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Abstract. A criterion for the existence of an open mapping from one compact
metric space onto another is established in this paper. This criterion is then used to
establish the existence of a monotone open mapping of the universal curve onto any
continuous curve and the existence of a light open mapping of the universal curve
onto any nondegenerate continuous curve. These examples show that if fis a monotone
open or a light open mapping of one compact space X onto another Y, then it will
not necessarily be the case that dim Y=dim X+ k, where & is some positive integer.

1. Introduction. The two main theorems of this paper are the following:

THEOREM 1. There exists a monotone open map of the universal curve onto any con-
tinuous curve such that each point-inverse set is homeomorphic to the universal curve.

THEOREM 2. There exists a light open map of the universal curve onto any non-
degenerate continuous curve such that each point-inverse set is a Cantor set.

R. D. Anderson announced Theorem 1 in 1956 [5]. However, since he never
published a proof, the details are supplied here. In 1958 he conjectured [10] that
there exists a light open map of the universal curve onto any n-cell. This question
is answered by Theorem 2.

The existence of open dimension raising mappings has been of interest for some
time. The first light open dimension raising mapping was given by Kolmogoroff
[16] in 1937. In this example the domain is a l-dimensional continuous curve
and the range is 2-dimensional. In 1954 Keldy$ [15] constructed a similar example
where the range is a 2-cell. In 1952 Anderson [6] constructed a monotone open
map from a 1-dimensional continuum onto the Hilbert cube. The techniques of
this paper are basic to the proofs of Theorems 1 and 2.

Theorem 1 is of particular interest because of the following theorem of Dyer
[13]: If M and N are compact metric spaces, f is an open map of M onto N, f~*(y)
is a nondegenerate continuous curve for each y € Y, and there exists ¢>0 such that
no simple closed curve in M of diameter less than e is mapped to a point, then dim M
=dim N+ 1. A theorem of Alexandroff [1] states that if X and Y are continuous
curves and fis an open map of X onto Y such that each point-inverse set is countable, then
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498 D. C. WILSON | L [June

dim Y<dim X. Theorem 2 shows thatif a light open map has uncountable pomt -in-
verse sets, then the dimension of the range can be any positive integer or even infinite.

2. Open mappings. Let (X d) be any metrrc space Let G be any colleétion of
subsets of X. BRI ‘

Notation. Let G* denote the subset of X consisting of all points of X which are
in some member of G. If 4 is a subset of X and ¢ a real number, then let N.(4)
={x € X : there exists a € 4 such that d(x, a)<e} Let d[A] denote the diameter
of A. If Bis another subset of X, then let d[A B] denote the Hausdorff distance
between A and B. Let ;L(G) maxgec {d[g]} v

A compact metrlc space. is. called a compactum. A space is called a contmuous
curve if it is a connected and locally connected compactum Int: (A) will denote the
mtertor of A relatlve to X. » '

PROPOSITION 1. Let X Y Z,, and 22 be compacta such that X CZl and YeZz,.
Suppose. there exist two'sequences of finite collections of compacta; F={F,}*-y and
G ={G,}>-,, with the following properties: . . :

I. Z,2FF=21 ,,H_Xfar allnand N3o1 F¥=X.

2. Z,2G32G54,2 onr all n and (-, GX =Y.

3. Gtven >0 there exists N such that n>N tmphes w(G,) <e.

4. T, is a function of F, into G, such that

(a) ’ffh Emen 1€ Fn 1 andfncfn 1s then’Tn(ﬁl)CTn l(fn 1),
“(b) if x € X, then there exists a nested sequence {f,}=. 1 such that x € f,, € F

5. Iffn,anF andfnnfn%g then Tn(ﬂ)ﬂTUn)#Q '

Then there exists a continuous function of X into 'Y defined by g(ﬁn L f )
=21 T f,,) where f, € F, and the sequence { ]‘;,}n L is nested v

‘Proof. We leave the proof to the reader.”

DEFINITION ‘A contmuous function from X onto Y is called open 1f and only if
the i 1mage of every open subset of Xi is open iny

The next theorem is.a generallzatlon of Theorem l m (6]

'PROPOSITION 2. Let X Y, and Z be. compacta such that X< Z_ Suppose there exzst_
two seqyences of. ﬁnzte collectlons of campacta F {Faln=1 and G={Guln=1. with the
followmg properties: . . L .

l GE¥= onralln ‘-‘

ZDF,’,"_ F*forallnandﬂ,,,lf* X e

3 Given >0 there exists integer ny such (hat n> n]_ zmplzes ;/.(G,,) <e..

4. There extsts a one-to-one and onto correspondence between F, and G, gwen by.
T such that

@) if fa € Fy frior € Fyoys and fo S fy 1, then T(fS Tz ilfa-n), -
(b) if x € X, then there exists'a nested sequen'ee {fa}atysuch that x € fn € Fa,
s (eyif-ye Y, then there exrst‘s a nested sequence { g,,},, 1 such that y eg,, € G .
and T-l(gnjCTn 11(gn 1) ‘ .
S, If frafi € Fus then fy O\ fi# tfand only PTG AT .

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] OPEN MAPPINGS OF THE UNIVERSAL CURVE 499

6. There exists 7>0 such that if f,, f, € F, and f, O\ fr# @, then f, S Nyor(f7)-
7. There exists u>0 such that if foe Fy, fao_1€Fp-y,. andf,,Cf,‘ 1 thenf,, 1

S Nygr-1(fo)-
Then there exists an open mapping of X onto Y defined by

oA - ﬁ. T,

where f, € F, and ‘the sequence { fn}n v \is nested. Moreover g‘l(g(ﬂ,, 1/2)
_‘ﬂn 1fn

- Proof. By Proposmon 1 we know that g is a continuous map of X into Y It is
easy to show.that the map g is onto. R SN

If {f,}2_, and {f,}=- are nested sequences which have the property that there
exists_f,, € F,, such that f, N f,#2 and f, N f,# 3, then Properties 5, 6, and 7
can be combined to show that (i /oS Najeyman+ su{ a=1n)-

The map g is open. Let x € X and let V' be any open subset of X containing x.
We . must: show that g(x) is interior to g(V). Choose m large enough that
Nu,z)n?(z”au)(._x)g V.Letgl, ..., gn be all the members of G,, which contain g(x).
Let {f,}7-, be-a nested sequence such that x € f, € F, for all n. Let y € g%, where
1Zisr. Let {f;}7-; be. a nested, sequence such that f,eF, for all »-and
g(NX=1/2)=y. Since y € gn N To(fn), Tr'(gh) N fn# 3. Since g(x) € gn N T(f)
Ty '(gh) N fm#2. Therefore, x € (=1 /oS Nasyens sw((n=1/2), and there must
exist x' € Mr=1/a such that d(x, x) <($y"(29+3w). Thus, x’ € ¥. Since g(x)=y,
by the deﬁnitionnof g, we have shown that g(V) contains gl U-.--U gl.. Since
g(x)elnt (gn V- --U gn), g is an open mapping. :

We now want to show that if { f,};°-; is a nested sequence such thatfn €. Fn, then

—l(g(mn 1fn)) mn 1fn

By. the deﬁmtlon of g, we know that g‘l(g(ﬂ,, 1 /2)) contains (- lfn If

_:l(g(mn— 1fn))3é mnwltfm then . ther_,.e, ,eXIStS ,x €g” l(g(nn—lfn)) mn—] fn Let
{fu}x=1 be a nested sequence such that x’ e f, € F, for all n. Choose m large enough
that (3)"(2n +3k) <3d[x', N1 o). Since g(x)=g(NZe1 /o), Tulfi) O Tulfi) £2.-
Therefore, fo, N f #2 so that (721 /1S Najzyens an(Nn=1.f2)- Since x" € M-y fr,
there exists x € (-1 f, such that d(x, x") < (3)™(2n+ 3u). Therefore, d(x!, (V=1 f7)
Sd(x, x)<3d[x', Nw=1/2), a contradiction. Thus, g~ (g(Nr=1/)=Nn=1Sm
and we have established our proposition.

