In Proceedings of the

210 BIBLIOGRAPHY

16th ACM SIGPLAN conference on Object oriented program-

ming, systems, languages, and applications (OOPSLA). ACM

Press, 2001.

[BR02] Thomas Ball and Sriram K. Rajamani. The slam project: de-

bugging system software via static analysis. In Proceedings of

the 29th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (POPL). ACM Press, 2002.

[Bra04] Gilad Bracha. Pluggable type systems. In Proceedings of the

Workshop: Revival of Dynamic Languages (RDL), 2004.

[Bro83] Ruven Brooks. Towards a theory of the comprehension of com-

puter programs. International Journal of Man-Machine Studies,

18, 1983.

[Bru02] Kim B. Bruce. Foundations of Object-Oriented Languages:

Types and Semantics. The MIT Press, 2002.

[BWDP00] Lionel C. Briand, Jürgen Wüst, John W. Daly, and D. Victor

Porter. Exploring the relationships between design measures

and software quality in object-oriented systems. Journal of Sys-

tems and Software, 51(3), 2000.

[CAP05] Code analysis plug-in (CAP) 1.2.0. http://cap.xore.de/,

2005.

[CCS04] Gerardo Canfora, Luigi Cerulo, and Rita Scognamiglio. Mea-

suring XML document similarity: a case study for evaluating

information extraction systems. In Proceedings of the 10th In-

ternational Symposium on Software Metrics (METRICS). IEEE

Computer Society, 2004.

[CD99] James Clark and Steve DeRose. XML path language (XPath)

version 1.0. Recommendation, W3C, 1999. http://www.w3.

org/TR/1999/REC-xpath-19991116.

[CDH+00] James C. Corbett, Matthew B. Dwyer, John Hatcliff, Shawn

Laubach, Corina S. Păsăreanu, and Robby Hongjun Zheng.

Bandera: extracting finite-state models from java source code.

In Proceedings of the 22nd International Conference on Software

engineering (ICSE). ACM Press, 2000.

BIBLIOGRAPHY 211

[CFKW95] Yih-Farn R. Chen, Glenn S. Fowler, Eleftherios Koutsofios, and

Ryan S. Wallach. Ciao: a graphical navigator for software and

document repositories. In Proceedings of the International Con-

ference on Software Maintenance (ICSM). IEEE Computer So-

ciety, 1995.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Weg-

man, and Kenneth Zadeck. Efficiently computing static sin-

gle assignment form and the control dependence graph. ACM

Transactions on Programming Languages and Systems, 13(4),

1991.

[CK94] Shyam R. Chidamber and Chris F. Kemerer. A metrics suite

for object oriented design. IEEE Transactions on Software En-

gineering, 20(6), 1994.

[CM04] Vasian Cepa and Mira Mezini. Declaring and enforcing de-

pendencies between .net custom attributes. In Proceedings of

the Third International Conference on Generative Programming

and Component Engineering (GPCE), volume 3286 of Lecture

Notes in Computer Science. Springer, 2004.

[CMM02] Michael L. Collard, Jonathan I. Maletic, and Andrian Marcus.

Supporting document and data views of source code. In Pro-

ceedings of the 2002 ACM symposium on Document engineering

(DocEng). ACM Press, 2002.

[CNDE05] Christopher L. Conway, Kedar S. Namjoshi, Dennis Dams,

and Stephen A. Edwards. Incremental algorithms for inter-

procedural analysis of safety properties. In Proceedings of

17th International Conference on Computer Aided Verification

(CAV), volume 3576 of Lecture Notes in Computer Science.

Springer, 2005.

[Cop06] Tim Copeland. Pmd. http://pmd.sourceforge.net, 2006.

[CPL06] Ilog cplex. http://www.ilog.com/products/cplex/, 2006.

[CPN98] David G. Clarke, John M. Potter, and James Noble. Owner-

ship types for flexible alias protection. In Proceedings of the

212 BIBLIOGRAPHY

13th ACM SIGPLAN conference on Object-oriented program-

ming, systems, languages, and applications (OOPSLA). ACM

Press, 1998.

[Cre97] Roger F. Crew. Astlog: A language for examining abstract syn-

tax trees. In Proceedings of the Conference on Domain-Specific

Languages (DSL). USENIX, 1997.

[CRN03] Dave Clarke, Michael Richmond, and James Noble. Saving the

world from bad beans: deployment-time confinement checking.

In Proceedings of the 18th annual ACM SIGPLAN conference

on Object-oriented programing, systems, languages, and appli-

cations (OOPSLA). ACM Press, 2003.

