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Open-Loop Controller Design and Dynamic
Characteristics of a Spherical Wheel Motor

Hungsun Son, Member, IEEE, and Kok-Meng Lee, Fellow, IEEE

Abstract—This paper presents a control system design for a
particular form of variable-reluctance spherical motors, referred
to here as a spherical wheel motor (SWM). The method decoupling
the spin from the inclination offers a means to control, in open loop
(OL), the inclination of a continuously rotating shaft. Specifically,
the OL controller presented in this paper combines a multispeed
switching control law for controlling the spin motion and a dy-
namic model-based control law for regulating the rotor inclination
of an SWM. The concept feasibility of the OL-controlled SWM
(consisting of permanent magnets in a rotor and electromagnets in
a stator) has been experimentally demonstrated. The experimental
study not only demonstrates the design procedure but also pro-
vides intuitive insights into the effects of key operation parameters
on the SWM dynamics. The results presented here will serve as a
basis for developing feedback controllers for increasing accuracy
and robustness for disturbance rejection.

Index Terms—Electromagnets (EMs), magnetic dipole, mag-
netic field, multi-degree-of-freedom (DOF) actuator, open-loop
(OL) control, stepping motor.

I. INTRODUCTION

MANY MOBILE vehicles such as wheels [1], propellers
[2] for boats, helicopters or underwater vehicles, robotic

joints, and machine tools require orientation control of the
rotating shaft. Existing designs are typically combined with
single-axis devices; thus, orientation control of their rotating
shafts must be manipulated by an external mechanism. These
multiaxis spinners are generally bulky, slow in dynamic re-
sponse, and have a lack of dexterity in negotiating the orienta-
tion of the rotating shaft. This paper presents a spherical wheel
motor (SWM), an alternative design built upon the concept of a
variable reluctance spherical motor (VRSM) originally concep-
tualized in [3]. The SWM, much like the VRSM that is capable
of offering 3 degrees of freedom (DOF) in a single joint,
is essentially a ball-joint-like brushless direct-drive actuator.
However, unlike the VRSM which has been mainly designed to
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control its 3-DOF angular displacements, the SWM discussed
here offers a means to control the orientation of the rotating
shaft in the single spherical joint. Several different multi-DOF
motor designs such as direct current motors [4] and piezoelec-
tric actuators [5] have been proposed. We focus here on the
development of a permanent-magnet (PM)-based 3-DOF spher-
ical motor which has gained increasing attention during the last
decade because of its simplicity in structure and compact in
design. Several design variations [6], [7] with a structure similar
to that in [3] have been studied. There are also studies on design
configurations [8], magnetic field and torque models [9]–[13],
3-DOF orientation control [13]–[15], and practical applications
[14], [15]. These existing spherical motors (motivated by the
advance in robotic technology) have predominantly been de-
signed for wristlike motions. While previous studies primarily
focused on controlling the 3-DOF rotational displacements in
closed loop, this paper investigates the feasibility of developing
a spherical motor that achieves the dexterous orientation control
of a rotating shaft in open loop (OL).

Electromagnetic actuators utilizing PMs have been control-
led by both OL and closed loop. However, closed-loop control
systems for a nonlinear electromagnetic actuator have difficul-
ties due to a number of uncertainties involving system identi-
fication and force/torque computation [16]. In particular, it is
much more difficult to design multi-DOF spherical motors as
well as develop their control system due to their nonlinear rotor
dynamics, intricate magnetic fields, and challenging measure-
ment problems. Nevertheless, controller design techniques for
a single-axis actuator can be extended to a multi-DOF spherical
motor particularly when it has the capability to operate in OL.

A number of electromagnetic actuators have been demon-
strated using an OL controller. In [17], an OL controller manip-
ulated a stepping motor with respect to the torque equilibrium
position. The controller successfully performed to suppress
rotor oscillation and is also insensitive to the variation of motor
dynamics, which is crucial for the motor control since the motor
has a large unknown payload. In [18], an instantaneous torque
control scheme with improved torque estimation and control
characteristics has been proposed to a direct-drive PM syn-
chronous motor. Recently, the interest to develop an OL stable
spherical motor has led to the concept of an SWM operated on
a push–pull principle in [7] and a distributed multipole (DMP)
method to analyze the magnetic field of a PM in a closed-form
solution [19]. Illustrations of the DMP method for deriving
the torque model of a spherical motor can be found in [20]
and [21]. In this paper, the DMP method has been extended to
the design of a model-based controller for operating the SWM
in OL.

