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Open Mobile Miner: A Toolkit for Building Situation-Aware Data Mining 

Applications 

 

Abstract – In organizational computing and information systems, data mining 

techniques have been widely used for analyzing customer behaviour and discovering 

hidden patterns. Mobile Data Mining is the process of intelligently analysing 

continuous data streams on mobile devices.  The use of mobile data mining for real-

time business intelligence applications can be greatly advantageous. Past research has 

shown that resource-aware adaptation of data stream mining can significantly improve 

the continuity of data mining operations in mobile environments. The key underlying 

premise is that by varying the accuracy of the analysis process in accordance with 

changing available resource levels, the longevity and continuity of mobile data mining 

applications is ensured. In this paper we qualitatively extend the notion of resource-

aware adaptation of mobile data mining to holistically enable situation-awareness 

feature for user applications. We then present a novel generic toolkit that enables 

building situation and resource-aware mobile data mining applications and describe 

along with underlying theoretical foundations of resource and situation criticality, 

awareness and adaptation which are entirely transparent and hidden from the user. The 

Open Mobile Miner (OMM) toolkit builds on our research for performing adaptive 

analysis of data streams on mobile/embedded devices. Finally, we describe a mobile 

health monitoring application as a case study and discuss the results of our conducted 

experimental evaluation which demonstrate the adaptation transparency and easy use of 

OMM for building mobile data mining applications such as stock market monitoring 

and real estate data analysis. 

Keywords -  Data stream mining, Mobile computing, Ubiquitous computing, Adaptation model, Context 

awareness, e-Commerce applications.  
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1. Introduction 

Data mining techniques have been widely used in organisational computing and e-commerce to 

learn and discover hidden knowledge and interesting patterns from large amounts of data (Gentry 

et al. 2002). These techniques enable analyzing customer behaviour and predicting future trends 

or customer churn (Bose and Chen 2011). The popularity, ubiquity and ever increasing power of 

mobile devices in terms of storage and processing have led to new classes of data mining 

applications that enable performing real-time analysis of large amounts of data on 

mobile/embedded devices (Gaber 2009; Stahl et al. 2012). Examples of such application domains 

include healthcare, Intelligent Transportation Systems (ITS), intrusion detection, stock market 

monitoring and real estate data analysis. The importance and significance of data mining and 

processing on mobile devices can be explained as follows. 

• Transmitting data to centralized servers to be analyzed could be very expensive in terms 

of energy consumption and communications cost. In wireless devices, communication 

consumes more energy than computation (Raghunathan et al. 2002). In many cases, 

wireless sensors are close to the mobile/embedded device and hence onboard processing 

of sensory data can significantly reduce the costs/overheads of data transmission.  

• Mobile data mining can be used as a supporting/complementary technology that can 

significantly reduce the cost of data collection and transmission by performing real-time, 

continuous, and intelligent processing of data onboard mobile device, and sending 

essential information for detailed analysis.  

• Currently there is an increasing reliance on the capacity and capability of the mobile 

phones to provide a wide range of computational support and services to the user. We are 
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expecting our mobile phones to provide us  with  the  same  functionality  as  stationary  

computers  while  we  are  on  the  move (Perich et al. 2004). This technological 

evolution presents an unprecedented opportunity for mobile applications including 

mobile data mining systems. However, it also emphasises the need for energy-efficient 

data analysis approaches onboard mobile devices. 

Consider a scenario where a mobile business user is monitoring streaming stock market 

data and needs to be alerted when an important occurrence/change is detected, such as a drop in 

share price. A stock market data mining application can assist the mobile user with real-time 

analysis of stock market data and inform him/her of any changes on the mobile phone. 

MobiMine (Kargupta et al. 2002) and (Fu et al. 2008) are examples of mobile data mining 

systems for monitoring financial stock market. MineFleet (Kargupta et al. 2010) is another 

example of a mobile and distributed data mining application for monitoring vehicle data streams 

in real-time that analyzes high throughput data streams onboard the vehicle.  

Current data mining applications operating on mobile devices such as a smart phone 

(Brezmes et al. 2009; Kargupta et al. 2010; Talia and Trunfio 2010; Hanny and Baatard 2011) 

recognize the implicit need for adaptation as a key feature of any effective mobile application. 

However, they have little consideration for resource availability. Analyzing large amounts of 

sensory originated data in real-time is a very challenging task. This challenge is further 

exacerbated when data is processed with resource-constrained devices such as mobile phones. 

Resource constraints include limited computational resources such as memory, processor speed, 

network bandwidth, battery power, and screen real-estate. Table 1 illustrates the comparison 

between smart phones and desktop computers with the focus on critical resources (i.e. RAM 

memory, CPU speed and battery lifetime). Different applications place different constraints and 
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requirements on resources, and also depending on the application priority the waiting for these 

resources can vary.   

Table 1 Performance Comparison between mobile phones and desktop computers. 

Resources Smart phones (e.g. 

iPhone1  and Samsung 

Galaxy
2
) 

Desktop PC Comment  

RAM 

Memory 

Up to 1 GB Up to 16GB  These values vary 

according to each brand 

and model. 

 

CPU Speed Up to 1.2 GHz Dual Core About 1.4 GHz to 

2.90 GHz (e.g. Intel 

Core i7 Extreme 

Processor ) 

Different variations of 

Intel Core i5 or i7 have 

different clock speed and 

cache capacity
3
.  

 

Battery Life Up to 8 hours talk time, 

up to 400 hours stand-by 

time, and about 4 hours 

for tethering and mobile 

AP (Access Point) 

N/A For mobile phones the 

battery life is a critical 

resource compared to the 

desktop PCs that use 

unlimited power. 

