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OPEN MAPPINGS OF THE UNIVERSAL CURVE
ONTO CONTINUOUS CURVES

BY

DAVID C. WILSONO

Abstract. A criterion for the existence of an open mapping from one compact
metric space onto another is established in this paper. This criterion is then used to
establish the existence of a monotone open mapping of the universal curve onto any
continuous curve and the existence of a light open mapping of the universal curve
onto any nondegenerate continuous curve. These examples show that if/is a monotone
open or a light open mapping of one compact space X onto another Y, then it will
not necessarily be the case that dim Kg dim X+k, where k is some positive integer.

1. Introduction.    The two main theorems of this paper are the following:

Theorem 1. There exists a monotone open map of the universal curve onto any con-
tinuous curve such that each point-inverse set is homeomorphic to the universal curve.

Theorem 2. There exists a light open map of the universal curve onto any non-
degenerate continuous curve such that each point-inverse set is a Cantor set.

R. D. Anderson announced Theorem 1 in 1956 [5]. However, since he never
published a proof, the details are supplied here. In 1958 he conjectured [10] that
there exists a light open map of the universal curve onto any «-cell. This question
is answered by Theorem 2.

The existence of open dimension raising mappings has been of interest for some
time. The first light open dimension raising mapping was given by Kolmogoroff
[16] in 1937. In this example the domain is a 1-dimensional continuous curve
and the range is 2-dimensional. In 1954 Keldys [15] constructed a similar example
where the range is a 2-cell. In 1952 Anderson [6] constructed a monotone open
map from a 1-dimensional continuum onto the Hubert cube. The techniques of
this paper are basic to the proofs of Theorems 1 and 2.

Theorem 1 is of particular interest because of the following theorem of Dyer
[13]: If M and N are compact metric spaces, f is an open map of M onto N,f'1(y)
is a nondegenerate continuous curve for each y e Y, and there exists e>0 such that
no simple closed curve in M of diameter less than e is mapped to a point, then dim M
= dim N+1. A theorem of Alexandroff [1] states that if X and Y are continuous
curves and fis an open map of X onto Y such that each point-inverse set is countable, then
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dim Fá dim X. Theorem 2 shows that if a light open map has uncountable point-in-
verse sets, then the dimension of the range can be any positive integer or even infinite.

2. Open mappings. Let (A', d) be any metric space. Let G be any collection of
subsets of X.

Notation. Let G* denote the subset of X consisting of all points of X which are
in some member of G. If A is a subset of X and e a real number, then let N£(A)
= {x e X : there exists ae A such that d(x, d)<¿}. Let d[A] denote the diameter
of A. If B is another subset of X, then let d[A, B] denote the Hausdorff distance
between A and B. Let p,(G) = max5e0 {¿[g]}.

A compact metric space is called a compactum. A space is called a continuous
curve if it is a connected and locally connected compactum. Int (A) will denote the
interior of A relative to X.■ . ■ ■

Proposition 1. Let X, Y, Zx, and Z2 be compacta such that A'çZ1 and Y^Z2.
Suppose there exist two sequences of finite collections of compacta, F={Fn}"=1 and
G = {GX=u »¡'h the following properties:

1. Zx^F*^F*+ x3 Xfor all n and f)ñ= x Fn = X.
2. Z2^G*^G*+1^ Y for all n and p|"=i G* = X-
3. Given e>0 there exists N such that n>N implies u-(Gn)<e.
4. Tn is a function of Fn into Gn such that

(a) ififin e Fn,fn„x è PM andfnçfn_x, then Tn(fin)^Tn_x(fin-i),
(b) ¡fix e X, then there exists a nested sequence {/„}"= x such that x efn e Fn.

5. Ififin,f'n e Fn andfin nf^0, then Tn(fin)n Tn(f^0.
Then there exists a continuous function of X into Y defined by g((]u=ifn)

= C\ñ=i Tn(fn), where fn e Fn and the sequence {fin}n = i is nested.

Proof. We leave the proof to the reader.
Definition. A continuous function from A" onto Fis called open if and only if

the image of every open subset of X is open in F.
The next theorem is a ceneralization of Theorem I in [6].■;;.'■■. .
Proposition 2. Let X, Y, andZ be compacta such that IçZ. Suppose there exist

two sequences of finite collections of compacta F={Fn}^=i and G = {Gn}"=1 with the
following properties:

1. Gn= Y for all n.
2. Z2 F*_ x 2 F* for all n and H ™= 1;F* = X.
3. Given e>0 there exists integer nx such that n>«x implies p~(Gn)<e.
4. There exists a one-to-one and onto correspondence between Fn and Gn given by

Tn such that
(a) ififineFn,fn-x£ Fn-i, andfn^fi_x, then Tn(fin)^Tn^(fin-i),
(b) if xe X, then there exists a nested sequence {/„}■"= i such that x efn e Fn,
(c) if ye Y, then there exists a nested sequence {gn}n = i such that y egne Gn

andT;\gn)^T-}x(gn-ù-
5. IfihJL e Fn, thenfn nf^0 if and only ifTn(fi) n TA\fi'n) + 0.
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6. There exists r¡>0 such that ififiJi e Fn andfin nf'n + 0, thenfin^ N^fñ).
1. There exists p,>0 such that (//.eij^ef^, and fin^fn-x, then fn_x

Then there exists an open mapping of X onto Y defined by

(CO \ CO

n a = n Tn(fn),n=\      J n=l

where fineFn and the sequence {/„}"= i  is nested.  Moreover, g~1(g(f~)n = ifin))

=rr=i/n- ,...-.■.■..
Proof. By Proposition 1, we know that g is a continuous map of X into Y. It is

easy to show that the map g is onto.
If {fn}n = i and {fin}n = i are nested sequences which have the property that there

exists fim e Fm such that/„ n/m#0 and/^n/m#0, then Properties 5, 6, and 7
can be combined to show that (]ñ=ifiñ^Nai2^(2ri+3ll)(r]^=xfin)-

The map g is open. Let xe X and let F be any open subset of X containing x.
We must show that g(x) is interior to g(V). Choose m large enough that
Nai2)m<.2r,+ 3ß)(x)^ V. Let gi,...,grm be all the members of Gm which contain g(x).
Let {fn}n = i bea nested sequence such that x efi e Fn for all n. Let y e g'm, where
lá/gr. Let {fn}n = i be a nested sequence such that fneFn for all n and
g((\n = if:)=y- Since ye gin Tm(fiñ), T-\gl) r\£#0. Since g(x)egim n Tn(fm)
TmHgin) <~\fim + 0. Therefore, x e (\^xfin^Nai2r(2r,+3l¡)(r]n=ifñ), and there must
exist x' e Dn=xfiú such that d(x, x')<(i)m(2ij + 3/x). Thus, x' e V. Since g(x')=y,
by the definition of g, we have shown that g(V) contains gi u- • -*J gTm. Since
g(x) e Int (gi u • ■ ■ u grm), g is an open mapping.

We now want to show that if {fi„}n = i is a nested sequence such that/n e Fn, then
g-1(g((\n = lfin))=nñ=rfin.

By the definition of g, we know that, g~1(g{(~)n = ifin)) contains (\n = ifin- If
g-Kginñ-i/nWnñ.ifn, then there exists x' eg-^giD^i/n))-fl"=iU Let
{fn}n = i be a nested sequence such that x' e/n' e Fn for all n. Choose m large enough
that (ir(2^ + 3íi)<lí/[A-', n^i/n]- Since g(x')=g(n?=ífin), Tm(fim) n Tm(f„)*0.
Therefore,/ra nf^0 so that r)"=i/^W(2,+M(n;=./«). Since x' e C^mif¿¡
there exists x e (\n = xfn such that d(x, x')<(i)m(2in + 3p.). Therefore, d(x', (\n = ifn)
^d(x,x')<id[x',r]n = ifin], a contradiction. Thus, g -\g (Hi-i fin)) = C)ñ=i fin,
and we have established our proposition.