0278-0046/$26.00 © 2010 IEEE
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Fig. 1. Schematics illustrating the mechanical structure of an SWM. (a) CAD
model [7]. (b) Stator and rotor pole pairs.

Fig. 2. XY Z coordinate transformation.

The remainder of this paper offers the following.
1) This paper presents the electromechanical structure and

the dynamic model of an SWM designed for manipulat-
ing the inclination of a continuously rotating shaft. As
will be shown, the magnetic torque model in a closed
form plays an essential role in the design of the OL-
controlled SWM and the prediction of its dynamics.

2) An OL controller for the SWM has been developed.
The controller consists of two parts, decoupling the spin
motion from the inclination control: a multispeed-level
switching law for regulating the spin rate and the inverse
torque model for manipulating the inclination.

3) Numerical simulations and experiments have been shown
to illustrate the effectiveness of the OL controller on a
prototype SWM consisting of 20 stator electromagnets
(EMs) and 16 rotor PMs. The experimental results verify
the control system design and offer intuitive insights
into the effects of key design parameters on the SWM
dynamics.

II. MECHANICAL STRUCTURE AND DYNAMIC MODEL

Fig. 1 shows the CAD model of the SWM consisting of
16 rotor PMs and 20 stator EMs equally spaced on four circular
planes. As shown in Fig. 1(b), the PMs and EMs are grouped in
pairs, and every two pairs form a plane, and their magnetization
axes pass radially through the center with opposite polarities
(S and N indicate the south and north polarities, respectively).
The rotor and stator of the SWM are spherically symmetric
with respect to both electrical and mechanical configurations.
The magnetization axes of the mr rotor PM pairs and ms stator
EM pairs are given by (1) and (2) in their own body coordinate
frames shown in Figs. 1 and 2, respectively,

rk = (−1)k−1[cos φr cos δrk cos φr sin δrk sinφr]T (1)

where the subscript rk indicates the kth PM pair of the rotor.
δrk = (k − 1)δr, where k = 1, 2, . . . ,mr and δr = 2π/mr

sj = [cos φs cos δsj cos φs sin δsj sin φs]T (2)

where the subscript sj denotes the jth EM pair of the stator.
δsj = (j − 1)δs, where j = 1, 2, . . . ,ms and δs = 2π/ms.

In (1) and (2), φr and φs are the angles between the mag-
netization axes and the XY plane defined in Fig. 1(b). Unlike
ms, which may be odd or even in general, mr is always an
even number to maintain the symmetry. The SWM is operated
on a push–pull principle with two opposing torques (T+ and
T−) maintaining its rotor at zero inclination about an axis that
is normal to the plane containing the current inputs, ±uj and
∓um+j as shown in Fig. 1(b). The specific polarities of the
EMs depend on the PM layout; for example, |uj | = |um+j |
with different polarities in Fig. 1(b).

A. Torque Model

Magnetic forces involved in the SWM can be calculated
using the Lorentz force equation

F = −
∫

B × Id�, I =
∫ ∫

J • dS (3)

where B is the magnetic field generated by PMs, I is the current
input through the conductor, and � is a normalized vector of the
current direction. In (3), since the current density vector J is
used in the calculation, it is not necessary to compute the mag-
netic field generated by the current loop. Thus, the Lorenz force
calculation involves only the B fields of the PMs. The magnetic
field B of the PMs can be computed by the DMP method [19],
which provides the solution in a closed form. However, the PMs
rotate with respect to the stator EMs. To compute the force
acting on the current-carrying jth EM, the total magnetic field
B is expressed in the jth EM coordinates rcj .