Notation, If G is a collection of subsets of X and A4 is a subset of X, then let
St(4,G)={ge G : g " A#z}. This collection is called the star of A. Inductively,
let St* (4, G)4St (St*~1 (4, G)*, G). For convenience let St° (A4, G) denote the
collection of all members of G contained in 4. Let St* (4, G) be the empty collec-
tion for all negative integers k. »

When R. D. Anderson proved Theorem 1 in [6], he added additional inductive
conditions to the original hypotheses in order to prove the theorem. For our,
purposes it is convenient to isolate these conditions into a separate proposition.
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PrOPOSITION 3. Let X, Y, and Z be compacta such that X< Z. Suppose there exist
two sequences J={J,}2., and K={K,}?_, of finite collections of compacta with the
following properties:

1. Jy={Y}and J¥=Y for all n.

2. K,={Z}, K¥X . 2K¥ and N\, K¥=X.

3. Given >0 there exists m such that n>m implies u(J,)<e.

4. The members of J, and K, have disjoint nonempty interiors.

5. There exists an integer L, > | with the property that if joeJ,and ji_,, ..., ji_,
are all the members of J,_, which meet Stin*1 (j,, J)*, thenji . N---NJi_#3.

6. There exists a one-to-one and onto correspondence between J, and K, given by
R, such that R,(j,) N R,(j)#@ if and only if j, N j,# @ . There exists >0 such
that If]n nj"ﬁég’ then Rn(jn)ganz"'l(Rn(j;t))-

1. Ifjuedpandj, 4 €Jy_q, then R (jo) N R, _1(jo_1)# @ if and only if j, _, meets
Stie (o, J)*. Also if k,eK, and k, €K, , and k,Nk,_,#@, then k,
NInt(k,_,)#3.

8. There exists A>0, such that if j, N jo_1# @, then R, _1(jn-1)S Nao(R.(Jn))-

Then there exists an open map g of X onto Y, which has the property that
g W g(N\=1 ) =\w=1 10 Where {f.}n-1 is a nested sequence such that f,= R,(j})
U- U R (1), where jL V- U ji € G,. (G, is defined below.)

Proof. Let G, ={jiv---Uji:jan---Nji#z,jiet,}. A member g of G} is
inG,ifandonly if g=jiu---vjlandjin---Njinj=g forall j¢{ji, ...,/
Note that G¥ =Y.

Since the members of J, have nonempty disjoint interiors, each member of G,
can be written uniquely as a union of members of J,. If g,=jlU---Uji then
define T,y Y(g.) =R, (j})U---U R,(j2). Since g, is written uniquely as a union of
members of J,, T, ! is a well-defined function from G, onto the collection F,
={T7(g,) : g, € G,}. Since distinct members of K, have disjoint nonempty
interiors, T, ! is one-to-one. Therefore, T, is well defined.

The proof of Proposition 3 will be a verification of the seven properties listed
in the hypotheses of Proposition 2. Since most of this checking is routine, only a
few properties are verified here.

Property 4b. Let xe X. We must find a nested sequence {f,}7-, such that
xef, e F, forall n.

Let f1=Z. For n>2 choose k, € K, such that xe k,. Let k1_,,..., k}_, be all
the members of K,_; which have the property that R;1(ki_,) meets
Stha* 1 (R Y(k,), Jo)*. If k,_, is a member of K,_, which contains x, then x € k,
N k,_1, so that by hypothesis 7, R;1,(k,_,) meets Stis (R; 1(k,), J.)*. Therefore,
ky_r€¢ki_o, .. ki _Jand xeki_, v UkL_,.

Now choose f,_; to be any member of F,_, which contains k1 _, U---U k7 _;.
(There does exist such a member of F,_,, because by hypothesis 5, we know that
Ry (ki) -n Ry (KL _,)#2.) We want to show that if £, _, has been chosen
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as above for all », then the sequence {f, _,}_, is nested. Since x € k,,, we know that
k. will be contained in f,. Thus, f, =St (k,, K,)*. Therefore, it is sufficient to show
that St (k,, K,)*<ki_,U--- U ki_;. If ki e St (k,, K,) and k;, N k,_,# o, where
ko-1€K,_,, then R;1(k,_,) meets Sti=(R;(k;),J)*. Since k,Nk,#a,
R;Y(k,) N R;'(k,)#w, and thus R;2,(k,_,) meets Sti*1 (R7(k,), J.)*. There-
fore, k,_, is a member of {ki_,,..., k}_,}. Therefore, k,cki_, U---UkL_,.

Property 4c. Let y € Y. Choose j, €J, such that y ej,. Let ji_,,...,ji_, be all
the members of J,_; which meet St**1 (j,, J,)*. Since j1_, N---Nji_,#@, there
exists g,_; € G,_, which contains ji_, U-.--UjI_;. We want to show that the
sequence {g,_1}r-2 has the required properties.

Note that ye g, _,. Forif y € j,_,, thenj, N j,_,# @, and j,_, meets St (j,, J,)*.
Therefore, j,., meets St=*1(j,, J)* and j,_, €{ji-1,...,jn-1}.- Thus, yeji,
V- Ujr1S8n-1-

We must show that g,=g,_,. Since y €j,, j.<g,. Therefore, it is sufficient to
show that St (j,, J)*<ji_s V- - ji_y. If jr e St (ju, Ju) and j, 0 j,_, # @, where
Jn-1€Jn_1, then j,_.NSt(j,JJ)*#2. Hence, j,_, N St%2(j,,J)*#2 and
Jn-1€{ja-1, - > jr-1}. Thus, St (jo, JW)*Sja-1 Y- - -V iy

We want to prove that T, (g, )<T,1:(g.—,)- It is sufficient to show that if
.]7,1 € St (jm Jn)a then Rn(jr,t)ERn—l(j{}—l) Uy Rn—l(j;—l)- If frlt € St (jm Jn) and
Ru(ju) N Ry 1(jn-1)# 3, thenjy _y O Sthe (o, J)*# 3. Thus, jo .y O Stha* (i, Jo)*
#@ and j,_1 €{ja_1, ..., jn-1}. Therefore, Ry(ju)S Rp_1(jz-1) V- - -V Ry_1(ji-1)-

Property 6. Let f,, f. € F, such that f, N f,#@. Thus, there exist k,, k;, € K,
such that k,<f,, k,<f,, and k, N k,#@. By hypothesis 6, we have

Ja © Nyan-1(ky) € Nyor-1(Nyan-1(kz)) S Nyon(kn) S Nyor(f3).