[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A hybrid

reverse engineering approach combining metrics and program vi-

sualization. In Proceedings of the Sixth Working Conference on

Reverse Engineering (WCRE). IEEE Computer Society, 1999.

[DEO+05] Sinisa Djukanovic, Sebastian Eifert, Matthias Orgler, Kai Stroh,

Carole Urvoy, and Mario Vekic. Twomore. http://www.pi.

informatik.tu-darmstadt.de/se2004/byteme/, 2005.

[DFK+04] Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman,

and Pat McCarthy. The Java Developer’s Guide to Eclipse.

Addison Wesley, second edition, 2004.

[DL05] Stéphane Ducasse and Michele Lanza. The class blueprint: Vi-

sually supporting the understanding of classes. IEEE Transac-

tions on Software Engineering, 31, 2005.

[DT03] Stéphane Ducasse and Sander Tichelaar. Dimensions of reengi-

neering environment infrastructures. Journal of Software Main-

tenance and Evolution: Research and Practice, 15(5), 2003.

[EA03] Dawson Engler and Ken Ashcraft. Racerx: effective, static

detection of race conditions and deadlocks. In Proceedings of

the nineteenth ACM symposium on Operating systems princi-

ples (SOSP). ACM Press, 2003.

[EBGR99] Khaled El Emam, Sida Benlarbi, Nishith Goel, and Shesh Rai.

A validation of object-oriented metrics. Technical Report NRC

BIBLIOGRAPHY 213

43607, National Research Council Canada (Institute for Infor-

mation Technology), 1999.

[ECCH01] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem.

Checking system rules using system-specific, programmer-

written compiler extensions. In Proceedings of the Fourth

Symposium on Operating Systems Design and Implementation

(OSDI). USENIX, 2001.

[Ecl05] EclipsePro Audit v4.2. http://www.instantiations.com/

eclipsepro/, 2005.

[Ecl06] Eclipse 3.2. http://www.eclipse.org, 2006.

[EGHT94] David Evans, John Guttag, James Horning, and Yang Meng

Tan. Lclint: a tool for using specifications to check code. In

Proceedings of the 2nd ACM SIGSOFT symposium on Founda-

tions of software engineering (SIGSOFT). ACM Press, 1994.

[EGM+06] Michael Eichberg, Daniel Germanus, Mira Mezini, Lukas

Mrokon, and Thorsten Schäfer. Qscope: an open, extensi-

ble framework for measuring software projects. In Proceed-

ings of 10th European Conference on Software Maintenance and

Reengineering (CSMR). IEEE Computer Society, 2006.

[EHMS05] Michael Eichberg, Michael Haupt, Mira Mezini, and Thorsten

Schäfer. Comprehensive software understanding with sextant.

In Proceedings of the 21st IEEE International Conference on

Software Maintenance (ICSM). IEEE Computer Society, 2005.

[Eic05] Michael Eichberg. Bat2xml: Xml-based java bytecode represen-

tation. In Proceedings of the First Workshop on Bytecode Se-

mantics, Verification, Analysis and Transformation (Bytecode),

volume 141 of Electronic Notes in Theoretical Computer Sci-

ence. Elsevier, 2005.

[EJB03] Sun Microsystems. Enterprise JavaBeans Specification, Version

2.1, 2003. Specification Lead: Linda G. DeMichiel.

[EJB05] Sun Microsystems. Enterprise JavaBeans Specification, Version

3.0 (Proposed Final Draft), 2005. Specification Lead: Linda G.

DeMichiel and Michael Keith.

214 BIBLIOGRAPHY

[EKMS06] Michael Eichberg, Sven Kloppenburg, Mira Mezini, and Tobias

Schuh. Incremental confined types analysis. In Proceedings of

the Sixth Workshop on Language Descriptions, Tools and Appli-

cations (LDTA), volume 164 of Electronic Notes in Theoretical

Computer Science. Elsevier, 2006.

[EKS+07] Michael Eichberg, Matthias Kahl, Diptikalyan Saha, Mira

Mezini, and Klaus Ostermann. Automatic incrementalization

of prolog based static analyses. In Proceedings of the Ninth In-

ternational Symposium on Practical Aspects of Declarative Lan-

guages (PADL), volume (to appear) of Lecture Notes in Com-

puter Science. Springer, 2007.

[EL02] David Evans and David Larochelle. Improving security using

extensible lightweight static analysis. IEEE Software, 19(1),

2002.