Fig. 2 shows the Xy′zr Euler angles (α, β, γ) which have
no singularity in the domain of interest (−20◦ ≤ α, β ≤ 20◦,
and −∞ ≤ γ ≤ ∞) for the coordinate transformation from the
rotor to the stator. In the local coordinate system of the jth EM,
the position of the kth PM is given by

rcj = [Ljs][Lsr]rk (4)

where

[Lsr] =

⎛
⎝ CγCβ CγSαSβ −CγCαSβ+SγSα

−SγCβ CαCγ−SγSαSβ SγCαSβ+CγSα

Sβ −SαCβ CαCβ

⎞
⎠

[Ljs] =

⎛
⎝ Cφs

−Sφs
0

Sδsj
Sφs

Sδsj
Cφs

Cδcj

−Cδsj
Sφs

−Cδsj
Cφs

Sδcj

⎞
⎠

with C and S representing the cosine and sine of the subscript
denoting the angle, respectively.

Once the force acting on the jth EM is computed, the
resultant torque for all EMs can be computed from (5) using
the Lorentz formulation [20]

Ttotal = [TX TY TZ ]T = [T̃1 T̃2 · · · T̃ms
]u (5)
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where

T̃j =LT
js

⎛
⎝∫ ∫ ∫

EM

[∑
i

miβi(α, β, γ)

]
dSd�

⎞
⎠ ∈ �3×1

(5a)

u = [J1 J2 · · · Jms
]T (5b)

with mi and βi(α, β, γ) being the dipole moment and element
of the DMP model, respectively.

The orientation-dependent torque vector (5) must be volume
integrated numerically in real time. To reduce the computation
to a tractable form, the torque is expressed as a linear function
of current vector u. By using the principle of superposition
in [9], the total magnetic torque acting on the rotor can be
computed from the following equation in stator coordinates:

Ttotal ≈ [K̂1 · · · K̂j · · · K̂ms
]u (6)

where

K̂j =

⎧⎨
⎩−

mr∑
k=1

{
f̂(ϕ)

∣∣∣
ϕ=ϕjk

sj×rsk

|sj×rsk|

}
, if sj × rsk 
= 0

0, if sj × rsk = 0
(6a)

with rsk = [Lsr]rk from (4) and f̂(ϕ) curve fitting the torque
between a PM pole pair and an EM pole pair in terms of the
separation angle ϕ

ϕjk = cos−1(sj • rsk)/ (|sj ||rsk|) . (7)

B. Equation of Motion

The dynamic equations of motion can be derived using the
Lagrangian formulation in terms of the Euler angles (α, β, γ)
which have the following form:

[M]q̇2 + C(q1, q2) + Cf = Q + Text (8)

where

M =

⎡
⎣ ItC

2
β + IaS2

β 0 −ItSβ

0 It 0
−ItSβ 0 Ia

⎤
⎦ (8a)

C(q̇, q) =

⎡
⎣ 2(Ia − It)SβCβα̇β̇ − IaCβ β̇γ̇

(It − Ia)SβCβα̇2 + IaCβα̇γ̇

−IaCβα̇β̇

⎤
⎦ (8b)

Q =

⎡
⎣−SβCγ SβSγ Cβ

Sγ Cγ 0
0 0 1

⎤
⎦

⎧⎨
⎩

TX

TY

TZ

⎫⎬
⎭ (8c)

where q1 = [α β γ]T, q2 = q̇1, and Text and Cf are the
torques imposed by external load (or disturbance) and mechan-
ical bearing frictions, respectively. In (8a) and (8b), Ia = Izz

and It = Ixx = Iyy due to the symmetry, and the rotor center of
gravity is assumed to coincide with the rotation center. In (8c),
Q represents the applied (magnetic) torque to the generalized
moments in the rotor coordinates. Since the inertia matrix [M]
is positive definite in the inclination range, −20◦ ≤ (α, β) ≤

Fig. 3. OL controller of an SWM.

20◦, the nonlinear dynamics (8) can be expressed in the standard
state-space form

q̇ =
[
q̇1

q̇2

]
=

[
03×3 I3×3

f(q1, q2)

]
+

[
03×3

I3×3

]
Q (9)

where f(q1, q2) = [M]−1C(q) ∈ R3×1 is given by

f(q) =
1
It

⎡
⎣ β̇ sec β (Iaγ̇ + (2It − 3Ia)α̇Sβ)

α̇Cβ (−Iaγ̇ + (It − Ia)α̇Sβ)
β̇ {−Itα̇Cβ + [Iaγ̇ + (2It − 3Ia)α̇Sβ ] tan β}

⎤
⎦ .