Notation. If G is a collection of subsets of X and ,4 is a subset of X, then let
St (A, G) = {g e G : g n A=£0}. This collection is called the star of A. Inductively,
let Stn (A, G) = St(Stn-1 (A, G)*, G). For convenience let St° (A, G) denote the
collection of all members of G contained in A. Let St" (A, G) be the empty collec-
tion for all negative integers k.

When R. D. Anderson proved Theorem 1 in [6], he added additional inductive
conditions to the original hypotheses in order to prove the theorem. For our
purposes it is convenient to isolate these conditions into a separate proposition.
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Proposition 3. Let X, Y, andZ be compacta such that X<^Z. Suppose there exist
two sequences 7={•/„}"=! ond K={Kn}ñ=1 of finite collections of compacta with the
following properties :

1. Jx = {Y} and J* = Y for all n.
2. Kx={Z}, K*. x 2 K*, and r]n°= i K* = X.
3. Given e>0 there exists m such that n>m implies p-(Jn)<e.
4. The members ofJn and Kn have disjoint nonempty interiors.
5. There exists an integer Ln > 1 with the property that ifjn e Jn and jl-x, • • -,jn-i

are all the members of'Jn-x which meet SF» + 1 (jn,Jn)*, thenj^-x n- ■ ■n,jn-i¥:0.
6. There exists a one-to-one and onto correspondence between Jn and Kn given by

Rn such that Rn(jn) n RÁjñ) ¥"0 if and only if jn nj'n + 0. There exists r¡>0 such
that ifjn njn¿0, then Rn(jn)^Mvl2n-i(Rn(j'n)).

7. Ifjn eJn andjn-xeJn-x, then Rn(jn) n Rn_x(jn_x)^0 ifand only ifjn_x meets
StL"(jn,Jn)*. Also if kne Kn and kn_x£ Kn-i ond knn kn-x¥"0, then k„
nlnt(kn.x)¥=0.

8. There exists X>0, such that ifjn n;n_1#0, then Rn-i(jn-i)^Nmn(Rn(jn)).
Then there exists an open map g of X onto   Y, which has the property that

g~1(g((\ñ=ifn)) = r\n = ifn, where {/„}"=! iS a nested sequence such that fn = Rn(jl)
U ■ • • u Rn(jrn), where jn U- ■ ■ U/J 6 G%. (Gn is defined below.)

Proof. Let G'n = {j\Kj-■-kj jrn : jnn-■-njn7t0 ,j'nejn}. A member g of G'n is
in Gn if and only if g=j* U • • • U jrn and jn n • • -njrn nj=0 for all j <£ {ji,..., jrn}.

Note that G*=Y.
Since the members of Jn have nonempty disjoint interiors, each member of G„

can be written uniquely as a union of members of Jn. If gn=j\ u- • Uy'^, then
define T~1(gn) = Rn(jn) u- • u Rn(jrn). Since gn is written uniquely as a union of
members of Jn, F"1 is a well-defined function from Gn onto the collection Fn
= {Tñ l(gn) '■ gne Gn}. Since distinct members of Kn have disjoint nonempty
interiors, F~1 is one-to-one. Therefore, Tn is well defined.

The proof of Proposition 3 will be a verification of the seven properties listed
in the hypotheses of Proposition 2. Since most of this checking is routine, only a
few properties are verified here.

Property 4b. Let x e X. We must find a nested sequence {/„}"= i such that
x efn e Fn for all n.

Let fix =Z. For w>2 choose kn e Kn such that xekn. Let kn-x,...,kn-xbe&ll
the members of Kn_x which have the property that Rñ-x(kn-i) meets
Stí'» + 1 (Rñ1(kn),Jn)*. If kn_x is a member of A',.! which contains x, then xekn
n kn-x, so that by hypothesis 7, Rñ-i(kn-x) meets StL» (Rñ1(kn),Jn)*. Therefore,
kn-x e{k\-x,. ..,krn_x} and x e fej_1 U- • -U krn-x.

Now choose fn-x to be any member of Fn_x which contains k\-x u- •-lJ ^n-i-
(There does exist such a member of Fn-X, because by hypothesis 5, we know that
Rñ-i(kn-i) n- ■ -n R~±x(kn-i)¥10.) We want to show thatif/n_! has been chosen
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as above for all n, then the sequence {fn-x)n = 2 ¡s nested. Since x e kn, we know that
kn will be contained in/n. Thus,/nsSt (kn, Kn)*. Therefore, it is sufficient to show
that St (kn, Kn)*Çkl-x u- • u krn.x. If K e St (kn, Kn) and k'nnkn_x¥ 0, where
kn.xeKn.x, then R-}x(kn-i) meets SF» (R-\k'n),Jn)*. Since knnk'n^0,
R~\kn)nR-\k'n)^0, and thus «i-li(*.-i) meets SF» + 1 (*n U¿n),./n)*. There-
fore, ^n_! is a member of {k\-x,..., krn_x}. Therefore, k'n^k\^x KJ- •-u ^n-i-

Property 4c. Let j e F. Choose _/'„ ejn such that )> eyn. Let j\-x,. ■ .,jTn-i be all
the members of Jn_x which meet StL» + 1 (jn,Jn)*. Since j^.x n- ■ -njn_x^0, there
exists gn-ie Gn_x which contains j\-x u' • u7n-i- We want to show that the
sequence {gn-x}ñ=2 has the required properties.

Note thatyegn_x. For if y ejn.x, thenjn njn_x¥0, andjn.x meets St (jn, Jn)*.
Therefore, yn_! meets SF»+ 1 (jn, Jn)* and jn.xe{jl_x, ■ ■ -Jl^i}- Fhus, yej^x
U-..Uyr_1çgB_1.

We must show that gn£gn_i. Since y ejn, jnÇgn. Therefore, it is sufficient to
show that St (jn, Jn)*c#_a U- • • Ujï_x. Ujn e St (jn, Jn) and j'nnjn_x¥=0, where
jn-xeJn-i, then Á_1nSt(/;,7„)V0. Hence, y"n _, n St2 (yn, 7n)* / 0 and
7n-i e(7n-i, • • -,jn-i}. Fhus, StO;,^*^;1-! U- • -UjZ-i.

We want to prove that Tn~1(gn)^Tn~}1(gn-i)- It is sufficient to show that if
jn e St (Jn, Jn), then Rn(j'n)<=L Rn_ ^x) u • • • u Pn_^_ J. If £ 6 St (yn, Jn) and
*»0») n Pn _ x(jn -1) # 0, thenyn _ ! n StL» CÄ, A)* # 0. Fhus,;n _ t n St1»+ » (yn, /„)*
#0 andy;.! G{y;l_1;.. .,fn.x}. Therefore, Rn(Jñ)^Rn-x(Jn-i) U- • -U Rn_x(jrn-i)-

Property 6. Let/n,/ñ6F„ such that/„ n/ñ/0. Fhus, there exist kn,k'neKn
such that &„£/„, k'n<^fi'n, and knn k'n^0. By hypothesis 6, we have

Property 1. LetfneFn and/n_1eFn_1 be chosen such that/.=/,_!• If jneJn
andyns7;(/n), then since Tn(fn)^Tn-x(fn-i), there exists jn_x £ Fn_ x(/n_j) such
that jnnjn_x¥=0.   Since   Rn-x(Jn-i)^Nm»(Rn(jn)),  /»-iS#*a»-i(A-iC/«-i))
^^/2"-1(ArA/2"(Pn(y'n)))^Arci/2,»(2fI+w(Pn(7n))^ Ar(l/2)n(2„+M(/n)- If We let

M = 1(2, + A),
we have Property 7.