[EM05] Michael Eichberg and Mira Mezini. Alice: Modularization of

middleware using aspect-oriented programming. In Proceed-

ings of Software Engineering and Middleware: 4th International

Workshop (SEM), volume 3437 of Lecture Notes in Computer

Science. Springer, 2005.

[EMK+06] Michael Eichberg, Mira Mezini, Sven Kloppenburg, Klaus Os-

termann, and Benjamin Rank. Integrating and scheduling

an open set of static analyses. In Proceedings of the 21st

IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE Computer Society, 2006.

[EMM01] Khaled El Emam, Walcelio Melo, and Javam C. Machado. The

prediction of faulty classes using object-oriented design metrics.

The Journal of Systems and Software, 56(1), 2001.

[EMO04] Michael Eichberg, Mira Mezini, and Klaus Ostermann. Point-

cuts as functional queries. In Proceedings of Programming Lan-

guages and Systems: Second Asian Symposium (APLAS), vol-

ume 3302 of Lecture Notes in Computer Science. Springer, 2004.

[EMOS04] Michael Eichberg, Mira Mezini, Klaus Ostermann, and

Thorsten Schäfer. Xirc: A kernel for cross-artifact information

BIBLIOGRAPHY 215

engineering in software development environments. In Proceed-

ings of the 11th Working Conference on Reverse Engineering

(WCRE). IEEE Computer Society, 2004.

[EMS+04] Michael Eichberg, Mira Mezini, Thorsten Schäfer, Claus

Beringer, and Karl-Matthias Hamel. Enforcing system-wide

properties. In Proceedings of the 2004 Australian Software En-

gineering Conference (ASWEC). IEEE Computer Society, 2004.

[ESM05] Michael Eichberg, Thorsten Schäfer, and Mira Mezini. Using

annotations to check structural properties of classes. In Pro-

ceedings of Fundamental Approaches to Software Engineering:

8th International Conference (FASE), volume 3442 of Lecture

Notes in Computer Science. Springer, 2005.

[Fav01] Jean-Marie Favre. GSEE: A generic software exploration en-

vironment. In Proceedings of the 9th International Workshop

on Program Comprehension (IWPC). IEEE Computer Society,

2001.

[Fav02] Jean-Marie Favre. A new approach to software exploration:

Back-packing with gSEE. In Proceedings of the Sixth Euro-

pean Conference on Software Maintenance and Reengineering

(CSMR). IEEE Computer Society, 2002.

[FES03] J. Favre, J. Estublier, and R. Sanlaville. Tool adoption issues

in a very large software company. Technical Report CMU/SEI-

2003-SR-004, Carnegie Mellon — Software Engineering Insti-

tute, 2003.

[FL03] Manuel Fähndrich and K. Rustan M. Leino. Declaring and

checking non-null types in an object-oriented language. ACM

SIGPLAN Notices, 38(11), 2003.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg

Nelson, James B. Saxe, and Raymie Stata. Extended static

checking for java. ACM SIGPLAN Notices, 37(5), 2002.

[FN99] Norman E. Fenton and Martin Neil. A critique of software defect

prediction models. IEEE Transactions on Software Engineering,

25(3), 1999.

216 BIBLIOGRAPHY

[FN01] Fabrizio Fioravanti and Paolo Nesi. A study on fault-proneness

detection of object-oriented systems. In Proceedings of the Fifth

European Conference on Software Maintenance and Reengineer-

ing (CSMR). IEEE Computer Society, 2001.

[Fon04] Philip W.L. Fong. Link-time enforcement of confined types for

jvm bytecode. Technical Report CS-2004-12, Department of

Computer Science, University of Regina, Regina, Saskatchewan,

S4S 0A2, Canada, 2004.

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing

Code. Addison-Wesley Professional, 1999.

[FP97] Norman E. Fenton and Shari L. Pfleeger. Software Metrics —

A Rigorous & Practical Approach. PWS Publishing, second

edition, 1997.

[FT06] Paolo Falcarin and Marco Torchiano. Automated reasoning on

aspects interactions. In Proceedings of the 21th IEEE/ACM

International Conference on Automated Software Engineering.

IEEE Computer Society, 2006.

[FvG03] Gregor Fischer and J. Wolff von Gudenberg. Simplifying source

code analysis by an xml representation. Softwaretechnik-Trends,

23(2), 2003.

[FW04] David C. Fallside and Priscilla Walmsley. Xml schema. Recom-

mendation, W3C, 2004. www.w3.org/TR/xmlschema-0/.