 

Previous studies on resource-aware adaptation (Gaber et al. 2005; 2006; Gaber 2009; 

Phung et al. 2007) show that dynamic adaptation to data rates and fine tuning of processing 

parameters can significantly enhance the longevity of continuous real-time processing of data 

                                                           
1
 http://www.apple.com/au/iphone/specs.html 

2
 http://www.samsung.com/au/smartphone/galaxy-s-2/specifications.html 

3
 http://www.intel.com/content/www/us/en/processor-comparison/compare-intel-processors.html 



6 

 

streams in mobile environments. The Granularity-based Adaptation (GA) (Gaber et al. 2004) is a 

generic efficient adaptation approach that can be used with any data stream mining technique 

running on a resource-constrained device. This approach facilitates adaptation of data mining 

algorithms to varying data rates and available computational resources in mobile devices.  

In addition to availability of resources, mobile data mining application’s accuracy 

requirements vary according to the occurring situations. For example, a health monitoring 

application requires lower accuracy when the patient is healthy and the occurring situation is 

‘normal’. A situation-aware adaptation technique controls the data stream mining settings 

according to current situations and accuracy requirements to improve the continuity of the 

running application (Delir Haghighi et al. 2010).  There can be other scenarios in which it is 

important to adjust mining algorithms considering both the current situation and resource 

availability. An example of such scenario is when a health monitoring application requires high 

accuracy because the patient’s health situation is not normal but the battery level is low. In such 

cases, there is a need to apply a hybrid adaptation strategy that combines situation and resource-

aware adaptation methods (Delir Haghighi et al. 2009; 2010).   

We have developed several data stream mining algorithms for Clustering, Change 

Detection, Classification and Frequent Items Analysis (Gaber et al. 2004; 2005; 2006; Phung et 

al. 2007) that operate using the above-mentioned principles of adaptation (i.e. resource or/and 

situation-aware). We have also extended these principles to visualization techniques for data 

stream mining (Gillick et al. 2006; 2010) on mobile devices as well. There have been application 

specific systems for mobile data mining that have been built, and several algorithms have been 

developed to perform analysis on mobile devices.  However, till date, an integrated toolkit for 

performing data stream mining on mobile devices which has a range of algorithms to facilitate 
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different types of applications has not been developed (Krishnaswamy et al. 2009). In this article, 

we present the pioneering mobile data mining toolkit: Open Mobile Miner (OMM). 

 The primary motivations for the development of this platform are as follows: i) to 

provide a platform for evaluation of new and existing mobile data stream mining techniques by 

the research community; ii) to encapsulate extensibility of the toolkit by easy integration of new 

and existing data stream mining algorithms into the toolkit that may or may not have adaptation 

mechanisms incorporated; iii) to interface with a range of input sources for data streams 

including Bluetooth-enabled sensors, previously recorded data, distributed data, and synthetic 

data; iv) to allow flexible, application specific visualizations to be developed; v) to enable easy 

deployment of mobile data mining applications on a range of mobile devices; and vi) to present 

case studies that show applicability of OMM to a wide range of information systems and e-

commerce applications, and healthcare.  

Thus, the above considerations form the requisite functionality that has driven the 

development of the OMM. The key unique contributions of this paper include: 

• the pioneering OMM software platform and its adaptation model that controls mobile 

data mining algorithms by factoring in resource availability and/or occurring situations; 

• formalization of the situation-aware and hybrid adaptation strategies using the notions of 

criticality; 

• experimental evaluation which demonstrates the benefits and transparency of the 

situation-aware and hybrid adaptation methods; 

• a case study which demonstrates the ease of developing and deploying information 

systems through incorporating mobile data mining applications.  



8 

 

The rest of the paper is organized as follows: Section 2 presents the theoretical overview 

of the adaptation process and situation inference for mobile data mining algorithms. Section 3 

presents an overview of the architecture of the Open Mobile Miner (OMM) with a discussion on 

its components. Section 4 presents the implementation and operation of the Open Mobile Miner. 

Section 5 presents a mobile healthcare case study that uses OMM’s underlying approaches for 

mobile data mining and applies situation- and resource-aware and hybrid adaptation methods. 

This is followed by the details of our experimental evaluation of this case study to validate the 

benefits of situation-aware adaptation. Finally, the paper is concluded in Section 6.   

2. Adaptation and Situation Inference for Mobile Data Mining  

This section provides an overview of the theoretical concepts underpinning the adaptation 

process. This is important in terms of understanding both the operation of the OMM (Open 

Mobile Miner) toolkit as well as the adaptive algorithms that form the core of OMM. However, 

in developing the platform, we have been conscious of the fact that there will be other mobile 

data stream mining algorithms that may or may not conform to adaptation. Furthermore, there 

may in the future be analysis algorithms that perform adaptation using varied strategies. Thus, 

the toolkit decouples the adaptation from the analysis such that algorithms can leverage the 

adaptation mechanisms or they can execute without adaptation.  

Adaptation strategies in OMM can be categorized into two main classes: resource-aware 

and situation-aware strategies. To enable flexibility in OMM, adaptation can be achieved using 

each approach individually or by combining both approaches as a hybrid technique. The 

adaptation is performed transparently and is hidden from the user. The following subsections 

describe the underlying concepts of the resource and situation-aware adaptation. 
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2.1 Resource-Aware Adaptation 

The dominating factor of mining stream data on mobile devices is the high input rate with regard 

to the available computational resources. Data Streams are generated and sent in real-time in a 

stream format. The input rates of data streams can range from hundreds of records per second to 

megabytes or terabytes of tuples per second (Gaber 2009). Given the fact that the state-of-the-art 

techniques in the area have only focused on data reduction or approximating the results in a low 

complexity of space and time, we have proposed to adapt the mining algorithm according to 

resource availability and data stream rate. This approach is termed granularity-based adaptation 

(Gaber 2009). The granularity-based adaptation approach has three different variations: 

• AIG (Algorithm Input Granularity) is a process that adapts the data rates feeding into the 

algorithm according to the battery charge (see Figure 1).  

 

Figure 1 Input and output rate adaptation based on resource levels using AIG and AOG. 
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• AOG (Algorithm Output Granularity) provides adaptability by adjusting the algorithm 

output rate (e.g. the number of clusters) (see Figure 1). 

• APG (Algorithm Processing Granularity) performs adaptation of the processing settings 

of the algorithm with respect to the CPU usage.  