Property 1. Let f, € F, and f,_, € F,_, be chosen such that f,=f,_,. If j,€J,
and j,=T,(f,), then since T(f,)<=T,_1(f.-1), there exists j, _;<T,_1(f»-1) such
that jn njn—l#g~ Sil’lCC Rn—l(jn—l)gNA/2"(Rn(jn))9 fn—lgan2"'1(Rn-1(jn—l))
S Nyzr-1(Na2(Ra(J)) E Najoyren+ n(Ra(Jn)) S Nevjzyran+ m(f)- 1t we let

B =32 +2),
we have Property 7.
Proposition 3 now follows from Proposition 2.

3. The two main theorems.

DEFINITION OF THE UNIVERSAL CURVE. Let N be the set of points in E3 for
which0=x=<1,0=y<1l,and 0<z=<1. Forw=x,y,zand i=1,2,3,..., let D{(w)
be the collection of all open intervals on the w-axis of length 1/3* whose endpoints
have w-coordinates which are positive rational numbers less than 1, the expression
for each such rational number having 3f as a denominator when in lowest terms.
Let M be the set of all points (x, y, z) of N for which for no i do two of the points
(x,0,0), (0, y,0), and (0, 0, z) belong to the set Df(x) U D¥(y) v D¥(z). The set
M is called the universal curve.
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- Notation. 1f A< X,-then Bd (4) will denote -the boundary of A relative to X.
Cl (4) will denote the closure of A relative to” X. If G is a collection of subsets of X,
then let G(4) denote the eollection 'of all members of G which are contained in A4.
Let G’(A4) denote the collection of elements of G not contained in A. Let Zg(A)
be-those elements of G(A) which meet* elements of G(A) Let [G| denote the
cardinality of G. »

DeriNITION. If G'is a collection of point sets, then G is said to'be simple provided

1.: For each ge G, g—Bd (g)is connected and Cl(g-Bd (g))=g. -

‘2. Distinct members of ‘G have disjoint interiors relative to G*. -

DErFINITION. A finite collection of ‘sets G= {g1; . .3 g5y 1s called a simple chain
if g, Ng,# if and only if |i~k| 1. I

Note. In this paper it will always be the case that simple chains are-simple
collections.

The terms interlace, 1-dimensional collection, A-defining sequence, and B-
defining sequence are all defined in [2] so that we will not define them here. In the
same paper R. D.""Anderson showéd that every: 1-dimensional continuum for
which there exists a B—deﬁning sequence is homeomorphic to the universal curve,

PROPOSITION 4. If Yis any contintous curve, then there exist two sequences of
ﬁmte collections of contmuaJ {/a}n=1and K= {K,,}n L with the followmg properties:

L Ji= {Y}andJ* Yforalln.

2. K,={I% and K,’,"EK,’," lfor all n.

3o <ln.

4. J, and K, are simple collections.

5. There exists an integer L,;> 1 with the property that if j,eJ, andji_1, ..., ji_4
are all the members of J,_, which meet Sti»*t (j,, J)*, thenji_, 00O ji_ #3.

6. There exists a oné-to-one and onto correspondence between J, and K, given by
R, such that R,(j,) N R,,(]n);ég tf and only if j, r\],,;é . If janji#o, then

n(]n)CNBI2" Y(Ru(jn)- ’

7. Ifjuedyand oy € Jn 1, then Ry(j) D Ry-1(ju-1)# 2 if and only if j,_ . meets
Stia (j,, Jo)*. Also, if k, e K,, k,_,€ K, ., and k, Nk, _,# &, then

ko O It (k1) # 5.

8. If ju€Jy juo1 €Jucr, and j, O\ jo_1#2, then R,.(j,,) meets every member of

H,_1(Ry1(Jn-1)) and R, _1(jn-1) < Neor(Ra(Jjn)- e "

" 9. There exists. a finite simple collection -of polyhedral 3-ceils H, such that H,
refines K,, KX=HY, and H={H}*_ is a’B-defining sequence. Also, ,u.(H )<4/2"
Distinct members of H meet in the empty set or in.a 2-cell. Sy

- 10.-For.each j, € J, there exists a collection A;,= H, such rthat A¥= R (j,)and such.
that if j, € J, 'and j, O\ ji# 3, then R, (j,) meets each-member of A;, and each com-.
ponent of Ry( j,) meets some member.of A; . Each component of R.(j,) will contain
exactly one member of A; . No member of H will .meet two members of the coIlectton
{acd,, : juet}. |
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- Proof. We can choose the metric on Y so that d[Y]< 1. Define R, between J;
and K, by R (Y)=I3 Since d[Y]<1, u(J)< 1. .

- Let H,={I%}. Since d[I®]=3'2<2, u(H,)<4/2". All of the other condltrons in
the first stage of the induction are tr1v1a11y satisfied. Assume the theorem for the
integer n. v » : :

We now want, to deﬁne a functlon Vn from the collectron E {h N h’ ; h, hf eH,,
and h N I’ # @} into. the subsets of I? with. the following propertres

1. ya(h O k') is a polyhedral 3-cell contained in Int (A U k).

2. The members.of the collection {y,(h N /") : h#h'}.are pairwise disjoint.

3. If A and A’ are distinct members of H, and h N.A'# 3, then y,(h O ') N y,(h)
=2-cell and y,(h N A')Y A N A =2-cell. )

Moreover, we want to require that there exists a srmple cham of polyhedral
3-cells, I',(hA N A') such that.:

1. The first member of I'y(h N h') is yu(h) and the last i is y,.(h ) (or vice versa).

2. Tulh ARy =y, (W) U vah O K U k).

"3, T.(h v R)* refines (h, 1} and has an equal nimber of members in each of h
and 7', - » ‘ ;

4. Consecutive members of T,(h N ') meet in 2-cells.

RN (N aV ¥ ))<4(2)"+1 and 1fhaéh’ then ]Fn(h N K| > 50,

Let y,,(h) be a polyhedral 3-cell'i in the interior of h such that dly (W] <4@)+
(The set y,,(h) can be taken to be a cube ) Let Tw(h) = {y,,(h)} Let ho k' be a mem-
ber of E, where h#H'. Let A be a polygonal arc in the interior of b U % such that
A meets the 2- cell h a) h' in one point, and 4 meets each of y.(h) and y,,(h) in an
endpomt of A We can assume the members of the collection of all such arcs are
pairwise d1s10mt with the same propertres as the old. “Fatten” each arc sllghtly
so that the fattened arcs remain disjoint’ and meet y,,(h) in a 2-cell The set
yalh O R) w111 denote the fattened arc between yn(h) and y, (k' ) Itis now clear that
we can find a 51mple cham of 3- cells I‘,,(h N k') with the desired propertles Let r,
denote the collectron of all 3 cells’ whlch are members of some I‘n(h NR).

Let ye Y. Smce y €Int (St (s J)*)s there exists &y >0 such that N, (y)
cSt s Jn)*. The collectlon {Ne,(») 1 ye Y} covers Y. Since Y is compact, there
exists a number e 'S0 such that every subset of Y of dlameter less than & wrll be
contained in some member of this’ cover ’

Let Ln+1—maxkeK,. {lHn(k)|}+ 1. I

Pick e<min {l/(n+1), &/(2L,.1+3)} and let J,,, be any e-partitioning of Y.
Let Ju 1 ={Cl (jns1) : jns1€Jns1}-

For each j,, , €J,,, we want to construct a polyhedron in H,¥. This polyhedron
will be denoted by R, 1(j,+1) and will in fact be contained in Unenes y(h OVR).