(9a)

III. OL CONTROLLER DESIGN

The OL SWM controller that orientates a continuously spin-
ning rotor is shown in Fig. 3, which consists of two parts,
namely, model-based inclination (α, β) control and switching
spin rate (γ̇) control. The amplitude-modulated current inputs
to combine two parts have the form

usj = sat [uγj(1 + uαβj)] , j = 1, 2, . . . ,ms (10)

where uγj governs the spin rate, uαβj is an incremental factor
regulating the rotor inclination about the X- and Y -axes, and
sat[•] indicates saturation to protect the EMs.

A. Switching (Spin Motion) Controller

Two parameters are defined to facilitate the design.
1) Angle of plane symmetry ψsym = LCM(δr, δs) ≤ 180◦,

where LCM is the least common multiplier of its argu-
ments: Since the EM pairs can be grouped into

nsym = int(360◦/ψsym) symmetrical phases

only ms/nsym input currents need to be calculated. At
each switching step, nsym PM pairs align with EM pairs
when projected on the XY plane.

2) Minimum angular step ψmin = GCD(δr, δs), where GCD
is the greatest common divisor of its arguments: Different
step size ψ can be designed to achieve nmax speed levels
of electronic “gear” transmission

ψ = nψmin, n = 1, 2, . . . , nmax; nmax = int(δr/ψmin).

For the pole pairs defined by (1) and (2), the switching se-
quences for ψ = ψmin have the form given in Table I, where all
the rows repeat after every sequence number SN = 2ms/nsym.
By deduction, other different switching sequences for ψ =
nψmin can be derived from SN as follows:

If SN ≤ms, SN =nj−(n−1), j =1, . . . ,ms

If SN >ms, SN =SN − ms.
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TABLE I
MINIMUM-STEP SWITCHING

In Table I, the SN row specifies the EM polarities. The input
regulating the spin is a square wave with frequency ωs

uγj = (−1)j |umj |sgn [sin(ωst + θj)] (11)

where

sgn(x) =
{

1, x ≥ 0
−1, x < 0 (11a)

ωs = nπ/(nmaxΔts) (11b)

θj = − π(n − 1)/nmax − jnψmin − θo. (11c)

In (11b), Δts is the update sampling rate, and in (11c), 0 <
θo < ψmin. The steady-state spin rate γ̇ss is linearly propor-
tional to ωs and ψ, while the current magnitude |umj | depends
on the rotor dynamics.

B. Inclination Controller

As shown in Fig. 1, the SWM is structurally symmetrical,
which greatly simplifies the design of an OL controller operated
on a push–pull principle to maintain the rotor at an equilibrium
position without any sensor feedback. The inclination (from
the Z-axis) is regulated by two opposing torques such that any
perturbation will result in a differential torque ΔT driving the
rotor to its equilibrium (like the restoring force of a spring).
As will be discussed, the OL control law can be expressed in a
closed form.

Push–Pull Operation: The concept of the push–pull oper-
ation, along with a general design of a spherical motor, is
proposed in [21]. For this push–pull operation, the torque model
is expressed in the following form:

Ti = Ti+ + Ti− + ΔTi (12)

where the subscript “i” denotes the torque component in the
X-, Y -, or Z-direction. Ti±’s are the static torques often called
the “holding torque,” and ΔTi represents the “driving torque”
that moves the rotor. To maintain the rotor at a particular
inclination (α, β), a “holding torque” Ti± 
= 0 must be applied.

The principles for regulating the inclination can be summarized
as follows.

1) To regulate the rotor at a desired steady-state orientation,
the torque must satisfy the following:

T + TL = 0, ΔT = 0; ‖T+‖ = −‖T−‖ 
= 0 (13)

where TL accounts for an external load. A change in
rotor position from any equilibrium requires a differential
current to be applied to generate the required ΔT.

2) To spin the rotor about its axis at a constant rate while
regulating it at a desired inclination, a driving torque
ΔTz must be maintained in addition to the application
of the extraneous torque Ti±.