Resource-aware adaptation focuses on resources (i.e. memory, battery and CPU). Yet, the 

mobile data mining algorithm’s cost-efficiency with regards to resource utilization can be 

improved further by factoring in the entire situational context of the application. This is due to 

the fact that the data mining application’s requirements in terms of the accuracy (and therefore 

resource consumption) vary according to the current situations. The next subsection discusses the 

concept of situation-aware adaptation and the situation inference model that it applies. 

2.2 Situation-Aware Adaptation  

Resource-aware adaptation aims to adjust the algorithm input and output rates (i.e. the algorithm 

accuracy) according to the resource levels of mobile devices to preserve resources. When the 

resource levels are low, a resource-aware adaptation moderately reduces the algorithm accuracy 

by decreasing the input or output rates. A high level of accuracy (without using adaptation) 

consumes resources quickly and can result in the mobile application failure.  

The accuracy requirements of a mobile data mining application can change based on the 

occurring situations. By situations we mean real-life situations such ‘fire_threat’ or ‘driving’. 

There are certain situations in which applications do not need high accuracy such as the 

‘healthy/normal’ situation in a health monitoring application. However, there are other situations 

like ‘hypertension’ (caused by high blood pressure) which will require a higher level of 

accuracy.  A situation-aware approach can increase the accuracy during critical situations where 
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there is a need for closer monitoring and detailed output. However, when the current situation 

requires less frequent data analysis and less detailed mining results (i.e. low accuracy), this 

adaptation technique can decrease the algorithm accuracy to preserve resources. 

2.2.1 Situation Inference 

To provide situation-awareness, there is a need for a context modeling and reasoning technique 

that can represent the current situation and more importantly is able to infer the situations from 

low level context. Individual contextual parameters provide a limited view of the real-world and 

a partial understanding of the environment (Padovitz et al. 2004). Multiple contextual parameters 

can be aggregated by employing reasoning techniques and used for inferring situations (Padovitz 

et al. 2004).  Fuzzy Situation Inference (FSI) technique (Delir Haghighi et al. 2008) is a novel 

context modeling and reasoning approach that we have developed to identify and represent real-

world situations as well as the uncertainty associated with these situations. The inferred 

situations are used to enable a smooth and fine-grained adaptation of data mining algorithms’ 

settings according to application constraints.  

FSI integrates fuzzy logic into the Context Spaces (CS) model (Padovitz et al. 2004). It 

uses the benefits of the CS model for supporting pervasive computing environments while 

incorporating fuzzy logic to deal with uncertainty associated with real-world situations. In FSI, 

fuzzy rules can be specified for situations of interest by domain experts in the process of 

knowledge acquisition by FSI developers or designers. The rules can be extracted by some tools 

or manually. Once the rule repository has been developed it can be maintained and updated by 

domain experts in the same way that they are initially acquired. Additionally rules can be 

generated by data stream mining algorithms and based on their extracted knowledge (Gaber et al. 

2004), and then validated by domain experts. Throughout the lifetime of rule repository, rules 
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can also be refined using data stream mining algorithms such as clustering or Detect Change 

algorithms (Gaber et al. 2005). It is worth mentioning that development of such a tool (or 

approach) for rule acquisition and maintenance goes beyond the scope of this paper. However 

such a tool will be very useful and is considered as our future research effort. 

To model the importance of conditions, we assign a weight w to each condition with a 

value ranging between 0 and 1. The sum of weights is 1 per rule. A weight represents the 

importance of its assigned condition relative to other conditions in defining a situation. An 

example of a FSI rule is as follows: 

IF systolic_blood_pressure is ‘high’ AND diastolic_blood_pressure is ‘high’ AND heart_rate is 

‘fast’ THEN situation is ‘hypertension’ 

To reason about a situation, rules need to be evaluated to produce a single output that 

determines the membership degree of the consequent (Zimmerman 1996). Using fuzzy logic, the 

FSI model is able to compute the individual contribution levels of context values using the 

trapezoidal membership function. The membership degree of an element represents its 

contribution level according to the definition of the CS model. The FSI proposes a basic 

technique for evaluation of FSI rules and conditions joined with the AND operators: 

∑
=

=

n

i

ii xwConfidence
1

)(µ                                                  (1) 

where  iw   represents a weight assigned to a linguistic variable such as heart rate, and 

)( ixµ  denotes the membership degree of the element ix  given that it belongs to an associated 

fuzzy set. The membership degree represents the contribution level (i.e. ic ). The result of 
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)( ii xw µ  represents a weighted membership degree of ix  and n represents the number of 

conditions in a rule (1≤i≤n).  

2.3  Adaptation Strategies and Underlying Concepts 

The inferred situations by FSI and their membership degrees are used by situation-aware and 

hybrid strategies for adaptation of data mining algorithm settings. 

• Situation-Aware Strategy - A situation-aware adaptation technique controls the data 

stream mining settings (i.e. input and output rates) according to the occurring situations 

and accuracy requirements of the running application. During adaptation, the pre-

initialized parameters of mining algorithms such as sampling rate are adjusted according 

to the degree of membership (i.e. a value between 0 and 1) of occurring situations. The 

pre-initialized parameters are defined for each situation and reflect the accuracy needs of 

application during occurrence of that situation.  

• Hybrid strategy - In the cases where both resources and situations are critical and there 

is a need for high accuracy, the situation-aware approach can result in draining the 

resources as it does not consider the resource availability. To address the issue and factor 

in both occurring situations and levels of resources, the hybrid strategy computes each 

algorithm’s parameter value by considering the criticality values of situations and 

resources (i.e. battery and memory).  

Since our adaptation approach includes situation- and resource-aware and hybrid 

strategies, it is important that the appropriate strategy is selected at run-time. The selection is 

performed based on the concepts of situation and resource criticality: 
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• Situation criticality - We model the application’s accuracy requirement (and resource 

consumption) for a situation by the concept of situation criticality. The criticality of a 

situation can be expressed by a value between 0 and 1. If a situation requires closer 

monitoring and more detailed data analysis output, it should be given a higher criticality 

value (closer to 1), and if the situation needs a lower level of accuracy, it should be 

assigned a lower criticality value (closer to 0).  