First we must decide which members of H, the set R, (j,.1) is to meet. Let
Jn€J, and let 4; be the collection given in Property 10 of the induction. If j,
EJn+1 and .In ﬂ St (.]n+1a n+1) #Q bUt ]n f\ Stk ! (]n+1, n+1) _.Q then

n+1(]n+ 1) 15 to meet eaCh member of Sthari=¥ (A]na n(Rn(]n))) and Rn+ 1(]n+1)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



504 D. C. WILSON [June

is to miss every member of H,(R,(j,)) not in this collection. From now on we will
denote this collection by Stha+1 =% (4F).

If he H,, then let J(B)={j,s1€Jns1 : Ror1(Jns1) is to meet A}. Let AN A’ € E.
We want to define two functions %* = 6%+* and 6%" =0%"* from J(h) N J(#') onto
collections of 3-cells in Int (I',(h N A')*) with the following properties:

1. If Ci(h, /') denotes the range of 8", then Cy(h, h') U Cy(h, /') is a finite
simple collection of polyhedral 3-cells such that |J(k) N J(#)|=|Ci(h, h")| for
i=1,2.

2. Each member of Ci(h, h") meets each member of T',(A N A’) in a 3-cell.

3. If juyr, Jovi €J(B) N J(H') and y e Ty(h O K, then j,.1 N ji, #o iff for
Lk=1,2, 0%, ) 0 OB"(jr o) Nyisa2-cell. If j, .y N jr 1=, then

Gf'h,(jn+ 1) N 9%’"'(1'”1) =g for i’ k= 1’ 2.

4. Denote 67" by 6% and Ci(h, k) by Ci(h). If h#Hh', then 62(j,,,) meets exactly
one member of Ci(h, #'), where k=1 or 2. In particular, 0(j,, 1) N 0" (j, 1) is a
2-cell.

To construct these collections first let Ci(h, h') U Cy(h, ') denote a disjoint
collection of polyhedral 3-cells in Int (T',(%, A')*) such that |Cy(h, A')| =|Cs(h, £
=|J(h) N J(h')| and such that each member of Cj(h, /') meets each member of
T.(hn k) in a 3-cell. Let C'=Upan 25 Ci(h, B') U Ci(h, ). We will also assume
that the members of C’ are pairwise disjoint. Let 67" be any one-to-one and onto
correspondence between J(k) NJ(h') and Cih, K). If j,,.eJH) NJ(H) and
y € I',(h, i), then construct a polygonal arc « in Int (y) such that « meets each of
007 (jorr) Ny and 627 (j,,.,) Ny in an endpoint. The arc will meet no members
of C’ other than 64" (j,,,) and 6%*(j...). If ... and j;,, are distinct members
of J(h) N J(K') with a point in common and vy € I',(h, /"), then construct an arc
a; x in Int (y) such that « , meets each of 0% (j,,,) Ny and 6" (j,.1) Ny inan
endpoint of « ;. The arc «; , will meet no members of C’ other than 6}*(j,, ) and
%% (. .1). Adjust the collection of arcs so that no two meet. ““Fatten” each in
such a way that the collection of arcs remains disjoint, and meets (C’)* in exactly
two 2-cells. Associate each fattened arc to one of the two members of C;(h, h') that
it meets. A member of C(h, &) will be a 3-cell which is the union of a member of
Ci(h, ') and the fattened arcs associated with it. Let

C= U Cih b)YV Cy(h, I).

hoh' £

Let Ry 1(jn+1)=Unnnces 08" (Jns) Y 05" (jn+1)- Let
H,,,={cny:ceCyel,andcnNy # 3}

Note that .U'(Hn+ l)<4/2n+1- Let Kn+1 ={Rn+ 1(jn+ 1) : jn+1 € Jn+ 1}-
Due to space limitations we will check only a few of the properties at the next
step of the induction.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972] OPEN MAPPINGS OF THE UNIVERSAL CURVE 505

DiAGrRAM

043G 4y

y (k) y (&, k) y (&)

\e’z'(jn,,l)

Property 8. Let j,,,€J,,1 and j, €J, be such that j, NSt (Juy1, Jui)*#9.
By the starring rules we know that R,,(j,,:) meets every member of
Stia+171(4},). Since R,(j,) is connected and since L, = | H,(R,(j))| +1,

Hy(R(jn)) = Sthns1 (43).

Therefore, R, 1(j.+1) meets every member of H,(R,(j,)). This stronger version of
Property 8 will be needed in the proof of Property 10.

Since u(H,)<4/2" and since R,,,(j,.1) meets every member of H,(R,(j,)), we
see that R,(jn) < Ny (Ry s 1(Jn+1))-

Property 5. Let j,,.,€J,,, and let ji,..., i be all the members of J, which
meet Stfas2* 1 (1, Juy1)*. Since w(Jnr1)<e,

d[Strnea™t (jup 1, Jar 1)*] < Loy + D+ 1)e < &

Thus, there exists y € ¥ such that Stha+1*! (., 1, J,, 1 )¥*S N, (»). By the choice of
&, we know that y €1 n---Nji, Therefore, ji N---Nji#w.

Property 6. By the definition of K, ,,, R,,, maps J,,, onto K, ,. By construc-
tion distinct members of J,,, are mapped to distinct members of K, ,. Thus,
R, .1 is one-to-one.

If jos1s Jove1 €Jns1 aNd Jop1 N jrp1=2, then Ryy1(jos1) N Ry 1(ns)=2. If
Jn+1 N jne1#2, then pick j, €J, such that j,,, Nj,,; Nj,#2. In Property 8
we showed that each of R,,(j,+1) and R, ,(jn,1) will meet every member of
H(R.(ja))- Let h be any member of H,(R.(jy)). Since joi1 N jni1#2, 0(jns1)
N 03(jn+1)# @ . Therefore, Ryy1(ja+1) N Ry 1(jns ) #2.

If jay1 NJjns1#9, then we will show that R, 1(jns1)S Nigrzn+{(Rus1(jn+1))-
Let x e R, 1(jn4+1)- There exist h € H, which contains x, and j, €J, such that
h< R,(jn). If h e 4;, then let j, be a member of J, such that j,,, Nji,., Nji#D.
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By Property 8, we know that R, 1(j., 1) meets every member of H,(R,(j;))- Sinece
Ry 1(ns1) O Ry(j)# 3, we know by 7 that j, NSthns1 (joyy, Joy1)*# . Thus,
Ja NV jn# 3, and R,(j,) N h#o. Let A’ be a member of H,(R,(j;)) which meets A.
Since R, 1(jns1) meets ', d[x, R, 1(jar)]<d[h Y W] Sd[h)+d[A' )< 16/2"*1,

If h¢A;, then there exists an integer k such that O<k<L,,, and
heSthav17k(AF) and jo O St (Jos1, Jns 1)* # 2. Since joy1 Y jni1 # 9,

.jnn Stk+1 (jr,t+_1a JrH—I)* # a. :

Therefore, R, 1(j;.1) meets every member of Stka+1-%~L1(4% ), This collection will
be nonempty because L,,, —k—120. The remainder of the proof is the same as
when h € A4;,. Therefore, R, 1(jns1)S le_sl&a"”(Rn+ 1Un+ 1)) ;

Property 4. The members of K, ., have disjoint nonempty interiors by con-
struction. We must show that the interiors are connected. :

‘LEM'MA. If L is a finite collection of closed subsets and A< L¥*, then A is connected
provided:

1. L* is connected.

2. A N h is connected for all he L.

3. IfhheLandhnNh#3, then AOhOh#£3.

Proof. The proof is routine and thus is omitted.