Proposition 3 now follows from Proposition 2.

3. The two main theorems.
Definition of the universal curve. Let A^ be the set of points in E3 for

which O^x^ l,0£j>al, and O^z^l. For w = x, y, z and /=1,2, 3,..., let Dt(w)
be the collection of all open intervals on the w-axis of length 1/3' whose endpoints
have vf-coordinates which are positive rational numbers less than 1, the expression
for each such rational number having 3' as a denominator when in lowest terms.
Let M be the set of all points (x, y, z) of TV for which for no / do two of the points
(x, 0, 0), (0, y, 0), and (0, 0, z) belong to the set Df(x) u Df(y) u Df(z). The set
M is called the universal curve.
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Notation. If A Ê X, then Bd (A) will denote the boundary of A relative to X.
Cl (A) will denote the closure of A relative to X. If G is a collection of subsets of X,
then let G(A) denote the collection of all members of G which are contained in A.
Let G'(A) denote the collection of elements of G not contained in A. Let ZG(A)
he those elements of G(A) which meet elements of G'(A). Let \G\ denote the
cardinality of G.

Definition. If G is a collection of point sets, then G is said to be simple provided
1. For each g eG,g-Bd(g) is connected and Cl (g-Bd (g))=g.
2. Distinct members of G have disjoint interiors relative to G*.
Definition. A finite collection of sets G = {gx-,... .,gs} is called a simple chain

if gi n gk + <3 if and only if \i—k\ ¿C
Note. In this paper it will always be the case that simple chains are simple

collections.
The terms interlace, 1-dimensional collection, ^-defining sequence, and B-

defining sequence are all defined in [2] so that we will not define them here. In the
same paper R. D. Anderson showed that every 1-dimensional continuum for
which there exists a P-defining sequence is homeomorphic to the universal curve.

Proposition 4. If Y is any continuous curve, then there exist two sequences of
finite collections ofcontinua J={Jn}n = i ond K={Kn}n = \ with the following properties:

1. Jx={Y}andJ*=Yfioralln.
2. Kx={I3} and K*£ K*~ x for all n.

4. Jn and Kn are simple collections.
5. There exists an integer Ln> I with the property that ifijn ejn andj^-x, ■ ■ -,jn-i

are all the members ofiJn-x which meet SF»"1"1 (jn, Jn)*, thenjn-x Ft- • -n jrn_xi^0.
6. There exists a one-to-one and onto correspondence between Jn and Kn given by

Rn such that Rn(jn) n Rn(j'n)¥=0  if and only ifjnnj'n^0. If jnnj'n + 0, then

7. Ifjn e Jn andjn _ x e Jn _ x, then Rn(jn) n Rn_ x(jn _ i) # 0 if and only ifjn _ x meets
StLn (jn,Jn)*. Also, ifikneKn, kn.x e Kn-X, and kn n kn_x + 0, then

knnlnt(kn-x)¿0.

8- IfJn^Jn, Jn-xeJn-x, and jn njn_x^0, then Rn(jn) meets every member of

Hn - x(Rn - l(jn - l)) Ond Rn_x(jn-x)^ Nai2»(Rn(jn)).
9. There exists a finite simple collection of polyhedral 3-cells Hn such that Hn

refines Kn, K*-H*, and H={Hn}ñ=i ¡s a B-defining sequence. Also, p-(Hn)<4/2".
Distinct members of Hn meet in the empty set or in a 2-cell.

10. For each jn ejn there exists a collection AJit^Hn such that A*n^ Rn(jn) and such
that ifijn eJn and jn njn^0, then Rn(jn) meets each member of Ajn and each com-
ponent of Rn(jn) meets some member of Ajn. Each component of Rn(jn) will contain
exactly one member of Ain. No member of Hn will meet two members of the collection
{azAjn -JneJn}.
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Proof. We can choose the metric on F so that d[Y]< 1. Define Rx between Jx
and Kx by Rx(Y) = I3. Since d[Y]<l,p-(Jx)<l.

Let Hx={l3}. Since d[I3] = 3m<2, M(//1)<4/21. All of the other conditions in
the first stage of the induction are trivially satisfied. Assume the theorem for the
integer n.

We now want to define a function yn from the collection E={h n K : h, h' e Hn
and h n h'^,0} into the subsets of I3 with the following properties:

1. yn(h n h') is a polyhedral 3-cell contained in Int (h u h').
2. The members of the collection {yjfi n h') : hj^h'} are pairwise disjoint.
3. If h and h' are distinct members of Hn and h n A V 0, then yn(h n h!) n yn(h)

= 2-cell and yn(h n h') nhn h' = 2-cell.
Moreover, we want to require that there exists a simple chain of polyhedral

3-cells, Tn(h n h!) such that
1. The first member of Tn(h n h') is yn(h) and the last is yn(h') (or vice versa).
2. Tn(hnh')* = yn(h)Uyn(hnh')Uyn(h').
3. Tn(h n h')* refines {/?, h'} and has an equal number of members in each of h

and h'.
4. Consecutive members of Tn(h n h!) meet in 2-cells.
5. ¡l(fn(h n h'))< 4(|F + 1 and if h ¥ If, then \Tn(h n h')\>50.
Let yn(h) be a polyhedral 3-cell in the interior of h such that d[yn(h)]<4(^y + 1.

(The set yn(h) can be taken to be a cube.) Let Tn(h) = {yn(h)}. Let h n h be a mem-
ber of E, where h^h'. Let A be a polygonal arc in the interior of h u h' such that
A meets the 2-cell h n h' in one point, and A meets each of yn(h) and yjfi') in an
endpoint of A. We can assume the members of the collection of all such arcs are
pairwise disjoint with the same properties as the old. "Fatten" each arc slightly
so that the fattened arcs remain disjoint and meet yn(h) in a 2-cell. The set
yn(h n h!) will denote the fattened arc between yn(h) and y„(h'). It is now clear that
we can find a simple chain of 3-cells Tn(h n h') with the desired properties. Let Tn
denote the collection of all 3-cells which are members of some rn(/î n h').

Let y e Y.   Since  y e Int (St (y, /„)*),   there   exists   ey > 0  such   that  NSy(y)
^St(y,Jn)*. The collection {Ney(y) : y e Y} covers Y. Since Fis compact, there
exists a number F > 0 such that every subset of Y of diameter less than F will be
contained m some member of this cover. ■

Let Ln+x = rnaxkeKn {|7Tn(^)|}-|-1.
Pick £<min{l/(«+l), F/(2Ln+1 + 3)} and let Jn+1 be any ¿-partitioning of Y.

LetJn+1={Cl(jñ+x) -.jn+lE-Iñ+l}-
For each/n + 1 eJn+1 we want to construct a polyhedron in H*. This polyhedron

will be denoted by Rn+x(jn+i) and will in fact be contained in {Jnnh-eE y(h n h').
First we must decide which members of Hn the set P„ + i(/n+i) is to meet. Let

jn ejn and let Ajn be the collection given in Property 10 of the induction. If y'n + 1
eJn+1 and jn n St* (jB+i, A+1FV0, but j„nSt'£-1(A+i,A+i)* = 0, then
Rn+iUn+i) is to meet each member of SF^i"* (A*n, Hn(Rn(jn))) and Pn+1(A+i)
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is to miss every member of Hn(Rn(jn)) not in this collection. From now on we will
denote this collection by SrL» + i~k (Afn).