[GC01] David Grove and Craig Chambers. A framework for call graph

construction algorithms. ACM Transactions on Programming

Languages and Systems (TOPLAS), 23(6), 2001.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-

sides. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison Wesley, 1995.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java

Language Specification. Addison-Wesley, 3rd edition, 2005.

[GK02] Katsuhiko Gondow and Hayato Kawashima. Towards ansi c pro-

gram slicing using xml. In Proceedings of the Second Workshop

BIBLIOGRAPHY 217

on Language Descriptions, Tools and Applications (LDTA), vol-

ume 65 of Electronic Notes in Theoretical Computer Science.

Elsevier, 2002.

[GKN02] Emden Gansner, Eleftherios Koutsofios, and Stephen North.

Drawing graphs with dot. AT&T, 2002. http://www.graphviz.

org/Documentation/dotguide.pdf.

[GPV01] Christian Grothoff, Jens Palsberg, and Jan Vitek. Encapsulat-

ing objects with confined types. In Proceedings of the 16th ACM

SIGPLAN conference on Object oriented programming, systems,

languages, and applications (OOPSLA). ACM Press, 2001.

[GYF06] Emmanuel Geay, Eran Yahav, and Stephen Fink. Continu-

ous code-quality assurance with safe. In Proceedings of the

2006 ACM SIGPLAN symposium on Partial evaluation and

semantics-based program manipulation (PEPM). ACM Press,

2006.

[Har05] Elliotte Rusty Harold. Zap bugs with pmd. http://www-106.

ibm.com/developerworks/java/library/j-pmd/, January

2005.

[Har06] Elliotte Rusty Harold. Xom. http://www.xom.nu/, 2006.

[HCXE02] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler.

A system and language for building system-specific, static anal-

yses. In Proceedings of the ACM SIGPLAN 2002 Conference

on Programming language design and implementation (PLDI).

ACM Press, 2002.

[HHR04] Daqing Hou, H. James Hoover, and Piotr Rudnicki. Specify-

ing framework constraints with fcl. In Proceedings of the 2004

conference of the Centre for Advanced Studies on Collaborative

research (CASCON). IBM Press, 2004.

[HLW+92] John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and

Richard Holt. The geneva convention on the treatment of object

aliasing. ACM SIGPLAN OOPS Messenger, 3(2), 1992.

[HM06] Jason Hunter and Brett McLaughlin. Jdom 1.0. http://www.

jdom.org/, 2006.

218 BIBLIOGRAPHY

[Hog91] John Hogg. Islands: aliasing protection in object-oriented lan-

guages. In Conference proceedings on Object-oriented program-

ming systems, languages, and applications (OOPSLA). ACM

Press, 1991.

[HP00] Klaus Havelund and Thomas Pressburger. Model checking java

programs using java pathfinder. International Journal on Soft-

ware Tools for Technology Transfer (STTT), 2(4), 2000.

[HP04] David Hovemeyer and William Pugh. Finding bugs is easy.

ACM SIGPLAN Notices, 39(12), 2004.

[HR97] Mary Jean Harrold and Gregg Rothermel. Aristotle: A sys-

tem for research on and development of program-analysis-based

tools. Technical Report OSU-CISRC-3/97-TR17, Ohio State

University, 1997.

[HSvG03] Marbod Hopfner, Dietmar Seipel, and Jrgen Wolff von Guden-

berg. Comprehending and visualizing software based on xmlrep-

resentations and call graphs. In Proceedings of the 11 th IEEE

International Workshop on Program Comprehension (IWPC).

IEEE Computer Society, 2003.

[HSvGF03] Marbod Hopfner, Dietmar Seipel, Jrgen Wolff von Gudenberg,

and Gregor Fischer. Reasoning about source code in xml-

representation. Softwaretechnik-Trends, 23(2), 2003.

[HVdM06] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor.

Codequest: Scalable source code queries with datalog. In Pro-

ceedings of the 20th European Conference on Object-Oriented

Programming (ECOOP). Springer, 2006.

[HWS00] Richard C. Holt, Andreas Winter, and Andy Schürr. Gxl: To-

ward a standard exchange format. In Proceedings of the Seventh

Working Conference on Reverse Engineering (WCRE). IEEE

Computer Society, 2000.

[Int06a] Intellij idea 5.1. http://www.jetbrains.com, 2006.

[Int06b] Interprolog. http://www.declarativa.com/interprolog/,

2006.

BIBLIOGRAPHY 219

[JD03] Doug Janzen and Kris De Volder. Navigating and querying code

without getting lost. In Proceedings of the 2nd international

conference on Aspect-oriented software development (AOSD).