Let jay1€Jn41. Let j, be:a member of J, which meets j,.,. We know that
Rn( Jn) is connected by our induction assumption. We showed .in Property 8 that

Ry 1(Jny1) meets every. member:of H, in R,(j,). To apply the lemma, let
L=H,(R.(j»)) and A= Rn+1(.]n+1) N Rn(]n) Therefore, "Ry y1(jn+1) N Rn(.]n) is
connected.. . ,

Ifj.ed, and Rn+1( ],,H) N R, ( ],,);éﬁ then there exists an mteger k such that

R, 1(ju41) meets exactly those members of H,(R.(jr)) in St* (A ). 1If he Ay, then
St* (h)* is connected because the star of a connected set is connected if the links
are connected. ‘To apply the lemma let L=St*{(h) and. A=R;,(jn+i) N L*
Therefore, R, (j.+1) NL* is connected. Since R,(j) Nh#2, Ryyi(jnr1)
N (R,(j,) V- R(j,)) is connected. Therefore, R,y 1(j, 1) is connected. Since distinct
members of H,,,; meet in 2=cells, Int (R, (/.. 1)) is also connected. Therefore
K, . is a simple collection. ,

-Property 9. Since most of the properties of a B-defining sequence are obvious,
we will only check the interlacing axiom and the fact that H},, is connected.

Let h e H,. Pick j,eJ, so that A< R,(j,). There exists an integer k such that
h e Sthws17% (A;Fn)‘_StL"'*l—k-‘l (A;k,.) Therefore, if jo,1 €Jpyr; then! Roii(jayi)
N h#z if and only if j, O St*¥ (ju,1, Jus)*#@. Note that j, (3 St* (foy1, Jne1)*
#o if and only if j, .1 € St**2 (f,, Jui1). Therefore, J(h)=St**?! (j,, J,,1). Since
Ja 18:connected and the members of J,,; are connected, J(h)* is connected. Since:
6% maps J(h) onto Ci(h) with the property that j,,, O j.i:#@ if and only if
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O (jnr1) O O4r )£, C(h)* is also connected -for i=1, 2. Moreover, since
04(jni 1) O 04(jns1)# @ for each j, 1 € J(h), Ci(h)* U Cy(h)* is connected.

Let Z denote Z, , (h). If z € Z, then there exists a unique 4’ € H, different from
h such that z N A'# 3. In fact, z is contained in exactly one member of Cy(h, k')
U Cy(h, 1'). Denote this member by C(2).

Let Z, and Z, denote two dxsjomt subcollections of Z such that Z, U Z,=Z.
Let W,=Cy(h)* U (Uzez, C(2) N k) and W2— Cz(h)* v, (UZEZ2 C(z) v h). Since
each C(z) N h is a 3-cell and meets each of C(h)* i=1, 2 in a 2-cell, both W, and
W, are connected. Since C,(h) U Cy(h) is a simple collection and since
Int (C(z)) N Int (C(z'))=o2 if z#2', the .collection {Wy, W} is simple. In the
terminology of [2] {W;, Wy} is a simple complete amalgam of H, ,,(h) such that
Z¥< W,. Therefore, H,, ,(h) is interlaced in A.

Since H,,(h)* is connected for all he H,, and since H,’,“ is connected the
lemma used in Property 4 tells us that Hy,, is connected. '

Property 10. Let j, 1 €J,,,. Pick jneJ,, so that j, ., nj,,;é@. If jov1€Jnsn
and j, 1 NJjre1# @ then j, VSt (fr i1, Joy1)*# @ Thus, by Property 8, Ruy1(jn+1)
meets every member of H,(R,(7,)). In particular, R, ,,(j,..) meets every member
of 4;,.If he A;, and j,,, meets j,,,, then by the'construction 0"(jn+1) N Ors )
#D Thus oy Jn +1) meets R,,H( ]“1) The desired collegtion is -

Afn+1 {Oh(]n+1) h € Ajn and i=1, 2}

Note that A,anA,n We have now completed the proof of Proposmon 4.

Let K be the class of all 1 -dimensional contlnuous curves up to topologlcal
equivalence. Let M be the subclass of K consnstmg of those elements of K having
no local cut. pomts Anderson [8] proved that a necessary and sufficient condition
for a member of M to be the universal curve is that 1t contam no open subset
imbeddable in the plane,

_ DEFINITION. A map will be called monotone 1f each point-inverse set 1s compact
and connected.

" THEOREM 1. There exists a monotone op’ezri'map of the universal curve onto any
contmuous curve such that each pomt inverse set is also a umversal curve.

REMARK: Since thé monotone image of a 2rsphere isa cacto:d [1 p. 172}, the

monotone image of a compact subset of the plane will always have dimension less
than or equal to two.
" Proof. Let Y be: any continuous curve. We can find sequences of continua
{J2-1, {K;}3-1, and- B-defiting sequence {H,} -, with the ten properties stated
in Proposition 4. Let M=y H¥=N7-: K. Proposition 3. and Proposition 4
now combine to give an open map g of M onto Y, Since {H,}7-, is a B-defining
sequence, M is homeomorphic to the universal curve. Since the members of K,
are connected, g will be: monotone.
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To show that each point-inverse set is a universal curve, it is sufficient to show
that for each y € Y, g~!(y) is locally connected, g ~!(») has no local cut points, and
g~ !(») contains no open subset imbeddable in the plane(?).

LEMMA 1. If jois€Jnta, Jni2€Jnre, and joio N juis# D, then Ry g(jnis)
=Rn+3(jn+3) N Rn+2(jn+2) VT V-V T, where

1. each T, is a connected union of members of H, s,

2. T’l N Rn+3(jn+3) N Rn+2(jn+2)7é® for l=]9 ce s S

3. the set St° (T, H,, 2)* is contained in five members of H,, ;.

LeMMmA 2. Let j,,;€J,y; for i=2,....m. If juioN---Ojn#D, then
Ry m(nsm)=Rasm(Unsm) O 0O Ryyo(Jns2) U S1 Y- --U S, where

1. each S; is connected,

2. each Si meets Rn+m(jn+m) N---N Rn+2(jn+2)9

3. each S; lies in five members of H, ..

Proof. The proof of Lemma 2 follows from Lemma 1 and the construction.

We now will show that g ~1(y) is locally connected for all y € Y. The proof given
here follows the technique of [3].

Let x € g7¥(y) and let ¥ be an open subset of g~(y) containing x. It is sufficient
to show that x is interior to the component of V containing x.

Pick n large enough so that St3 (x, H,)* ng=Y(y)= V. Let p=St(x, H)*. If
h,h' € H,, then we will show that there is at most one component of g~!(y)
N y(h N A") which meets every member of I' (A N &’). This will prove that there are
only a finite number of components of g=1(y) N (St (p, H)* Y U,nnz0 v(h N E))
meeting p. Therefore, V has only a finite number of components meeting p.

Let {f,}2-1 be a nested sequence of sets given by the conclusion of Proposition 3
such that (1, fo=g"'()).