3) Based on the characteristics of rotor dynamics, the rotor
tends to be at the local minimum field energy states.
These are local stable equilibrium positions to which the
rotor would move from any perturbed position within
the local boundary through the shortest path during the
transient.

Solution to Redundant Inputs: The above are principles upon
which the inclination controller is designed about the local
equilibrium (α = β = γ = 0◦). The torque required to main-
tain the orientation at [α = αd, β = βd, γ = 0] is given by (5),
which yields [

T̃(α, β)
]
uαβ = ΔTd. (13a)

Thus, the current vector to generate this torque is given by the
inverse model

uαβ = [T̃]T
(
[T̃][T̃]T

)−1

ΔTd. (13b)

Once the inclination and spin currents are computed from
(11) and (13b), respectively, the total current inputs can be
determined from (10).

Closed-Form OL Control Law: The Euler angles (α, β, γ)
defined in Fig. 2 have intricacy in the OL controller. For the ease
of visualization and deriving a closed-form OL control law, the
inclination of a continuously spinning rotor is computed in real
time in terms of ZY Z Euler angles (ᾱ, β̄, γ), where

ᾱ = sin−1(−Sα/Sβ̄) β̄ = cot−1(−SβCα/Sα). (14)

In this representation, ᾱ is the angle of inclination between the
rotor shaft and the Z-axis, β̄ is the rotation of the rotor shaft
(or z-axis) about the Z-axis, and γ is the spin of the rotor shaft
about its own z-axis. The inclination controller is designed as
follows.

1) The magnitude of the spin current in (11) is normalized to
unity or |umj | = 1, which spins the rotor at α = β = 0.

2) The required current vector to incline the rotor at other
angle is given by (13b).

3) Two Fourier series functions (fj1 and fj2) are defined so
that the currents manipulating the ᾱ and β̄ motions in (10)
are decoupled

ûαβ,j = fj1(ᾱ)fj2(β̄) (15)
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where

fj1(ᾱ)=
M∑

m=1

[ajm cos(mᾱ) + bjm sin(mᾱ)], M >1

(15a)

fj2(β̄)= cjo +
N∑

m=1

[
djm cos(mβ̄) + ejm sin(mβ̄)

]
, N >1.

(15b)

The coefficients of the Fourier series in (15a) and (15b) are
found by minimizing the following square-error function:

Ej = (uαβ,j − ûαβ,j)2. (16)

Since the ZY Z Euler angle representation has a singularity
at ᾱ = β̄ = 0 (namely, the angles ᾱ and γ are coincident at
β̄ = 0, and thus, the controller cannot distinguish between two
angles), it is used only to obtain (15) in a closed form for the
inclination control at β̄ 
= 0.

The OL inclination controller (15) is designed by minimizing
(16) for the computation domain, where the indices M and N
in (15) are determined by limiting the maximum error (16) to a
specified criterion. The two parameters (ᾱ and β̄) are optimized
using the linear least square method in the MATLAB optimiza-
tion. However, (15) and (16) are insufficient to determine a
unique solution, and also, the computation is time consuming.
For an SWM, ᾱ typically has a finite range within which uαβ,j

is proportional to ᾱ. Based on this observation, the optimization
employs the following steps.

1) Set fj1(ᾱ) = 1 at a specified ᾱ = ᾱo within the range.
2) By using a least square fit, find fj2(β̄) to fit u at ᾱ = ᾱo.
3) Update fj1(ᾱ) with the result of fj2(β̄) in step 2).
4) Repeat step 2) using fj1(ᾱ) from step 3) until (16) is less

than a specified error criterion.

C. Design Example

To illustrate the procedure of designing the OL controller
(Fig. 3), the SWM (Fig. 1) has been utilized with two layers
of eight PMs on the rotor and two layers of ten EMs on the
stator. Other parameters that characterize the electrical and
mechanical components are detailed in Table II. The ten EM
pairs are divided into two symmetrical phases, implying that
the sixth to tenth EMs have the same current profiles as the
first to fifth EMs, respectively. In addition, five different spin-
speed levels can be defined in terms of ψ = nψmin as discussed
in Section III-A, where n = 1, 2, . . . , nmax, nmax = 5, and
ψmin = 9◦.