• Resource Criticality - Resource criticality is used to model the availability of resources 

and expressed as a value between 0 and 1. When a resource such as memory is fully 

available (i.e. 100%), its criticality value is 0 which implies it is not critical.  

To define the low and high criticality levels, there is a need to for using a point of 

reference that values can be compared to. This is achieved by assigning thresholds (i.e. a value 

between 0 and 1) to resource and situation criticality. These thresholds are application-specific 

and determined by system designers and application domain experts. For example, the situations 

above the upper bound threshold with a value of 0.7 can be considered as critical situations 

requiring high accuracy. The situations below the lower bound threshold which is assigned a 

value of 0.3 can be regarded as non-critical. Non-critical situations do not need high accuracy.   

Using criticality values and thresholds enables the Controller to compare resources 

according to their levels and situations with regard to the application’s accuracy requirement, and 

determine which strategy can achieve the required accuracy while using resources efficiently. 

2.2.3 Criticality variations and the selection technique 

The controller component of the situation and resource-aware adaptation framework is 

developed according to the four main variations. Table 2 presents these cases that can occur 
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according to the criticality of resources and situations during the application run, and shows the 

level of accuracy that is achieved by each adaptation strategy.  

Table 2 Adaptation results considering criticality variations. 

S. C                  R.C                   S.A. method         R.A. method        Hybrid method 

Low                  Low                 Low accuracy       High accuracy      Moderate accuracy 

Low                  High                Low accuracy        Low accuracy      Low accuracy 

High                 Low                 High accuracy       High accuracy      High accuracy 

High                 High                High accuracy       Low accuracy       Moderate accuracy 

S.C., R.C., S.A. and R.A. stand for situation criticality, resource criticality, situation-aware, and 

resource-aware. 

 

We now discuss the selection process based on the assumption that the low accuracy 

results in less resource consumption and the high accuracy increases the resource consumption. 

1)  When the criticality values of both resources and occurring situation are low. In such 

cases, the situation-aware technique aims to preserve resources by decreasing the 

accuracy because the criticality value of the occurring situation is low. Conversely, the 

resource-aware approach aims to increase the accuracy because of the resource 

availability. The hybrid method combines both situation and resource-aware methods, 

and therefore it attempts to maintain a moderate level of accuracy but higher than the 

situation-aware adaptation which is not needed by the application. Therefore, in such 

scenarios, the situation-aware technique can be considered a better choice. 

2) When the criticality value of occurring situation is low but the resource criticality is 

high. In this case, the situation-aware strategy reduces the accuracy and resource 

consumption. Meanwhile, in such cases, since the resource criticality is high, the 



16 

 

resource-aware method also decreases accuracy to preserve resources. The hybrid 

strategy considers both resource availability and occurring situation and attempts to 

decrease the algorithm accuracy. Therefore, in this case either of the strategies (situation-

aware or hybrid) can be selected. However, the hybrid technique requires more 

computation because it executes both resource and situation-aware methods. Hence, the 

situation-aware approach is preferred to the hybrid technique. 

3) When the criticality value of the occurring situation is high but the resource criticality is 

low. In this scenario, the situation-aware strategy increases the input and output rates to 

meet the application’s requirement for high accuracy. Since resources are available, the 

resource-aware method also aims to increase the accuracy. Hence the hybrid method that 

integrates the situation and resource-aware strategies results in high accuracy. With 

regards to this variation, the results of situation-aware and hybrid methods are similar but 

the situation-aware technique requires less computation and is considered a better choice. 

4) When the criticality values of resources and occurring situation are high. In this 

scenario, the hybrid technique is a better choice as the situation-aware method will drain 

the resources to maintain high accuracy. The hybrid method considers both occurring 

situations and resource levels, and enables the algorithm to use resources efficiently 

while providing an acceptable level of accuracy that is required by the current situation.  

Table 3 presents the notation used in the algorithm for selecting the adaptation strategies. 
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Table 3 Symbols used in the strategy selection algorithm. 

Symbol                Meaning 

R                          Vector of resources },..,,.{ 21 jrrrR =  

S                          Vector of inferred situations },..,,.{ 21 isssS =  

)( highest

isµ             Function returning the situation with highest degree of membership 

)(
highest

isC             Criticality of the situation with the highest membership degree 

)( jrC                    Criticality of a resource jr  

 

Figure 2 shows the algorithm used for selection of adaptation strategies. The Adaptation 

Engine (AE) periodically obtains resource levels and inferred situations. At the beginning of 

each time interval, the AE checks the criticality level of each resource. If all the resources are 

available (i.e. criticality value is low), AE triggers the situation-aware strategy. Situation-aware 

adaptation adjusts all the parameter values according to the occurring situation and returns the 

adjusted values of parameters used for controlling the mining algorithm settings.  

 

Figure 2 The pseudo code of Controller for selecting the adaptation strategies. 
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 If one of the resources is running low, the AE checks the inferred situations reported by 

FSI Engine (FSIE) and considers the criticality value of the situation with the highest 

membership degree. The highest grade of membership implies the highest level of confidence in 

occurrence of a situation. The AE considers this situation as the current situation. 

If the situation with the highest membership degree has a low criticality value, it means 

the application requires low accuracy, and the Controller executes the situation-aware adaptation 

again. However, if the occurring situation’s criticality value is high, the Controller triggers the 

hybrid adaptation strategy that combines situation and resource-aware methods and uses the 

results of both to determine the adjusted value of the mining parameter.  

3. An Overview of the OMM Toolkit 

The Open Mobile Miner (OMM) toolkit is a generic toolkit for mobile data mining. OMM is 

easy to use and extensible, and can be deployed on a range of mobile devices and customized for 

application specific needs. OMM leverages a holistic adaptation approach for mobile data 

mining that we have developed. Figure 3 shows the OMM architecture.  
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Figure 3  An overview of the Open Mobile Miner (OMM) toolkit. 