Let hn k' € E, where h#h'. If R, (j,;1) meets y(h N k'), then R, (fus1)
Nyh VR )=00P (o) Y 0% (Goy) N y(h O RY). From now on we will denote
07 (jus1) by 6i(ju11). Note that f,,, N y(h N A') is connected.

Let y(h)=y1, ¥2 .-, ye=y(#') be the members of I';(h N A’) listed so that
y, N y;#g if and only if |i—j| < 1.

Let F denote any continuum in H¥,, which is not contained in y(h " k). If S
is a component of F N y(h N h’) meeting y;, then note that S will either meet the
interior of every member of {y,,..., v} or the interior of every member of
{yis MRS ] Yk}'

Suppose f, . » N y(h N ') contains two components K; and K, which meet every
member of I';(h N A'). Let h,,,, be a member of H,,, contained in K; N y,;.
Pick joym € Jnam such that b, n SR,y m(Jrsm)- We can find j,,;€J,,, for i=2,
...,m—1, such that j,,pn N jrsm—1 N-- -0 jo2#3. Therefore, by Lemma 2,

(%) The author is grateful to Professor Anderson for suggesting this approach.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1972} OPEN MAPPINGS OF THE UNIVERSAL CURVE 509

we can find a connected subset of T of R, (j.im) N y(h N k') which contains
hn+m and meets (Rn+m(jn+m) n---N Rn+2(jn+2)) N (721 Uy 729)'

Let /3., be a member of H,,, contained in Ryyn(jusm) NN Royo(fnsiz)
which meets 7. Note that h,lt,,m_K1 N (yz0 Y- - -U v30). Since A,n+2 Ny(h N k)
=g, we know that R,,+,,,(],,+,,,) NN Rn+2(]n+2) is not contained in y(h N k').
Since R,y m(fasm) N O Ryyo(ns 2) is connected, we know that the component
of (RuymUn+m) O O Ry o(Jas2)) N v(h N H') containing AL, ., denoted by Kj,
either meets every member of {y,, . . ., a0} OF {yaq, - - -, vi}. Since |T'y(h N A')| > 50,
both collections contain at least twenty members so that we can assume K,
meets every member of {y,, ..., ys0}. Since K, meets every member of I',(h N &),
K, meets yy,.

Let 42, ,, be a member of H,,, contained in K, N y,,. Choose ji . €J,,n and
jn+m 1 eJn+m 1 80 that hn+m— n+m(j1’1+m) N Rn+m—1(j7,t+m—1)- Since Rn+m(j1,t+m)
meets every member of H,, n_1 in Ry, 1(jnsm-1) that Ry, »(ja.») does (or vice
versa), we know that K, contains a member of H,, (Ruim(Jrim) IN y10 Y y11
U y12. Thus, applying Lemma 2 as before, we can find 43, ,, € H,,, such that
B aS Ko N Ry n(Jsm) N0 Ry oy 2) O (vs U- - - U yy,). Therefore, for some
¥ €{¥ss - - ., Y17} there exists two members h,,., and h;,, of H,.; such that
hn+1 v hn+1—7n Kl mRn+m(Jn+m) N---N Rn+2(j'n+2) N hn+1¢g, and

Kz N Rn+m(jn+m) n---N Rn+2(jn+2) N h;»+1 # .

Since My U 1Sy O fry1, we know by the rules of construction that 4, ,
N h:;+1‘7ég- ThUS, Rn+m(]n+m) NN Rn+2(.]n+2) N (hn+1 v hn+1) is connected
and K; N K;#@. This contradicts the assumption that X; and K, are distinct
components. Therefore, f, ., N y(h N k') contains at most one component which
meets every member of I',(h N A'), and g~!(y) is locally connected.

The set g~!(y) has no local cut points. Let x € g~!(y) and let U be a connected
open subset of g~ 1(y) containing x. Suppose U—{x} is not connected. Let U, and
U, be two different components of U—{x}. Let u, € U, and u, € U,. Choose n
large enough that St2 (x, H,)* N g~ ()< U—{uy, us).

Choose 4 and 4’ in H, and j,,; € J,, such that x € 6»*(j,, ). There is no loss
of generality in assuming that x € Int (62" (j,, 1)).

Let 81 = 07" (jps1)-

LEMMA 3. If m> n, then there exists a function T,, of H,, into H,, with the following
properties:

1. If hy, b€ H, and by O By, # @, then Tp(hy) N To(W) # 2.

2. Ifhy€ Hyy hyyy € Hy g and by S by, then Ty y(hy ) < Tr(hy).

3. If hy, € H,, then h,, and T,(h,) lie in the same member of K,,.

4. If h,, € St* (43}, then T,(hy,) € St* (4}.) for all j, € J,,.

5. If h,=St(S,, H,)*, then T,(h,,) =St (S1, Hy)*. If h, £ St (Sy, H,)*, then T,(h,)
=h,.

6.. x ¢ T,(h,) for all h, € H,.
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Proof. The proof is left to the reader.

Combining Lemma 3 and Proposition 1 we have a continuous function f from
M into M defined by flNwens1 )= w=ns+1 Tm(h,), where the sequence
{hm}m=+4+1 is any nested sequence with A, € H,,. Moreover, Properties 3, 5 and 6
in the lemma tell us that '

L f(g7 (yN<=g~ (), :

2. fIM =St (S,, H,)*=identity-and f(St(S,, H,)* N M)<St (S,, H,)*,

3. x¢f(M). o

Let f; =f|g~%(»). Note that fi(U)< U. Moreover, since u;-and u, are not con-
tained in St (Sy; H,)*, fi(u,)=u; and fi(ug)=u,. Therefore, fi(U) is a connected
subset of U which contains both », and u,. But x ¢ f,(U) which contradicts the
assumption that U, and U, are dlstmct components of U— {x} Therefore g7y
has no local cut points.

The set-g=(y) is not locally imbeddable in the plane. Let U be any nonempty
open subset of g~%(y) and let x € U.:Pick n large enough.so that St (x, H,)*
N g~ }(¥)< U. For each integer m>n choose j,, € J,, so that y € j,.. Since j,,1 O jn
#@, Rt 1(Jms 1) meets every member of H,, in R,(j,). Therefore, the same argu-
ment as that used to show that {H,}7_, is-a B-defining sequence can be used to
show that {H,{R,(j:) NN Ryi1(Jns1))m=ns1 IS @ B-defining sequence.: Thus,
X=Ngp-n+1 Rn(jz) is homeomorphic to the universal curve. Note that X is
contained in g ~(y). Since x € g~ (), we know by the construction that R, ;(Jp4+1)
N St2 (x, H,)*# . Therefore, X St2 (x, Hy)*#2 and thus X\ U#g. Since
the universal curve is IocaHy not 1mbeddable in the plane U is not 1mbeddable in
the plane.

PROPOSITION 5. If Y is any nondegenerate continuous curve, then there éxist two
sequences of finite collecttons of compacta J={J}v-1 and K= {K,,}n 1 with the
Jfollowing properties:

1. Jy={Y}and J}=Y for all n.

2. Ky={I°} and Kf< K}_, for alln

3w <1/n.

4. J, and the collection of components of members of K, are simple collections.

5. There exists an integer L, > | with the property that if j, € J, and ji_,, .. N
are all the members of J,_, which-meet St's*2 (j,, Jo)*, thenji_s 0 -Nji_ 1 #3.