Table III illustrates the EM layout plan view and lists the
switching sequences of the five speed levels, which are intu-
itively derived as follows.

1) From Table I, obtain the current polarity for the timing
diagram of the switching current vector uγ in Fig. 4,
where the horizontal axis indicates SN (that is also the
time step).

2) For a particular speed level n, the switching period T ,
which depends on the number of sequences SN , is given
in terms of sampling interval Δts in Table III.

TABLE II
STATOR AND ROTOR POLE PAIRS OF THE SWM (FIG. 1)

TABLE III
SWITCHING CONTROLLER FOR n = 1, 2, . . . , 5 SPIN-SPEED LEVELS

3) For each time step, the rotor spins ψ = nψmin degrees,
and the rotor requires 360/ψ steps to complete one rev-
olution. Thus, the spin rate (in revolutions per minute)
directly depends on n and Δts. Table IV shows the
examples of the spin rates in relation to the parameters
in (11) for θo = 5◦ and Δts = 1 ms.

The switching current can also be expressed mathematically
by (11), where ωs and θj are given in Table IV.

As outlined in Section III-B, the two controller parameters
for range of motion (0 ≤ ᾱ ≤ 6◦ and 0 ≤ β̄ ≤ 360◦) are op-
timized using the linear least square method of the MATLAB
optimization toolbox with Δᾱ = 1◦ and Δβ̄ = 3◦. The indices
were determined to be M = 2 and N = 3 for a maximum
error of less than 5%. In step 1) of the optimization procedure,
ᾱ = ᾱo = 5◦ was initially chosen because uαβ,j is proportional
to ᾱ for its small range but fluctuates largely with β̄. In addition,
once a pair of PM and EM is aligned at ᾱ = φs − φr = 6◦,
the aligned pole pair generates no tangent force, and thus,
the inclination current cannot be determined. The computed
(ᾱ and β̄) values at no load are detailed in Table V. The
computed current profiles flowing through the first to fifth EMs
for regulating the inclination in OL are shown in Fig. 5.

Due to the symmetrical structure designed to operate on
the push–pull principle, it can be shown using (13b) that the
currents in the sixth to tenth EMs have equal magnitude but
opposite direction as those to the first to fifth EMs. Similar
arguments can be made for the pairs j = 2, 5 and j = 3, 4
which are mirror images as shown in Fig. 7.
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Fig. 4. Timing diagram for five different spin-speed levels.

TABLE IV
PARAMETERS OF SWITCHING CONTROLLER

(AT θo = 5◦ AND Δts = 1 ms)

TABLE V
FOURIER SERIES CONSTANT FOR THE INCLINATION

IV. EXPERIMENTAL RESULTS

To validate the control law (10) and forward/inverse torque
models [see (6) and (13b)], for the OL-controlled SWM, the OL
controller (Fig. 3) is evaluated by experimentally determining
the dynamics of the prototype SWM shown in Fig. 6, where the
design parameters are numerically defined in Table II.

The control systems are implemented on a personal computer
completed with two 8-channel D/A and 16-channel A/D con-
version boards as described in Table VI. The rotor inclination is
measured by four linear single-axis Hall-effect UGN3505 sen-
sors. The signals from the Hall-effect sensors (proportional to
the measured magnetic field) are amplified before digitized by
the PCI-DAS6036, which are bipolar ranging from ±500 mV
to ±10 V and thus capable of measuring both the north and
south polarities of the magnetic field. Details of the orientation
measurement can be found in [20].

The updating and settling times for the transient responses
in each channel are 10 and 15 ms, respectively. These update
speeds limit the maximum spin rate as well as the square-wave

Fig. 5. Current inputs for inclination controller.

Fig. 6. SWM. (a) Rotor. (b) Stator.

TABLE VI
SYSTEM PARAMETERS
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Fig. 7. OL control using step input. (a) Inclination torques. (b) Applied
current inputs.

Fig. 8. Step response of the OL control. (a) Step response in OL control.
(b) Transient response.

TABLE VII
TRANSIENT RESPONSES

frequency for the switching control (11). Without loss of gen-
erality, the current input is limited to 1 A to avoid incidentally
overheating the EM coils. With this in mind, the following tasks
in Sections IV-A and B were tested.