ACM Press, 2003.

[JDB06] Sun Microsystems. JDBC 4.0 Specifiation, 2006. Proposed Final

Draft, Specification Lead: Lance Andersen.

[JMe99] JMetric version 1. http://www.it.swin.edu.au/projects/

jmetric/, 1999.

[Joh79] Stephen C. Johnson. Lint, a C Program Checker — UNIX Pro-

grammer’s Manual, 1979.

[JR00] Daniel Jackson and Martin Rinard. Software analysis: a

roadmap. In Proceedings of the Conference on The Future of

Software Engineering. ACM Press, 2000.

[JS99] Xiaoping Jia and Sotiris Skevoulis. A generic approach of static

analysis for detecting runtime errors in java programs. In Pro-

ceedings of the Twenty-Third Annual International Computer

Software and Applications Conference (COMPSAC). IEEE

Computer Society, 1999.

[KARW04] Konstantin Knizhnik, Cyrille Artho, Eric A. Raymond, and

Mark Wutka. Jlint 3.0. http://artho.com/jlint/, 2004.

[Kay05a] Michael Kay. Saxon B 8.5.1. http://saxon.sourceforge.

net/, 2005.

[Kay05b] Michael Kay. Saxon SA 8.5.1. http://www.saxonica.com,

2005.

[KC98] Rick Kazman and S. Jeromy Carrière. View extraction and

view fusion in architectural understanding. In Proceedings of

the Fifth International Conference on Software Reuse (ICSR).

IEEE Computer Society, 1998.

[Kep04] Stephan Kepser. A simple proof for the turing-completeness of

XSLT and XQuery. In Proceedings of Extreme Markup Lan-

guages 2004. Mulberry Technologies, 2004.

220 BIBLIOGRAPHY

[KKL01] Hind Kabaili, Rudolf K. Keller, and Franois Lustman. Cohesion

as changeability indicator in object-oriented systems. In Pro-

ceedings of the Fifth European Conference on Software Main-

tenance and Reengineering (CSMR). IEEE Computer Society,

2001.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris

Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.

Aspect-oriented programming. In Proceedings of the 11th eu-

ropean conference on object-oriented programming (ECOOP),

volume 1241 of Lecture Notes in Computer Science. Springer,

1997.

[Koc04] Thorsten Koch. Rapid Mathematical Programming. PhD thesis,

Technische Universität Berlin, 2004.

[Lad03] Ramnivas Laddad. AspectJ in Action. Manning, 2003.

[Lan03] Michele Lanza. Codecrawler - lessons learned in building a soft-

ware visualization tool. In Proceedings of the Seventh Euro-

pean Conference on Software Maintenance and Reengineering

(CSMR). IEEE Computer Society, 2003.

[LD01] Michele Lanza and Stéphane Ducasse. A categorization of

classes based on the visualization of their internal structure:

the class blueprint. In Proceedings of the 16th ACM SIGPLAN

conference on Object oriented programming, systems, languages,

and applications (OOPSLA). ACM Press, 2001.

[Lim06] Limewire 4.10. http://www.limewire.org, 2006.

[Liv04] Benjamin Livshits. Finding security errors in java applications

using lightweight static analysis. Annual Computer Security

Applications Conference, Work-in-Progress Report, 2004.

[Liv05] Benjamin Livshits. Turning eclipse against itself: Finding bugs

in eclipse code using lightweight static analysis. Eclipsecon ’05

Research Exchange, 2005.

[LL05] Benjamin Livshits and Monica S. Lam. Finding security vulner-

abilities in java applications with static analysis. In Proceedings

of the Usenix Security Symposium. USENIX, 2005.

BIBLIOGRAPHY 221

[LPLS87] David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot

Soloway. Mental models and software maintenance. The Journal

of Systems and Software, 7, 1987.

[LRY+04] Yanhong A. Liu, Tom Rothamel, Fuxiang Yu, Scott D. Stoller,

and Nanjun Hu. Parametric regular path queries. In Proceed-

ings of the ACM SIGPLAN 2004 conference on Programming

language design and implementation (PLDI). ACM Press, 2004.

[LS97] Claus Lewerentz and Frank Simon. Integrating an object-

oriented metrics tool into sniff+. Technical Report I-22/1997,

Technical University of Cottbus, 1997.

[LS98] Claus Lewerentz and Frank Simon. A product metrics tool in-

tegrated into a software development environment. In Object-

Oriented Technology — ECOOP’98 Workshop Reader, volume

1543 of Lecture Notes in Computer Science. Springer, 1998.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine

Specification. Addison-Wesley, second edition, 1999.