OMM presents an important step forward in taking mobile data mining from theory to 

real-world application development and deployment. The key components of the architecture are 

as follows: 

Data Sources - The streams of data that need to be analyzed are generated at the data 

sources. OMM can receive and analyze data from four different sources: i) sensors or biosensors 

that transmit either though Bluetooth, WiFi, or other protocols; ii) a data generator that can 

generate a specified number of streams each with a specified distribution (e.g. Binomial, 

Gaussian, Poisson, Uniform etc.), for the specified parameters; iii) reading recorded data in a 

local CSV file and re-play it as a stream; iv) replay the contents of a CSV file as a stream from a 

web source. 
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Data Stream Capture - This component receives data streams from the various sources 

and passes it either to the data stream mining algorithms or the adaptation engine depending on 

whether the analysis process has been initialized to operate in an adaptive manner or not. This 

component may perform some buffering of data so as to enable determining the data rate and 

preventing loss of data. 

Resource Monitor - This component is responsible for assessing the levels of memory, 

processor and battery available on the device. This information in conjunction with the data 

stream rates constitutes the principal basis for performing adaptation. Resource monitor 

primarily communicates the resource level information to the Adaptation Engine. This 

component is – unlike the others – operating system specific. Given the range of mobile devices 

that are being developed and their diverse operating systems (e.g. Nokia phones run the Symbian 

OS, Google GPhone runs the Android OS and the iPhone runs iPhone OS) – this component has 

to implement the OS specific functions to access low-level computational characteristics.  

Library of Data Stream Mining Algorithms - The analyzer library provides a range of 

data stream mining analysis algorithms for mobile data mining. Table 4 shows the implemented 

algorithms in OMM (discussed in Section 3). All these algorithms are able to operate on real-

time data streams such as data from sensors or biosensors. 

Table 4 A list of OMM Algorithms.  

Method                         Algorithm 

Classification               

                                     

 

Clustering                                                       

                                    

LightWeight Classification (LWClass) (Gaber et al. 2004) integrates 

the AOG concept into K-Nearest-Neighbours classification. 

 

LightWeight Cluster uses an AOG-based clustering algorithm that 

considers a threshold distance measure for clustering of data (Gaber et 



21 

 

 

 

 

 

 

 

 

Time series 

analysis     

                                     

 

Frequent Items             

 

al. 2004) 

RA-VFKM integrates AOG with VFKM (Very Fast K-means)  (Shah 

et al. 2005)   

RA-Cluster and ERA-Cluster (Gaber and Yu 2006; Phung et al. 2007) 

is an adaptive micro-clustering algorithm using concepts of AOG, AIG 

and APG. 

 

RA-SAX (Resource- Aware version of Symbolic Approximation 

(SAX)) is a resource-aware time series analysis technique (Lin et al. 

2003). 

 

LightWeight frequent items (Gaber and Yu 2006) is based on AOG 

first calculates the number of frequent items according to the available 

memory and adjusts this number to deal with the high data rates. 

 

Visualization Library - The visualization library allows the results of the analysis 

process to be shown using custom visualization techniques. Given that many applications will 

typically require custom visualizations, the toolkit needs to facilitate integration of application 

specific visualization. The visualization middleware performs the task of continuously obtaining 

the output of the algorithms (e.g. cluster details) as they are available and also maintains limited 

generic information regarding visualization preferences (e.g. colors and shapes used to represent 

clusters). It is noteworthy that visualization of data stream mining on mobile devices is very 

much an emerging area of study. As such there are only early results on generic visualization 

algorithms/techniques that are available in the literature (Gillick et al. 2010). There are many 

challenges such as coping with incremental results; dynamic changes in the analysis results, 

coping with the limited screen real-estate that needs to manage screen-clutter as it evolves and 

having an effective battery-consumption strategy. Clearly, there is also a need for user-evaluation 
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in terms of the HCI issues, as well as tailoring of visualizations suited for different kinds of 

analysis. As such, our approach in this context has been to design OMM such that there are 

mechanisms to make the output accessible from the analysis process via a visualization 

middleware and enable the application developers to integrate application-specific visualizations. 

Adaptation Engine - This component manages the adaptation process in terms of 

obtaining information regarding the data stream characteristics (e.g. data rates) from the data 

sources, resource-levels (i.e. status of computational resources including battery levels) of the 

device (i.e. resource criticality) and situation criticality, and then instrumenting the performance 

of the data stream mining algorithms according to this information. 

The Adaptation Engine has two main strategies for adjusting dynamically the functioning 

of the data mining algorithms according to the various parameters by varying accuracy levels. 

These strategies include resource and situation-aware techniques that can be used individually or 

combined as a hybrid approach according to the principles outlined previously in Section 2. 

The next section discusses how this has been implemented in the OMM toolkit. 

4. Implementation of OMM 

The motivation for the development of the Open Mobile Miner (OMM) was to provide a generic 

tool to facilitate research on mobile data mining. The OMM toolkit is split into two parts: A Core 

that provides all the functionality needed to do adaptive mobile mining and a graphical user 

interface (GUI) that facilitates ease of use for the Core’s functionality through graphical controls. 

Figure 4 illustrates the implementation structure of OMM. 
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Figure 4  The OMM Toolkit’s iimplementation structure and its main components. 

4.1 The Core  

The Core consists of three major interfaces: IDataSource, IDataSink and IAlgorithmContainer. 

The Core utilizes three utility interfaces. These include IResourceMonitor, ISituationMonitor and 

IStatsConsumer to provide support for resource awareness, situation awareness and runtime 

statistics respectively. Within OMM’s core, the data just keeps flowing upstream through an 

algorithm. The data source acts as an adaptor for the system to the incoming data stream 

converting items into the necessary format. In turn, the data sink can be used to transform results 

into any desired format for visualization. Generally, the data path is set up as follows:  
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1) A sink is created and then the sink is passed as an argument to the algorithm container. 