If he Hn, then let J(h) = {jn+x e7n+1 : Rn+1(jn+i) is to meet h}. Let h n h' e E.
We want to define two functions 6\-h' = B\-h and 9^h' = G\-h from J(h) n J(h') onto
collections of 3-cells in Int (Tn(h n h')*) with the following properties:

1. If Q(h,h') denotes the range of 9f-h', then Cx(h, h') u C2(h,h') is a finite
simple collection of polyhedral 3-cells such that \J(h) nJ(h')\ = \Ci(h, h')\ for
j=l,2.

2. Each member of Ct(h, h') meets each member of Tn(h n h') in a 3-cell.
3. If jn+i, JÚ+ieJ(h)nJ(h') and yeTn(hnh'), then jn + 1 njn + 1^0 iff for

/, k= 1, 2, e?-h'(jn+1) n 6hk-h{jn+1) nyisa 2-cell. lfjn+1 nj'n+1 = 0, then

ei-h'(jn+i) n e^'(jn+x) = 0    for i, k = 1, 2.

4. Denote 0?-h by Of and Q(h, h) by Q(h). Ifh^h', then %(j»+ù meets exactly
one member of Ck(h, h'), where k= 1 or 2. In particular, #?(yn+1) n ^-"'(/n-n) is a
2-cell.

To construct these collections first let C'x(h, h') u C'2(h, h') denote a disjoint
collection of polyhedral 3-cells in Int (Tn(h, h')*) such that \Cx(h, h')\ = \C2(h, h')\
= \J(h) nj(h')\ and such that each member of C¡(h, h') meets each member of
Tn(h n h') in a 3-cell. Let C' = \Jhr>h-*z C'x(h, h') u C'2(h, W). We will also assume
that the members of C are pairwise disjoint. Let of-"' be any one-to-one and onto
correspondence between J(h)nJ(h') and C[(h, h'). If j„+1ej(h) nj(h') and
y e Tn(h, h'), then construct a polygonal arc a in Int (y) such that a meets each of
Q\'h Un+i) n y and #2,A'(7n-n) n y in an endpoint. The arc will meet no members
of C other than 0\'h'(jn+x) and d2,h'(jn+i). IfÀ+i andy'ñ+i are distinct members
of J(h) n J(h') with a point in common and y 6 Tn(h, h'), then construct an arc
aiik in Int (y) such that a¡>fc meets each of 0f-h'(jn+x) F\ y and 6k'h'(j'n+\) ^ y in an
endpoint of aUk. The arc aitk will meet no members of C other than 0?,v(7n+i) and
^fc""'(7n+i)- Adjust the collection of arcs so that no two meet. "Fatten" each in
such a way that the collection of arcs remains disjoint, and meets (C)* in exactly
two 2-cells. Associate each fattened arc to one of the two members of C[(h, h!) that
it meets. A member of C¡(h, h') will be a 3-cell which is the union of a member of
C't(h, h') and the fattened arcs associated with it. Let

C=    IJ    Cx(h,h')vC2(h,h').
hnh' £ 0

Let Rn+AJn+l)=ö,1n,-eE ^'"'(Ä+l) U ^<Jn+l)- Let

#n+i = {c n y : c e C, y e rn, and c n y ^ 0}.

Note that p-(Hn+1)<4/2" + 1. Let /Fn+1={Pn+1(yn+1) :/,+1e/,+1}.
Due to space limitations we will check only a few of the properties at the next

step of the induction.
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Property 8. Let jn+1 eJn+1 and jnejn he such that y"n n St (yn+1,7n + 1)*^0.
By the starring rules we know that Rn+i(jn+i) meets every member of
SFn + i^1^* ). Since Rn(jn) is connected and since Ln+1 è |//„(P„(j„))| + 1,

Mn(Rn(jn))  =   StV> (At).

Therefore, P„+i(y'n+i) meets every member of Hn(Rn(jn)). This stronger version of
Property 8 will be needed in the proof of Property 10.

Since p-(H„) < 4/2" and since Pn+i(yn+i) meets every member of Hn(Rn(jn)), we
see that 7^(yn)çAi4/2»(Pn+1(yn+1)).

Property 5. Let yn+1 e7n+i and let jn,.. .,jrn be all the members of Jn which
meet StL» + i + 1 (y'n+i,7n + 1)*. Sincep.(Jn+1)<e,

rf[StW + ia+1,/n+1)*] < (2(Fn+1 + l)+l)e < e.

Thus, there exists y e F such that St¿» + i + 1 (Jn+^Jn+iY^N^y)- By the choice of
Ey we know that y ejn n■ ■ ■ n jn. Therefore, j\n- ■ -njrnj=0.

Property 6. By the definition ofF„ + 1, Rn + i maps7n + 1 onto Kn+1- By construc-
tion distinct members of Jn+1 are mapped to distinct members of Kn+1. Thus,
Pvn+1 is one-to-one.

If jn+u Jñ+i eJn+x and jn+x njn+1 = 0, then P„+i(y'n+1) n Rn+x(j'n+i) = 0■ If
jn+i ^j'n+x¥=0, then pickyne/n such that y'n+1 njn+1 njn=¿0. In Property 8
we showed that each of P„+i(y'n+i) and Rn+x(j'n+i) will meet every member of
Hn(RnUn))- Let h be any member of /7„(Pn(yn)). Since yn+1 ny';+1^0, ö|f(yn+1)
n 0ÏOn+i)^0. Fherefore, Pn+1(y'n+1) n Pn+1(y-;+1)^0.

If Jn+i ^j'n+i¥=0, then we will show that Rn+i(jn+i)^Nxei2n+1(Rn+ÁJn+i))-
Let xe Rn+x(jn+i). Fhere exist heHn which contains x, and y'ne7n such that
h^Rn(jn). lfheAin, then lety^ be a member of/n such thaty"n+1 njn + 1 nj'n^0.
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By Property 8, we know that P„ + i(yn+i) meets every member of Hn(Rn(jñ))- Since
Är.+ iO'n+i) r> Rn(jn)^0, we know by 7 that y'„ n StLn + i (yn+1,7n+1)*^0. Thus,
jn r>j'n¥=0, and Rn(j„) nh-^0. Let A' be a member of Hn(Rn(jn)) which meets /;.
Since P„ + 1(y-; + 1) meets h', d[x, Rn + ÁJñ+x)]<d[h u tf] £</[*]+</[*']< 16/2» + 1.

If h<£AJn, then there exists an integer A such that 0<k<Ln+1 and
A6SF» + 1-fc(^JandynnSt'c(yV+1,7n+1)V0.Sinceyn+1Uy;+1^0,

ynnStfc + 1On+i,A+i)*^0-

Therefore, Pn+1(jn+i) meets every member of SF» +»"k~1 (^*). This collection will
be nonempty because Ln+1 — k— 1 ä0. The remainder of the proof is the same as
whenheAu. Therefore, Rn+xUn+i^Nxe^ + ̂ Rn+Aj'n+i))-

Property 4. The members of Kn+X have disjoint nonempty interiors by con-
struction. We must show that the interiors are connected.