[MC04] Jonathan I. Maletic and Michael L. Collard. Supporting source

code difference analysis. In Proceedings of the 20th IEEE Inter-

national Conference on Software Maintenance (ICSM). IEEE

Computer Society, 2004.

[McC93] Steve McConnell. Code Complete. Microsoft Press, 1993.

[MCK04] Jonathan I. Maletic, Michael Collard, and Huzefa Kagdi. Lever-

aging xml technologies in developing program analysis tools. In

Proceedings of the Fourth International Workshop on Adoption-

Centric Software Engineering (ACSE). IET, 2004.

[MCM02] Jonathan I. Maletic, Michael L. Collard, and Andrian Marcus.

Source code files as structured documents. In Proceedings of

the 10th International Workshop on Program Comprehension

(IWPC). IEEE Computer Society, 2002.

[Mei05] Wolfgang Meier. exist 1.0. http://exist.sourceforge.net/,

2005.

[Met05] Metrics 1.3.6. http://metrics.sourceforge.net/, 2005.

222 BIBLIOGRAPHY

[Mir04] Mircosoft. PREfast with Driver-Specific Rules, October

2004. http://www.microsoft.com/whdc/devtools/tools/

PREfast-drv.mspx.

[Mit03] John C. Mitchell. Concepts in Programming Languages. Cam-

bridge University Press, 2003.

[MK00] Evan Mamas and Kostas Kontogiannis. Towards portable

source code representations using XML. In Proceedings of the

Seventh Working Conference on Reverse Engineering (WCRE).

IEEE Computer Society, 2000.

[MLL05] Michael Martin, Benjamin Livshits, and Monica S. Lam. Find-

ing application errors and security flaws using pql: a program

query language. In Proceedings of the 20th ACM SIGPLAN

conference on Object oriented programming, systems, languages,

and applications (OOPSLA). ACM Press, 2005.

[MMFA04] Nabor C. Mendonca, Paulo Henrique M. Maia, Leonardo A.

Fonseca, and Rossana M. C. Andrade. Refax: A refactoring

framework based on xml. In Proceedings of the 20th IEEE In-

ternational Conference on Software Maintenance (ICSM). IEEE

Computer Society, 2004.

[MMG05] Cristina Marinescu, Radu Marinescu, and Tudor Gı̂rba. To-

wards a simplified implementation of object-oriented design

metrics. In Proceedings of the 11th IEEE International Sym-

posium on Software Metrics (METRICS). IEEE Computer So-

ciety, 2005.

[MMN02] Gregory McArthur, John Mylopoulos, and Siu Kee Keith Ng.

An extensible tool for source code representation using xml. In

Proceedings of the Ninth Working Conference on Reverse Engi-

neering (WCRE). IEEE Computer Society, 2002.

[MOD05] MODIS team at ISP RAS. Sedna. http://modis.ispras.ru/

sedna/, 2005.

[MS95] Alberto Mendelzon and Johannes Sametinger. Reverse engineer-

ing by visualizing and querying. Software - Concepts & Tools,

16(4), 1995.

BIBLIOGRAPHY 223

[MSA+03] Tim Menzies, Justin S. Di Stefano, Kareem Ammar, Kenneth

McGill, Pat Callis, Robert Chapman, and John Davis. When

can we test less? In Proceedings of the 9th International Sym-

posium on Software Metrics (METRICS). IEEE Computer So-

ciety, 2003.

[MSCM02] Tim Menzies, Justin S. Di Stefano, Mike Chapman, and Ken-

neth McGill. Metrics that matter. In Proceedings of the 27th

Annual NASA Goddard Software Engineering Workshop. IEEE

Computer Society, 2002.

[MTW93] Hausi A. Müller, Scott R. Tilley, and Kenny Wong. Under-

standing software systems using reverse engineering technology

perspectives from the rigi project. In Proceedings of the 1993

conference of the Centre for Advanced Studies on Collaborative

research (CASCON). IBM Press, 1993.

[MW04] R. M. Marks and George Wilkie. Visualising object-oriented

source code complexity using xml. In Proceedings of the Ninth

IEEE International Conference on Engineering Complex Com-

puter Systems Navigating Complexity in the e-Engineering Age

(ICECCS). IEEE Computer Society, 2004.

[Net06] Netbeans 5.0. http://www.netbeans.org, 2006.