A. Inclination Control Only

The rotor was initialized from an arbitrary state to the
equilibrium operating state (α = β = γ = 0◦; Z- and z-axes
coincide, and EM pair #1 and #6 is aligned with a PM pair
as shown in Table III) by energized coils (j = 1, 3, 4, 6, 8, 9
in Table III) with the same polarities. Once initialized, it was
commanded to (α = 5◦, β = 0) and then to its final inclination
(α = 5◦, β = 5◦).

Each command is a 5◦ step input for apparent comparison.
To accomplish this task, the torque required to incline the
rotor is solved from the inverse dynamics in (8), upon which
the current input vector uαβ is calculated from (13) and (15).
Fig. 7 shows the computed torques and the applied current
inputs. The step response results of α(t) and β(t) are shown
in Fig. 8 and Table VII, where tr, ts, Mp, and ess are the
rise time, 2% settling time, percentage overshoot, and steady-
state error, respectively. Clearly, the square wave resembles
a repetitive step input that provides a basis to evaluate the
SWM dynamic performance. A portion of the step responses

Fig. 9. Current inputs and torque. (a) Current inputs. (b) Zoom-in view of (a).
(c) Inclination torques.

Fig. 10. Orientation of the continuously spinning shaft. (a) Tacking outputs.
(b) Zoom-in view of (a).

is enlarged in Fig. 8(b) for transient response analyses, where
both the initial and final inputs are predestined. As expected, the
spherical motor exhibits significant overshoot because of its low
mechanical damping characteristics. Overshoot can be damped
out electronically (using inputs with smooth waveforms) or by
means of software through techniques such as input shaping.

B. Spin at a Specified Inclination

This is similar to experiment A except that the rotor spins at
300 r/min while inclining along a specified trajectory. Since the
spin is controlled in OL, the effect of gyroscopic moment on
the spin must be minimized to maintain the rotor stability. For
this reason, the following trajectory is used for this test.

1) The 45◦ spin controller for the highest speed level
(nmax = 5) is applied to spin the rotor at 185 r/min and
then gradually increase to 300 r/min while maintaining
the inclination at (α = 5◦, β = 0◦).

2) The rotor is then commanded to move along a desired
circular trajectory while spinning at 300 r/min.

Fig. 9(a) and (b) shows the input currents calculated from
(10), (13b), and (15) for the required torques in Fig. 9(c). The
experimental responses are shown in Fig. 10.

C. Discussion of Results

Some observations can be made from Figs. 8–10.
1) As the magnetic field/torque (and, hence, uαβ) to main-

tain the desired inclination can be effectively predicted
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from the DMP method (and the inverse dynamics), the
OL controller offers an accurate steady-state inclination
(with no spin motion) as shown in Fig. 8.

2) Unlike uαβ , the uγ computation is based on kinematics.
The unmodeled dynamics and input current approxima-
tions [see (15a) and (15b)] result in some slow drifts in
the inclination.

3) Persistent oscillations (with a period proportional to the
spinning speed) can be observed in Fig. 10, implying that
the square-wave switching input generates torque ripple
and has an effect on the spin motion.

The system has some mechanical imperfections. Most no-
tably are the uneven coil windings that contribute to nonuni-
form air gap between the rotor and the stator. This, along with
static friction uncertainties in the bearing, accounts for the
nonconcentric motion in Fig. 10.

V. CONCLUSION

This paper has presented a method to design an OL controller
of an SWM that is capable of controlling its orientation of
a continuously rotating shaft. In particular, the OL control
presented here offers an effective means to decouple the control
of the spin motion from that of the inclination and thus allow
the OL controller to consist of two independent parts, namely, a
switching (spin-rate) controller based on the principle of a step-
per for maintaining the spin rate and an inclination controller
based on the inverse torque model and the push–pull princi-
ple for regulating the rotor inclination. The feasibility of the
OL-controlled SWM has been experimentally demonstrated
with 16 rotor PMs and 20 EMs of the SWM. The experimental
results not only prove the OL controller of the SWM but
also provide intuitive insights into the effects of key operation
parameters on the SWM dynamics. Thus, the results presented
here will serve as a basis for developing feedback controllers to
achieve accurate positioning and disturbance rejection.
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