Lemma. Ifi L is a finite collection of closed subsets and A^L*, then A is connected
provided:

1. L* is connected.
2. A n h is connected for all h e L.
3. Ifh, h' eL and hnh'^0, then A nhnh'^0.

Proof. The proof is routine and thus is omitted.
Let jn+x eJn+x. Let jn be a member of Jn which meets y'n+1. We know that

Rn(jn) is connected by our induction assumption. We showed in Property 8 that
Pvn+1(y'n+1)  meets every  member of Hn in  Pn(y„). To  apply the  lemma, let
L = Hn(Rn(jn)) and A = Rn+x(jn+i) Fl Rn(jn)- Therefore, Rn+1(jn+i) ^ KUn) is
connected.

If jñ eJn and Rn+i(jn+i) n Rn(j'n)¥^0, then there exists an integer k such that
^n+i(7n+i) meets exactly those members of Hn(Rn(j'n)) in St" (A*n). If he A/K, then
Stk (h)* is connected because the star of a connected set is connected if the links
are connected. To apply the lemma let L = Stfc(A)' and A = Rn+x(jn+x) F*L*.
Therefore, P„+i(y'„+i) n L* is connected. Since Pn(y'n) n A ̂  0, Rn+x(jn+i)
n (Rn(jn) u Rn(j'n)) is connected. Therefore, Pn+iO'n+i) is connected. Since distinct
members of Hn+1 meet in 2-cells, Int (Pn + i(Â+i)) ¡s ^so connected. Therefore,
Kn+x ¡s a simple collection.

Property 9. Since most of the properties of a P-defining sequence are obvious,
we will only check the interlacing axiom and the fact that H*+1 is connected.

Let h e Hn. Pick jn eJn so that h^Rn(jn). There exists an integer k such that
A6StW-*(0-StW-''-1(0. Therefore, if yn+1 eJB + 1, then Pn+1(yn+1)
n h * 0 if and only if jn n St* (jn+1, Jn+i)*^0. Note that yn n St" (jn+1,7„+ x)*
+ 0 if and only ifyn+1 e Stfc + 1 (yn,7n+1). Fherefore, 7(A) = SF + 1 (y„,yB+1). Since

jn is connected and the members of Jn+1 are connected, J(h)* is connected. Since
61 maps 7(A) onto C¡(A) with the property thaty'n+1 njn+1¥:0 if and only if

'
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0?C/n+i) n 6't(j"n+1)^0,  C(A)* is also connected for /=1,2.  Moreover, since
ei(jn+i) n ei(jn+x)ï0 for eachyn+1 eJ(h), Cx(h)* u C2(A)* is connected.

Let Z denote ZHn + 1(h). If z e Z, then there exists a unique A' e Hn different from
A such that z nh'^0. In fact, z is contained in exactly one member of Cx(h, A')
u C2(A, A'). Denote this member by C(z).

Let Zx and Z2 denote two disjoint subcollections of Z such that Zx u Z2=Z.
Let IF1 = C1(A)*u(lJ2eZlC(z)nA) and W2 = Ca(A)* u (Uez2 C(z) n A). Since
each C(z) n A is a 3-cell and meets each of C¡(A)*, /= 1, 2, in a 2-cell, both Wx and
W2 are connected. Since Cx(h) u C2(A) is a simple collection and since
Int (C(z)) n Int (C(z')) = 0 if z#z', the collection {Wx, W2} is simple. In the
terminology of [2] {Wx, W2} is a simple complete amalgam of /7n+1(A) such that
Zf^ Wi. Therefore, 7Fn+1(A) is interlaced in A.

Since Hn+1(h)* is connected for all heHn, and since H* is connected, the
lemma used in Property 4 tells us that 7F*+1 is connected.

Property 10. Let y'n+1 e7n+1. Picky'ne7n so that yn+1 Oyn#0. Ifyn + 1e7n+1
andy"n + 1 nyn+1^0, theny*n n St (yn+1,7n+ i)V0. Fhus, by Property 8, Pn+1(y'n+1)
meets every member of Hn(Rn(jn))- In particular, P„+i(yn + i) meets every member
of Ajn. If he Ajn andy'n+1 meets yn+1, then by the construction 6í(jn+i) n Sf(jn+i)
t¿0. Thus, 0?(y„+i) meets P„+i(yn+i). Fhe desired collection is

\<r.oo
¿H + 1={eiUn+i)--heAinandi=l,2}.

Note that Afn + 1çA*n. We have now completed the proof of Proposition 4.
Let K be the class of all 1-dimensional continuous curves up to topological

equivalence. Let M be the subclass of K consisting of those elements of K having
no local cut points. Anderson [8] proved that a necessary and sufficient condition
for a member of M to be the universal curve is that it contain no open subset
imbeddable in the plane.

Definition. A map will be called monotone if each point-inverse set is compact
and connected.

Theorem 1. FAere exists a monotone open map of the universal curve onto any
continuous curve such that each point-inverse set is also a universal curve.-

Remark. Since the monotone image of a 2-sphere is a cactoid [1, p. 172], the
monotone image of a compact subset of the plane, will always have dimension less
than or equal to two.

Proof. Let F be any continuous curve. We can find sequences of continua
{Jn}n = i, {Kn}n = i, and P-defining sequence {Hn}ñ=\ with the ten properties stated
in Proposition 4. Let M = (\n = 1 H* = f\n = i &*■ Proposition 3 and Proposition 4
now combine to give an open map g of M onto F. Since {H„}ñ=1 IS a P-defining
sequence, M is homeomorphic to the universal curve. Since the members of Kn
are connected, g will be monotone.
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To show that each point-inverse set is a universal curve, it is sufficient to show
that for each y e Y, g'1(y) is locally connected, g~1(y) has no local cut points, and
g~1(y) contains no open subset imbeddable in the plane(2).

Lemma 1. If jn+a eJn+3, y'n+2e7n + 2, and jn+a <VB+3#0, then Pn + 30'n + 3)
= fln+3(7„+3) n Rn+2(jn+2) u Tx u- • -u Ts where

1. eacA F¡ is a connected union of members of Hn+3,
2. T, n Rn+3(jn+3) n Pn+2(y'„+2)^0 for i=l, ...,s,
3. the set St5 (T¡, 77n+2)* is contained in five members of Hn+x-

Lemma 2. Let  y'n+ie7n+i   for   i=2,...,m.   If jn+2 F»- • -njn+m^0,   then
Rn+m(jn+m)=Rn+m(jn+m) f\- ■ • H Pn+ 2(y„+ a) U S*! U • • • U S„  wA«*

1. each S¡ is connected,
2. each S, meets Pn+m(yn+m) n- • -n Pn+2(y'n+2),

3. eöcA S1; Aej in five members of Hn+1.

Proof. The proof of Lemma 2 follows from Lemma 1 and the construction.
We now will show that g "'(F) is locally connected for all y e Y. The proof given

here follows the technique of [3].
Let x e g~1(y) and let F be an open subset of g~x(y) containing x. It is sufficient

to show that x is interior to the component of F containing x.
Pick n large enough so that St3 (x, Hn)* n g~l(y)^ V. Let p=St(x,Hn)*. If

h, h' e Hn, then we will show that there is at most one component of g~1(y)
n y(h n A') which meets every member of Tn(h n A'). This will prove that there are
only a finite number of components of g~^(y) n (St (p, Hn)* u \Jpnh±a y(h n A'))
meeting p. Therefore, F has only a finite number of components meeting p.

Let {/„}"= i be a nested sequence of sets given by the conclusion of Proposition 3
SUCh  that r)n = lfn = g-1(y).

Let h n h'e E, where A^A'. If Pn+i(y'„+i) meets y(hnh'), then Rn+i(jn+\)
ny(A n h')=d1-h'(jn+¡) u ö§,fe'(yn+1) ny(h n A'). From now on we will denote
6i-h'(jn+i) by #,(/„+ j. Note that/B+1 n y(A n A') is connected.