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible alias pro-

tection. In Proceedings of the 12th European Conference on

Object-Oriented Programming (ECOOP), volume 1445 of Lec-

ture Notes in Computer Science. Springer, 1998.

[Par06] Terence Parr. Another tool for language recognition (antlr).

http://www.antlr.org/, 2006.

[PBKM00] Sara Porat, Marina Biberstein, Larry Koved, and Bilha Mendel-

son. Automatic detection of immutable fields in java. In Proceed-

ings of the 2000 conference of the Centre for Advanced Studies

on Collaborative research (CASCON). IBM Press, 2000.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The

MIT Press, 2002.

224 BIBLIOGRAPHY

[PNB04] Alex Potanin, James Noble, and Robert Biddle. Checking own-

ership and confinement. Concurrency and Computation: Prac-

tice and Experience, 16(7), April 2004.

[RM02] Martin P. Robillard and Gail C. Murphy. Concern graphs: Find-

ing and describing concerns using structural program depen-

dencies. In Proceedings of the 24th International Conference on

Software Engineering (ICSE). ACM Press, 2002.

[RSK00] Sébastien Robitaille, Reinhard Schauer, and Rudolf K. Keller.

Bridging program comprehension tools by design navigation. In

Proceedings of the International Conference on Software Main-

tenance (ICSM). IEEE Computer Society, 2000.

[RSS+04a] Darrell Reimer, Edith Schonberg, Kavitha Srinivas, Harini

Srinivasan, Bowen Alpern, Robert D. Johnson, Aaron Kershen-

baum, and Larry Koved. Saber: smart analysis based error

reduction. ACM SIGSOFT Software Engineering Notes, 29(4),

2004.

[RSS+04b] Darrell Reimer, Edith Schonberg, Kavitha Srinivas, Harini

Srinivasan, Julian Dolby, Aaron Kershenbaum, and Larry

Koved. Validating structural properties of nested objects. In

Companion to the 19th conference on Object-oriented program-

ming systems, languages, and applications (OOPSLA). ACM

Press, 2004.

[Sch92] Norman F. Schneidewind. Methodology for validating software

metrics. IEEE Transactions on Software Engineering, 18(5),

1992.

[SCHC99] Susan Elliott Sim, Charles L. A. Clarke, Richard C. Holt, and

Anthony Cox. Browsing and searching software architectures. In

Proceedings of the International Conference on Software Main-

tenance (ICSM). IEEE Computer Society, 1999.

[Sco00] Michael L. Scott. Programming Language Pragmatics. Morgan

Kaufmann, 2000.

[SDM06] SDMetrics version 2.0. http://www.sdmetrics.com, 2006.

BIBLIOGRAPHY 225

[SEHM06] Thorsten Schäfer, Michael Eichberg, Michael Haupt, and Mira

Mezini. The sextant software exploration tool. IEEE Transac-

tions on Software Engineering, 32(9), 2006.

[SFM97] Margaret-Anne D. Storey, F. David Fracchia, and Hausi A.

Müller. Cognitive design elements to support the construction of

a mental model during software exploration. In Proceedings of

the Fifth International Workshop on Program Comprehension

(IWPC). IEEE Computer Society, 1997.

[Sle06] Sleepycat Software. Berkeley db xml. http://www.sleepycat.

com/, 2006.

[SLL+88] Elliot Soloway, Robin Lampert, Stan Letovsky, David Littman,

and Jeannine Pinto. Designing documentation to compensate

for delocalized plans. Communications of the ACM, 31(11),

1988.

[SLVA97] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nico-

las Anquetil. An examination of software engineering work prac-

tices. In Proceedings of the 1997 conference of the Centre for

Advanced Studies on Collaborative research (CASCON). IBM,

1997.

[SM95] Margaret-Anne D. Storey and Hausi A. Müller. Manipulating

and documenting software structures using shrimp views. In

Proceedings of the 11th International Conference on Software

Maintenance (ICSM). IEEE Computer Society, 1995.

[Sof05] Software AG. Tamino. www.softwareag.com/tamino, 2005.

[SP01] Amie L. Souter and Lori L. Pollock. Incremental call graph re-

analysis for object-oriented software maintenance. In Proceed-

ings of the International Conference on Software Maintenance

(ICSM). IEEE Computer Society, 2001.

[SR06] Diptikalyan Saha and C.R. Ramakrishnan. Incremental evalua-

tion of tabled prolog: Beyond pure logic programs. In Proceed-

ings of Practical Aspects of Declarative Languages: 8th Inter-

national Symposium (PADL), volume 3819 of Lecture Notes in

Computer Science. Springer, 2006.