6. There exists a one-to-one and onto correspondence between J, and K, given by
R, such that R.(j,) " R,(ju)# 2 if and only if ju O jn#@. If jo N\ ju# 3, then

n(]n)cNB/2" 1(Rn(]n))

7. If ju€Jy and jn-y €Jy_1, then Ry(ju) N Rn 1(n1)#2 if and only tf Jn-1
meets Stin (j,, J)*. Also if k,€K,, ky_ 1€ K,, woand k,Nk,_1#3, then k,
N Int (k1) #2.

8. If ju€Jny jun-1€Jn_y and jo_1 N j,# 3, then R (j,) meets every member of

H, _1(R,_1(ju-1)), and R, - 1(jn-1)<S Ngja(Rr(Jn))-
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9. There exists a finite simple collection of polyhedral 3-cells H, such that H,
refines K,, K¥=HY, and H={H,}*-, is a B-defining sequence. Also, u(H,,)<4/2"
Distinct members of H, meet in the empty set or a 2-cell. :

- 10. For each j, € J, there exists a collection A;, S H, such that A¥.< R,(j,) and
such that if j,elJ, and j, O\ j.# @, then R.(j,) meets each member of A,. Each
component of R,(j,) will contain exactly one member of A;, and each component of
R;(j2) will meet some member of A;,. No member fof H,, will meet two members of
the 'colleétion-{a €A, i fned} - '

1. If jin---0ji#z, then the dlameter of each component of R,(jHU-

U R,(jI) is less than 20/2" 1, :

Proof.. We can choose the metrlc on-Y so that d [Y]<l. Deﬁne R, between A
and K, by R(Y)=1I3 Since d[Y]<1, u(J)< 1.

Let H,={I%}. Since d[I®]=32<2, u(H,)<4/2. All of the other conditions in
the ﬁrst‘s'tage of the inductieri are trivially satisfied. Assume the theorem for the
integer n. : ;

Let yeY. Smce ye Int (St (y, J)*), there exists e,>0 such that N, (y)
=St (y, J)*. The collection {Ne(y) 1 ye Y} covers Y. Since Y is compact, there
exists a number &' >0 such that every subset of Y of diameter less than & will be
contained in some member of thlS cover.

Let L;,+1—1+|{h Nk :hheH, and h ﬂh’#@}l Let L,,Jr1—3L,I+1 Let y,
and Yo be two dlstmct points in Y. Let ¢ be any posmve real number such that

e < min{(n+1)~1,¢/@4L,,,+3), 3{1(}’1, Y2}

Let J,., be an e-partitioning of ¥ and J,,,={Cly (j) : j' € Ju,1}.

Let j, eJ, and let 4;, be the collection given in Property 10 of the induction.
If jn+1 eJn+1 and jn N St» (vjny+1s n+1) #g bUt jn N Stk;l (jn+1; n+1) =4,
then R,y 1(jns1) is to meet exactly those members of H,(R,(j,)) in Sthn “k(A4F).

Since we will need stronger versions of Propertles 5 and 8 as well as Property
7 to define the construction of H,,+1, we mention them now. In the same ‘way that
we proved Property 5 in Proposnt_non 4, we can prove that gf J» .- -, Jn are all the
members of J, which meet St¥n+1 (fo 1, Joy1)*, then j1 - N jI#@. Similarly,
we can prove that if j, N St¥Ln+1 (Un+1> Jus1)*#2, then R,,“(jnﬂ) meets every
member of H, (R,( j,,)) Property 7 is the same as before.

Let  and A’ be members of H, such that h Nk #g. For each such pair we want
to define a subcollection of J, .. If A=H’, then let J(h)={jnr1 : Rus1(Jnsr) is to
meet h}. If AR, then J(h N k') will be a subcollection of J(k) N J(#') defined by
the two cases below. o . '

Case 1. Let G, be defined exactly as G, is defined in the proof of Proposition 3.
If g€ G, and g=j» U---U ji, then let

M) = (hAK hOK # o, h# K, hUK € RGYU---U RGDY
Note that |A(g)| <Lp;. '
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We want to define a collection of subsets ¢ with the following properties:

1. The set £ is contained in J,, ;.

2. The members of ¢ are pairwise disjoint.

3.Ifjr,eé and jn,1 €S2 (1, Jni1), then Ry, 1(jn, 1) meets exactly those
members of H, in H,(R,(j}) V---U R, (jD).

4. |¢l=]8)l.

If A(g) is the empty collection, then let ¢ also be the empty collection. If A(g)
is nonempty, then let j,, ,; be a member of J,, ; such that j1 N---NjINj, 1 #3.
Let &={j%,.,...,j¥.1} be a simple chain in J,,, such that jo,,=j,,, and j¥,,
N Bd (g)#@. The collection €={j8,.,j2¢1,...,j249} will have the desired
properties. Let ¢ be any one-to-one correspondence from ¢ onto A(g). If j,,, €&,
then let j,,, be a member of J(¢(j,,.))- Note that if ¢(j,,,)=h N K, then j, .,
eJ(h) N J(H').

Case 2a. Let he A, where j,eJ,. If j,.,€J(h), but there exists j .,
€ St (Jus1, Jns1)—J(h), then choose j; € J, so that j, N j, . 1#3. Since j; N j,#3,
R.(j))Nh#@. Let A’ be a member of H,(R,(j,)) which meets h. Let j, , be
a member of J(h N A'). Since R, (j,+,) meets h', j,,, is also a member of
J(h) nJR).

Case 2b. Let he H,(R,(j,)), but h¢ A, . Let h; be the member of A4, in the
same component of R,(j,) as h. Let n={hy, ..., h_,, b} be a simple chain of
minimal length in H,(R,(j,)) such that h;=h. Note that  has at least two members.
If j.,.€J(h), but there exists ji,, €St (jur1, Jus1)—J(h), then let j,,, be a
member of J(h;_, N h). The chain » will be considered fixed for all members
of J(h). Since 7 is of minimal length, we know that j, ., € J(h;_ ).

Let I', be a simple 1-dimensional collection of 3-cells with the same properties
that I, had in Proposition 4. Also, let y(h N &) be defined as before.

By the same methods as those used in Proposition 4, we can define a simple
1-dimensional collection C of polyhedral 3-cells in I'} with the following properties:

1. If h and A’ are members of H, with a point in common, then there exist two
one-to-one functions of J(h N /') into C, denoted by 6" =6¥* and 65" =6%"",
If C,(h, #’) denotes the range of 67", then the members of Ci(h, k') are pairwise
disjoint.

2. The set Ci(h, h')* is contained in Int (I'y(A N A')*).

3. Each member of Ci(#, A") meets each member of I',(A N A’) in a 3-cell.

4. If j, ., € J(h), then 0%(joi1) N O8(jar1)# 3.

5. Let C'=Unnnso Ci(h, k) O Co(h, k). If h#h, then 6P%(j,,,) meets
exactly four members of C’. In particular, 67%(j,,,) meets each 6%(j,,,) and
6% (jns1), where k=1, 2. Since J(h N RYSI () NI (R'), 02(jnrr) and OF (G, ) will
exist.