Let y(h) = yx, y2, ■ ■ -, y>c = y(h') be the members of TJjinh') listed so that
yinyj + 0 if and only if |/-y| á 1.

Let F denote any continuum in /7*+i which is not contained in y(A n A'). If S
is a component of F n y(A n A') meeting y¡, then note that S will either meet the
interior of every member of {y1;. .., y¡}  or the interior of every member of
{y¡, ■■■, Vk}-

Suppose fn+m n y(h n A') contains two components Kx and K2 which meet every
member of Tn(h n A'). Let hn+m be a member of Hn + m contained in Kx n y25.
Pickyn+me/n+m such that hn+mçRn+m(jn+m). We can find yn+i eJn + i for i = 2,

...,m—l, such that jn+mnjn+m-x n- ■ ■nJn+2^=0- Therefore, by Lemma 2,

(2) The author is grateful to Professor Anderson for suggesting this approach.
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we can find a connected subset of T of P„+m(yn+m) n y(h n A') which contains
An+m and meets (Pn+m(yn+m) n---n Rn+2(Jn+2)) n (y21 u• • • u y29).

Let hn+m be a member of Hn+m contained in Rn+m(jn+m) n- • -n Rn+2(jn+2)
which meets F. Note that hn+m^Kx n (y20 u- • u y30). Since ^*n+2 n y(A n A')
= 0, we know that Rn+m(jn+m) n- ■ -n Rn+2(jn+2) is not contained in y(A n A').
Since P„+m(7n+m) n-'-n Pn+2(7n+2) is connected, we know that the component
of (P„ + mO'n+m) H- • -n Än+aiA+a)) n r(/i n A') containing Ai+m, denoted by Ü^,
either meets every member of {yx,..., y20} or {y30,..., yk}. Since |rn(A n A')| >50,
both collections contain at least twenty members so that we can assume K[
meets every member of {yx,..., y20}. Since K2 meets every member of Tn(A n A'),
K2 meets yn.

Let A2 + m be a member of Hn+m contained in K2 n yxx. Choosey„+m e/n+m and
Jn+m-i EJn+m-i so that An+m£Pn+m(yn+m) n Pn+m_j(yn+m_j). Since Rn+m(jn+m)

meets every member of Hn+m_x in Rn+m-i(jn+m-i) that Pn+m(y'n+m) does (or vice
versa), we know that A^ contains a member of //n+m(Pn+m(y'n+m)) in yxo^yn
u y12. Thus, applying Lemma 2 as before, we can find hn+me Hn + m such that
h3n+m^K2 n Rn+m(jn+m) n- ■ -n Rn+2(jn+2) n (y5 u- • -u y17). Therefore, for some
y¡ e {ys, ■ ■ ■, Yn) there exists two members An+1 and h'n+x of /7n+1 such that
hn+x u A;+1Çyt, Kx nRn+m(jn+m)n- --n Pn+2(y'n+2) n An+1/0, and

^2 F> Rn+m(jn+m) H- ■ -H Pn+2(y'n+2) O A^+1   #   0.

Since An+1 u A^+jÇyj n/n+1, we know by the rules of construction that An+1
nA;+1#0. Thus, Rn+m(jn+m) n- ■ -n Rn+2Ün+2) n (hn+i vh'n+1) is connected
and A-! n K2 + 0. This contradicts the assumption that A\ and AT2 are distinct
components. Therefore, /n+m n y(h n A') contains at most one component which
meets every member of Tn(A n A'), and g~\y) is locally connected.

The set g~\y) has no local cut points. Let xeg~x(y) and let U be a connected
open subset of g~x(y) containing x. Suppose U—{x} is not connected. Let t/j and
U2 be two different components of U—{x}. Let ux e Ux and w2 e U2. Choose n
large enough that St2 (x, Hn)* n g~x(y)^ U-{Ux, u2}.

Choose A and A' in 7Fn andy'n+1 eJn+1 such that x e 0f'h'(JB+i). There is no loss
of generality in assuming that x e Int WX/n+i))-

Let^ = oï-"-(7n+1).

Lemma 3. lfm > n, then there exists a function Tm ofHm into Hm with the following
properties:

1. 7/Am, h'm e Hm andhm nh'm^0, then Tm(hm) n Tm(h'm)^0.
2. IfhmeHm, hm+1 e Hm+1 andAm+1çAm, then Fm+1(Am+1)çFm(Am).
3. If hme Hm, then hm and Tm(hm) lie in the same member of Km.
4. Ifhm e St* (Afm), then Tm(hm) e St* (AY) for alljmejm.
5. 7/Am^St (Sx, Hn)*, then Fm(Am)sSt (Sx, Hn)*. 7/Am$St (Sx, Hn)*, then Tm(hm)

=Am.
6. x <p Tm(hm)fior all hm e Hm.
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Proof. The proof is left to the reader.
Combining Lemma 3 and Proposition 1 we have a continuous function / from

M into M defined by f(DS=n+x 'U = flï=«+i Fm(Am), where the sequence
{Am}m = n+i is any nested sequence with hm e Hm. Moreover, Properties 3, 5 and 6
in the lemma tell us that

L ñg-^yy^g-^y),
2. fi\ M-St (Sx, Hn)* = identity and/(St (S1!, //„)* n A/)çSt(51, Hn)*,
3. xif(M).
Let fix=fi\g~1(y). Note that fix(U)<= U. Moreover, since u± and u2 are not con-

tained in St (Sx, //„)*, /i(wi) = Wi andfix(u2) = u2. Therefore, fi(U) is a connected
subset of U which contains both ux and u2. But x$fx(U) which contradicts the
assumption that Ux and U2 are distinct components of U—{x}. Therefore, g~1(y)
has no local cut points.

The set g~x(y) is not locally imbeddable in the plane. Let U be any nonempty
open subset of g~1(y) and let xe U. Pick n large enough so that St2 (a-, Hn)*
n g~1(y)— V. For each integer m>n chooseym eJm so that y e jm. Sincey'm + 1 njm
#0, Pm+1(ym+i) meets every member of Hm in Rm(jm). Therefore, the same argu-
ment as that used to show that {/7n}™=1 is a P-defining sequence can be used to
show that {Hm(Rm(jm)n- ■ n Rn+x(jn+i))}m = n + i is a P-defining sequence. Thus,
X=(~)%=n+i RmUm) Is homeomorphic to the universal curve. Note that X is
contained in g~1(y). Since x eg~\y), we know by the construction that Pn+i(yn+i)
n St2(x, 7Fn)*/0. Therefore, Xn St2 (x, Hn)*/0 and thus ATi t/#0. Since
the universal curve is locally not imbeddable in the plane, U is not imbeddable in
the plane.■

Proposition 5. If Y is any nondegenerate continuous curve, then there exist two
sequences of finite collections of compacta J={Jn}n = i ond K={Kn}ñ=i with the
following properties :

1. Jx = {Y} and J* = Y for all n.
2. Kx = {Is} and K* £ K*. x for all n.
3   u(J )<lln
4. Jn and the collection of components of members of Kn are simple collections.
5. FAere exists an integer Ln> 1 with the property that ifjn ejn andjn-x, ■ ■ -,jn-i

are all the members of Jn-x which meet StL» + 1 (y'„, /„)*, thenjn-i n- ■ -njrn_x±0.
6. FAere exists a one-to-one and onto correspondence between Jn and Kn given by

Rn such that Rn(jn) n Rn(jn)#0  if and only if jnnj'n^0. Ifijnr\jn^0, then

Rn(jn)^N6l2n-i(Rn(j'n)).