The algorithm container supports an arbitrary number of sinks in order to output data in 

several ways concurrently. Due to simplicity, Figure 4 only shows one sink.  

2) Additionally, the algorithm container will generally need an IResourceMonitor and/or 

an ISituationMonitor to implement the adaptation strategies presented earlier in the paper. 

As such OMM can perform analysis with no adaptation, or any other type such as 

resource-aware adaptation, situation-aware adaptation or hybrid adaptation.  

3) As a last step, the IAlgorithmContainer reference is passed into the IDataSource to 

establish the link between them. OMM supports a wide variety of data sources as 

explained in Section 3. 

4.2 The GUI 

OMM’s GUI provides an interactive GUI with graphical controls for easy use and performing 

experiments. The core functionality is accessible from the GUI by selecting the components to 

connect. The user is required to enter the necessary parameters for the respective source, sink or 

algorithm and can eventually run the system. Furthermore, a tight integration with any software 

can be achieved by accessing the OMM Core functions directly via the API. This is done in a 

straightforward manner by instantiating component classes directly. To setup the system, one 

selects source, algorithm and sink (see Figure 5). After pressing the select button, a tree of 

available components is shown. After making a selection, a box containing the available 

parameters is displayed allowing adjustment of the component’s behavior as required. If the 

output should be displayed in the GUI’s output tab, the SEGUISinkWidget (from the list) has to 

be selected. OMM also allows saving the current selection and configurations from the widgets 



25 

 

into an XML file. This file can be loaded back into the GUI at another point of time or deployed 

on a mobile device and used to run OMM without having to configure it manually beforehand. 

 

Figure 5 An overview of the OMM Desktop GUI. 

The mobile GUI is similarly structured to the Desktop GUI. It can be configured to load 

configurations from an XML file previously generated by the Desktop GUI using the “Load” 

option on the welcome screen. The OMM GUI is easily extensible. For instance, a new custom 

source can be instantiated by including an ISourcePanel on the classpath. The OMM GUI will 

support the new source and display it as an option in the respective component’s tree listing.  

4.3 Visualization 

 As discussed earlier, OMM’s visualization middleware enables to visualize the analysis results. 

Figure 6 illustrates a custom visualizer that displays the results of the RA-Cluster algorithm. 
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These results represent clustering real-time locations of emergency and police personnel during 

an emergency. Such a real-time analysis and visualization could enable emergency authorities to 

quickly understand the areas where the impact is greatest and allow re-deployment of personnel 

in real-time. The visualizer uses color and size to visualize the evolving cluster strengths, and is 

adaptive to screen clutter, cluster overlap, and varying energy levels on the phone. It also allows 

the visualization to be personalized using various visualization thresholds (Gillick et al. 2010). 

 

Figure 6 The results of RA-Clustering captured by custom-built cluster visualizer. 

The preceding sections presented the conceptual framework and the implementation of 

the OMM toolkit along with the theoretical underpinnings of its adaptation strategy. We now 

present the evaluation of the platform for developing and deploying efficient mobile data mining 

applications. Our evaluation strategy is twofold. Firstly, we aim to show how mobile data 

applications can be easily configured and deployed in a completely flexible way using the OMM 

toolkit. Our second aim is to present the effectiveness and efficiency of the situation-aware 

adaptation strategy and demonstrate the improvements it brings to mobile data mining 

applications when compared with the previous state-of-the-art resource aware adaptation 

strategies.  
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We now present a case study which shows the use of OMM to develop a mobile 

healthcare application which applies situation-aware and hybrid techniques.  

5. Mobile Data Mining For Healthcare: A Case Study And Experiments 

Mobile healthcare and patient monitoring technology are becoming increasingly prevalent. 

Recently, innovations in mobile communications and low-cost of wireless biosensors have paved 

the way for development of mobile healthcare (Leijdekkers and Gay 2012; Rodriguez, Goni and 

Illarramendi 2015) that provide a convenient and constant way of monitoring of vital signs of 

patients. A significant challenge for healthcare monitoring applications is to process and analyze 

continuous data streams with resource constrained devices such as a smart phone in real-time. 

Our proposed adaptation strategies and light-weight mining algorithms provided by OMM can 

significantly benefit the mobile healthcare applications to address this challenge.  

In the following section, we present the case study of a mobile patient monitoring 

application using OMM.   

5.1 A Mobile Health Monitoring Application   

We have implemented a mobile health monitoring prototype that applies the situation-aware and 

hybrid adaptation approaches to the ERA-Cluster algorithm. The prototype is built for patients 

who suffer from blood pressure fluctuations and reasons about the health-related situations 

including ‘normal/healthy’ and ‘hypertension’ (caused by high blood pressure). The context 

attributes used for this application include systolic and diastolic blood pressure, room 

temperature and heart rate, which are obtained from a Bluetooth-enabled ECG biosensor from 

Alive Technology (Alive Technology) attached to the patient’s chest. The data mining algorithm 

that we used in our prototype is the ERA-Cluster algorithm (Phung et al. 2007). ERA-Cluster is a 
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resource-aware clustering algorithm extended from RA-Cluster (Gaber et al. 2006) that targets 

wireless sensor networks. Similar to RA-Cluster, the settings of the ERA-Cluster algorithm can 

be adapted to changes in battery level and remaining memory using the concepts of the 

granularity-based adaptation. The prototype is implemented in J2ME and tested on the Nokia 

N95 mobile. The architecture and its implementation are depicted in Figure 7. 

 

Figure 7 The architecture of the health monitoring prototype and its implementation. 

5.2. Accuracy evaluation of ERA-Cluster   

The ERA-Cluster algorithm is an example of the OMM’s resource-aware mining algorithms. It 

performs resource-aware adaptation by adjusting the input and output rates (and accuracy) 

according to the resource availability. During the adaptation, it is important that the input and 

output rates are changed/adjusted within the certain lower and upper bound thresholds in order to 

maintain an acceptable level of accuracy.  