226 BIBLIOGRAPHY

[SSF06] Maximilian Störzer, Robin Sterr, and Florian Forster. Detect-

ing precendence-related advice interference. In Proceedings of

the 21th IEEE/ACM International Conference on Automated

Software Engineering (ASE). IEEE Computer Society, 2006.

[SSL01] Frank Simon, Frank Steinbrückner, and Claus Lewerentz. Met-

rics based refactoring. In Proceedings of the Fifth European Con-

ference on Software Maintenance and Reengineering (CSMR).

IEEE Computer Society, 2001.

[ST03] Hrvoje Simic and Marko Topolnik. Prospects of encoding java

source code in xml. In Proceedings of the 7th International Con-

ference on Telecommunications (ConTEL). IEEE Computer So-

ciety, 2003.

[SWFM97] Margaret-Anne D. Storey, Kenny Wong, F. David Fracchia, and

Hausi A. Müller. On integrating visualization techniques for ef-

fective software exploration. In Proceedings of the IEEE Sympo-

sium on Information Visualization (InfoVis). IEEE Computer

Society, 1997.

[SWM97] Margaret-Anne D. Storey, K. Wong, and Hausi A. Müller. How

do program understanding tools affect how programmers under-

stand programs? In Proceedings of the Fourth Working Confer-

ence on Reverse Engineering (WCRE). IEEE Computer Society,

1997.

[SWM00] Margaret-Anne D. Storey, K. Wong, and Hausi A. Müller. How

do program understanding tools affect how programmers under-

stand programs? Science of Computer Programming, 36(2–3),

2000.

[SY02] Mati Shomrat and Amiram Yehudai. Obvious or not? regulat-

ing architectural decisions using aspect-oriented programming.

In Proceedings of the 1st international conference on Aspect-

oriented software development (AOSD). ACM Press, 2002.

[TAT06] TATA consultancy services. Assent. http://www.tcs.com/0

products/assent/, 2006.

BIBLIOGRAPHY 227

[TCSD04] Nikolaos Tsantalis, Alexander Chatzigeorgiou, George

Stephanides, and Ignatios Deligiannis. Probabilistic eval-

uation of object-oriented systems. In Proceedings of the 10th

International Symposium on Software Metrics (METRICS).

IEEE Computer Society, 2004.

[Tog05] Borland together architect 2006 / designer 2006. http://www.

borland.com, 2005.

[VB01] Jan Vitek and Boris Bokowski. Confined types in java. Software

Practice and Experience, 31(6), 2001.

[vGB02] Jilles van Gurp and Jan Bosch. Design erosion: Problems and

causes. Journal of Systems and Software, 61(2), 2002.

[Vla06] Pavel Vlasov. Hammurapi 4.0. http://hammurapi.org, 2006.

[vMV95] Anneliese von Mayrhauser and A. Marie Vans. Program compre-

hension during software maintenance and evolution. Computer,

28(8), 1995.

[Vol06] Nic Volanschi. A protable compiler-integrated approach to

permanent checking. In Proceedings of the 21th IEEE/ACM

International Conference on Automated Software Engineering

(ASE). IEEE Computer Society, 2006.

[VRGH+00] Raja Vallée-Rai, Etienne Gagnon, Laurie J. Hendren, Patrick

Lam, Patrice Pominville, and Vijay Sundaresan. Optimizing

java bytecode using the soot framework: Is it feasible? In

Proceedings of the 9th International Conference on Compiler

Construction (CC), volume 1781 of Lecture Notes in Computer

Science. Springer, 2000.

[Web05] Sun Microsystems. Web Services Metadata for the Java Plat-

form, 2005. Version 2.0, Specification Lead: Stuart Edmondston

and Brian Zotter.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure of

object-oriented systems. In Proceedings of the Technology of

Object-Oriented Languages and Systems (TOOLS). IEEE Com-

puter Society, 1998.

[XSB06] Xsb prolog 2.7.1. http://xsb.sourceforge.net/, 2006.

228 BIBLIOGRAPHY

[YSM02] Ping Yu, Tarja Systä, and Hausi Müller. Predicting fault-

proneness using oo metrics — an industrial case study. In Pro-

ceedings of the Sixth European Conference on Software Main-

tenance and Reengineering (CSMR). IEEE Computer Society,

2002.

[ZPV03] Tian Zhao, Jens Palsberg, and Jan Vitek. Lightweight confine-

ment for featherweight java. ACM SIGPLAN Notices, 38(11),

2003.