7. 7/y'ne7n and jn-x eJn-x, then Rn(jn) n Pn_1(yn_1)#0 if and only if jn-x

meets St1-(y'n,/„)*. Also if kneKn, kn-x^Kn-x, and knnkn_x + 0, then kn
nlnt(kn_x)¥=0.

8. IfjneJn, jn-xeJn-i and jn-x njn^0, then Rn(jn) meets every member of

Hn _ x(Rn _ x(jn - x)), and Rn . x(jn _ 0 £ Na,ARn(jn)).
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9. FAere exists a finite simple collection of polyhedral 3-cells Hn such that Hn
refines Kn, K* = H*, and H={Hn}n = \ is a B-defining sequence. Also, p.(Hn)<4/2n.
Distinct members of Hn meet in the empty set or a 2-cell.

10. For each jnejn there exists a collection AJn^Hn such that Afn^Rn(jn) and
such that ifijneJn and jnnj'ni^0, then Rn(j'n) meets each member of Afn. Each
component of Rn(jn) will contain exactly one member of Ajn and each component of
Rn(jn) will meet some member of Ajn. No member of Hn will meet two members of
the collection {a e Ajn : jneJn}.

11. If jn n ■ ■ ■ n jn / 0, then the diameter of each component of Rn(jl) u • • •
U Rn(jn) is less than 20/2"" F

Proof. We can choose the metric on Y so that d[Y]< 1. Define Rx between Jx
and Kx by RX(Y) = 13. Since d[Y]< I, fi(Jx)< 1.

Let Hx={I3}. Since d[I3] = 3li2<2, M(/F1)<4/21. All of the other conditions in
the first stage of the induction are trivially satisfied. Assume the theorem for the
integer n.

Let y e Y. Since y e Int (St (y, /„)*), there exists ey>0 such that N£y(y)
^St (y, /„)*. The collection {N£¡/(y) : y e Y} covers Y. Since F is compact, there
exists a number e >0 such that every subset of F of diameter less than F will be
contained in some member of this cover.

Let L'n+x = l + \{hnh' : h,h'eHn and AnA'#0}|. Let Z.n+1 = 3L'B+1. Let yx
and y2 be two distinct points in Y. Let e be any positive real number such that

e < mm{(n+l)'1,e'l(4Ln+x + 3),^d(y1,y2)}.

LetJn+1 be an e-partitioning of Fand/n+1={ClY (y") :j'eJñ + 1}.
Let jneJn and let Ajn be the collection given in Property 10 of the induction.

If Jn+i^Jn+i and jnn SF(yn+1,7n+x)* + 0, but jn n St*"1 (y'n+1,7n+1)* = 0,
then Pn+i(y'n+i) is to meet exactly those members of Hn(Rn(jn)) in St1**!"* (A*n).

Since we will need stronger versions of Properties 5 and 8 as well as Property
7 to define the construction of Hn+1, we mention them now. In the same way that
we proved Property 5 in Proposition 4, we can prove that ifjn, ■ ■ -,jn are all the
members of Jn which meet St2L« + i (yn+i,7n+i)*, then jln- ■ ■njrn^0. Similarly,
we can prove that if y'n n St2L" + i (yn+1,7n+i)*^05 then Pn+i(y'n+i) meets every
member of Hn(Rn(jn)). Property 7 is the same as before.

Let A and A' be members of Hn such that A n A V 0 • For each such pair we want
to define a subcollection of Jn + 1. If A = A', then let 7(A) = {yn+1 : Pn+i(y'n+1) is to
meet A}. If A^A', then /(A n A') will be a subcollection of 7(A) n J(h') defined by
the two cases below.

Caje 1. Let Gn be defined exactly as Gn is defined in the proof of Proposition 3.
If g e Gn and g=jn u • ■ • u/' then let

X(g) = {hnh' :hnh' * 0,h*h',hvh' £ Rn(jïï u ■ • • u Rn(jO}-

Note that \X(g)\<L'n+1.
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We want to define a collection of subsets f with the following properties :
1. The set | is contained in Jn+1-
2. The members of £ are pairwise disjoint.
3. If J*B+1e| and jñ+1eSt2(jn+x,Jn+i), then Rn+xUñ+i) meets exactly those

members of Hn in 77n(Pn(y¿) u • • • u Rn(jrn))-
4. |£| = |A(*)|.
If X(g) is the empty collection, then let $ also be the empty collection. If X(g)

is nonempty, then letyn+1 be a member of Jn+1 such thaty'i fV • •AjB n/„+1#0.
Let f' = {y'i+i,.. -Jn + i} be a simple chain in 7n+1 such thaty'°+1=y'n+1 andy'^+i
nBd(g)¿0. The collection i = {j°+1,jn + i, ■ ■ -,jntig}]} will have the desired
properties. Let <p be any one-to-one correspondence from | Onto X(g). Ifyn+i e £,
then lety'n+1 be a member of J(<f>(jn+x))- Note that if <f>(jn+1) = h n A', theny'n+1
eJ(h)r\J(h').

Case 2a. Let heA]n, where jneJn. If yn+ie7(A), but there exists yB+1
eSt(y'n+1,7n+1)-7(A), then chooseyBe/B so that y"; nyn+1#0. Sincey'^ r>yn#0,
Rn(j'n)nh + 0. Let A' be a member of Hn(R„(jñ)) which meets A. Lety'n+l be
a member of J(h n h'). Since Pn+i(y„+1) meets A', yn+1 is also a member of
7(A) n /(A').

Cflje 2b. Let A e Hn(Rn(jn)), but A £ /!,„. Let Ai be the member of Ain in the
same component of Rn(jn) as A. Let t? = {A1; ..., h¡-x, A¡} be a simple chain of
minimal length in Hn(Rn(jn)) such that A¡ = A. Note that rj has at least two members.
Ify'n+i67(A), but there exists j'n¿ x e St (yn+1,7n+1)— 7(A), then let y'n+1 be a
member of J(h¡_x n A). The chain tj will be considered fixed for all members
of 7(A). Since r¡ is of minimal length, we know thatyn+1 eJ(ht-x)-

Let Tn be a simple 1-dimensional collection of 3-cells with the same properties
that r„ had in Proposition 4. Also, let y(A n A') be defined as before.

By the same methods as those used in Proposition 4, we can define a simple
1-dimensional collection C of polyhedral 3-cells in T* with the following properties:

1. If A and A' are members of 77n with a point in common, then there exist two
one-to-one functions of 7(A n A') into C, denoted by ei-h' = ff[-h and 6%-h' = 6%-h.
If Cj(A, A') denotes the range of 0?,v, then the members of C¡(A, A') are pairwise
disjoint.

2. The set C¡(A, A')* is contained in Int (rn(A n A')*).
3. Each member of C¿(A, A') meets each member of T„(A n A') in a 3-cell.
4. Ifyn+1 eJ(h), then e\(jn+1) n ffa(yB + 1)#0.
5. Let C' = Uw?iC1(M')VCs(M'). If A#A', then Öf-*V(Jn+1) meets

exactly four members of C. In particular, öf,Ä'(yn+1) meets each 0£(y'n+1) and
ör(7'n+i), where fc=l, 2. Since y (A n h')^J(h) nj(h'), 0&jn+x) and flf(/i+J will
exist.

6- Ify'n+i andyn+1 are distinct members of J(h) such thaty'n + 1 nj'n+x¥i0, then
there exist four simple collections of polyhedral 3-cells, af(yn+1) and a?(yú+i)
where /'= 1, 2, with the following properties:
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(a) The set a?(y„+i)* is contained in y(A) and |aiI(y'n+1)|=2.
(b) One member of af(y'n+1) meets Of(jn+1) in a 2-cell, and the other meets

6ÏUn+i) in a 2-cell. Moreover, a1(jn+ x)* meets no other members of C.
(c) Distinct chains of the form a? have disjoint underlying point sets.