To determine the lower and upper bounds for ERA-Cluster, Phung et al. (2007) 

performed a comparative evaluation of the ERA-Cluster with the well-known and widely-used 

kmeans algorithm of Weka (Witten and Frank 2001). In the evaluation, ERA-Cluster was run 
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over the dataset with 660 records to create a number of microclusters. Over the same synthetic 

data, kmeans was run 3 times with k = n to create the same number of clusters. Figure 8 shows 

the results which indicate that ERA-Cluster is able to maintain a similar level of accuracy 

compared to kmeans while performing resource-aware adaptation. According to this experiment, 

the lower and upper bounds of 100 and 400 for the sampling intervals, and the radius with 

minimum and maximum values of 4 and 45 could produce an acceptable level of accuracy. 

 

Figure 8 Evaluation of ERA-Cluster and kmeans (adapted from Phung et al. (2007)). 

To demonstrate that our adaptation methods can improvise lifetime without reducing 

accuracy levels, we maintain the exact same lower and upper bounds for the ERA-Cluster 

algorithm as done in (Phung et al. 2007) but control the algorithm accuracy using situation-aware 

and hybrid strategies.  

5.3 Comparative experimental evaluation    

Previous studies in mobile data mining (Gaber et al. 2005; 2006; Gaber 2009) experimentally 

evaluated resource consumption of mobile devices with and without the resource-aware 

approach and their results showed that the resource-aware adaptation can preserve resources and 
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improve the cost-efficiency of data mining algorithms. Therefore, in our evaluation, we 

compared the situation-aware (SA) and hybrid techniques only with the resource-aware (RA) 

method to show the benefits of our approach over the resource-aware technique.  

5.3.1 Settings 

In our experiments, we used a resource-aware data mining algorithm named ERA-Cluster 

(Phung et al. 2007).  The cost-efficiency of mobile data mining algorithms is measured with 

respect to the longevity of mining operations (i.e. running time) and the level of availability of 

resources (i.e. memory and battery charge). ERA-Cluster provides these adjustable parameters: 

(i) sampling interval for controlling the algorithm input and thereby battery consumption; and (ii) 

the cluster’s radius distance measure for adaptation of the output rate that impacts the memory 

usage. The sampling interval has an application-specific lower and upper bounds of 100 and 400, 

and the radius is assigned with minimum and maximum values of 4 and 45. These values are 

based on the results of experiments discussed in Section 5.2 and are specific to ERA-Cluster.   

We consider the four variations (see Table 2) based on the two levels of low and high for 

resources and two levels of critical and non-critical for situations. Considering our health 

monitoring application, the critical situation applies to ‘hypertension’ and the non-critical 

situation is associated with ‘normal/healthy’. The criticality threshold values that we use are 

application-specific. For situation criticality, we assign two thresholds of 0.3 and 0.7, and for 

resource criticality, we define the lower and upper bound thresholds of 0.15 and 0.45 based on 

our observations of resource consumption patterns in the Nokia N95 phone.  

For the first three variations (see Table 2), we compare the situation and resource-aware 

methods (i.e. total of 6 different runs). This is due to the fact that the hybrid method is proposed 
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for those scenarios where both resources and situations are critical and this does not apply to the 

first three cases. For the last variation, we have compared the hybrid, SA and RA methods (i.e. 

total of 3 different runs). We have repeated each application run five times and used the average 

result in our evaluation.  

During the application run the mobile phone SIM card was not removed because we were 

interested to conduct our experiments in real-world settings. Since smart phones’ functionalities 

such as voice calls, text messaging, web browsing, playing video or audio and running 

applications can significantly affect the power consumption; during the experiments we did not 

use any of these functionalities and kept the phone in an idle state. The mobile phone’s operating 

system can also improve power management by using Battery Saver or Power Saver modes that 

controls the functions such as screen brightness. During experiments, the phone was not used for 

any other purposes other than testing, and there was not any factor controlled by the operating 

system which could have impacted our results. 

5.3.2Test Data 

The data has been generated in a range such that simulates the occurrence of each health-related 

situation (according to fuzzy sets of FSI rules). However, to consider the energy consumption by 

the Bluetooth communication between the sensor and the mobile phone, it was important to 

include the ECG sensor in the experiments. Hence, we used the ECG sensor and the mobile 

phone was continuously receiving the sensory data. However, we overwrote this data by the 

simulated heart rate to simulate the critical situations. The Alive biosensor’s ECG data has the 

following structure: packet header (6 bytes), ECG header (5 bytes), ECG data (n bytes), 

accelerometer header (5 bytes), accelerometer data (n bytes) and a checksum 1 byte.  To process 



32 

 

and convert the ECG signals into heart rate data we used the MobiHealth
1
  open source 

framework which enables collecting ECG signals and computing the heart rate. 

The complete dataset for each situation consists of approximately 60,000 records. Each 

record consists of four data elements that represent the values of systolic and diastolic blood 

pressure, heart rate and room temperature. To perform a fair evaluation and to use the same data 

in each repeating run (for each situation), the generated datasets have been saved to three files 

(corresponding to each situation). At the start of each repeating run, the stored data is read and 

fed into a data generator program that publishes the data with at a rate of 1 record/100 msec. The 

complete dataset for each situation consists of approximately 60,000 records.  

5.3.3 Experiments 1 and 2 for Non-Critical Situations   

The first experiment is performed for scenarios in which resources are available (i.e. resource 

availability level between 100-85%) and the occurring situation is non-critical (i.e. both situation 

and resource at the low criticality level) and applications do not need high accuracy. We compare 

the results of our experiments for each strategy (RA and SA) based on the application running 

time, memory and battery consumption and parameter values of the algorithm adjusted according 

to each strategy. During Experiment 1, the situation-aware method increases the sampling 

interval of mining algorithm to reduce the input rate and therefore it improves the conservation 

of battery and longevity of operations. The RA technique uses a lower sampling rate to maintain 

a higher level of accuracy because of availability of battery. This leads to more computation and 

consumption of battery, and decreases the running time of application. 