6. If j,., and j,, ; are distinct members of J(h) such that j, ., N j;, 1 #&, then
there exist four simple collections of polyhedral 3-cells, of(j,.,) and «*(jn.1)
where i=1, 2, with the following properties:
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(a) The set of(j,.1)* is contained in y(h) and [ef(f,,1)| =2.
(b) One member of of(j,,,) meets 2(j,, ) in a 2-cell, and the other meets
6*(jn.+1) in a 2-cell. Moreover, o?(j,.1)* meets no other members of C'.
(c¢) Distinct chains of the form o« have disjoint underlying point sets.
Let ofj,+1)=the collection of all 3-cells which are members of some o(j,, ).

Let C=C'v (Uin+1elﬂ+1 o‘(jn+ 1))
Let H,., and K, be defined as in Proposition 4. Let

Roii(ns) = U (01" (as 1) Y 05 (s 1)) Y e(fnr )™
In+16J(hOR%)

We now have to check that the eleven properties in the induction statement hold
for the integer n+ 1.

The first nine properties can be checked in the same way that the first nine
properties in Proposition 4 were checked.

Property 10. Let K be a component of R, 1(j,.1). Let A be any member of H,
such that K nInt(h)#@. Note that 6:(j,, )= K. If St(j,,1,Jns1)SJ(h), then
6%(jn+1) exists for all jpo1 €Sty ., (jarr). But if this is the case, then R, :(ji+1)
O Oijus )~ 2.

If St (Joy1, Jne 1) EJ(A) and h € A4, for some j, € J,, then by Case 2a, we know
that there exists j, € J, and 2" € H,(R,(j,;)) such that A’ " h#a, j;, O j,.1# 9, and
Jeei €J(AOK). Since j,,ieJh k), 0%(j,.1) exists. Moreover, 0%(j,.1)
U 0% (jui 1) Y 0% (jnyey) is a connected subset of R, (j,.1) so that 87 (j,.,)SK.
Since St (ny1, Jnsr1)SJ(A'), 6% (Joy1) Will be the desired member of H,, (K).

If St (jrs1, Jns 1) EJ(B) and A< R,(j,), but h ¢ A, , then by Case 2b, we found a
simple chain p={hy, .. ., h;_1, by="h} in H,(R,(j,)) of minimal length where 4, € A4;,.
By the starring rules we know that St (j, 41, Jo+1)SJ(h;-1). As above, % (Jppr)
will be the desired member of H,, ,(K). Pick one such member from each compo-
nent of R,.:(/,+1) and denote this collection by 4, . . Note that we can assume
that ;. , esnes Asms, 18 @ subcollection of 6, ={01(j,+1) : h€ Hy, juir1 €J (M)}
Since no member of H,,, meets two members of §;, no member of H,, ., will
meet two members of {a€ 4;,,, : Jor1 EJns1)

Property 11. Let ji,,,...,j5,1 be distinct members of J,,; with a point in
common. We want to show that if K is a component of R, (ji,)uU---
U Ry, 1(J541), then d[K]<5-4/2,

Let Di={jo;1€Jns1:Jns1€J(ANH) under the rules of Case 1}. Let
Dy={jns1€Jnt1 : Jns1€J(A N A') under rules of Cases 2a and 2b}. We want to
show that D¥ N D¥=gu. If j, ., € St2 (D}, J,,1), then there exists g€ G, such
that g=jtu--.UjI and R,,.(j,;1) meets exactly those members of H, con-
tained in R,(j}) V- --U R,(jI). Therefore, no member of St (DF,J,,,) can be a
member of D, and DF N D¥ = . Therefore, the collection {j}, 1, . . ., j5. 1} does not
contain members from both D, and D,. Hence, we can consider the two cases
separately.
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Case 1. Since the members of D, are pairwise dlS_]Olnt only one member of
{j,,H, .e s Jasq} can p0551bly belong to D;. Ifjn+1 € Dl, then exactly one compo-
nent of Rn+1(]n+1) (VR Rn+1(jn+1) w1ll meet more than one member of H,.
Namely, the component contalmng aGi) v e h(j,H_l) v 01 (jn+1) where
hOh' = ¢(Jn+1) In this case d[K]<d[hUh]<2 -4/2", \

Case 2. Suppose K is a component of R, 1(jl,,) VARV Rn+l(jn+1) and some
member of {ja+1,...,/i+1}isin Dy If KN R.(jn)# @, then let hy be a member of

H,(R,(j,)) such that A, € St* (4%) and KN Stet (AY)*=2.

Note that there does not exist any simple chain of four members {ho, A, hq, A}
in H,(R.(j,) such that K N h#2 for i=0,1,2,3 and KN (h U h,,,) is con-
nected Therefore, if Cis a component of Ra(ja), then K N C<St? (hg, ,,)* If

Ro. (i) N KEC, then by Case 2a we know that there exists ji,1 such that
JiNjrea#2 and jh., €J(ho N A'), where i’ € H,(R,(j})). Since Ryy1(ji, 1) meets
every member of H,(R.(ji)), ji,1 is not a member of any J(h* N k%), where h*
U <= R,(ji) and h*#h®. Therefore, K N R (ji)< St (ho, H,)*. Since no member
of H, meets two members of 4= Ujnesn 45, €ach member of St (ho, H.,) meets no
member of A other than . Therefore, K< St2 (ho, H,)* and d[K]< 20/2" We have
now established our theorem. ' '

DEFINITION. A map is called /ight if each point-inverse set is totally disconnected.

THEOREM 2. There exists a light open map of the universal curve onto any non-
degenerate continuous curve such that each po_int-inverse set is a Cantor set.

REMARK. The above theorem is not true if we replace the universal curve by
the plane umversal curve. L. F. McAuley [17] showed that there is no light open
map from the plane umversal curve onto a 2-cell,.

Proof. Let Y be any nondegenerate contlnuous curve. By Proposmon 3, we can
find sequences of compacta {J,}7’- 1, {Kp}n= 1 and {H,,},, L with the eleven properties
stated there. Let M=N7-1 HY =N7-1 K. Proposmon 3 and Proposition 5 now
combine to give an open map g.of M onto Y. Smce {H)2. isa B- deﬁnmg sequence,
Mis homeomorphlc to the universal curve. Since the diameters of the components
of R,(jHu . v R,,(J,,) where j; M- --N jr#g, are less than 20/2" g will be light.

Each pomt-mverse setis a Cantor set. Let y € Y and.x € g~*(y). Since g is light,
it is sufficient to show that every nelghborhood of x contains two points of g‘l( ¥).
Let ¥ be any neighborhood of x in g7'(y). Let { Sadn=1 be any nested. sequence
given by the conclusmn of Proposmon 3 such that g(N\2o: fu)=y. For each n,
pick j, € J, such that ye € Jn and R,(j,)< f,,\ Choose n large enough that St? (x, 1-1,,)*
nglnsV. ,

Lethbea member of St? (x, ,,,) such 't‘hat R, jn_+.i)vmeets h. Since R, o(ju+2)
meets every member of Ryii(jns1)s Ras 5(jn+2) meets both 0(jas1)=hy and
64(jn+1)=ha. Hence, 01(j,,5) and 0%2(j, ;) exist and are disjoint. Since Ry (jn+:)
meets every member of Ruyo(jurz)s N2z Ruti(ass) N O1(jnsa)# 2. Similarly,
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Ni2o Ryri(Jnsi) N 0%2(j,, ) #@. Therefore, V contains at least two points, and we
have established Theorem 2.
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