Let cc(yn+1) = the collection of all 3-cells which are members of some aï(jn+x).
LetC=C'u(a„ + 1e/„ + 1«(7n+i))-

Let 77n+1 and Kn+1 be defined as in Proposition 4. Let

Rn+l(jn+l)  = U (Ohfh'Un+ l) U ^'(jn+j) U *(jn+ 0*.
iB+ae/<ftn»')

We now have to check that the eleven properties in the induction statement hold
for the integer n +1.

The first nine properties can be checked in the same way that the first nine
properties in Proposition 4 were checked.

Property 10. Let AT be a component of P„+i(y'n+1). Let A be any member of Hn
such that A"nInt(A)^0. Note that eî(jn+1)çK. If St(y'n+1,yn + 1)çy(A), then
Oî(y'n+i) exists for aff/B+1 eSt/n+lfjB+1). But if this is the case, then Rn + iUñ+i)

If St (jn+x, Jn+x)$J(h) and A e Ajn for some y'„ e Jn, then by Case 2a, we know
that there exists j'n eJn and A' e Hn(Rn(jn)) such that A' n A#0,y"¿ ny'n+l5¿0, and
jn+1ej(hnh'). Since yn+1e7(AnA'), ^'"'(Jn+i) exists. Moreover, 0î(yB+1)
u ^**'(/»+i) u £(&+i) ¡s a connected subset of Pn+1(yn+1) so that Bhx(jn+X)^K.
Since St(y'n+1,yn+1)çy(A'), #f(y'n+1) will be the desired member of Hn+1(K).

If St(y'n+1,yn+1)$y(A) and h^Rn(jn), but A £ ,4Jn, then by Case 2b, we found a
simple chain ij = {A1,..., A(_i, ht = h} in Hn(Rn( jn)) of minimal length where Ax e.4yn.
By the starring rules we know that St (yn+1,yn+1)çy(Ai_1). As above, 0î1_1(yB+i)
will be the desired member of Hn+1(K). Pick one such member from each compo-
nent of Rn+x(jn+i) and denote this collection by Ajn+1. Note that we can assume
that lLn+leJB+1 A),*i is a subcollection of 0x = {6xt(jn+x) ■ he Hn,jn+xeJ(h)}.
Since no member of 7fB+1 meets two members of 6X, no member of 77n+1 will
meet two members of {a e Aln + l : jn+x ejn+x}.

Property 11. Let jn + x, ■ ■ >7»+i be distinct members of Jn+1 with a point in
common. We want to show that if K is a component of Rn+X(jk+X) {J~ ■ •
ui^+1(JB+1),then¿[*]<5-4/2».

Let 7)1={yn+1 e7n+1 : y'n+1 e7(A n A') under the rules of Case 1}. Let
L^2 = {jn+i e7n+1 :y'n+i 6 7(A n A') under rules of Cases 2a and 2b}. We want to
show that DfnD* = 0. If yB + 1 e St2 (Dt, 7n+1), then there exists geGn such
that g=jn u- • •vjn' and Rn+x(jñ+i) meets exactly those members of 77n con-
tained in Rn(jn) U---U Rn(jn). Therefore, no member of St (D*,Jn+1) can be a
member of D2 and D\ n D* = 0. Therefore, the collection{yB + i,.. .,y'ñ+i} does not
contain members from both Dx and D2. Hence, we can consider the two cases
separately.
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Cßje 1. Since the members of Dx are pairwise disjoint, only one member of
Un + i, • • -,7'ñ+i} can possibly belong to Dx. lfjn+i e Dx, then exactly one compo-
nent of ÄB+i(y„ + i) u- • -u Rn+x(jn+i) will meet more than one member of 7F„.
Namely, the component containing #î(jn+i)u ®\"h'(jn+i) u ^lUL+i), where
hnh' = cj>(jn+x). In this case d[K]^d[h u A']<2-4/2".

Case 2. Suppose A' is a component of P„+i(y'n + i) u' ■ 'u ^n + iOn + i) and some
member of {jn + i, ■ ■ -,jn+i} is in D2. If Kn P„(y'n)^0, then let A0 be a member of
Hn(Rn(Jn)) such that A0 e St* (i£i and K n St*"1 (^*)* = 0.

Note that there does not exist any simple chain of four members {A0, Als A2, A3}
in Hn(Rn(jn)) such that K nh¡^0 for i = 0, 1, 2, 3 and A" n (A¡ u Ai + 1) is con-
nected. Therefore, if C is a component of Rn(jn), then AT n CçSt2 (A0, 77„)*. If
^n+iO'n+i) ^ A*$C, then by Case 2a we know that there exists yT+j such that
jn r\jn + x + 0 and jn+1eJ(h0 n A'), where A' e Hn(Rn(jn)). Since Rn+.i(jn+i) meets
every member of Hn(Rn(Jn)), ji+i is not a member of any 7(Aa n he), where A"
uAÄ£Pn(y„) and A°VA". Therefore, K n Rn(jn)sSt(h0, Hn)*. Since no member
of 77n meets two members of A = Uj„e/„ ^;„> each member of St (A0, 77n) meets no
member of A other than A0. Therefore, K^St2 (h0, Hn)* and i/[A:]<20/2". We have
now established our theorem.

Definition. A map is called light if each point-inverse set is totally disconnected.

Theorem 2. FAere exists a light open map of the universal curve onto any non-
degenerate continuous curve such that each point-inverse set is a Cantor set.

Remark. The above theorem is not true if we replace the universal curve by
the plane universal curve. L. F. McAuley [17] showed that there is no light open
map from the plane universal curve onto a 2-cell.

Proof. Let F be any nondegenerate continuous curve. By Proposition 5, we can
find sequences of compacta {Jn}n = i, {Kn}n = u and {Hn}ñ=i with the eleven properties
stated there. Let M=n™=i #* = n™=i K*. Proposition 3 and Proposition 5 now
combine to give an open map g of Monto Y. Since {Hn}ñ=i is a P-defining sequence,
M is homeomorphic to the universal curve. Since the diameters of the components
of Rn(jn) u ■ ■ ■ u Pn(y'B), where jn n• • • n/B#0, are less than 20/2", g will be light.

Each point-inverse set is a Cantor set. Let y e Y and x e g~l(y). Since g is light,
it is sufficient to show that every neighborhood of x contains two points of g~l(y).
Let F be any neighborhood of x in g~*(y). Let {/„}"= i be any nested sequence
given by the conclusion of Proposition 3 such that g((\n = ifn)=y- For each n,
picky'n e7n such that y ejn and Pn(yn)ç/n. Choose n large enough that St2 (x, Hn)*
ng-\y)^V.

Let A be a member of St2 (x, Hn) such that Pn+i(7n+,i) meets A. Since Rn + 2(jn+2)
meets every member of Pn+1(yn+1), P„+2(yn+2) meets both 61l(jn+1) = hx and
el(jn+i) = h2. Hence, Oxi(jn+2) and 0î<y'n+2) exist and are disjoint. Since Rn+i(jn+i)
meets every member of Rn+2(jn+2), (\t-a Rn+tUn+t) <"> &l1(j»+a¥>0- Similarly,
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fir=2 ^n+iO'n+i) n 8î2(Jn+2)¥10■ Therefore, Fcontains at least two points, and we
have established Theorem 2.
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