                                                           
1
 http://sourceforge.net/projects/mobhealth/) 
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Experiment 2 considers scenarios in which the occurring situation is non-critical but 

resources are running low which refers to the resource availability level between 84 and 50%. In 

such scenarios, the situation-aware method regardless of resource levels decreases the accuracy 

due to the application’s needs, leading to less resource consumption. On the other hand, the RA 

method adapts the settings of the mining algorithm and moderately decreases the accuracy to 

deal with low level of resources. In these cases, although each strategy considers different 

factors, the results are similar with respect to accuracy and running time.  

The summary of the results of Experiment 1 and 2 considering battery and memory usage 

are depicted in Figure 9. The bar chart is created based on the memory and battery level values 

and running time of the application in seconds. The taller columns indicate more efficiency and 

shorter columns represent faster consumption of resources and lower efficiency.  
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Figure 9 Comparison of SA and RA methods for non-critical situations when resources are 

available and when they are running low. 
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The overall results indicate that the SA strategy outperforms the RA method and is able 

to improve the cost-efficiency and continuity of mining operations. This improvement is more 

noticeable when the battery criticality level is at low level (i.e. 100-85%) and the memory 

criticality is at high level (i.e. 84-50%). During experiments we observed that when resources are 

at the low criticality level, it takes a longer time for the battery level to drop to 85% and when 

resources are running low, memory is consumed slower than battery. 

5.3.4 Experiment 3 and 4 for critical situations 

In Experiment 3, we consider the cases in which situations are critical and resources are 

available. In critical situations, the situation-aware method increases the algorithm accuracy due 

to the needs of application for a higher level of accuracy. This approach will lead to more 

consumption of resources. Alternatively, the resource-aware method that is performed regardless 

of situations considers the resource levels to determine the accuracy. Therefore, in this scenario 

for Experiment 3, both RA and SA attempt to increase the accuracy and there is not a trade-off 

between two approaches. Hence, we have not considered the hybrid strategy in Experiment 3. 

The results of Experiment 3 based on battery and memory usage are illustrated in Figure 10a.  

Experiment 4 is performed for cases when both situations and resources are critical. In 

such cases, situation-aware method increases the accuracy and thereby consuming more 

resource. However, the resource-aware technique reduces the accuracy to deal with the low level 

of resources. To address this trade-off and to enable optimal use of resources while considering 

application’s need for higher accuracy, the hybrid strategy considers both occurring situation and 

resource availability. Hence, in Experiment 4, we compare three approaches of SA, RA and 

hybrid considering both battery and memory are shown in Figure 10b. 
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Comparison of Resource Consumption for Critical situations 
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Figure 10 (a) Comparison of SA and RA methods for critical situations when resources are 

available, (b) Comparison of SA, RA, and hybrid methods for critical situations when resources 

are running low. 

In the Experiments 1, 2 and 3, the situation-aware technique is able to adapt the mining 

algorithms based on the accuracy needs of applications and improve the running time of 

application by preservation of resources. However, in Experiment 4 that both resources and 

situations are critical, the SA method is performed without considering the resources and can 

lead to the application failure. Alternatively, the RA method can achieve a longer running time 

but it does not consider the criticality of situations. In these cases, the hybrid strategy provides an 

elegant solution by resolving the trade-off between RA and SA methods and taking into account 

both resource levels and situations. 

5.3.5 Estimations of overheads/costs 

To measure the energy overhead of the situation and resource-aware framework with respect to 

the battery consumption, we run our health monitoring application when our framework is 
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enabled and when it is disabled (when only the mining algorithm runs), and then compare the 

results. We have performed 5 runs of each case to perform this evaluation and considered the 

average results in the comparison. Figure 11 shows the evaluation results. The average running 

time is 31260 seconds (i.e. 8 hrs and 41 min) when the situation and resource-aware adaptation 

framework is disabled and 30672.4 seconds (i.e. 8 hrs, 31 min and 12 sec) when it is enabled.  
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Figure 11 The overhead of running the application with adaptation in terms of battery usage. 

This implies that operating the mobile data mining algorithm application with our 

framework tends to decrease the running time by approximately 10 minutes (i.e. 1.9% overhead). 

The situation and resource-aware adaptation framework is a light-weight software component 

that targets mobile devices and is able to maintain a minimal computational overhead. This is a 

marginal overhead of 1.9% in terms of energy usage. However, as shown in previous 

experiments, considering the energy savings that we obtain by having situation and resource-

aware adaptation for the mining algorithm, we improve energy utilization up to 9.4%. Thus, we 
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can conclude that while there is a small processing usage overhead that our proposed framework 

has, this is offset by the benefits that it provides. 

6. Conclusion 

In this paper we have presented the architecture and implementation of the first integrated 

platform for mobile data stream mining. The innovation of OMM lies in not only the range of 

data stream mining techniques available for mobile data mining, but also its integrated and 

holistic adaptation strategies which have been established as essential factor for enabling real-

time mobile data analysis. Furthermore, the toolkit has been shown to effectively enable a 

diverse range of information systems that incorporate mobile analysis applications. Finally, we 

have also demonstrated through our experimental evaluation, the efficacy and improved 

performance that situation-aware and hybrid adaptation strategies deliver over the state-of-the-art 

approaches which only factor in resource availability.  

While the focus of the case study and performance evaluation presented in this paper is 

on mobile healthcare, we have also conducted experiments by using OMM for other applications 

such as real-time location analysis using clustering of GPS data as well as real-time analysis of 

stock market data.  This demonstrates further the generic and flexible capability of the OMM 

toolkit to deploy and deliver a range of mobile data mining applications particularly for e-

commerce, marketing, online shopping, etc.  

As part of future work, we intend to use data stream mining algorithms for generating the 

rules that define situations as well as refining and maintaining the rule repository according to 

new patterns and changes in data. We are also working on extending the OMM toolkit for 

analyzing huge amounts of real-time data collected by mobile phone sensors using cloud 
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technologies, and aim to evaluate the feasibility and validity of OMM’s mobile analytics as an 

effective mechanism for supporting large-scale mobile applications. 
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